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1 Introduction

Hidden symmetry of a manifold M is a homeomorphism of finite degree covers of  M that
does not descend to an automorphism of  M . In [7], W. Neumann and A. Reid conjectured
that the figure‐eight knot and the two dodecahedral knots are the only hyperbolic knots
in  S^{3} admitting hidden symmetries. Many researchers concerned with this problem. M.
Macasieb, and T. W. Mattman [5] showed that  (-2,3, n) pretzel knot  (n\in \mathbb{N}) does not
admit hidden symmety. By using computer, O. Goodman, D. Heard and C. Hodgson [3]
have verified for hyperbolic knots with 12 or fewer crossings. A. Reid and G. S. Walsh [8]
showed that non‐arithmetic 2‐bridge knot complements admit no hidden symmetry.

For two component links, E. Chesebro and J. DeBlois [1] constructed infinitely many
two components non‐arithmetic link complements admitting hidden symmetries. Let
 C_{i}  (i=1 , 3) be links as in Figure 1. O. Goodman, D. Heard and C. Hodgson showed
that  S^{3}-C_{2} and  S^{3}-C_{3} have non‐trivial hidden symmetries by using computer.  S^{3}-C_{2}
is obtained by cutting along the colored two punctured disk of  S^{3}-C_{1} and regluing it.
Repeat this process about the colored two punctured disk of  S^{3}-C_{2} . We can obtain
 S^{3}-C_{3} . J. S. Meyer, C. Millichap and R. Trapp [6] constructed  n(\geq 6) component link

 C1 C2 c_{3}

Figure 1: 5‐link chain.

complements admitting hidden symmetries. They prove this by analyzing of the geometry
of these link complements, including their cusp shapes and totally geodesic surfaces inside
of these manifolds.

In this paper, we generalize the result of O. Goodman, D. Heard and C. Hodgson. Let
 L be an  n+1‐component alternating chain link as in the left side of Figure 2  (n\geq 4) .
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Cut along the colored two punctured disk of  S^{3}-L and reglue it. We name the resulting
 n‐component link  L_{n}.

Theorem 1  S^{3}-L_{n} is non‐arithmetic and admits a hidden symmetry  (n\geq 4) .

 c_{1}

 L L_{n}

Figure 2: The link  L_{n}.

We prove this theorem by using ideal polyhedral tessellation of  \mathbb{H}^{3}.

2 Commensurator and normalizer

Two subgroups  G_{1},  G_{2}<Isom(\mathbb{H}^{3}) are said to be commensurable if and only if their
intersection  G_{1}\cap G_{2} has finite index in both  G_{1} and  G_{2}.  G_{1} and  G_{2} are said to be

commensurable in the wide sense if and only if there is a  h\in Isom(\mathbb{H}^{3}) such that  G_{1}
is commensurable with  h^{-1}G_{2}h . The notion of commensurability can be directly trans‐
ported to hyperbolic orbifolds by considering the respective fundamental groups. Then,
commensurable hyperbolic orbifolds admit a finite‐sheeted common covering orbifold.
Commensurability is an equivalence relation.

For a Kleinian group  \Gamma , the commensurator of  \Gamma is defined by

Comm  (\Gamma)= {  g\in Isom(\mathbb{H}^{3}) :  g\Gamma g^{-1} and  \Gamma are commensurable.}.

Clearly, Comm  (\Gamma)>\Gamma . Let  \Gamma be a finitely generated Kleinian group of finite co‐volume. It
is well known that Comm (  \Gamma ) is a commensurabilty invariant (see [10]). Comm (  \Gamma ) contains
every member of the commensurability class. G. Margulis [4] showed that Comm (  \Gamma ) is
discrete if and only if  \Gamma is non‐arithmetic. For a non‐arithmetic group  \Gamma,  Comm(\Gamma)
contains every member of the commensurability class “in finite index”

The normalizer of  \Gamma is

 N(\Gamma)=\{g\in Isom(\mathbb{H}^{3})):g\Gamma g^{-1}=\Gamma\}.

Clearly,  N(\Gamma)<Comm(\Gamma) .  N(\Gamma)/\Gamma\simeq Isom(\mathbb{H}^{3}/\Gamma) and  N(\Gamma) is discrete.
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If  N(\Gamma)\neq Comm(\Gamma) , we say  \Gamma admits a hidden symmetry. For an arithmetic Kleinian
group  \Gamma,  Comm(\Gamma) is not discrete. Thus arithmetic Kleinnian group always admits a
hidden symmetry.

3 Proof of Main Theorem

Let  \Gamma (resp.  \Gamma_{n} ) be a Kleinian group such that   S^{3}-L=\mathbb{H}^{3}/\Gamma (resp.  S^{3}-L_{n}=\mathbb{H}^{3}/\Gamma_{n} ).
W. Neumann and A. Reid showed that  S^{3}-L is non‐arithmetic (see [7] Theorem 5.1).
W. Thurston [9] showed  S^{3}-L is obtained by glueing two ideal drums as in Figure 3.
The side angles of this drum are   \arccos(\frac{\cos\pi/(n+1)}{\sqrt{2}}) and other angles are  \pi-2\alpha.

The colored two punctured disc corresponds to the colored ideal quadrilaterals as in
Figure 3.  S^{3}-L_{n} is obtained by cutting along the colored two punctured disk and reglueing
it. Thus,  S^{3}-L_{n} is obtained by glueing two ideal drums as the arrows are matched as
in Figure 3. Lift the ideal polyhedral decompositions of  S^{3}-L and  S^{3}-L_{n} . We can

 \ltimes\sim  \ltimes\sim
 5^{-}  2^{-}

 u_{A_{\frac{1}{21}\sim}^{1}}14|_{\backslash _{1-2}}^{\backslash }|_{\backslash 
_{J}}\varsigma j..A\backslash _{-2}\perp 35I  u\rfloor^{A_{-}^{\backslash _{15-2}}}|^{\backslash }
jA\overline{\lfloor_{\backslash }} - \backslash , \backslash 1_{-2}\perp^{\omega}3\perp 4I

  J_{\backslash _{/}}^{\triangleleft}\frac{1}{\xi}b\sim\backslash _{-2}
\perp^{4I}513
 u\lfloor_{x_{1-1-2}}5_{\overline{N_{S}}^{\ltimes\bigwedge_{\wedge}}}   \frac{1^{2}}{11}\backslash _{5^{\backslash _{1-1-2}^{A}}}\overline{\backslash 
\prime}-\triangleright_{\omega\sim}\backslash !^{\ltimes\bigwedge_{-2}}
\perp^{4\lrcorner}|_{s}13

 S^{3_{-\llcorner}} S^{3}-L_{n}

Figure 3: Ideal polyheral decompositions of  S^{3}-L and  S^{3}-L_{n}(n=4) .

get the same ideal polyhedral tessellation of  \mathbb{H}^{3} . Denote it by  T . The symmetry group of
 T is discrete.  \Gamma and  \Gamma_{n} preserve the tessellation  T . Thus  \Gamma and  \Gamma_{n} are commensurable
with the symmetry group of  T . As commensurability is an equivalence relation,  \Gamma_{n} is
commensurable with the non‐arithmetic group  \Gamma . Hence, Comm  (\Gamma_{n})= Comm (  \Gamma) and  \Gamma_{n}
is non‐arithmetic.

Let  P be an ideal drum which is a lift of this ideal polyhedral decomposition. We
consider the symmetry that rotates the chain  L clockwise, taking each link into the next.
This corresponds to  2\pi/(n+1)‐rotation about the geodesic which is perpendicular to
the top and bottoms of  P . Denote it by  \gamma . As  \gamma is a lift of a symmetry of  \mathbb{H}^{3}/\Gamma,
 \gamma\in N(\Gamma)< Comm  (\Gamma)=Comm(\Gamma_{n}) .

Let  c_{1} , ,  c_{n+1} (resp. cí . ,  c_{n}' ) be the cusps of  S^{3}-L (resp.  S^{3}-L_{n} ) as in Figure
2. The cusp  c_{i} corresponds to two ideal vertices of  P . By cuttng and re‐glueing along the
colored twice punctured disk,  c_{2} and  c_{n+1} correspond to the cusp  c_{2}' . (See Figure 3.)
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Let  V_{i} be the ideal vertices of  \mathbb{H}^{3} which correspond to the cusp  c_{i} We can see  \gamma(V_{1})\neq V_{i}
 (i=1 , n-1) .  \gamma is not a lift of isometry of  \mathbb{H}^{3}/\Gamma_{n} . Thus  \gamma\not\in N(\Gamma_{n}) .

We have  N(\Gamma_{n})\neq Comm(\Gamma_{n}) . Hence  \Gamma_{n} admits a hidden symmetry.

Figure 4: Rotation of  S^{3}-L(n=4) .
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