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1. VOLUME CONJECTURES

In [36], Witten interpreted values of the Jones polynomial using the Chern‐Simons gauge theory,
and constructed a sequence of complex valued 3‐manifold invariants based on this idea. This
approach was mathematically rigorously formalized by Reshetikhin and Turaev [26, 27] though
the representation theory of quantum groups, where they generalized the Jones polynomial to a
sequence of polynomial invariants of a link, later called the colored Jones polynomials of that link.
They also defined a sequence of 3‐manifold invariants corresponding to Witten’s invariants. The
Reshetikhin‐Turaev construction of 3‐manifold invariants starts from a surgery description [21] of
the manifold, and evaluates the colored Jones polynomials of the surgery data at certain roots of
unity. In [33], Turaev and Viro developed a different approach from a triangulation of a 3‐manifold
constructing real valued invariants of the manifold. These Turaev‐Viro invariants tumed out to be
equal to the square of the norm of the Reshetikhin‐Turaev invariants [28, 32, 35].

Using quantum dilogarithm functions, Kashaev [19, 20] defined for each integer n a complex
valued link invariant. He observed in a few examples, and conjectured in the general case, that the
absolute value of these invariants grow exponentially with  n , and that the growth rate is given by
the hyperbolic volume of the complement of the link. In [18], Murakami and Murakami showed
that Kashaev’s invariants coincide with the values of the colored Jones polynomials at a certain
root of unity, and reformulated Kashaev’s conjecture as follows.

Volume Conjecture ([20, 18]). For a hyperbolic link  L in  S^{3} , let  J_{n}(L, q) be its n‐th coloredJones
polynomial. Then

  \lim_{narrow+\infty}\frac{2\pi}{n}\log|J_{n}(L, e^{\frac{2\pi\sqrt{-1}}{n}})|=
Vol(S^{3}\backslash L) ,

where  Vol(S^{3}\backslash L) is the hyperbolic volume of the complement of  L.

This conjecture has now been proved for a certain number of cases: the figure‐eight knot [18], all
hyperbolic knots with at most seven crossings [22, 23, 24], the Borromean rings [14], the twisted
Whitehead links [37] and the Whitehead chains [34]. Various extensions of this conjecture have
been proposed, and proved for certain cases.

In [6], Chen and the author investigated the asymptotic behavior of the Reshetikhin‐Turaev

and the Turaev‐Viro invariants evaluated at the root of unity  q=e^{\frac{2\pi\sqrt{-1}}{r}} . Based on numerical
computations, they made the followin g

Conjecture 1.1 ([6]). For a hyperbolic 3‐manifold  M , let  TV_{r}(M, q) be its  Turaev-V\iota ro invariant
and let  Vol(M) be its hyperbolic volume. Then for  r running over all odd integers and for  q=
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 e^{\frac{2\pi\sqrt{-1}}{r}},

  \lim_{rarrow+\infty}\frac{2\pi}{r}\log(TV_{r}(M, q))=Vol(M) .

Conjecture 1.2 ([6]). Let  M be a closed oriented hyperbolic 3‐manifold and let  RT_{r}(M, q) be its

Reshetikhin‐Turaev invariants. Then for  q=e^{\frac{2\pi\sqrt{-1}}{r}} with  r odd and for a suitable choice of the
arguments,

 r arrow+\infty 1\dot{{\imath}}m\frac{4\pi\sqrt{-1}}{r}\log(RT_{r}(M, q))=CS(M)+
Vol(M)\sqrt{-1} mod \pi^{2}\mathbb{Z},
where CS(M) denotes the Chern‐Simons invariant ofthe hyperbolic metric of  M multiplied by  2\pi^{2}.

2. RECENT PROGRESS

2.1. Ohtsuki’s result and method. The first family of examples for which Conjecture 1.1 and
1.2 hold was given by Ohtsuki [25], where he also obtained a full asymptotic expansion of the
Reshetikhin‐Turaev invariants.

Theorem 2.1 ([25]). Let  p be an integer and let  M_{p} be the 3‐manifold obtainedfrom the figure‐8
knot by a  p Dehn‐filling. Then for  |p|>4 . the Reshetikhin‐Turaev invariant  RT_{r}(M_{p}, e^{\frac{2\pi i}{r}}) is
expanded as   rarrow\infty in the following form,

  RT_{r}(M_{p}, e^{\frac{2\pi i}{r}})=e^{\frac{r}{4\pi x}(CS(M_{p})+iVol(M_{p}))
}\epsilon(p, r)\omega(M_{p})r^{\frac{3}{2}}(1+\sum_{k=1}^{d}\kappa_{k}(M_{p}) 
(\frac{4\pi i}{r})^{k}+O(\frac{1}{r^{d+1}})) ,

where  \epsilon(p, r) is a concrete root of unity depending only on  p and  r , and  \omega(M_{p}) and  \kappa_{k}(M_{p}) are
constants determined by  M_{p}.

In particular, Theorem 2.1 implies that Conjecture 1.1 and 1.2 hold for  M_{p} . Based on this, he
further conjectured that  RT_{r}(M, e^{\frac{2\pi\dot{i}}{r}}) of any closed hyperbolic 3‐manifold  M can be expanded in
the same form as above, and the sub‐leading coefficient  \omega(M) is closely related to the Reidemeister
torsion of  M . He also expected that  \kappa_{k}(M) define new invariants of  M.

The method Ohtsuki used to get the result can be roughly summarized in the following three
steps. In the first step he wrote the quantum invariants as the sum of values  f(n) of a complex holo‐
morphic function  f at the (multi)‐integers. The function  f comes from the quantum dilogarithm
function which serves an integral representation of quantum factorials. In the second step, by using
Poisson Summation Formula, he wrote the sum of  f(n) into the sum of the Fourier coefficients

 \hat{f}(m) of  f , each of which is an integral of complex holomorphic function. By carefully verifying
a technical condition he posed, he can prove that among all these Fourier coefficients  \hat{f}(m) , two
of them dominate the asymptotics. Finally, by rigorously using the Saddle Point Method, he man‐
aged to analyze the growth rate of the two dominating Fourier coefficients, and hence obtained the
growth rate of the invariants.

2.2. Another approach. By studying the Reshetikhin‐Turaev and the Turaev‐Viro TQFTs [3, 4,
33], Detcherry, Kalfagianni and the author [11] gave a formula relating the Turaev‐Viro invariants
of the complement of a link  L in  S^{3} to the values of the colored Jones polynomials of  L , and Bel‐
letti, Detcherry, Kalfagianni and the author [2] gave a formula relating the Turaev‐Viro invariants
the complement of a link  L in an oriented closed 3‐manifold  M to the relative Reshetikhin‐Turaev
invariants of the pair  (M, L) . Using these relations, they verified Conjecture 1.1 for the figur‐8
knot, the Borromean rings complement [11] and the fundamental shadow link complements [2].

49



50

RECENT PROGRESSES ON THE VOLUME CONJECTURES FOR CERTAIN QUANTUM INVARINATS

For a multi‐integer  n=(n_{1}, \ldots, n_{l}) of  l components, we use the notation  1\leq n\leq m to
describe all such multi‐integers with  1\leq n_{k}\leq m for each  k\in\{1, l\} . Given a link  L in
 S^{3} with  l components, let  J_{n}(L, t) denote the n‐th colored Jones polynomial of  L whose k‐th
component is colored by  n_{k} . If all the components of  L are colored by the same integer  n , then we
simply denote  J_{(n,\ldots,n)}(L, t) by  J_{n}(L, t) . If  L is a knot, then  J_{n}(L, t) is the usual i‐th colored Jones
polynomial. The polynomials are indexed so that  J_{1}(L, t)=1 and  J_{2}(L, t) is the ordinary Jones
polynomial, and are normalized so that

 J_{n}(U, t)=[n]= \frac{q^{n}-q^{-n}}{q-q^{-1}}
for the unknot  U, where by convention  t=q^{2}.

Theorem 2.2 ([11]). Let  L be a link in  S^{3} with  l components.

(1) For an integer  r\geq 3 , we have

  TV_{r}(S^{3}\backslash L, e^{\frac{\pi i}{r}})=\frac{2s\dot{{\imath}}n^{2}
(\frac{\pi\dot{i}}{r})}{r}\sum_{1\leq n\leq r-1}|J_{n}(L, t)|^{2}
(2) For an odd integer  r\geq 3 , a primitive  2r ‐th root of unity  A and  q=A^{2} , we have

  TV_{r}(S^{3}\backslash L, e^{\frac{2\pi\dot{\iota}}{r}})=\frac{2^{l+1}
s\dot{{\imath}}n^{2}(\frac{2\pi i}{r})}{r}\sum_{1\leq n\leq\frac{r-1}{2}}|J_{n}
(L, t)|^{2}
As a consequence, they got the following

Theorem 2.3 ([11]). Let  L be either the figure‐eight knot or the Borromean rings, and let  M be
the complement of  L in  S^{3} . Then

 r arrow+\infty 1\dot{{\imath}}m\frac{2\pi}{r}\log TV_{r}(M, e^{\frac{2\pi i}{r}
})=\lim_{marrow+\infty}\frac{4\pi}{2m+1}\log|J_{m}(L, e^{\frac{4\pi\dot{i}}{2m+
1}})|=Vol(M) ,

where  r=2m+1 runs over all odd integers.

Remark 2.4. The asymptotic behavior of the values of  J_{m}(L, t) at  t=e^{\frac{2\pi i}{m+z1}} is not predicted either
by the originaı volume conjecture [20, 18] or by its generalizations [15, 17]. Theorem 2.3 seems
to suggest that these values grow exponentially in  m with growth rate the hyperbolic volume. This

is somewhat surprising because as noted in [14] that for any positive integer  k,  J_{m}(L, e^{\frac{2\pi\dot{i}}{m+k}}) grows
only polynomially in  m . They ask the following question.

Question 2.5. ls it true thatfor any hyperbolic link  L in  S^{3} , we have

 m arrow+\infty 1\dot{{\imath}}m\frac{2\pi}{m}\log|J_{m}(L, e^{\frac{2\pi\dot{i}
}{m+z1}})|=Vol(S^{3}\backslash L)?
Given a link  L in closed oriented 3‐manifold  M , let  RT_{r}(M, L, n) denote the relative Reshetikhin‐

Turaev invariants [3] of the pair  (M, L) with the k‐th component of  L colored by  n_{k}.

Theorem 2.6 ([2]). Let  L be a link in a closed oriented 3‐manifold  M with  l components.

  TV_{r}(M\backslash L)=\sum_{0\leq n\leq r-2}|RT_{r}(M, L, n)|^{2}
where the sum is over multi‐integers with  l components.
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As a consequence, they got the following

Theorem 2.7 ([2]). Conjecture 7.1 holds for the complements ofall fundamental shadow links.

Remark 2.8. As proved by Costantino and Thurston [8], the fundamental shadow link complements
form a universal class in the sense that any orientable 3‐mamifold with empty or toroidal boundary
is obtained from a complement of a fundamental shadow by Dehn filıing. Therefore, if Ohtsuki’s
method mentioned in Section 2.1 could be made to work in this situation, one would be able to

solve Conjectures 1.1 and 1.2 for all closed and cusped hyperbolic 3‐manifolds.

A key observation in their proof of Theorem 2.7 besides Theorem 2.6 is below a sharp upper
bound on the growth of the quantum  6j ‐symbol.

Proposition 2.9 ([2]). (1) For any sequence of  r‐admissible 6‐tuples  \{(n_{1}^{(r)}, \ldots, n_{6}^{(r)})\} , we
have

 1 \dot{{\imath}}m\sup_{rarrow+\infty}\frac{2\pi}{r}\log|\begin{array}{lll}
n_{1}^{(r)}   n_{2}^{(r)}   n_{3}^{(r)}
n_{4}^{(r)}   n_{5}^{(r)}   n_{6}^{(r)}
\end{array}| \leq v_{8},
where  v_{8} is the volume of the regular ideal hyperbolic octahedron.

(2) If  n_{i}^{(r)}= \frac{r\pm 1}{r} for each  i\in\{1 , 6  \} , we have

 r arrow+\infty 1\dot{{\imath}}m\frac{2\pi}{r}\log|\begin{array}{lll}
n_{1}^{(r)}   n_{2}^{(r)}   n_{3}^{(r)}
n_{4}^{(r)}   n_{5}^{(r)}   n_{6}^{(r)}
\end{array}|=v_{8}.
Part (2) of Proposition 2.9 is actually a special case of a result originally due to Costantino [7]

 \pi i

at the root  q=e\overline{r} and recaptured independently by Chen and Murakami [5] and Detcherry and
the author [12] at the root  q=e^{\frac{2\pi i}{r}} for odd  r.

Theorem 2.10 ([7, 5, 12]). Let  \{(n_{1}^{(r)}, n_{6}^{(r)})\}_{r} be a sequence of  r‐admissible 6‐tuples with

  \alpha_{i}=\lim_{rarrow\infty}\frac{2\pi n_{i}^{(r)}}{r},
and let  \theta_{i}=|\pi-\alpha_{i}| . lf  (\theta_{1}\ldots, \theta_{6}) are the dihedral angles ofa hyperideal hyperbolic tetrahedral
 \triangle , then

  r arrow+\infty 1\dot{{\imath}}m\frac{2\pi}{r}\log  |\begin{array}{lll}
n_{1}^{(r)}   n_{2}^{(r)}   n_{3}^{(r)}
n_{4}^{(r)}   n_{5}^{(r)}   n_{6}^{(r)}
\end{array}|  q=e^{\frac{2\pi i}{r}}=Vol(\triangle)
.

It worth mentioning that in [5], Chen and Murakami also computed the second leading term of
the asymptotic expansion of quantum  6j ‐symbols, which is closely related to the Gram matrix of
 \triangle.

Remark 2.11. Since quantum  6j ‐symbols are the main building blocks of the Turaev‐Viro in‐
variants and hyperbolic tetrahedral are building blocks of the hyperbolic structure, Theorem 2.10
essentially says that Conjecture 1.1 is ture at least at the level of building blocks.

3. RELATIONSHIP To THE AMU CONJECTURE

According to Nielsen‐Thurston’s classification of the elements of the mapping class group of
surfaces, every irreducible orientation preserving self‐homeomorphism of a surface of finite type is
either periodic (of finite order) or pseudo‐Anosov (preserving two transverse measure laminations).
Here a self‐homeomorphism being irreducible means that it does not restrict of a proper subsurface.
In [1], Andersen, Masbaum and Ueno made the following
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Conjecture 3.1 ([1]). Let  \Sigma be  a orientable surface offinite type, let  \phi be a pseudo‐Anosov self‐
homeomorphism of  \Sigma , and let  \{\rho_{r}\}_{r} be the sequence of the  Turaev-V\iota ro representations of the
mapping class group of  \Sigma . Thenfor  r sufficiently large,  \rho_{r}([\phi]) is a linear transformation of infinite
order.

Combined with the fact that the image of a finite order element under any group representa‐
tion is of finite order, the AMU Conjecture essentially claims that the sequence of Turaev‐Viro
representations of the mapping class groups respects the Nielsen‐Thurston classification. The sim‐
ilar conjecture can be made for the Reshetikhin‐Turaev representations, which are a sequence of
projective representations of mapping class group of surfaces. The AMU conjecture is known to
be true for punctured spheres [1, 13] and the once‐punctured torus [29]. Recently, Marché and
Santharoubane [16] related the Turaev‐Viro representations to representations of the fundamental
group of surfaces, and provide an efficient algorithm of determining whether an element of the
fundamental group can be represented by a simple closed curve on the surface, assuming that the
AMU Conjecture is true.

Observed by Santharoubane [30] (see also Detcherry and Kalfagianni [10]), the AMU Conjec‐
ture is a consequence of the following a weaker version of Conjecture 1.1.

Conjecture 3.2. Let  M be a hyperbolic 3‐manifold with finite volume, and let  TV_{r}(M, q) be its
r‐th Turaev‐Vro invariant at the root of unity  q . Then for  r running over all the odd integers,

  \lim\dot{{\imath}}nf\frac{1}{r}\ln TV_{r}(M, e^{\frac{2\pi i}{r}})rarrow+
\infty>0.
The relationship between the two conjectures mentioned above is given by the underlying TQFTs.

Roughly speaking, the mapping cylinder  MC_{\phi} of  \phi can be considered as a cobordism from  \Sigma to
itself. Hence for each  r , the Turaev‐Viro TQFT assigns  MC_{\phi} a linear map, which is exactly  \rho_{r}([\phi])
by the construction of the Turaev‐Viro representation. By the TQFT axioms, the trace of  \rho_{r}([\phi])
equals to the Turaev‐Viro invariant  TV_{r}(M_{\phi}) of the mappin g torus  M_{\phi} of  \phi . Since  \phi is pseudo‐
Anosov, Thurston’s result shows that  M_{\phi} is hyperbolic. Then Conjecture 3.2 implies that  TV_{r}(M)
grows at least exponentially at particular roots of umity. On the other hand, if  \rho_{r}([\phi]) was of finite
order, the each of its eigenvalues should be a root of unity. As a consequence, the trace of  \rho_{r}([\phi])
is at most the dimension of the TQFT vector space of  \Sigma , which by the Verlinde formula is only a
polynomial in  r . That is a contradiction.

In a recent work [9], Detcherry and Kalfagianni showed that the behavior of the Turaev‐Viro
invariant is “similar to” that of the hyperbolic volume, in the sense that it does not increase under
Dehn‐fillings.

Theorem 3.3 ([9]). Let  M and  M' be compact, oriented 3‐manifolds with empty or toroidal bound‐
ary. Then we have the following.

(1) lf  T is an embedded torus in  M and  M' is the manifold obtained by cutting  M along  T,
then

  TV_{r}(M)\leq(\frac{r-1}{2})TV_{r}(M') .

(2) Suppose that  \partial M'\neq 0 . If  M is obtained from  M' by Dehn‐filling some components of
 \partial M' , then

 TV_{r}(M)\leq TV_{r}(M') .
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Therefore, if one could prove Conjecture 3.2 for a 3‐manifold  M , then Conjecture 3.2 is auto‐
matically true for all the 3‐manifolds obtained from  M by removing a link inside it. By the work of
Ohtsuki [25] and Belletti, Detcherry, Kalfagianni and the author [2] mentioned in Section 2, Con‐
jecture 3.2 hold for all the 3‐manifolds obtained from the examples mentioned above by remove a
link inside them, and the AMU Conjecture holds for the fibered ones obtained from those examples
by doing the same operation.

Corollary 3.4 ([10, 2]). Let  M_{p} be the 3‐manifold obtained by doing  p Dehn‐filling along the
figure‐8 knot, and let  M be a fibered 3‐manifold obtainedfrom  M_{p} orfrom afundamental shadow
link complement by removing a link. Then Conjecture [1] holds for the holonomy of any fiber
structure of  M.
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