Algebraic independence of the values of a certain map defined on the set of orbits of the action of Klein four-group

慶應義塾大学理工学部 田中 孝明 (Taka-aki Tanaka)
Faculty of Science and Technology, Keio Univ.

1 Introduction

Let \(\{ R_k \}_{k \geq 1} \) be a linear recurrence of positive integers satisfying

\[
R_{k+n} = c_1 R_{k+n-1} + \cdots + c_n R_k \quad (k \geq 1),
\]

where \(n \geq 2 \) and \(c_1, \ldots, c_n \) are nonnegative integers with \(c_n \neq 0 \). The author [9] studied the two-variable function \(E(x, q) \) defined by

\[
E(x, q) = \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{x q^{R_l}}{1 - q^{R_l}} = \sum_{k=1}^{\infty} \frac{x^k q^{R_1+R_2+\cdots+R_k}}{(1-q^{R_1})(1-q^{R_2}) \cdots (1-q^{R_k})},
\]

which may be regarded as an analogue of \(q \)-exponential function

\[
E_q(x) = 1 + \sum_{k=1}^{\infty} \frac{x^k q^{1+2+\cdots+k}}{(1-q)(1-q^2) \cdots (1-q^k)}
\]

(cf. Gasper and Rahman [2]), if we replace \(k \) in the exponent of \(q \) in \(E_q(x) \) with \(\{ R_k \}_{k \geq 1} \) defined above.

Let

\[
\Phi(X) = X^n - c_1 X^{n-1} - \cdots - c_n
\]

(2)

and let \(\overline{\mathbb{Q}}^x \) be the set of nonzero algebraic numbers. The author proved the following

Theorem 0 (Corollary 4 of [9]). Let \(\{ R_k \}_{k \geq 1} \) be a linear recurrence satisfying (1). Suppose that \(\Phi(\pm 1) \neq 0 \) and the ratio of any pair of distinct roots of \(\Phi(X) \) is not a root of unity. Assume that \(\{ R_k \}_{k \geq 1} \) is not a geometric progression. Then the values

\[
E(x, q) \quad (x, q \in \overline{\mathbb{Q}}^x, \ |q| < 1)
\]

are algebraically dependent if and only if there exist some distinct pairs \((x_1, q_1) \) and \((x_2, q_2) \) of nonzero algebraic numbers \(x_1, x_2, q_1, \) and \(q_2 \) with \(|q_1|, |q_2| < 1 \) such that \(x_1 = x_2 \) and \(q_1^{N_k} = q_2^{N_k} \) for some \(k \geq 1 \), where \(N_k = \text{g.c.d.}(R_k, R_{k+1}, \ldots, R_{k+n-1}) \).

In particular, if \(N_k = 1 \) for any \(k \geq 1 \), then the values \(E(x, q) \) are algebraically independent for any distinct pairs \((x, q) \) of nonzero algebraic numbers \(x \) and \(q \) with \(|q| < 1 \).
Example 0. Let \(\{F_k\}_{k \geq 1} \) be the sequence of Fibonacci numbers defined by \(F_1 = 1, F_2 = 1, \) and \(F_{k+2} = F_{k+1} + F_k \) \((k \geq 1) \). Since \(\{F_k\}_{k \geq 1} \) satisfies the conditions in Theorem 0, the infinite set of the values
\[
\left\{ \sum_{k=1}^{\infty} \frac{x^k q^{F_1 + F_2 + \cdots + F_k}}{(1 - q^{F_1})(1 - q^{F_2}) \cdots (1 - q^{F_k})} \bigg| x, q \in \overline{\mathbb{Q}}^\times, \ |q| < 1 \right\}
\]
is algebraically independent.

The two-variable function \(E(x, q) \) converges on the domain
\[
(\mathbb{C} \times \{ |q| < 1 \}) \cup \left(\{ |x| < 1 \} \times \{ |q| > 1 \} \right) := \{(x, q) \in \mathbb{C}^2 \mid |q| < 1 \lor (|x| < 1 \land |q| > 1)\},
\]
whereas a ‘balanced’ analogue
\[
\Theta(x, q) = \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{x q^{R_l}}{1 - q^{2R_l}} = \sum_{k=1}^{\infty} \frac{x^k q^{R_1 + R_2 + \cdots + R_k}}{(1 - q^{2R_1})(1 - q^{2R_2}) \cdots (1 - q^{2R_k})}
\]
converges on the wider domain
\[
\mathbb{C} \times \{|q| \neq 1\} := \{(x, q) \in \mathbb{C}^2 \mid |q| \neq 1\}.
\]
Indeed, if \(q \neq 0, \Theta(x, q) \) is invariant under the map
\[
\sigma_1 : (x, q) \mapsto (-x, q^{-1}),
\]
namely
\[
\Theta(\sigma_1(x, q)) = \sum_{k=1}^{\infty} \frac{(-x)^k q^{-R_1 - R_2 - \cdots - R_k}}{(1 - q^{-2R_1})(1 - q^{-2R_2}) \cdots (1 - q^{-2R_k})} = \Theta(x, q)
\]
and so \(\Theta(x, q) \) converges on \(\mathbb{C} \times \{|q| \neq 1\} \) by the similar reason to the convergence of \(E(x, q) \).

Moreover, if \(\{R_k\}_{k \geq 1} \) is a sequence of odd integers, then \(\Theta(x, q) \) is invariant also under the maps
\[
\sigma_2 : (x, q) \mapsto (-x, -q),
\]
\[
\sigma_3 : (x, q) \mapsto (x, -q^{-1}).
\]
Since \(\sigma_1 \circ \sigma_2 = \sigma_2 \circ \sigma_1 = \text{id} \) and \(\sigma_1 \circ \sigma_3 = \sigma_3 \circ \sigma_1 = \sigma_3 \), we see that \(G_4 = \{\text{id}, \sigma_1, \sigma_2, \sigma_3\} \) is Klein four-group. Therefore, \(\Theta(x, q) \) can be regarded as a map defined on the set of orbits \((\mathbb{C} \times \{|q| \neq 0, 1\})/G_4 \), where \(\mathbb{C} \times \{|q| \neq 0, 1\} = \{(x, q) \in \mathbb{C}^2 \mid |q| \neq 0, 1\} \), namely the map
\[
\overline{\Theta} : (\mathbb{C} \times \{|q| \neq 0, 1\})/G_4 \longrightarrow \Theta(\mathbb{C} \times \{|q| \neq 0, 1\})
\]
given by
\[
\text{the orbit of } (x, q) \mapsto \Theta(x, q)
\]
is well-defined. Hence the restriction to algebraic points
\[
\overline{\Theta} : \left((\mathbb{C} \times \{|q| \neq 0, 1\}) \cap \left(\overline{\mathbb{Q}}^\times \right)^2 \right)/G_4 \longrightarrow \Theta \left((\mathbb{C} \times \{|q| \neq 0, 1\}) \cap \left(\overline{\mathbb{Q}}^\times \right)^2 \right),
\]
or equivalently
\[\overline{\Theta} : \left(\overline{\mathbb{Q}}^\times \times (\overline{\mathbb{Q}}^\times \setminus \{ |q| = 1 \}) \right) / G_4 \rightarrow \Theta \left(\overline{\mathbb{Q}}^\times \times (\overline{\mathbb{Q}}^\times \setminus \{ |q| = 1 \}) \right) \]

is also well-defined, where the second $\overline{\mathbb{Q}}^\times$ denotes the multiplicative group of nonzero algebraic numbers while the first $\overline{\mathbb{Q}}^\times$ simply denotes the set of nonzero algebraic numbers. In this paper we prove the following

Theorem 1. Let $\{R_k\}_{k \geq 1}$ be a linear recurrence satisfying (1). Suppose that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity. Assume that $\text{g.c.d.}(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for any $k \geq 1$. Assume further that $\Phi(2) < 0$ and that $\{R_k\}_{k \geq 1}$ is a sequence of odd integers. Then the infinite set of the values
\[\overline{\Theta} \left(\left(\overline{\mathbb{Q}}^\times \times (\overline{\mathbb{Q}}^\times \setminus \{ |q| = 1 \}) \right) / G_4 \right) \]
is algebraically independent.

Remark 1. The condition that $\text{g.c.d.}(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for any $k \geq 1$ implies that the sequence $\{R_k\}_{k \geq 1}$ is not a geometric progression.

Corollary 1. Let $\{R_k\}_{k \geq 1}$ be as in Theorem 1. Then the infinite set consisting of the distinct values of
\[\left\{ \sum_{k=1}^{\infty} \frac{x^k q^{R_1+R_2+\cdots+R_k}}{(1-q^{2R_1})(1-q^{2R_2})\cdots(1-q^{2R_k})} \mid x, q \in \overline{\mathbb{Q}}^\times, |q| \neq 1 \right\} \]
is algebraically independent.

Example 1. Let $\{P_k\}_{k \geq 1}$ be the sequence defined either by $P_1 = P_2 = 1$ and $P_{k+2} = 2P_{k+1} + P_k$ ($k \geq 1$) or by $P_1 = P_2 = P_3 = 1$ and $P_{k+3} = P_{k+2} + P_{k+1} + 3P_k$ ($k \geq 1$). Since $\{P_k\}_{k \geq 1}$ satisfies all the conditions of Theorem 1, the infinite set consisting of the distinct values of
\[\left\{ \sum_{k=1}^{\infty} \frac{x^k q^{P_1+P_2+\cdots+P_k}}{(1-q^{2P_1})(1-q^{2P_2})\cdots(1-q^{2P_k})} \mid x, q \in \overline{\mathbb{Q}}^\times, |q| \neq 1 \right\} \]
is algebraically independent.

If $\{R_k\}_{k \geq 1}$ is a sequence of odd integers, then
\[\Theta_4(x, q) := \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{x q^{R_l}}{1 + q^{2R_l}} = \sum_{k=1}^{\infty} \frac{x^k q^{R_1+R_2+\cdots+R_k}}{(1+q^{2R_1})(1+q^{2R_2})\cdots(1+q^{2R_k})} \]
is invariant under the maps
\[\tau_1 : (x, q) \mapsto (x, q^{-1}), \]
\[\tau_2 : (x, q) \mapsto (-x, -q), \]
\[\tau_3 : (x, q) \mapsto (-x, -q^{-1}). \]
Since \(\tau_1 \circ \tau_1 = \tau_2 \circ \tau_2 = \text{id} \) and \(\tau_1 \circ \tau_2 = \tau_2 \circ \tau_1 = \tau_3 \), we see that \(G'_4 = \{ \text{id}, \tau_1, \tau_2, \tau_3 \} \) is also Klein four-group. Hence the map

\[
\Theta_+ : (\mathbb{C} \times \{ |q| \neq 0, 1 \})/G'_4 \rightarrow \Theta_+ (\mathbb{C} \times \{ |q| \neq 0, 1 \})
\]

given by

\[
\text{the orbit of } (x, q) \mapsto \Theta_+ (x, q)
\]
is well-defined. We also have the following

Theorem 2. Let \(\{ R_k \}_{k \geq 1} \) be as in Theorem 1. Then the infinite set of the values

\[
\tilde{\Theta}_+ \left(\left(\mathbb{Q}^\times \times (\mathbb{Q}^\times \setminus \{ |q| = 1 \}) \right) / G'_4 \right)
\]
is algebraically independent.

Example 2. Let \(\{ P_k \}_{k \geq 1} \) be one of the linear recurrences defined in Example 1. Since \(\{ P_k \}_{k \geq 1} \) satisfies all the conditions of Theorem 1, the infinite set consisting of the distinct values of

\[
\left\{ \sum_{k=1}^{\infty} \frac{x^k q^{P_1 + P_2 + \ldots + P_k}}{(1 + q^{2P_1})(1 + q^{2P_2}) \ldots (1 + q^{2P_k})} \right| x, q \in \overline{\mathbb{Q}}^\times, |q| \neq 1 \}
\]
is algebraically independent.

2 Lemmas

Let \(F(z_1, \ldots, z_n) \) and \(F[[z_1, \ldots, z_n]] \) denote the field of rational functions and the ring of formal power series in variables \(z_1, \ldots, z_n \) with coefficients in a field \(F \), respectively, and \(F^\times \) the multiplicative group of nonzero elements of \(F \). Let \(\Omega = (\omega_{ij}) \) be an \(n \times n \) matrix with nonnegative integer entries. Then the maximum \(\rho \) of the absolute values of the eigenvalues of \(\Omega \) is itself an eigenvalue (cf. Gantmacher [1, p. 66, Theorem 3]). If \(z = (z_1, \ldots, z_n) \) is a point of \(\mathbb{C}^n \), we define a transformation \(\Omega : \mathbb{C}^n \rightarrow \mathbb{C}^n \) by

\[
\Omega z = \left(\prod_{j=1}^{n} z_j^{\omega_{1j}}, \prod_{j=1}^{n} z_j^{\omega_{2j}}, \ldots, \prod_{j=1}^{n} z_j^{\omega_{nj}} \right).
\]

We suppose that \(\Omega \) and an algebraic point \(\alpha = (\alpha_1, \ldots, \alpha_n) \), where \(\alpha_i \) are nonzero algebraic numbers, have the following four properties:

(I) \(\Omega \) is nonsingular and none of its eigenvalues is a root of unity, so that in particular \(\rho > 1 \).

(II) Every entry of the matrix \(\Omega^k \) is \(O(\rho^k) \) as \(k \) tends to infinity.

(III) If we put \(\Omega^k \alpha = (\alpha_1^{(k)}, \ldots, \alpha_n^{(k)}) \), then

\[
\log |\alpha_i^{(k)}| \leq -c \rho^k \quad (1 \leq i \leq n)
\]

for all sufficiently large \(k \), where \(c \) is a positive constant.
(IV) For any nonzero \(f(z) \in \mathbb{C}[[z_1, \ldots, z_n]] \) which converges in some neighborhood of the origin, there are infinitely many positive integers \(k \) such that \(f(\Omega^k \alpha) \neq 0 \).

Lemma 1 (Lemma 4 and Proof of Theorem 2 in [6]). Suppose that \(\Phi(\pm1) \neq 0 \) and the ratio of any pair of distinct roots of \(\Phi(X) \) is not a root of unity, where \(\Phi(X) \) is the polynomial defined by (2). Let

\[
\Omega = \begin{pmatrix}
 c_1 & 1 & 0 & \ldots & 0 \\
 c_2 & 0 & 1 & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & 0 & \vdots \\
 c_n & 0 & \ldots & \ldots & 0
\end{pmatrix}
\]

(4)

and let \(\beta_1, \ldots, \beta_s \) be multiplicatively independent algebraic numbers with \(0 < |\beta_j| < 1 \) (1 \(\leq \) \(j \leq \) \(s \)). Let \(p \) be a positive integer and put \(\Omega' = \text{diag}(\Omega^p, \ldots, \Omega^p) \). Then the matrix \(\Omega' \) and the point \(\beta = (1, \ldots, 1, \beta_1, \ldots, \ldots, 1, \beta_s) \) have the properties (I)–(IV).

Lemma 2 (Kubota [3], see also Nishioka [5]). Let \(K \) be an algebraic number field. Suppose that \(f_1(z), \ldots, f_m(z) \in K[[z_1, \ldots, z_n]] \) converge in an \(n \)-polydisc \(U \) around the origin and satisfy the functional equations

\[
f_i(z) = a_i(z)f_i(\Omega z) + b_i(z) \quad (1 \leq i \leq m),
\]

where \(a_i(z), b_i(z) \in K(z_1, \ldots, z_n) \) and \(a_i(z) \) (1 \(\leq \) \(i \leq \) \(m \)) are defined and nonzero at the origin. Assume that the \(n \times n \) matrix \(\Omega \) and a point \(\alpha \in U \) whose components are nonzero algebraic numbers have the properties (I)–(IV) and that \(a_i(z) \) (1 \(\leq \) \(i \leq \) \(m \)) are defined and nonzero at \(\Omega^k \alpha \) for any \(k \geq 1 \). If \(f_1(z), \ldots, f_m(z) \) are algebraically independent over \(K(z_1, \ldots, z_n) \), then the values \(f_1(\alpha), \ldots, f_m(\alpha) \) are algebraically independent.

In what follows, \(C \) denotes a field of characteristic 0. Let \(L = C(z_1, \ldots, z_n) \) and let \(M \) be the quotient field of \(C[[z_1, \ldots, z_n]] \). Let \(\Omega \) be an \(n \times n \) matrix with nonnegative integer entries having the property (I). We define an endomorphism \(\tau : M \to M \) by \(f^\tau(z) = f(\Omega z) \) (\(f(z) \in M \)) and a subgroup \(H \) of \(L^\times \) by

\[
H = \{ g^\tau g^{-1} \mid g \in L^\times \}.
\]

Lemma 3 (Kubota [3], see also Nishioka [5]). Let \(f_{ij} \in M \) (\(i = 1, \ldots, h; \ j = 1, \ldots, m(i) \)) satisfy

\[
f_{ij} = a_i f_{ij} + b_{ij},
\]

where \(a_i \in L^\times, \ b_{ij} \in L \) (1 \(\leq \) \(i \leq \) \(h, \ 1 \leq \) \(j \leq m(i) \)), and \(a_i a_j^{-1} \notin H \) for any distinct \(i, i' \) (1 \(\leq \) \(i, i' \leq \) \(h \)). Suppose for any \(i \) (1 \(\leq \) \(i \leq \) \(h \)) there is no element \(g \) of \(L \) satisfying

\[
g = a_i g^\tau + \sum_{j=1}^{m(i)} c_j b_{ij},
\]

where \(c_1, \ldots, c_{m(i)} \in C \) are not all zero. Then the functions \(f_{ij} \) (\(i = 1, \ldots, h; \ j = 1, \ldots, m(i) \)) are algebraically independent over \(L \).
Let \(\{R_k\}_{k \geq 1} \) be a linear recurrence satisfying (1) and define a monomial
\[
M(z) = z_1^{R_1} \cdots z_n^{R_n},
\]
which is denoted similarly to (3) by
\[
M(z) = (R_n, \ldots, R_1)z.
\]
Let \(\Omega \) be the matrix defined by (4). It follows from (1), (3), and (6) that
\[
M(\Omega^k z) = z_1^{R_{k+n}} \cdots z_n^{R_{k+1}} \quad (k \geq 0).
\]

Lemma 4 (Theorem 2 of [7]). Suppose that \(\{R_k\}_{k \geq 1} \) is not a geometric progression. Assume that \(\Phi(\pm 1) \neq 0 \) and the ratio of any pair of distinct roots of \(\Phi(X) \) is not a root of unity. Let \(\overline{C} \) be an algebraically closed field of characteristic 0. Suppose that \(F(z) \) is an element of the quotient field of \(\overline{C}[[z_1, \ldots, z_n]] \) satisfying the functional equation of the form
\[
F(z) = \left(\prod_{k=u}^{p+u-1} Q_k(M(\Omega^k z)) \right) F(\Omega^p z),
\]
where \(\Omega \) is defined by (4), \(p > 0, u \geq 0 \) are integers, and \(Q_k(X) \in \overline{C}(X) \) \(u \leq k \leq p + u - 1 \) are defined and nonzero at \(X = 0 \). If \(F(z) \in \overline{C}(z_1, \ldots, z_n) \), then \(F(z) \in \overline{C}^\times \) and \(Q_k(X) \in \overline{C}^\times \) \(u \leq k \leq p + u - 1 \).

We adopt the usual vector notation, that is, if \(I = (i_1, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n \) with \(\mathbb{Z}_{\geq 0} \) the set of nonnegative integers, we write \(z^I = z_1^{i_1} \cdots z_n^{i_n} \). We denote by \(C[z_1, \ldots, z_n] \) the ring of polynomials in variables \(z_1, \ldots, z_n \) with coefficients in \(C \).

Lemma 5 (Lemma 3.2.3 in Nishioka [5]). If \(A, B \in C[z_1, \ldots, z_n] \) are coprime, then \(\text{g.c.d.}(A^r, B^r) = z^I \), where \(I \in \mathbb{Z}_{\geq 0}^n \).

Lemma 6 (Lemma 12 of [7]). Let \(\Omega \) be an \(n \times n \) matrix with nonnegative integer entries which has the property (I). Let \(R(z) \) be a nonzero polynomial in \(C[z_1, \ldots, z_n] \). If \(R(\Omega z) \) divides \(R(z)z^I \), where \(I \in \mathbb{Z}_{\geq 0}^n \), then \(R(z) \) is a monomial in \(z_1, \ldots, z_n \).

Lemma 7 (Lemma 6 of [8]). Let \(P(z) \) be a nonconstant polynomial in \(z = (z_1, \ldots, z_n) \) with \(n \geq 2 \). Let \(\Omega \) be an \(n \times n \) matrix with positive integer entries which has the property (I). Then
\[
\deg_z P(\Omega z) > \deg_z P(z).
\]

3 Proof of the main theorem

We prove only Theorem 1, since Theorem 2 is proved in the same way.

Proof of Theorem 1. A complete set of representatives of the orbits \(\left(\overline{\mathbb{Q}}^\times \times (\overline{\mathbb{Q}}^\times \setminus \{ |q| = 1 \}) \right) / G_4 \) is given by
\[
\left\{ (x, q) \in (\overline{\mathbb{Q}}^\times)^2 \left| |q| < 1, \ 0 \leq \text{Arg} q < \pi \right. \right\} =: \Lambda
\]
since, under the action of the Klein four-group G_4, the second component q is transformed either to q, q^{-1}, $-q$, or $-q^{-1}$. Hence it is enough to prove that the values

$$
\eta_i := \Theta(x_i, q) = \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{x_i q_i^{R_l}}{1 - q_i^{2R_l}} \quad (i = 1, \ldots, r)
$$

are algebraically independent for any finite number of distinct pairs $(x_1, q_1), (x_2, q_2), \ldots, (x_r, q_r)$ belonging to Λ.

Assume that the values η_1, \ldots, η_r are algebraically dependent. There exist multiplicatively independent algebraic numbers β_1, \ldots, β_s with $0 < |\beta_j| < 1$ ($1 \leq j \leq s$) and a primitive N-th root of unity ζ such that

$$q_i = \zeta^{m_i} \prod_{j=1}^{s} \beta_j^{e_{ij}} \quad (1 \leq i \leq r), \quad (8)$$

where m_1, \ldots, m_s are integers with $0 \leq m_i \leq N - 1$ and e_{ij} ($1 \leq i \leq r$, $1 \leq j \leq s$) are nonnegative integers (cf. Loxton and van der Poorten [4], Nishioka [5]). We can choose a positive integer p and a sufficiently large integer u, which will be determined later, such that $R_{k+p} = R_k \pmod{N}$ for any $k \geq u + 1$. Let $y_{j,m}$ ($1 \leq j \leq s$, $1 \leq m \leq n$) be variables and let $y_j = (y_{j,1}, \ldots, y_{j,n})$ ($1 \leq j \leq s$), $y = (y_1, \ldots, y_s)$. Define

$$f_i(y) = \sum_{k=u}^{\infty} \prod_{l=1}^{k} \frac{x_i^{m_i R_{l+1}} \prod_{j=1}^{n} M(\Omega^l y_j)^{e_{ij}}}{1 - \left(\zeta^{m_i R_{l+1}} \prod_{j=1}^{s} M(\Omega^l y_j)^{e_{ij}}\right)^2} \quad (1 \leq i \leq r),$$

where $M(z)$ and Ω are defined by (5) and (4), respectively. Letting

$$\beta = (\beta_1, \ldots, \beta_s),$$

we see by (7) and (8) that

$$f_i(\beta) = \sum_{k=u}^{\infty} \prod_{l=1}^{k} \frac{x_i q_i^{R_{l+1}}}{1 - q_i^{2R_{l+1}}} = \sum_{k=u+1}^{\infty} \prod_{l=u+1}^{k} \frac{x_i q_i^{R_l}}{1 - q_i^{2R_l}}$$

and so

$$\eta_i = \left(\prod_{k=1}^{u} \frac{x_i q_i^{R_k}}{1 - q_i^{2R_k}}\right) f_i(\beta) + \sum_{k=1}^{u} \prod_{l=1}^{k} \frac{x_i q_i^{R_l}}{1 - q_i^{2R_l}}.$$

Since η_1, \ldots, η_r are algebraically dependent, so are $f_i(\beta)$ ($1 \leq i \leq r$). Let

$$\Omega' = \operatorname{diag}(\Omega^p, \ldots, \Omega^p).$$

Then each $f_i(y)$ satisfies the functional equation

$$f_i(y) = \left(\prod_{k=u}^{p+u-1} \frac{x_i^{m_i R_{k+1}} \prod_{j=1}^{n} M(\Omega^k y_j)^{e_{ij}}}{1 - \left(\zeta^{m_i R_{k+1}} \prod_{j=1}^{s} M(\Omega^k y_j)^{e_{ij}}\right)^2}\right) f_i(\Omega' y)$$
\[+ \sum_{k=u}^{p+u-1} \prod_{l=u}^{k-1} \frac{x_i \zeta^{m_i R_{l+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{e_{ij}}}{1 - \left(\zeta^{m_i R_{l+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{e_{ij}} \right)^2}, \]

where \(\Omega' y = (\Omega^p y_1, \ldots, \Omega^p y_s) \). Let \(D = |\det(\Omega - E)| = |\Phi(1)| \), where \(E \) is the identity matrix. Then \(D \) is a positive integer, since \(\Phi(1) \neq 0 \). Let \(y_{j_1}^{1/D} \) \((1 \leq j < s, 1 \leq \lambda < n)\), \(y_{j_1}^{1/D} = (y_{j_1}, \ldots, y_{j_1}^{s}) \) \((1 \leq j \leq s)\), and \(y' = (y_{1}', \ldots, y_{s}') \). Noting that \(\prod_{j=1}^{s} M(\Omega - E)^{-1} \Omega^u y_j)^{e_{ij}} \in \mathcal{Q}(y') \), we define

\[
g_i(y') = \left(\prod_{j=1}^{s} M(\Omega - E)^{-1} \Omega^u y_j)^{e_{ij}} \right) f_i(y) - T_i(y') \quad (1 \leq i \leq r),
\]

where

\[
f_i(y') = \sum_{k=u}^{\infty} \prod_{l=u}^{k} \frac{x_i \zeta^{m_i R_{l+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{D e_{ij}}}{1 - \left(\zeta^{m_i R_{l+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{D e_{ij}} \right)^2} \in \mathcal{Q}(y'),
\]

\[
T_i(y') = \left(\prod_{j=1}^{s} M(\Omega - E)^{-1} \Omega^u y_j)^{e_{ij}} \right) \sum_{k=u}^{k_1} \prod_{l=u}^{k} \frac{x_i \zeta^{m_i R_{l+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{D e_{ij}}}{1 - \left(\zeta^{m_i R_{l+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{D e_{ij}} \right)^2} \in \mathcal{Q}(y'),
\]

and \(k_1 \) is such a large integer that \(g_i(y') \in \mathcal{Q}(y') \) \((1 \leq i \leq r)\). Since \(M(\Omega - E)^{-1} \Omega^u y_j)^{D} = M(\Omega - E)^{-1} \Omega^{u+p} y_j)^{D} \), each \(g_i(y') \) satisfies the functional equation

\[
g_i(y') = \left(\prod_{k=u}^{p+u-1} \frac{x_i \zeta^{m_i R_{k+1}}}{1 - \left(\zeta^{m_i R_{k+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{D e_{ij}} \right)^2} \right) g_i(\Omega' y')
\]

\[
+ \left(\prod_{j=1}^{s} M(\Omega - E)^{-1} \Omega^u y_j)^{e_{ij}} \right) \sum_{k=u}^{p+u-1} \prod_{l=u}^{k} \frac{x_i \zeta^{m_i R_{l+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{D e_{ij}}}{1 - \left(\zeta^{m_i R_{l+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{D e_{ij}} \right)^2} \]

\[
+ \left(\prod_{k=u}^{p+u-1} \frac{x_i \zeta^{m_i R_{k+1}}}{1 - \left(\zeta^{m_i R_{k+1}} \prod_{j=1}^{l} M(\Omega^i y_j)^{D e_{ij}} \right)^2} \right) T_i(\Omega' y') - T_i(y'),
\]

where \(\Omega' y' = (\Omega^p y_1', \ldots, \Omega^p y_s') \). Since \(f_i(\beta) \) \((1 \leq i \leq r)\) are algebraically dependent, so are \(g_i(\beta') \) \((1 \leq i \leq r)\), where

\[\beta' = (1, \ldots, 1, \beta_1^{1/D}, \ldots, 1, \ldots, 1, \beta_s^{1/D}). \]

By Lemma 1, the matrix \(\Omega' \) and \(\beta' \) have the properties (I)–(IV). By Lemma 2, the functions \(g_i(y') \) \((1 \leq i \leq r)\) are algebraically dependent over \(\mathcal{Q}(y') \).
In order to apply Lemma 3, we assert that

\[
Q_{uv}(y') = \prod_{k=u}^{p+u-1} x_i \zeta^{m_i R_{k+1}} \left(1 - \left(\zeta^{m_i R_{k+1}} \prod_{j=1}^{s} M(\Omega^k y_j)^{D_{\nu_j}} \right)^2 \right)
\]

\[
\in H = \left\{ \frac{h(\Omega^k y')}{h(y')} \mid h(y') \in \mathcal{Q}(y') \setminus \{0\} \right\}
\]

if and only if \(m_i = m_{\nu}, (e_{i1}, \ldots, e_{i8}) = (e_{\nu1}, \ldots, e_{\nu8}), \) and \(x_{\nu} = x_{\nu} \). It is clear that, if \(m_i = m_{\nu}, (e_{i1}, \ldots, e_{i8}) = (e_{\nu1}, \ldots, e_{\nu8}), \) and \(x_{\nu} = x_{\nu} \), then \(Q_{uv}(y') = 1 \in H \). Conversely, suppose that \(Q_{uv}(y') \in H \). Then there exists an \(F(y') \in \mathcal{Q}(y') \setminus \{0\} \) satisfying

\[
F(y') = \left(\prod_{k=u}^{p+u-1} x_i \zeta^{m_i R_{k+1}} \left(1 - \left(\zeta^{m_i R_{k+1}} \prod_{j=1}^{s} M(\Omega^k y_j)^{D_{\nu_j}} \right)^2 \right) \right)^{-1} \quad (9)
\]

Let \(P \) be a positive integer divisible by \(D \) and let

\[
y_j = (y_{j1}, \ldots, y_{jn}) = (z_{j1}^{p_j/D}, \ldots, z_{jn}^{p_j/D}) \quad (1 \leq j \leq s).
\]

We choose a sufficiently large \(P \) such that the following two properties are both satisfied:

(a) If \((e_{i1}, \ldots, e_{i8}) \neq (e_{\nu1}, \ldots, e_{\nu8}), \) then \(\sum_{j=1}^{s} e_{ij} p_j \neq \sum_{j=1}^{s} e_{\nu j} p_j \).

(b) \(F^*(z) = F(z_{1}^{p_1/D}, \ldots, z_{n}^{p_1/D}, \ldots, z_{1}^{p_s/D}, \ldots, z_{n}^{p_s/D}) \in \mathcal{Q}(z_1, \ldots, z_n) \setminus \{0\} \).

Then by (9), \(F^*(z) \) satisfies the functional equation

\[
F^*(z) = \left(\prod_{k=u}^{p+u-1} x_i \zeta^{m_i R_{k+1}} \left(1 - \left(\zeta^{m_i R_{k+1}} M(\Omega^k z)^{D_{\nu_j}} \right)^2 \right) \right)^{-1} \quad (10)
\]

where \(\ell_i = \sum_{j=1}^{s} e_{ij} p_j \) (\(1 \leq i \leq r \)). Therefore by Lemma 4 we see that

\[
x_i \zeta^{m_i R_{k+1}} \left(1 - \zeta^{2m_i R_{k+1}} X^2 \zeta^{2\ell_i} \right) \in \mathcal{Q}^X
\]

for any \(k \) (\(u \leq k \leq p + u - 1 \)), where \(X \) is a variable, and \(F^*(z) \in \mathcal{Q}^X \). Hence \(\ell_i = \ell_{\nu} \) and \(\zeta^{2m_i R_{k+1}} = \zeta^{2m_{\nu} R_{k+1}} \) (\(u \leq k \leq p + u - 1 \)). Thus \((e_{i1}, \ldots, e_{i8}) = (e_{\nu1}, \ldots, e_{\nu8}) \) by the property (a), and \(\zeta^{2m_i} = \zeta^{2m_{\nu}} \) since \(g.c.d.(R_k, R_{k+1}, \ldots, R_{k+p-1}) = 1 \) for any \(k \geq 1 \). Hence \(q_{\nu} = q_{\nu} \) by (8) and so \(q_i = q_{\nu} \) since \(0 \leq \text{Arg } q_i < \pi \) (\(1 \leq i \leq r \)). Then \(m_i = m_{\nu} \), and the functional equation (10) becomes \(x_i F^*(z) = x_{\nu} F^*(\Omega^p z) \). Since \(F^*(z) \in \mathcal{Q}^X \), we have \(x_i = x_{\nu} \), and the assertion is proved.

Now let \(S \) be a maximal subset of \(\{1, \ldots, r\} \) such that \((x_i, q_i) = (x_{\nu}, q_{\nu}) \) for any \(i, \nu \in S \), which is equivalent to \(x_i = x_{\nu}, m_i = m_{\nu}, \) and \((e_{i1}, \ldots, e_{i8}) = (e_{\nu1}, \ldots, e_{\nu8}) \). Fix a \(\lambda \in S \) and let \(\xi = x_{\lambda}, m = m_{\lambda}, \) and \(e_j = e_{\lambda j} \) (\(1 \leq j \leq s \)). Then \(x_i = \xi, m_i = m, \) and \((e_{i1}, \ldots, e_{i8}) = (e_{1}, \ldots, e_{s}) \) for any \(i \in S \) and by Lemma 3 there exits a \(G(y') \in \mathcal{Q}(y') \) satisfying
$$G(y') = \xi \left(\prod_{k=u}^{p+u-1} \frac{\zeta^{mR_{k+1}}}{1 - \left(\zeta^{mR_{k+1}} \prod_{j=1}^{s} M(\Omega^k y'_j)^{D_{ej}} \right)^2} \right) G(\Omega^p y')$$

$$+ \left(\prod_{j=1}^{s} M(D(\Omega - E)^{-1} \Omega^u y'_j)^{e_j} \right)$$

$$\times \sum_{k=u}^{p+u-1} \left(\sum_{i \in S} c_i x_i^{k-u+1} \right) \prod_{l=u}^{k} \frac{\zeta^{mR_{l+1}} \prod_{j=1}^{s} M(\Omega^k y'_j)^{D_{el}}}{1 - \left(\zeta^{mR_{l+1}} \prod_{j=1}^{s} M(\Omega^k y'_j)^{D_{ej}} \right)^2}$$

$$+ \xi \left(\prod_{k=u}^{p+u-1} \frac{\zeta^{mR_{k+1}}}{1 - \left(\zeta^{mR_{k+1}} \prod_{j=1}^{s} M(\Omega^k y'_j)^{D_{ej}} \right)^2} \right) \sum_{i \in S} c_i T_i(\Omega^p y') - \sum_{i \in S} c_i T_i(y'),$$

where $c_i (i \in S)$ are algebraic numbers not all zero. Then

$$G^*(y') = \left(\prod_{j=1}^{s} M(D(\Omega - E)^{-1} \Omega^u y'_j)^{e_j} \right)^{-2} \left(G(y') + \sum_{i \in S} c_i T_i(y') \right) \in \overline{Q}(y')$$

satisfies the functional equation

$$G^*(y') = \xi \left(\prod_{k=u}^{p+u-1} \frac{\zeta^{mR_{k+1}} \prod_{j=1}^{s} M(\Omega^k y'_j)^{2D_{ej}}}{1 - \left(\zeta^{mR_{k+1}} \prod_{j=1}^{s} M(\Omega^k y'_j)^{D_{ej}} \right)^2} \right) G^*(\Omega^p y')$$

$$+ \frac{1}{\prod_{j=1}^{s} M(D(\Omega - E)^{-1} \Omega^u y'_j)^{e_j}}$$

$$\times \sum_{k=u}^{p+u-1} \left(\sum_{i \in S} c_i x_i^{k-u+1} \right) \prod_{l=u}^{k} \frac{\zeta^{mR_{l+1}} \prod_{j=1}^{s} M(\Omega^k y'_j)^{D_{el}}}{1 - \left(\zeta^{mR_{l+1}} \prod_{j=1}^{s} M(\Omega^k y'_j)^{D_{ej}} \right)^2}. \tag{11}$$

Let P be a positive integer and let $y'_j = (y'_j, \ldots, y'_n) = (z_1^{P_j}, \ldots, z_n^{P_j})$ ($1 \leq j \leq s$). We choose P sufficiently large such that

$$H(z) = G^*(z_1^{P_1}, \ldots, z_1^{P_n}, \ldots, z_n^{P_1}, \ldots, z_n^{P_n}) \in \overline{Q}(z_1, \ldots, z_n).$$

Then by (11), $H(z)$ satisfies the functional equation

$$H(z) = \xi \left(\prod_{k=u}^{p+u-1} \frac{\zeta^{mR_{k+1}} M(\Omega^k z)^{2D_{ej}}}{1 - \left(\zeta^{mR_{k+1}} M(\Omega^k z)^{D_{ej}} \right)^2} \right) H(\Omega^p z)$$

$$+ \frac{1}{M(D(\Omega - E)^{-1} \Omega^{u} z)\ell} \sum_{k=u}^{p+u-1} \left(\sum_{i \in S} c_i x_i^{k-u+1} \right) \prod_{l=u}^{k} \frac{\zeta^{mR_{l+1}} M(\Omega^k z)^{D_{el}}}{1 - \left(\zeta^{mR_{l+1}} M(\Omega^k z)^{D_{ej}} \right)^2},$$

where $\ell = \sum_{j=1}^{s} e_j P_j$. Letting $H(z) = A(z)/B(z)$, where $A(z)$ and $B(z)$ are coprime polynomials in $\overline{Q}[z_1, \ldots, z_n]$ with $B \neq 0$, and letting $M(D(\Omega - E)^{-1} \Omega^{u} z) = M_1(z)/M_2(z)$, where $M_1(z)$ and $M_2(z)$ are coprime monomials in $\overline{Q}[z_1, \ldots, z_n]$, we have

$$A(z)B(\Omega^{p} z)M_1(z)^{\ell} \prod_{k=u}^{p+u-1} \left(1 - \left(\zeta^{mR_{k+1}} M(\Omega^k z)^{D_{ej}} \right)^2 \right)$$
\[
\begin{align*}
\xi A(\Omega^p z)B(z)M_1(z)^\ell \prod_{k=u}^{p+u-1} \zeta^{mR_{k+1}} M(\Omega^k z)^{2D\ell} \\
+ \sum_{k=u}^{p+u-1} \left(\sum_{i \in S} c_i z_i^{k-u+1} \right) B(z)B(\Omega^p z)M_2(z)^\ell \prod_{l=u}^{k} \zeta^{mR_{l+1}} M(\Omega^l z)^{2D\ell} \\
\times \prod_{l'=u}^{p+u-1} \left(1 - \left(\zeta^{mR_{l'+1}} M(\Omega^{l'} z)^{2D\ell} \right)^2 \right).
\end{align*}
\]

In what follows, let \(u \) be sufficiently large. By the condition \(\Phi(2) < 0 \), the root \(\rho \) of \(\Phi(X) \) such that \(R_k = b \rho^k + o(\rho^k) \) with \(b > 0 \) (cf. Remark 4 in [6]) satisfies \(\rho > 2 \) and hence \(R_{k+1} > 2R_k \) for all sufficiently large \(k \). Then the componentwise inequality \((R_{u+1}, \ldots, R_1)D(\Omega - E)^{-1} \Omega = (R_{u+1}, \ldots, R_1)\Omega^u D(\Omega - E)^{-1} = (R_{u+1}, \ldots, R_{u+1})D(\Omega - E)^{-1} < D(R_{u+1}, \ldots, R_{u+1}) \) holds and so \(z_1 \cdots z_n M_1(z)^\ell \) divides \(M(\Omega^p z)^{2D\ell} = M(\Omega^u z)^{\ell} \).

In what follows, \(p \) is replaced with its multiple if necessary. We can put the greatest common divisor of \(A(\Omega^p z) \) and \(B(\Omega^p z) \) as \(z^{I(p)} \), where \(I(p) \) is an \(n \)-dimensional vector with nonnegative integer components, by Lemma 5. Then \(B(\Omega^p z) \) divides \(B(z)M_1(z)^\ell z^{I(p)} \prod_{k=u}^{p+u-1} M(\Omega^k z)^{2D\ell} \) by (12). Therefore \(B(z) \) is a monomial in \(z_1, \ldots, z_n \) by Lemmas 1 and 6. Since \(p \) and \(u \) are independent, the right-hand side of (12) is divisible by \(z_1 \cdots z_n M_1(z)^\ell B(\Omega^p z) \) and thus \(A(z) \) is divisible by \(z_1 \cdots z_n \). Since \(A(z) \) and \(B(z) \) are coprime, \(B(z) \in Q[z_1, \ldots, z_n] \). If \(A(z) \notin Q \) and if \(p \) is sufficiently large, then by Lemma 7, \(\deg_A(\Omega^p z) > \max \{ \deg_A A(z), \deg_A M_2(z)^{\ell} \} \), which is a contradiction by comparing the total degrees of both sides of (12). Hence \(A(z) \in Q \). Then by (12), we see that \(\sum_{i \in S} c_i x_i^{k-u+1} = 0 \) (\(u \leq k \leq p + u - 1 \)) and so \(\sum_{i \in S} c_i x_i^k = 0 \) (\(1 \leq k \leq p \)). Hence \(x_i = x_{i'} \) for some distinct \(i, i' \in S \) since \(c_i (i \in S) \) are not all zero. Then \((x_i, q_i) = (x_{i'}, q_{i'}) \), which is a contradiction, and the proof of the theorem is completed. \(\square \)

References