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Real algebraic links in S^{3} and simple branched covers
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1 Introduction

In contrast to the set of algebraic links, the real algebraic links in  S^{3} are not classified yet. In this
paper we aim to give an overview of work on this open problem. There are various instructive
surveys on closely related topics such as Milnor fibrations and more general aspects regarding
the topology of isolated critical points of polynomials [15, 17, 38, 39]. What this survey aims to
add to the discussion is on the one hand an accessible treatment of the work that has already been
done on the classification of real algebraic links without assuming any previous knowledge on
the topic (apart from basic knot theory) and without any results that are not directly relevant for
this question and might complicate the theory. This means that we are goin g to ignore otherwise
very worthwile work on higher dimensions [3] and non‐isolated critical points [16, 19].

On the other hand we would like to point out connections to the theory of simple branched
coverings of  S^{3} over itself and the role of fibred links in this setting, in particular work by
Montesinos and Morton [30]. This connection has not been spelled out explicitly before and we
hope that it inspires future work on the cıassification of real algebraic links.

The remainder of this paper is structured as follows. Section 2 gives the necessary definitions
and background to state a conjecture by Benedetti and Shiota on the set of real algebraic links
in  S^{3} . Section 3 discusses the known constructions of real algebraic links, their similarities and
limitations. In Section 4 we summarize results on branched coverings of  S^{3} over itself and how
these could lead to more general constructions.
Acknowledgements: This work was supported by JSPS KAKENHI Grant Number  JP18F18751

and a JSPS International Postdoctoral Fellowship.

2 Preliminaries

The central objects of this paper are polynomial maps whose vanishing sets contain knots and
links in a very specific way. Before we give the definitions of algebraic and real algebraic links,
we give the best‐known example due to Brauner [11].

Example: Consider the polynomial  f :  \mathbb{C}^{2}arrow \mathbb{C} given by  f(u,v)=u^{p}-v^{q} with  p,  q\in \mathbb{N}.
More precisely, we are interested in its vanishing set on a 3‐sphere  S_{p}^{3}=\{(u,v)\in \mathbb{C}^{2}:|u|^{2}+
 |v|^{2}=p^{2}\} of a given radius  p around the origin (0,0)  \in \mathbb{C}^{2} . We can solve the polynomial
equation or simply plot  f^{-1}(0)\cap S_{\rho} for different values of  p , but with either method we find
that it is  T_{p,q} , the  (p, q) ‐torus  hnk . Remarkably, the link type does not depend on the radius  p
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at all. This is because the origin  (0,0) is the only point  (u,v)\in \mathbb{C}^{2} where  f vanishes and where
 \nabla f(u,v)=\lambda(u,v) for some real  \lambda . In this sense, the  (p,q) ‐torus link is a very dominating
feature of the vanishing set of  f.

We could now try to get rid of the property that the topology of  f^{-1}(0)\cap S_{p}^{3} does not depend
on  p . We could simply multiply  f by another complex polynomial  g that does not vamish at the
origin. Then for large  \rho the link  fg^{-1}(0)\cap S_{\rho}^{3} might be different from the  (p,q) ‐torus link, but
for small enough radii it is still  T_{p,q} . The following definition captures the essential properties
of  f and fg.

Definition 2.1. A link  L is algebraic if there exists a polynomial  f :  \mathbb{C}^{2}arrow \mathbb{C} such that

 \bullet  f has an isolated singularity at the origin, i. e.,  f((0,0))=0,  \nabla f((0,0))=(0,0) and there
is a neighbourhood  B of  (0,0)\in \mathbb{C}^{2} such that (0,0) is the only point in  B where the rank
of  \nabla f is notfull,

 \bullet  f^{-1}(0)\cap S_{p}^{3}=L for all small enough radii  p.

The polynomial  u^{p}-v^{q} in the example has an isolated singularity at the origin. The fact that
the singularity is isolated guarantees that the link type of the intersection  f^{-1}(0)\cap S_{\rho}^{3} does not
depend on  p if it is small enough. Hence the  (p,q) ‐torus link is algebraic.

The algebraic links are compıetely classified and they tum out to be iterated cables of torus
links, whose cabling coefficients satisfy an additional positivity condition. The precise result is
not that important in this context. We recommend the excellent book by Eisenbud and Neumann
[18] on the subject. For us it is for now enough to know that the algebraic links are classified
and that they are a very small subset of the set of all links.

The original construction of the polynomials in the example is due to Brauner [11], who
also gave a description of all algebraic links in terms of their cabling coefficients. Work by
Burau [12, 13, 14] then established that the links that one obtains from this description are
actually distinct. The term ‘algebraic link’ is due to Lê [27]. Another excellent source for
many interesting results in the theory of algebraic links is Milnor’s book [29], where he proves
(among many other things) that if  f has an isolated singularity at the origin, then the argument
of  f is a ıocally trivial fibration map over the circle,  \arg f :  S_{p}^{3}\backslash f^{-1}(0)arrow S^{1} for small enough
radii  p.

Definition 2.2. A linkL is calledfibred if its complement  S^{3}\backslash L is admits a locally trivialfibration
over the circle  S^{1} and the closures of the fibres are compact surfaces (Seifert surfaces) that
intersect precisely in their common boundary  L.

Even if we didn’t know it from the classification of algebraic ıinks, we would now know
from Milnor’s result that algebraic links are fibred.

In the last chapter of his seminal work [29], Milnor investigates properties of the real ana‐
logue of links of isolated singularities of complex plane curves, which were later termed real
algebraic links. We use this name in the sense of Perron [33] as links of isolated critical points
of polynomials  f :  \mathbb{R}^{4}arrow \mathbb{R}^{2} . This should not be confused with knotted algebraic varieties in
 \mathbb{R}\mathbb{P}^{3} as they were introduced by Viro [42], which are also called real algebraic links.

Definition 2.3. A link  L is real algebraic if there exists a polynomial  f :  \mathbb{R}^{4}arrow \mathbb{R}^{2} such that
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 \bullet  f has an isolated singularity at the origin, i. e.,  f((0,0,0,0))=(0,0),  \nabla f((0,0,0,0))=
 (\begin{array}{l}
0000
0000
\end{array}) and there is a neighbourhood  B of the origin  (0,0,0,0) such that  (0,0,0,0) is the
only point in  B where the rank of  \nabla f is notfull,

 \bullet  f^{-1}((0,0))\cap S_{p}^{3}=L for all small enough radii  p.

From now on we will usually write  0 for the origin in  \mathbb{R}^{4} , the origin in  \mathbb{R}^{2} and a matrix whose
entries are all equal to zero. It should be clear from the context which of these we are referring
to. In the literature one often also encounters the term “isolated critical point”. In this scenario
the two terms can be used interchangeably. A critical point is a point, where the gradient does
not have full rank, while a singularity refers to a point where the gradient is the matrix with
 0‐entries. Via a change of coordinates, any critical point can be turned into a singularity. In
Definition 2.3 the origin is a singularity, but is isolated in the sense of a critical point (it is the
only point in a neighbourhood where the gradient does not have full rank).

Definition 2.3 differs from Definition 2.1 only in that we replaced every instance of  \mathbb{C} by
 \mathbb{R}^{2} . This might seem like a small change, but note that it enlargens the set of polynomials
considerably. While every complex polynomial from Definition 2.1 can be written as a real
polynomial as in Definition 2.3 by considering its real and imaginary parts, the converse is not
true. It should be obvious that most real polynomials are not holomorphic for example. Hence,
every algebraic link is real algebraic, but not vice versa. At first (around the time of Milnor’s
book), it was not clear at all if there were any real algebraic links that are not algebraic, but even
though the real algebraic links are not classified yet, we now have plenty of examples for this
(cf. Section 3).

Both Definition 2.1 and Definition 2.3 can be generalized to higher dimensions and many of
the results (such as Milnor’s fibration theorem) remain true.

One difference between the complex and the real polynomials is that in general the argument
of a real polynomial as in Definition 2.3  (\arg f:S_{\rho}^{3}arrow S^{1}) is not a fibration. However, Milnor
established that the following is still true.

Theorem 2.4 (Milnor [29]). Ifa link  L is real algebraic, then  L is fibred.

According to Benedetti and Shiota this implication should be an equivalence.

Conjecture 2.5 (Benedetti‐Shiota [5]). A link  L is real algebraic ifand only if  L is fibred.

Akbulut and King showed that every link can be constructed around a weakly isolated singu‐
larity [2] meaning that the origin is allowed to lie on a component of the critical set of positive
dimension as long as the origin is the onıy point in a neighbourhood where the critical set
intersects the vanishing set  f^{-1}(0) .

The idea of Benedetti and Shiota is based on a procedure of blow‐ups and blow‐downs start‐
ing from a polynomial  f with the properties from Akbulut and King. At this point however, an
appropriate blow‐down technique is not made precise yet and Conjecture 2.5 remains conjec‐
tural.

Another result that might be interpreted as encouraging regarding Conjecture 2.5 is due to
Kauffman and Neumann [26]. They showed that if you allow real analytic functions with so
called tame singularities rather than only polynomials, then the links around these singularities
are precisely the fibred links.
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It should also be noted that real polynomial maps  \mathbb{R}^{4}arrow \mathbb{R}^{2} with isolated  si ngularities are
rare, in the sense that a ‘generic’ polynomial map between these spaces has a critical set of
dimension 1.

3 Constructions of real algebraic links

In this section we review the different constructions of real algebraic links that have been de‐
veloped over the years. If this list is incomplete, it is only due to the author’s own limitations.

At the moment the set of links that are known to be real algebraic is still comparatively
small. There are of course the algebraic ıinks, but until Looijenga showed that the connected
sum K#K of any fibred knot  K with itself is real algebraic [28], it was not known if there would
be any other examples. Looijenga in fact proved that every fibred knot  K that is odd, i.e. can
be realized as an invariant set under the inversion  i:S^{3}arrow S^{3},  i((u,v))=(-u, -v) such that the

fibration map is equivariant under  i , is real algebraic.
The basic idea of his construction is as follows. Use the fibration to define a map from a

neighbourhood  U of  S^{3} to  \mathbb{R}^{2}\cong \mathbb{C} , which vanishes on  K and whose argument on  S^{3} is equal
to the fibration map. We can approximate this map by a polynomial map  \Phi=(\Phi_{1},\Phi_{2}) :   Uarrow

 \mathbb{R}^{2} up to their first derivatives, which because of the symmetry of the fibration we can con‐
struct such that it consists only of terms with odd degrees. Therefore the rescaled function
 f=(f_{1},f_{2}) :  \mathbb{R}^{4}arrow \mathbb{R}^{2},  f_{i}(x)=\Phi(x/|x|)|x|^{\deg\Phi_{i}} is a polynomial. By construction this map
satisfies the conditions from Definition 2.3. The singularity at the origin is isolated essentially
because the fibration map does not have any critical points.

Pichon showed that if  f,g:\mathbb{C}^{2}arrow \mathbb{C} are holomorphic maps, then the function  f\overline{g} has an
isolated singularity at the origin if and only if  L_{f\overline{g}}  :=f\overline{g}^{-1}(0)\cap S_{\varepsilon}^{3} is a fibred link [34]. Note
that the link of this singularity  f\overline{g}\cap S_{\varepsilon}^{3} is the umion of  L_{f}=f^{-1}(0)\cap S_{\varepsilon}^{3} and the  L_{\overline{g}}=L_{g}  :=

 g^{-1}(0)\cap S_{\varepsilon}^{3} . In particular, if  f and  g are complex polynomials, then  L_{f} and  L_{g} are algebraic
links. That in general the resulting link  L_{\int\overline{g}} is not algebraic, can be seen for example from [25].
Functions of the form  f\overline{g} with holomorphic polynomials  f and  g have taken a prominent role
in the construction of isolated critical points since A’Campo’s first example in this context [1].

Perron [33] and Rudolph [36] independently constructed polynomials for the figure‐eight
knot  4_{1} , which is neither odd nor algebraic. This construction is also based on a particularly
symmetric parametrisation. Perron considers a parametrisation of a braid that closes to  4_{1} in
terms of trigonometric functions. This leads him to a parametrisation of  4_{1} itself in a 3‐sphere
of a given radius and consequentially to a polynomial  (f_{1},f_{2}):\mathbb{R}^{4}arrow \mathbb{R}^{2} whose nodal set on that
3‐sphere is  4_{1} . The elegance of this lies in the simplicity of the resulting polynomial. It requires
only 6 terms in total and is of degree 3, while the polynomials in Looijenga’s construction for
example can have arbitrarily large degree. Furthermore and like in Looijenga’s construction, the
symmetries of the original braid parametrisation mean that all terms of  (f_{1},f_{2}) have odd degree.
The polynomial map with an isolated singularity is then obtained (exactly like in Looijenga’s
construction) by considering the radially rescaled function  |x|^{3}(f_{1}(x/|x|),f_{2}(x/|x|)) . Showing
that the singularity at the origin is indeed isolated requires some tedious calculations. In this
regard, Rudolph’s construction is more satisfying as his functions can be written as a polynomial
in complex variables  u,  v and the complex conjugate  \overline{v} , which makes the proof of the isolated
singularity significantly easier.
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Perron’s construction can be generalized to a much larger class of braids as we pointed out
in [9].

Definition 3.1. A braid  B on  s strands is called homogeneous iffor every  i=1,2,  s-1 the
generator  \sigma_{i} appears in the word  B ifand only if  \sigma_{i}^{-1} does not appear.

We showed in [9] that all closures of squares of homogeneous braids are real algebraic.
Like in Perron’s construction we start with a braid parametrisation that involves trigonometric
functions. Let  B be a homogeneous braid and let  s_{C} be the number of strands that form the
component  C of the closure of  B . Hence the number of strands  s of  B equals   \sum_{C}s_{C} . We require
parametrisations of the form

  \bigcup_{Cj}\bigcup_{=1}^{sc}(F_{C}(\frac{t+2\pi j}{s_{C}}), G_{C}(\frac{t+
2\pi j}{s_{C}}),t) , t\in[0,2\pi] , (1)

where  F_{C},  G_{C}:[0,2\pi]arrow \mathbb{R} are trigonometric polynomials.
We then define  g_{\lambda} :  \mathbb{C}\cross S^{1}arrow \mathbb{C}.

 g_{\lambda}(u,t)= \prod_{Cj}\prod_{=1}^{s_{C}}(u-\lambda(F_{C}(\frac{t+2\pi j}
{s_{C}})+iG_{C}(\frac{t+2\pi j}{s_{C}}))) , (2)

which has the closure of  B in  \mathbb{C}\cross S^{1} as its vanishing set for all  \lambda>0 . We show in [8] that
we can find for every homogeneous braid a parametrisation as in Eq. (1) such that  \arg g_{\lambda} :
(  \mathbb{C}\cross Sı)  \backslash g‐  (0)arrow S^{1} is a fibration map.

Note that the fibration property of  \arg g_{\lambda} can be phrased entirely in terms of the critical values
of  g_{\lambda} . For a fixed value of  t the criticaı values of  g_{\lambda}(u,t) are given by  v_{i}(t)=g_{\lambda}(c_{i},t) with

  \frac{\frac{\partial g_{\lambda}}{\partial ar\partial u}(c_{i}gv_{i}(t)}
{\partial t} nevervanishest)
 =0,  i=l,2

. This has a nice geometric interpretation in terms of the movements
,  s-1 . Then  \arg g_{\lambda} is a fibration if and onıy if for all  i the derivative

of the critical values in the complex plane as  t varies. Note that they are always non‐zero and
the non‐vanishing derivatives of their arguments mean that they never change the orientation in
which they twist around  0 as  t varies between  0 and   2\pi . For every  v_{i}(t) this twisting is either

always clockwise  ( \frac{\partial\arg v_{i}(t)}{\partial t}<0) or always anti‐clockwise  ( \frac{\partial\arg v_{i}(t)}{\partial t}>0) .
The union of the critical values  (v_{i}(t),t)\subset \mathbb{C}\cross[0,2\pi] of  g_{\lambda}(u,t) and the curve  (0,t)\subset

 \mathbb{C}\cross[0,2\pi] form a braid  A on  s=\deg(g_{\lambda}) strands. It turns out that we can take  g_{\lambda}(u,t) such

that there is a close relation between this braid and the braid  B that is formed by the roots of
 g_{\lambda}(u,t) . Namely, if we write  B= \prod_{j=1}^{\ell}\sigma_{i_{j}}^{\varepsilon_{j}} , then  A can be taken to be a conjugate of

 A= \prod_{j=1}^{\ell}A_{i_{j}}^{\varepsilon_{j}} , (3)

where

 X_{i}=\sigma_{i}^{-1}\sigma_{i-1}^{-1}\ldots\sigma_{2}^{-1}\sigma_{1}^{2}
\sigma_{2}\ldots\sigma_{i-1}\sigma_{2},

 A_{i}=\{\begin{array}{ll}
X_{\frac{i+1}{2}}   if i is odd,
X_{\frac{i}{2}+\lfloor\frac{s}{2}\rfloor}   if i is even.
\end{array} (4)
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This is shown in [9] and stems from an idea in [37]. Note that if  B is homogeneous, then  A

can be parametrised such that   \frac{\partial\arg v_{i}(t)}{\partial t} never vanishes. The example of the homogeneous braid

 B=\sigma_{1}\sigma_{2}\sigma_{1}\sigma_{3}^{-2}\sigma_{2} is illustrated in Figure 1.
In the context of Section 4 it is an important observation that not only does the union of the

critical values  (v_{i}(t),t)\subset \mathbb{C}\cross[0,2\pi] of  g_{\lambda}(u,t) and the curve  (0,t)\subset \mathbb{C}\cross[0,2\pi] form a braid

on  s strands, but also  (0,t) is a braid axis for the union of the critical values  (v_{i}(t),t)\subset \mathbb{C}\cross S^{1}.
The closure of this braid is an  s-1 ‐component unlink.

When we expand the product in Eq. (2) we obtain a polynomial in the complex variable  u , but
also in  e^{it} and  e^{-it}.

The function  g_{\lambda}(u,2t) then also gives a fibration map via its argument and has the closure of
 B^{2} as its vanishing set. Furthermore, expanding the product results in a polynomial in  u,  e^{\dot{{\imath}}t} and
 e^{-it} , where all exponents of  e^{it} and  e^{-it} are even.

We define a real polynomial in  \mathbb{C}^{2}\cong \mathbb{R}^{4}arrow \mathbb{R}^{2}\cong \mathbb{C} by rescaling  g_{\lambda} :

 f_{\lambda}(u,v)=\{\begin{array}{ll}
r^{2k\Sigma_{C}s_{C}}g_{\lambda}(\frac{u}{r^{2k}},2t) ,   if v=re^{\dot{{\imath}
}t}
u^{s}   if v=0,
\end{array} (5)

with  k \geq\max\{\deg_{e^{it}}g_{\lambda},\deg_{e} ıt  g_{\lambda}\}/2s . Then  f_{\lambda} can be written as a polynomial in  u,  v and  \overline{v}.

This is because the exponents of   e^{it}=\frac{v}{\sqrt{v\overline{v}}} and   e^{-\dot{{\imath}}t}=\frac{\overline{v}}{\sqrt{v\overline{v}}} in  g_{\lambda} are even and therefore cancel

the square roots. Moreover,  f_{\lambda} has an isolated singularity at the origin and if  \lambda is small enough,
the link around that singularity is the closure of  B^{2} by construction.

The details of these constructions go beyond the scope of this short overview. What we
would like to highlight are the striking similarities between the different constructions. All of
them (apart from the ones based directly on algebraic links such as Pichon’s [34]) start with
a particular parametrisation of the desired knot or link L. Usming this parametrisation we then
define a function whose vanishing set is in some sense  L (either on a 3‐sphere or on  \mathbb{C}\cross S^{1} )
and then perform some sort of rescaling argument to obtain the desired polynomial (eliminating

the dependence on either the modulus  |x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}} or  |v|=\sqrt{x_{3}^{3}+x_{4}^{2}}). There are

two main obstacles to look out for. Firstly, rescaıing, whether radially or by the modulus of  v,

introduces square root terms. We can therefore in general not expect to obtain a polynomial.
This is only achieved if the parametrisation we started with has some particular symmetries. In
the case of Looijenga’s construction, this means that we have to limit ourselves to odd knots.
In the construction in [9], it requires us to only consider closures of 2‐periodic braids. It is not
a coincidence at all that both of these symmetries are related to the number 2, the exponent that
cancels a square‐root term.

The second obstacle is that we need to make sure that we have an isoıated singularity. In
the previous constructions this is closely linked to explicit fibration maps over the circle. Looi‐
jenga’s construction starts with the fibration, so it is clear that we need a fibred link to start with.
Having Milnor’s theorem in mind this turns out not to be a restriction at all. In [9] we have to
limit ourselves to homogeneous braids because these are the ones, for which we know how to
construct polynomial fibrations that are holomorphic in  u.

In both our [9] and Rudolph’s construction the resulting polynomial is semiholomorphic: It
can be written as a polynomial in complex variables  u,  v and  \overline{v} . This makes it a lot easier to
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 1 3 2
a) b)

c)

Figure 1: A simple relation between the braid that is formed by the critical values of a loop in the space of
polynomials and the braid that is formed by the roots of the same polynomials. a) The braid  B=\sigma_{1}\sigma_{2}\sigma_{1}\sigma_{3}^{-2}\sigma_{2}.
b)  B can be parametrised such that it is given by the roots of a loop in the space of complex polynomials, whose
critical values and the  0‐strand  (0,t)\subset \mathbb{C}\cross[0,2\pi] form the braid  A=A_{1}A_{2}A_{1}A_{3}^{2}A_{2}=X_{1}X_{3}X_{1}X_{2}^{2}X_{3} . The number

 i above a strand gives a correspondence between the Artin generator  \sigma_{i} and one twist of that strand around the 0‐
strand. c) The top view of the braid in b). The critical values (i.e.,  A without the  0‐strand) can be parametrised

such that   \frac{\partial\arg v_{i}(t)}{\partial t} never vanishes. They form a  s-1 ‐component unlink and the  0‐strand is a braid axis for it.
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check that the singularity is isolated. Semiholomorphic polynomials are special cases of mixed
polynomials that are studied in the context of singularities in [32, 35, 38]. In lack of a better term
we call a link semiholomorphic if it is the link of an isolated singularity of a semiholomorphic
polynomial  \mathbb{R}^{4}arrow \mathbb{R}^{2} . It is a natural question to ask if the set of semiholomorphic links is the
same as the set of real algebraic links.

Theorem 3.2 (Looijenga [28], Perron [33], Pichon [34], Rudolph [36], Bode [9]). The links
that are known to be real algebraic are as follows:

 \bullet algebraic links,

 \bullet  L_{f\overline{g}}, the link of the singularity of  f\overline{g}, where  f and  g are holomorphic polynomials with
isolated singularities, i.e.  L_{f}\sqcup L_{g} if it is fibred

 \bullet oddfibred links (including K#Kfor  K a fibred knot),

 \bullet the closure of  B^{2} if  B is a homogeneous braid (including  4_{1} ).

Out of these, the algebraic links and closures of squares of homogeneous braids are known
to be semiholomorphic as well.

Recently, the techniques from [9] have been further generalised to constructions of families
of links that might not be closures of homogeneous braids [10]. The underlying principle of
symmetric parametrisations and rescaling remains the same though. It remains challenging to
check whether the newly constructed links in [10] are already known to be real algebraic from
Theorem 3.2.

4 Branched coverings of  S^{3} over itself and Hopf plumbings

So far, all proofs of real algebraicity of links are constructive and all constructions are either
based on aıgebraic links (as in Pichon’s construction) or on a rescaling of a polynomial, whose
vamishing set on a subset of  \mathbb{R}^{4} is the desired link. This rescaling introduces square root terms
and naturally restricts the class of links for which the resulting function is a polynomial to
those that satisfy certain symmetry constraints. This not only means that it is doubtful that this
approach can prove the conjecture by Benedetti and Shiota, but also makes it very hard to check
if a link falls into that class as it might not be straightforward to investigate if it possesses the
necessary symmetries.

A proof of the conjecture of Benedetti and Shiota should therefore not involve an exact radial
rescaling. In Looijenga’s construction for example, the argument map  S_{p}^{3}\backslash Larrow S^{1} given by the

argument of the polynomial does not depend on the radius  p=|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}} . In the

construction in [9] the argument of  f_{\lambda}(u, re^{it}) does not depend on  r=|v|=\sqrt{x_{3}^{2}+x_{4}^{2}} . Instead

it is probably worth looking for a way to construct a polynomial map  f :  \mathbb{R}^{4}arrow \mathbb{R}^{2} with an
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 \Downarrow\pi

Figure 2: A 3‐sheeted simple branched cover of a disc. The branch set  Q consists of 4 points.

to the dependence on  r . This is all very vague at the moment and it is not clear at all how such
a construction could be achieved.

If such a rescaling could be defined, it would be easier to check whether the resulting function
has an isolated singularity if it is a semiholomorphic polynomial. Hence, while we still lack a
proper rescaling mechanism, we can investigate for which fibred links the fibration map can be
taken to be the argument of a semiholomorphic polynomial. From [8] we know this for closures
of homogeneous braids, but recently there have been constructions of links that appear not to
be homogeneous braid closures [10].

It would obviously be desirable if the construction of isolated singularities (or the construc‐
tion of semiholomorphic polynomial fibrations) did not start with some particular parametri‐
sation or symmetry requirement, but rather with a property that is satisfied by all fibred links.
While there are several at hand, for some of them, such as properties of the commutator sub‐
group of the link group [40] or knot Floer homology [31], it might not be easy to establish a
connection to the topic of polynomial maps. There are however two properties where such a
connection might exist, the first being the study of branched coverings of  S^{3} over itself. The
following exposition foılows Montesinos and Morton [30].

Definition 4.1. Let  F and  S be surfaces and let  \pi:Farrow S be a continuous surjective map. Then
 \pi is a simple branched cover with  d sheets if there is a finite branch set  Q\subset int(S) , where int(S)
denotes the interior of  S, such that.‘

 \bullet  \pi|_{F\backslash \pi^{-1}(Q)} is a  d‐sheeted covering map,

 \bullet for every  q\in Q there is a neighbourhood  U such that  \pi^{-1}(U) has  d-1 components, one
of which is a disc that is projecting to  U as a double cover branched over  q, while the
others are discs that are projecting homeomorphically.

The concept of a simple branched cover is illustrated in Figure 2.

21



22

Definition 4.2. Let  M and  N be closed 3‐manifolds. A map  \pi :  Marrow N is called a simple d‐
sheeted cover with branch set  C\subset N if it is locally homeomorphic to the product ofan interval
with a simple  d‐sheeted cover ofa disc, and the branch points in the productform the set  C.

Now let  L_{branch} be a link in  S^{3} and  O be an unknot in  S^{3} such that  O is a braid axis for

 L_{branch} , i.e., there is a fibration of  S^{3}\backslash O over the circle such that each fibre surface intersects
 L_{branch} the same number of times and the intersections are transverse. Let  \pi :  S^{3}arrow S^{3} be a

simple branched cover of  S^{3} over itself, with branching set  L_{branch} . Then  \pi^{-1}(O) is a fibred link
in  S^{3} and conversely, for every fibred link there are such links  L_{branch} , braid axes  O and covers
 \pi . The relation between fibred links and simple branched covers has been studied extensively
by Birman [6], Goldsmith [22], Hilden [24] and Montesinos with Morton [30]. This relates to
the construction of semihoıomorphic fibrations as follows.

Consider a semiholomorphic polynomial  f :  \mathbb{C}^{2}arrow \mathbb{C} constructed as in [9]. In particular,
 \arg f :  (\mathbb{C}\cross rS^{1})\backslash f^{-1}(0)arrow S^{1} is a fibration for all  r>0 . Since  \arg f(u, re^{it}) goes to  \arg u^{s} and
 |f(u, re^{it})| goes to infinity for all  re^{it} as  |u| goes to infinity, we can compactify  \mathbb{C}\cross S^{1} to  S^{3}.

This way the map

 ( \frac{u}{1+|u|},e^{it})\mapsto(\frac{f(u,re^{it})}{1+|f(u,re^{it})|},e^{it}) ,

 (e^{i\chi},0)\mapsto(e^{is\chi},0) (6)

is a branched covering of  S^{3} over itself for every value of  r . Here we have identified  S^{3} with
 (\mathbb{D}\cross S^{1}) modulo  (e^{\dot{{\imath}}\chi},e^{\dot{{\imath}}t_{1}})=(e^{\dot{{\imath}}\chi},e^{it_
{2}}) for all  \chi,  t_{1} ,  t_{2} , where  \mathbb{D} is the cıosed unit disc in  \mathbb{C}.

The maps in (6) are branched over the set

 ( \frac{v_{i}(t)}{1+|v_{i}(t)|},re^{it})=(\frac{f(u,re^{it})}{1+|f(u,re^{\dot{{
\imath}}t})|},e^{it}) , (7)

where  i=1,2,  s-1 ,   \frac{\partial f}{\partial u}(u, re^{it})=0 . Recall from the remark in Section 3 that this set is

a  s-1 ‐component unlink and that  \arg f being a fibration implies that the derivative   \frac{0\arg v_{i}(t)}{\partial t}
never vamishes. This implies that  (0,e^{it}) is a braid axis for   \bigcup_{i}(v_{i}(t)/(1+|v_{i}(t)|),e^{it}) . Since
 f^{-1}(0)\cap(\mathbb{C}\cross rS^{1}) is the constructed fibred link  L , the functions that are constructed in [9] can
be explained in the context of [30].

There is a second obvious braid axis for   \bigcup_{i}(v_{i}(t)/(1+|v_{i}(t)|),e^{it}) , namely  (e^{i\chi},0) ,  \chi\in

 [0,2\pi] , and its preimage under branched covering map is the unknot  (e^{i\chi},0) ,  \chi=[0,2\pi].
Therefore every semiholomorphic link  L that is constructed as in [9] gives rise to a simple

 s‐sheeted cover  \pi:S^{3}arrow S^{3} with branch set  L_{branch} , which is an  s-1 ‐component unlink, such
that  L=\pi^{-1}(O) for some braid axis  O for  L_{branch} . Furthermore, there is another braid axis  O'

for  L_{branch} whose preimage set under  \pi is an unknot. In fact,  O' is a braid axis for  O\cup L_{branch}
and  O\cup L_{branch} is an  s‐strand braid with respect to  O'.

We will revisit this idea once we have introduced the second property of fibred links that
could be useful in the context of polynomial singularities.

We call an unknotted annulus with a positive or negative full twist a positive or negative
Hopf band. Let  F be a fibre surface and  \gamma an arc, i.e., a simple path in int (F) except for its
endpoints, which lie in  \partial F . A neighbourhood  U of  \gamma in  F is then a properly embedded square
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Figure 3: A Hopf band  H is plumbed to a surface  F along a path  \gamma.

which has two opposite sides in  \partial F . Similarly, we consider a square  U'\subset H with two opposite
sides on  \partial H . A Hopf pıumbing along  \gamma is obtained from  F by glueing  H to  F by identifying
 U and  U' such that the two sides of  U' in  \partial H run parallel to  \gamma. We also say a surface  F' is
obtained from  F by deplumbing  a (positive or negative) Hopf band if  F is obtained from  F' by
Hopf plumbing.

Analogously, we say a fibred link  L'=\partial F' is obtained from  L=\partial F by Hopf plumbming if
the corresponding fibre surface  F' is obtained from  F by Hopf plumbing.

An illustration of Hopf plumbing is shown in Figure 3.
If  L is a fibred link, then so are aıl links that are obtained from it by Hopf plumbing and

deplumbin g[20,41] . Conversely, Giroux and Goodman showed the following theorem, which
was originally conjectured by Harer [23].

Theorem 4.3 (Giroux‐Goodman [21]). Every fibred link can be obtained from the unknot
through a sequence ofHopfplumbings and deplumbings.

Montesinos and Morton established a connection between these two concepts, branched cov‐
erings of  S^{3} over itself and Hopf plumbings, and thereby also a connection between sequences
of Hopf plumbings and polynomial fibrations. At the time of their work, Harer’s conjecture was
still unproven and it is not far‐fetched to believe that they hoped to make progress on Harer’s
conjecture using their idea of branched coverings.

Let  \pi:S^{3}arrow S^{3} be simple branched covering with branch set  L_{branch} . Let  O be a braid axis
for  L_{branch} and  \phi :  S^{3}\backslash Oarrow S^{1} be a fibration such that each fibre intersects  L_{branch} transversally
in precisely  s-1 points. Let  D be a fibre of  \phi and  \gamma be a simple path in  D starting at one
of the points in  D\cap L_{branch} , ending at the boundary  \partial D and avoiding all points in  D\cap L_{branch}
in between. Let  U be an open neighbourhood of  \gamma in  S^{3} . Now we push  D\cap U in the normal
direction of  D and connect this push‐off with  \partial D . This means we have attached a disc to  D that
in some sense ıies directly over the path  \gamma. Near the starting point of  \gamma which is in  D\cap L_{branch},
this disc intersects  L_{branch} . We apply a positive or negative half‐twist to the attached disc before
this intersection. The result should look similar to Figure 4.
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Figure 4: The dotted line is a path  \gamma from the intersection of  L_{branch} with  D to  O=\partial D . A neighbourhood  U of that
path is pushed off  D . Applying a half‐twist to this pushed‐off disc results in this figure. The disc  D' is the union of
 D and the pushed‐off disc with a half‐twist.

Note that by attaching this twisted disc to  D we have constructed a new disc  D' that intersects
 L_{branch} in  s points, one more than  D . Furthermore, the boundary of  D' is also a braid axis for
 L_{branch} . The braid word of  L_{branch} with respect to  \partial D' can be obtained from the braid with
respect to  \partial D by a conjugation that depends on the path  \gamma and Markov stabilization  \sigma_{s-1}^{\pm 1} , where
the sign depends on the sign of the half‐twist of the attached disc. Since  \partial D' is a braid axis for
 L_{branch} , its preimage under the same covering map  \pi is a fibred link  L' just like  L=\pi^{-1}(\partial D) is
fibred.

Theorem 4.4 (Montesinos‐Morton [30]). Let the situation be as described above. Let  F=

 \pi^{-1}(D) be the fibre surface of L. Then there is a path  \tilde{\gamma} in  F , starting and ending at  \partial F with
 \pi(\tilde{\gamma})=\gamma such that  F'=\pi^{-1}(D') , the fibre surface of  L' , is up to isotopy obtained from  F by
Hopfplumbing along  \tilde{\gamma}, where the sign of the Hopfplumbing depends on the sign of the half‐
twist in the attached disc or equivalently the sign of the Markov stabilization that converts the
braid word of  L_{branch} with respect to  \partial D into the braid word of  L_{branch} with respect to  \partial D'.

Corollary 4.5 (Montesinos‐Morton [30]). If  O and  O' are braid axes for the same link  L_{branch}
in  S^{3} , which is the branch set of a simple branched covering  \pi :  S^{3}arrow S^{3} , then  \pi ‐ı(O) and
 \pi^{-1}(O') are related by a sequence ofHopfplumbings and deplumbings.

This corollary is nowadays obvious because Giroux’s and Goodman’s work tells us that
all fibred links are related by such sequences. The remarkable insight is the close connecting
between Hopf plumbings and changes of the braid axis. It is also important to note that the
converse of Theorem 4.4 and Corollary 4.5 is not known. It is not clear if we can always
arrange that the path along which the plumbing or deplumbing happens can be arranged to lie
over  \gamma as in the Theorem. If a Hopf plumbing (or deplumbing) can be obtained as above, then
we say that it corresponds to a Markov move.

Montesinos and Morton raised the followin g question.
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Question 4.6 (Montesinos‐Morton [30]). Can every fibred link be obtained as the preimage of
a braid axis of an  s-1 ‐component unlink  L_{branch} under a simple  s‐sheeted branched covering
 \pi:S^{3}arrow S^{3} , whose branch set is  L_{branch^{7}}.

By the earlier remark this would imply that every fibred link can be obtained from the unknot
via a sequence of Hopf plumbings and deplumbings, all of which correspond to Markov moves
on the branch set of the branched covering  \pi . At the time a positive answer to this question
would have been the first proof of Harer’s conjecture. However, even now that Harer’s conjec‐
ture is proven, it is still not known if this question by Montesinos and Morton has a positive
answer.

For the construction of more real algebraic links we would like to go beyond Montesinos
and Morton’s question.

Question 4.7. Can every fibred link  L be obtained as a the preimage of a braid axis  O of an
 s-1 ‐component unlink  L_{branch} under a simple  s‐sheeted branched covering  \pi:S^{3}arrow S^{3} , whose
branch set is  L_{branch} and the braid index of  O\cup L_{branch} is  s^{7}

The braid index of  O\cup L_{branch} being equal to  s is equivalent to sayin g that there is a braid
axis  O' for  O\cup L_{branch} with  \pi^{-1}(O') being an unknot. Note that this question can just like
Montesinos and Morton’s question be interpreted as a question on whether it is possible for
every link to find a sequence of Hopf plumbings and deplumbings that has certain additional
properties.

Recall that the situation described in this question is precisely what we encounter for the
simple branched covering from a semiholomorphic link as in [9].

Suppose that the answer to the question above is positive. Then maybe there is a way to
construct from the simple branched coverin g\pi a polynomial map  g_{\lambda} :  \mathbb{C}\cross S^{1}arrow \mathbb{C} , whose
argument is a fibration. Whether or not this is possible depends on the answer to the following
question.

Question 4.8. Let  X_{s} denote the space of simple  s‐sheeted branched covers of the disc  \mathbb{D} over
itself such that  0\in \mathbb{D} is not in the branch set. Is every loop in  X_{s} homotopic to a loop in the
space  V_{s} ofcomplex polynomials of degree  s with distinct non‐zero critical values?

Note that  V_{s} is a subset of  X_{s} and usin g results from [4] and [7] a positive answer would
imply that for every fibred link there is a semiholomorphic polynomial  f :  \mathbb{C}^{2}arrow \mathbb{C} such that
 f^{-1}(0)\cap S^{3}=L (and  f^{-1}(0)\cap(\mathbb{C}\cross S^{1})=L) and  \arg f|_{S^{3}\backslash L} is a fibration.

Subject to an appropriate rescaling mechanism that does not rely on particular symmetries to
yield polynomials (which admittedly comes with its own problems and difficulties), this could
result in a construction of polynomial isolated singularities for any fibred link and hence in a
proof of the conjecture by Benedetti and Shiota. At the moment this is still highly speculative,
but we hope that this exposition inspires future work on the classification of real algebraic links.
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