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The purpose of this article is to demonstrate diagrammatic techniques that are used to study
multi‐categories. The focus will be an example that is described in terms of generators and rela‐
tions. However, the example is not group theoretic in nature.

A (small) multi‐category is a category in which there is a set of objects, the collection of 1‐arrows
between a pair of objects is a category, there are rules for composition across categorical dimensions,
and in general the  k‐arrows are objects in a category. The associative, unital, composition for
 (k+1)‐arrows is globular, but that which is commonly known as horizontal composition is mitigated
via a natural family of exchangers that are arrows in one more dimension.

Isotopy classes of smooth, properly embedded surfaces in  \mathbb{R}^{2}\cross[0,1] will be described by such a
multi‐category. There are  k‐arrows for  k=0,1,2,3,4 and exchangers in degrees through 5. In this
paper, a multi‐category will be described in abstract that will subsequently be shown to coincide
with surfaces.

Here are some principles that guide this work and our approach to categorification in general.
(1) Different things are not equal. (2) Arrows are used to compare things. (3) “Doing” and then
“undoing” may or may not be the same as “not doing (4) Simultaneity is illusory. (5) “Change”
followed by “exchange” is comparable to “exchange” followed by “change” via an arrow in one
more degree.

1 Preliminaries

A small category consists of a set of objects such that between any two objects  a and  b , there is

a set of 1‐arrows  \{aarrow fb\} so that the source of an arrow  f is the object  a , so  s(f)=a , and the

target of an arrow  f is the object  b , so  t(f)=b. For any object  a , there is an arrow  (a\underline{I}a)
called the identity on  a . When necessary, we will write  I_{a}.

If  aarrow^{f}b and  barrow^{g}c are arrows so that  s(g)=t(f) , then their composition is an arrow
 a  A^{f\circ}c with source  s(fog)=a and target  t(fog)=c . Compositions of arrows is associative:

 [a arrow^{f}barrow^{g\circ h}d]=[a\frac{f\circ q}{\ovalbox{\tt\small REJECT}}
carrow^{h}d] .
For any object  a , the arrow  a\underline{I}  a is an identity under compositions:

 (a\underline{I}aarrow^{f}b)=(aarrow^{f}b)=(aarrow^{f}b\underline{I}b) .
Here the order of composition is as indicated, so if arrows are functions, then their domain variable
is inserted upon the left of the expression.
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Following the first and second principles, we often replace an equality between objects  a and  b

with a pair of arrows between them  aarrow b , and  barrow a . It is common, in a category, to assert that
identities between compositions of arrows occur. In this case, we say that the diagram

× .  .arrow\bullet\bulletarrow.
commutes. However, when we consider the second principle, they can be compared by means of a
double arrow

Often, since the double arrow was once thought of as an equality, the double arrow  F pretends to be
an isomorphism. In that case, its source and target are reversed to form a new double arrow  L which
pretends to be an inverse. These are composed by gluing the polygonal diagrams together along a
consistently oriented sequence of arrows in one of two possible ways. Either resulting composition
is asserted to be related to an identity double arrow. The relationship with the identity double
arrow is illustrative of the fourth categorical principle. If the double arrow  F is thought of as a

“doing something,” then  L is though of as “undoing that thing.” There are compositions  \{\begin{array}{l}
F
\models
\end{array}\}
and  \{\begin{array}{l}
\models
F
\end{array}\} , that, in the future, will be compared to doing nothing. That is the realm in which the

third principle operates. First, let us explain the composition of double arrows.
The collection of double arrows will form a category. Therefore a double arrow has a 1‐arrow

as a source and a 1‐arrow as a target. In a schematic form, the structure of the double arrow is
depicted here:

 f_{1}

 s(f_{0})=s( 0)=t(f_{1})

 f_{0}

In the figure,  S(F)=f_{0} , and  T(F)=f_{1} . Suppose that double arrows  F and  G are given with the
source 1‐arrow of  F coinciding with the target 1‐arrow of  G . The globular composition of double
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arrows  F and  G is indicated.

 s(f_{0})=s(f_{1})=s(g 0)=t(f_{1})=t(g_{0})

 g_{0}

Often, the source or target of a double arrow can be written as the composition of more than one
single arrow. By composing all the arrows in the source, and leaving two arrows in the target we
obtain the configuration on the left. Alternatively, we can compose all the arrows in the target
and leave two in the source to obtain the configuration on the right.

The triangles are labeled with  up/down [  1 , T] to make the following indications. In the
down [T] case, there is one target arrow, and in the up [ 1 ] case, there is one source arrow.
The orientation of these kanji has the horizon of the character along the single arrow source or
target.

Those who are familiar with 2‐categories, might expect a horizontal composition as indicated.

In our situation this is disallowed because it suggests that the application of the double arrows
occurs simultaneously. Thus the fourth principle is violated. Furthermore, double arrows are
required to have a portion of their 1‐dimensional boundary coincident in order to be composed.
So we replace this with the composition that is depicted as the source in the illustration below.
That choice of resolution is, of course, arbitrary. We make that initial choice and then suppose
that there is a higher order relation that connects it with the other possible choice. This higher
relation is called an exchanger and it is denoted by X it is depicted upon the next page.

The exchanger depends upon the double arrows  F and  G . So there is a family of exchangers.
We say that the exchangers form a natural family of isomorphisms in the sense that: (1) exchanging
back and forth is equivalent to not doing an exchange; (2) the naturality condition is that change
followed by exchange is the same as exchange followed by change. Exchangers exist in every
dimension as a method to mitigate the notion of horizontal composition of  k‐arrows.
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 s(f_{i}\underline{)t(f_{i})}-\underline{(9i)g_{1}t}(9\ddagger)

 s(f_{i})=|_{sf}s(fo)!_{f_{1}}^{f_{1}}\underline{1_{f_{\ddagger}}t1_{f}
(f_{\ddagger})}!-Ć(go)  g_{0}G  !_{t()}911_{g}
 |_{sf_{0!_{\overline{t(fo)}}^{t(f_{0})}\underline{!}^{()}!^{=t()}}}s(f_{0}) 
\frac{g_{0}}{s(go)}t(go)f_{0}F|_{s0}1_{g0}go190

 mX

  ・(f_{I})|_{・f}s(f_{0}).\frac{t(fo)}{f_{0}}.91^{\cdot}t(9\ddagger)s(f_{i}
\underline{)t(f_{i})}\frac{s(9i)t(}{g_{1}}9)F1_{s}1_{g_{1}}91
 |_{sf_{0!^{t(fo)}}} s(fo)\frac{f_{0}}{t(f_{0})}=\overline{(go)}t(,)1_{f_{0},
!^{s()}!_{90}^{t(90)}}|_{f}90G1_{\varrho 0}

 g_{0}

We will use the graphic to mean the identity double arrow on a 1‐arrow  \alpha . Such a vertical

 \alpha

band is analogous to a wire strip of jumper cables commonly found inside a computer. Here some
schematics for double arrows in general. If  A and  B are double arrows with suitable sources and
targets, then each of the diagrams here

is a double arrow. The two diagrams on the right are schematic methods for factoring the compo‐
sitions of 1‐arrows.

We will discuss triple and quadruple arrows, their compositions, and so forth within the context
of our main example.

Suppose that  F\Uparrow andG\Uparrow are double arrows whose source and target objects agree. Suppose
that the 1‐arrow sources  S(F) and  S(G) are equal as are the targets  T(F) and  T(G) . A triple
arrow between  F and  G is a globe whose boundary is decomposed into hemispherical disks. Say
 S and  T lie close to the equator with their source  s at the location of Equatorial Guinea and (for
geographic convenience) their target  t at the Solomon Islands. Say that  F is the double arrow in
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the south and  G is the double arrow in the north. Then a triple arrow between them lies in the
interior of the globe.

Composition of triple arrows is defined in a globular manner that mimics the globular compo‐
sition of double arrows. A  \Theta ‐sphere is comprised of three disks:  \{(x, y, z) : z=\sqrt{1-x^{2}-y^{2}}\} —
the northern disk,  \{(x, y, z) : z=-\sqrt{1-x^{2}-y^{2}}\} — the southern disk, and  \{(x, y, z) :   x^{2}+y^{2}\leq
 1 &  z=0\} — the equatorial disk. The equatorial disk is the target of one triple arrow and the
source of the other. The globular composition of these triple arrows is the result of merging the
globes that represent them along the equatorial disk. It is as if two dumplings in a pot are stuck
together along a portion of the wrapper.

2 The multi‐category  \mathcal{S}

Let  S denote the multi‐category that has two objects  f,  t . The letter ; is the vertical reflection of
the letter  t that is thought of as a poorly drawn  f . Loosely, we call ; “from,” and we call  t “to.”
Suppose that there are generating arrows  p:farrow t , called “positive,” and  b:tarrow f , called “bad.”
There are also identity arrows  f —  f and  t —  t . We will say that  p:farrow t and  b:tarrow f are
reverses of each other. In general, a non‐identity arrow is a finite sequence pbpb  b , pbpb  p,

bpbp  b , or bpbp  p . In these expressions, instances of identity arrows have been contracted.
We can also add identities to such a sequence as necessary.

Compare the compositions bp and pb to the identities on  t and  f , respectively. For example,
we can think of pb as going from “from” to “to” and returning. So by principle (3), this may not
be the same as staying in place. But by principle (2) we can construct double arrows to compare
the composition to  t —  t . The generating double arrows are depicted below. In each diagram
there is a curve that points upwards from the arrow labeled  p and downwards at the one labeled
 b when these 1‐arrows are considered to be pointing towards the right. Such curves are a short
hand notation for the double arrows, and they will provide a method for assigning a surface to a
composition of triple arrows.

For convenience, the identities upon  t —  t,  f —  f,  p , and  b are indicated.

 t  t  f  f

  t\frac{}{b}ft\frac{b}{\downarrow}f|| ftft||\overline{p}\underline{p} t  t

To compile the triple arrows, let us first restrict attention to the double arrow  F(t) . There are
several ways that it can be composed with another double arrow. These are depicted here.

In the case of the circular composition indicated on the left, we can compare it to the identity
double arrow that is the identity upon  t . By principle (2), a comparison will be given by a pair of
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triple arrows. Furthermore, this composition may be interpreted by means of principle (3). The
composition of these double arrows is read as a reverse pair of 1‐ arrows that has been created and
immediately annihilated. Doing so is different than doing nothing. So we create a pair of reverse
triple arrows to compare the creation/annihilation to a static phenomena. These triple arrows are
called birth and death.

The   \frac{\triangle}{\nabla} stack of  F(t) and its reverse  L(t) also can be compared to the identity upon bp. Those
comparisons give rise to saddle and fork‐type triple arrows. The parallelogram shaped double
arrows on the right each give rise to cusp‐type triple arrows. Observe here that the  \triangle or  \perp shaped
double arrows in these compositions are literally the horizontal reflection of  F(t) .

Perform similar compositions with the remaining generating double arrows. A generating set of
triple arrows is formed by making comparisons between possible two‐fold compositions of double
arrows and identity double arrows.

The movie expressions below represent the collection of triple arrows that encode these com‐
parisons. These generate the triple arrows in the multi‐category  S . They are of the form, birth,
death, saddle, forkl, and cusp. Here we name the triple arrows by the singularity to which they
will map under the functor from the multi‐category  S to surfaces that are embedded in 3‐space.
A film strip indicates a source double arrow at its bottom and a target double arrow at its top.
To the right of the strip is a glyph that names the triple arrow.

A positive death is indicated in the left movie; that on the right is its reflexive companion,  a

positive birth. Here  \Vert_{1_{t}} indicates the identity double arrow on the identity arrow on the object  t.

The identity upon the identity on  f is denoted by  \Vert_{1_{f}}.

 |3  |3

A negative death is indicated below by the film strip on the left; its reflective companion a
negative birth is illustrated on the right.

1We have learned that British tailors use the word “fork” to describe region in a pair of trousers that is negatively
curved and at which the legs merge.
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 |3  |3

The triple arrow that is depicted below in the film strip on the left is called a positive fork; that
on the right is its reflexive companion, a positive saddle.

  \bigcap_{arrow}F(1L(e)P|3  U^{arrow}\mathfrak{k}b(t)P|3

The triple arrow that appears below in the left film strip is called a negative fork; that on the
right is its reflexive companion, a negative saddle.

  \bigcap_{arrow}^{\cross}R()L()b|3   arrow\bigcup_{b}^{p()}^{\mathfrak{k}}\cross^{arrow}|3

The triple arrow that is depicted below in the film strip on the left is called a positive right
down cusp; that on the right is its reflexive companion, a positive right up cusp.
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 |3  |3

The triple arrow that is depicted below in the film strip on the left is called a positive left down
cusp; that on the right is its reflexive companion, a positive left up cusp.

 )|3  |3

The triple arrow that is depicted below in the film strip on the left is called a negative right
down cusp; that on the right is its reflexive companion, a negative right up cusp.

 |3  |3

The last two generating triple arrows are shown below. That in the film strip on the left is
called a negative left down cusp; that on the right is its reflexive companion, a negative left up
cusp.
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 |3  |3

The multi‐category  S that is being described here has the following properties:

1. It has two objects ; and  t.

2. There are generating arrows  p:farrow t- “positive” and  b:tarrow f- “bad.”

3. The objects ; and  t , identity arrows upon them, and the arrows  p and  b generate a category.

4. There are two reverse pairs of generating double arrows  \models(f),F(f) and  \models(t),F(t) .

5. Double arrows are composed globularly, but horizontal compositions are mitigated by a
natural family of triple arrow exchangers.

6. There are (  \pm )‐birth, (  \pm )‐death, (  \pm )‐saddle, (  \pm )‐fork, and eight cusp‐like triple arrows.

7. The quadruple arrows that are described in this section generate the last level of the multi‐
category. They are deemed to be equalities.

The generating set of quadruple arrows will be completely catalogued by using glyphs and their
graphical compositions to depict them. There are six families of generating quadruple arrows: (1)
naturality isomorphisms for exchangers, (2) lips, (3) beak‐to‐beak, (4) critical cancelation, (5)
horizontal cusps, and (6) swallow‐tails. All of these will be illustrated using the graphical language
in which triple arrows are expressed, and the last five will be exemplified by movie moves.

The naturality isomorphism for exchangers is depicted:

Here  Q indicates any possible triple arrow as represented by its glyph.
The lips and beak‐to‐beak quadruple arrows are depicted below. These and the swallow‐tail

quadruple arrows arise following principle (3). But in these cases, doing something and then
undoing it, is the same as doing nothing.
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Critical cancelations occur in two types. Birth and fork triple arrows cancel as do death and
saddle triple arrows. They are depicted below.

There are eight different horizontal cusp quadruple arrows that are indicated in the two tables
that appear below.

The eight possible swallow‐tail quadruple arrows appear below.
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Each type of quadruple arrow is exemplified as a movie move.

Lips Beak‐to‐beak
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Swallow‐tail

While the names of the triple and quadruple arrows were chosen to coincide with their counter‐
parts as surface singularities, we demonstrated, for the case of triple arrows, that these can arise
by considering the different ways that a given double arrow can be composed with other generating
double arrows. In the case of quadruple arrows, there are ways of augmenting the composites of
two double arrows to three double arrows. Then it turns out that in each of these cases, there are
two possible sequences of triple arrows that can be applied, and by doing so sequentially a relation
among relations (or movie move) would arise in each case. This is to say that the imposition of
these quadruple arrows as relations in the multi‐category  S can be seen as natural conditions from
the categorical perspective.

3 Surfaces embedded in 3‐space

Figure 1: A properly embedded surface and its chart description

Consider the illustration given in Fig. 1. This is an example of a smoothly and properly
embedded surface in  \mathbb{R}^{2}\cross[0,1] . In addition, the drawing is, as it must be, an illustration of a
generic projection of that surface into the  (y, t)‐plane. The critical points and surface singularities
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of such a map are labeled. This illustration and the discussion above should be sufficient to
understand the theorem that appears below.

Let a smooth surface  M and a proper embedding  g :  Marrow \mathbb{R}^{2}\cross[0,1] be given. Two such
embeddings  g_{a} and  g_{b} of  M are said to be properly isotopic if there is an isotopy between them
that is constant on a neighborhood of the boundary  \partial M . A homogeneous triple arrow in  S is
one for which its source and target double arrows have source and target 1‐arrows that are the
identities upon  r or  t . Note that if the triple arrow is a composition, then the source and target
1‐arrows of any intermediate double arrow are also identity 1‐arrows. Triple arrows that are equal
up to an application of quadruple arrows will be said to be equivalent.

Theorem 3.1. A generic properly and smoothly embedding  g :  ML\Rightarrow \mathbb{R}^{2}\cross[0,1] of a surface  M,
that has boundary  \partial M=(\partial M)_{0}\sqcup(\partial M)_{1} , corresponds to a globular composition of homogenous
triple arrows in  S.

Properly isotopic surfaces correspond to equivalent homogenous triple arrows in S. Moreover,
given a globular composition of homogeneous triple arrows in  S a representative proper embedding
can be constructed. Equivalent triple arrows give rise to properly isotopic surfaces.

This result is an initial step in the establishment of the cobordism hypothesis [BD95]. In some
sense, it is a special case of the movie‐move theorem [CS98]. The point here is that there is a
correspondence between the quadruple arrows in  S and the codimension 2 singularities of maps
between surfaces. Smoothly and properly embedded surfaces can be given the structure of a multi‐
category by considering a higher categorical description of the fundamental groupoid in 3‐space.
There the composition of triple arrows is tantamount to stacking bricks.

4 Other Applications

We mapped the multi‐category  S to embedded surfaces in 3‐space, by way of identifying  t and  r

with regions in the complement of the surface. The generating arrows  p and  b then correspond
to arcs that intersect an embedded surface once. On the other hand,  p and  b are weak inverses
in the sense that there are double arrows  F(t),  F(f),  L(t) , and  L(f) that relate their composition
to identity arrows. The triple arrows that were constructed are also higher order relations for
compositions of  P and  b that are natural in the sense that they arise upon considering all possible
3‐fold compositions of double arrows. In this sense  S is the most free multi‐category upon the
weakly invertible arrows  P and  b.

In Table 1, a number of situations in which  S applies are tabulated. The case in which  t is
a single point and  f is empty coincides with the case of surfaces in 3‐space. The arrows  p and  b

correspond to crossing the threshold of the surface, the double arrows are critical points of curves,
and so on.

The case in which  t is two points and ; is one corresponds to considerations about surfaces with
trivalent seams. A neighborhood of a point on a seam is of the form  Y\cross 1 . The double arrows
correspond to the seams with  F(t) and so forth corresponding to maximal and minimal points along
the seams. The cusp‐like triple arrows are cancelations of critical points on the seams. The birth,
death, saddle, and fork triple arrows correspond to splitting and gluing the surface with seams.

In the next two cases within Table 1, the triple arrows of the original situation become single
arrows in the new situation. It is instructive to imagine the variety of higher arrows in terms of
critical points of higher dimensional manifolds. In fact, handles, handle cancelations and handle
equivalences are all represented within this categorical frame work. Thus the category replaces the
Cerf‐theoretic [Cer70] description of handles.
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Table 1: Some possible values
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