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Abstract

A minimal clone is an atom in the lattice of clones. The classification of minimal
clones on a finite set still remains unsolved. A minimal groupoid is a minimal clone
generated by a binary idempotent function. In this paper we report some examples of
minimal groupoids generated by binary functions which resemble projections.
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1 Introduction

In the lattice of clones, an atom is called a minimal clone and a coatom is called a maximal
clone. One of the fundamental problems in clone theory is to classify maximal clones as well
as minimal clones. In 1970 I. G. Rosenberg [Ro70] published the complete classification of
maximal clones on a k-element set for any finite £ > 2, which solves the case for maximal
clones. For minimal clones, however, the problem has not yet been solved. The complete
classification for any finite set seems quite a hard task. The minimal clones on a 2-element
set have been known since E. Post (1941) and those on a 3-clement set were classified by
B. Csakany (1983) in [Cs83]. In addition, some partial results were obtained for minimal
clones on a 4-element set ([Sz95, Wa00]).

A minimal groupoid is a minimal clone generated by a binary idempotent function. Main
purpose of this article is to report our work on minimal groupoids developed in [BM19]. More
specifically, after defining the notion of pr-distance for a binary function, we present examples
of minimal groupoids generated by binary functions with pr-distance 1 or 2. Furthermore,
some examples of minimal groupoids are given whose generators have larger pr-distance.

2 Prerequisites

Let & > 1 be an integer and Fy, = {0,1,...,k — 1}. Denote by (’),(c"), n > 0, the set of
n-variable functions on FEy, i.e., (9,(6") = E,f’?, and by Oy the set of all functions on FEy,
ie., Or = U,so O](Cn). A function e} in (’),(c"), 1 < ¢ < n, is the n-variable i-th projection
if e (x1,...,2n) = x; holds for all xy,...,x, € Ex. Let Jj be the set of projections on F.
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A subset C' of Oy is a clone on Ej, if C contains all the projections, i.e., J, C C, and is
closed under (functional) composition. The set of clones on Ej, forms a lattice with respect
to set inclusion, which is called the lattice of clones and denoted by L.

For a clone C' on Ej and a subset F' of C, F generates C if C is the smallest clone
containing F. In other words, F' generates C' if C'is the intersection of all clones containing F'.
When F generates C, we write C = (F). If F' is a singleton, i.e., F' = {f} for some f € O,
we simply write (f) in place of (F).

A clone C in Ly is a minimal clone if it is an atom of the lattice L. Equivalently, C is
a minimal clone if (1) C # J;, and (2) Jp € C' C C implies ¢’ = C for any C’ in L.

A minimal clone is generated by a single function, which is not a projection, i.e., C' = (f)
for some f € O\ Ji. A function f € Oy is a minimal function if f generates a minimal
clone and f has the minimum arity among functions generating (f).

In [Ro86], I. G. Rosenberg presented what is now called the “Type Theorem” for minimal

functions.

Theorem 2.1 Let k > 2. Any minimal function on Ey, is of one of the following five types:

(1) wunary function

(2) binary idempotent function
(8) ternary majority function
(4) ternary minority function
(5) semiprojection

We review the definitions of the terms used above: For f € (9,(3), f is idempotent if
f(z,x) = z. For g € (’),(3), g is a majority (resp., minority) function if g(z,z,y) =~ g(x,y,x)
~ g(y,z,z) ~ x (resp., y). Also, h € O,gn) is a semiprojection if there is i (1 < i < n) such
that h(zy,...,z,) ~ x; whenever [{z1,...,2,} < n. (Here, g(z,z,y) = z, for example,
means g(z,z,y) = x for all z,y € Ey.)

It is a well-known fact, and plays an important role in this article, that Ly is atomic, i.e.,
every clone in Ly \ {Jx} contains a minimal clone.

For f and ¢ in O,(Cn), f is conjugate to g if f is obtained from g by renaming the elements
in Fx. When f and g are conjugate to each other, (f) is a minimal clone if and only if (g) is
a minimal clone. Furthermore, f is the dual of g if f(z,y) = g(y,z) for all x,y € Ey. If f is
the dual of g then, clearly, (f) = (g).

We shall call a clone C' a groupoid if C is generated by a binary function, that is, if
C = (f) for some f € (9,(62). A minimal groupoid is a minimal clone generated by a binary
minimal function.

3 Pr-Distance

Intending to measure the “distance” of a binary function from the projections, we introduced
a mapping 9 : (’),(f) — {0, ..., k?} for k > 1 as follows ([BM19]). For a binary function f
in O, let
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K —#{ () € BR | f(i,j) =i},
B —#{ G, eE | fi,j)=3}
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and

6(f) = min{d1(f), d2(f) }-

Thus, 61(f) (resp., d2(f)) is the Hamming distance of f from the projection e? (resp., €3).
We shall call 6(f) the pr-distance of f. Evidently, 6(f) = 0 if and only if f is a projection.

4 Minimal Groupoids on Ej3

In 1983, B. Csikény ([Cs83]) determined all minimal clones on the 3-element set E5. The
total number of minimal clones on Ej3 is 84. Among them, the number of minimal clones
generated by binary idempotent functions, i.e., minimal groupoids, is 48.

It turns out that binary minimal functions on F3 can be classified into three classes:
Commutative functions and two types of non-commutative functions, those with §(f) =1
and those with §(f) = 2. (Here, f € (9,(62) is commutative if f(z,y) ~ f(y,z) holds.)
The number of minimal groupoids generated by commutative binary functions is 12 and
the number of minimal groupoids generated by non-commutative binary functions f with
0(f) =1 (resp., 6(f) = 2) is 12 (resp., 24).

5 Examples of Minimal Groupoids on FEj

We shall consider minimal groupoids on Ej, k > 2, generated by non-commutative binary
functions f with §(f) = 1 in Subsection 5.1 and §(f) = 2 in Subsection 5.2.
Before going further, we shall give a simple, but useful, sufficient condition for f € C’)(,f)

to be a minimal function. In the sequel, f(x,y) will be denoted by zy when f is understood.
Lemma 5.1 ([BM19)]) Let f € (9(,3) \ Ji be an idempotent function. If all the terms

z(zy), (yz), (zy)z, (zy)y, (zy)(yr)

are equivalent to xy or yx (as a function) then { f) is a minimal clone.

The proof is by induction on the depth of a term over f. Note that y(yz), y(zy), (yz)y,
(yz)x, (yx)(zy) are the duals of z(xy), x(yx), (zy)z, (xy)y, (xy)(yx), respectively.

5.1 The Case: 6(f) =1

In the last paragraph of Section 4, it is stated that the number of minimal groupoids on E3
generated by binary idempotent functions f with §(f) = 1 is 12. Since there are 6 pairs
(r,y) € E2 with 2 # y, this fact implies that every binary idempotent function f on Ej
having §(f) = 1 is a generator of a minimal clone. One can ask, then, whether this property
generalizes to arbitrary k£ > 17 The answer turns out to be ‘yes’, as shown below. Note that
the contents of this subsection have already appeared in [BM19).

We start with two binary functions p; and ps in (’),@, k > 2, defined by

pa(z,y) = { a if (z,y) =(0,1)

x otherwise
for a = 1,2. Obviously, p, is non-commutative and 6(p,) = 1 for each a = 1,2. The top
part of the Cayley table of p, is shown below.



sylo 1 2 3 k—1 sylo 1 2 3 k—1
0l0 1 0 0 0l0 2 0 0 0
Pr: 1911 1 1 1 1 Pz2: 111 1 1 1 1

Lemma 5.2 For each a = 1,2, p, is a minimal function.

Sketch of the proof First, consider p;. (Here, 2y denotes py(z,y).) It is easy to see that
all terms

z(zy), z(yz), (zy)z, (zy)y, (zy)(yr)

are equivalent to xy. Hence, p; is a minimal function by Lemma 5.1.

Next, take po and denote pa(z,y) by xy. In this case, Lemma 5.1 is not applicable as
x(zy) is equivalent to x, but not to xy nor yz.

Suppose that ps is not a minimal function. Then, since the lattice £; of clones is atomic,
there must exist a minimal function g € Oy, satisfying (g) C (p2) where the inclusion is strict.
Rosenberg’s type theorem (Theorem 2.1) asserts that g must be one of the following: (1)
unary function, (2) binary idempotent function, (3) ternary majority function, (4) ternary
minority function and (5) semiprojection.

We can verify, however, that none of these five cases are possible. Cases (1) to (4) are
easy while Case (5) requires more careful inspection. (Refer to [BM19] for the detailed dis-
cussion.) This proves that ps is, in fact, a minimal function. O

The following lemma says that the functions p; and ps represent, in a sense, all binary
idempotent functions f with §(f) = 1.

Lemma 5.3 Let f € (’),(62) be idempotent with §(f) = 1. Then f, or its dual, is conjugate
to p1 or pa.

Combining Lemmata 5.2 and 5.3 we obtain:
Proposition 5.4 Let f € (9,(62) be idempotent. If §(f) =1 then f is a minimal function.
Thus the case of f with pr-distance 1 is completely settled.

5.2 The Case: 0(f) =2

Let us define a binary function g, € (9,22) for a, b € Ei \ {0} in the following way.

if (2,y)=(0,1)

it (z,) = (0,2)

if =0 and ye E,\{1,2}
otherwise

Qab(xa y) =

8 © o2

Clearly, gqp is idempotent and 0(gqp) = 2.
In particular, we shall focus on four functions qi11, qi2, ¢33 and g34. The top two rows of
the Cayley table of each of the four functions is shown below.



z\y 1 2 k—1 z\y 1 2 k—1
1 1
i 101 1 1 1 - 1 @27 101 1 1 1 - 1
z\y 1 k-1 z\y k-1
0 e 0 3
3 1011 1 1 1 -+ 1 4° 111 1 1 1 - 1

Lemma 5.5 All of q11, q12, q33 and qz4 are minimal functions.

Sketch of the proof For gi; and ¢, it is easy to see that

r(zy) = 2(yz) = (vy)z = (vy)y = (vy)(yz) = 2y

holds, from which the results follow from Lemma 5.1. On the other hand, for ¢33 and ¢34,
we have

z(zy) =z, z(yz) = (vy)z = (zy)y = (zy)(yz) = vy
and Lemma 5.1 is not applicable. However, for these functions the similar line of argument
used for ps in the proof of Lemma 5.2 can be applied to verify that there does not exist

a minimal function g € Oy, satisfying (g) C (gs3) (or, (9) C {(gza)). Thus, ¢33 and ¢34 are
proved to be minimal. O

Next, we consider functions ¢qp for (a,b) = (1,3), (2,1) and (2, 3).
Lemma 5.6 Fach of qi3, g21 and qo3 is not a minimal function.
Proof For ¢i3 and ¢o3, z(zy) has pr-distance 1 and (z(xy)) C (zy). For g21, z(2y) = qu2

and, again, (x(zy)) C (zy). 0

Let W be the set of binary idempotent functions f € (’),(62) satisfying
(1) 0(f)=2 and (2) (Jue Ey) (Vo€ Ep\{u}) (Vy € Ey) [ f(z,y)==]

Thus f € W has two ‘singular values’ and they sit only on the u-th row in its Cayley table.
Furthermore, let V' be the subset of W defined by

V= {Qab | (a,b) = (17 1), (172)7 (173)7 (27 1), (273)7 (3,3), (374)}'

Lemma 5.7 (1) Any two functions in V are not mutually conjugate to each other.
(2) Forany f € (’),(f), if f € W then f is conjugate to some function in V.

In other words, functions in V represent all functions in W. Combining Lemma 5.9 to
Lemma 5.7 we obtain the following, which appeared in [BM19] in a slightly different form.

Proposition 5.8 For any f € W, f is a minimal function if and only if it is conjugate to

one of qi1, qi2, q33 OT q34.



5.3 The Case: d(f) > 3

In the case of three-element set F3, it was shown that all non-commutative minimal functions
have pr-distance 1 or 2. Does this property generalize to any k-element set Ej, for k > 37
The answer is ‘no’. In fact, there are many non-commutative minimal functions f € (’),(f),
k > 3, whose pr-distance exceeds 2, i.e., §(f) > 3. Here we present two such examples.

For k> 1, let ro € O\”), a =0, 1, be defined by

if (x,y)=(0,0)

if (2,y)=(0,1)

if x=0 and ye€ E\{0,1}
otherwise.

ro(z,y) =

8 = O

The top part of the Cayley table of r,, a = 0,1, is shown below.

2ylo 1 2 3 - k-1 Aylo 12 3 o k1
o|lo o 1 1 - 1 olo 1 1 1 - 1
o111 1 1 1 -+ 1 T o1 0101011 - 1

Evidently, 6(r¢) =k —2 and d(r1) =k — 1.
Lemma 5.9 Both of ro and r1 are minimal functions.

Sketch of the proof For r1, we have

z(zy) = z(yz) = (zy)r = (zy)y = (vy)(yx) = 7Y,

and the result follows from Lemma 5.1. For ry, we have

z(rvy) =z, z(yz) = (vy)r = (Y)Y = (2Y)(y2) = Y.

Then the similar argument used for py in the proof of Lemma 5.2 can be applied again to
prove that qg is a minimal function. O
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