A SURVEY ON THE GLOBAL GAN-GROSS-PRASAD CONJECTURE FOR
FOURIER-JACOBI CASE

JAEHO HAAN

ABSTRACT. The global Gan-Gross-Prasad (GGP) conjecture predicts that the non-vanishing
of certain periods is equivalent to the non-vanishing of certain central value of some L-function.
There are two types of GGP conjectures : Bessel case, Fourier-Jacobi case. In 2015, Hang Xue
proved the Fourier-Jacobi GGP conjecture for skew-hermitian case on the same rank group.
But his result is under certain local restriction to apply relative trace formula. We suggest a
way to prove one direction of the general Fourier-Jacobi case for skew-hermitian unitary group
without such local restricions. This survey article is based on the ongoing joint work with
Hiraku Atobe.

1. Fourier-Jacobi period

Let E/F be a quadratic extension of number fields with adele rings Ag and Ap respectivly.
We denote the nontrivial automorphism of F fixing F' by x — Z. Let w be the non-trivial
quadratic character assosiated to F*\A} by the global class field theory and fix a chracter
p o EX\AJ such that u|A; = w. Sometimes, we view u as a character of GL,(Ag) and in that

case, it does mean p o det. We also fix a nontrivial character ¢ of E\Ag. If v is a place of F,
we write K, = E ® F,. Let W,,, C W,, be m and n-dimensional skew-Hermitian spaces over F
such that W,, = X & W,,, & X* where X & X* is the direct sum of r hyperbolic planes and the
restriction of hermitian form of W,, to W,, is non-degenerate.

Let Gy, G, be the isometry group of W,,, W,, respectively and regard G,, as a subgroup of
G, which acts trivially on the orthogonal compliment of W,, in W,,. We fix a complete flag of
X and let P, the parabolic subgroup of G, which stabilize this flag, with the unipotent radical
N, . Then the group G,, acts on N,,, through conjugation. Put H = N,,, x G,,. There is
an H(F)-invariant automorphic Weil representation v,-1 ,-1 w,, of H(Ap) realized on Schwartz
space S. For each f € S, we can define a certain theta series ©y-1 ,-1(h, f) defined on H(Ap).

Let 7y, e be two irreducible cuspidal automorphic representation of G, (Ar) and G,,(Ar)
respectively. We regard H as a subgroup of G, through the map (n, g) — ng. For ¢; € 11, 9 €
o, f € Vg1 -1 w,,, we define its Fourier-Jacobi period to be the integral as

FTonlor,onf) = / 1(ng)¢2(9)Ou 101 ((n, 9), f)dndy,

[Nn,rxGm]
where [Ny, X Gp) = Npy(F) X G (F)\ Ny (Ar) x G (AF).

2. Automorphic forms

For a connected reductive algebraic group G over F', we fix a minimal F-parabolic subgroup
Py of G with a Levi decomposition Py = MUy and a maximal compact subgroup K = [[, K,
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of G(Ar) which satisfies
G(Ar) = Py(Ap)K, PAp)NK = (MAr)NK)(U(Ar)NK)

and M(Ap) N K is still maximal compact in M (Ay) for every standard parabolic subgroup
P =UM of G where My C M. (see [10, I.1.4]) Note that the Levi factor My is the centralizer
of a maximal split torus 7y. Throughout the rest the paper, P always denote a standard
subgroup of G unless mentioned.

Let o7p(G) be the space of automorphic forms on U(Ap) P(F)\G(AF). i.e., smooth, K-finite
and 3-finite functions on U(Ap)P(F)\G(AFr) of moderate growth, where 3 is the center of the
universal enveloping algebra of the complexified Lie algebra of the product of the archimedean
localization of G(Ap). When P = G, we simply write &7 (G) for «7;(G). For a cuspidal
automorphic representation p of M(Ar), we write 27/ (G) for the subspace of functions ¢ €
2p(G) such that for all k € K, the function m — |dp(m)| ™! - ¢(mk) belongs to the space of p.
(Here, pp is the modulus function of P(Af).) (see [10, 1.2.17])

We extend the definition of automorphic forms from reductive groups to special non-reductive
groups. Let N be a unipotent group over I’ which admits a G-action and denote this action
by 0 : G — Aut(N). Using o, we can consider the semi-direct product N x G and define
automorphic forms on N(Ar) x G(Af) as follows.

For a function ¢ : N(Ap) x G(Ar) — C and arbitrary n € N(Ap), denote ¢, : G(Ap) — C
by ¢n(g) = ¢(n,g). We say that ¢ is an automorphic form on N(F') x G(F)\N(Ar) x G(Ar)
if

H((6.79) - (,9) = ¢(n,g) for (6,7) € N(F) x G(F)

¢ is smooth

©p is right K-finite for a maximal compact subgroup K of G(Ay) for any n € N(Ap)
¢n is 3-finite function for any n € N(Ap)

©n is of moderate growth for any n € N(Ap)

We denote by o7 (N x G) the space of automorphic forms on N(F) x G(F)\N(Ar) x G(Ar).
Note that if NV is the trivial group 1, then &/ (1 x G) equals &7 (G). For ¢ € o/ (N x G), define
¢p : N(Ap) x G(Ap) — C by

vp(n,g) ::/U . )gp(n,ug)du for (n,g) € N(Ap) x G(Ap)

and define " : G(Ap) — C as
@)= [ erlng)dn
N(AF)

Proposition 2.1. For p € &/ (N x G), ¢” € @p(G) for any standard parabolic subgroup P of
G.

Remark 2.2. For ¢ € o/ (G), if we regard ¢ € &/(1 x G), then ¢p = ¢*. Thus ¢ — ¢p sends
A (G) to op(G).

3. Mixed truncation

To explain mixed truncation, we first recall some notation regarding Arthur truncation. For
more explanation on the notation here, see [1, Sec. 1].
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For a connected reductive algebraic group G over F', we fix a minimal F-parabolic subgroup
P, of G with a Levi decomposition Py = UyM,. Write X (G) for the F-rational characters of G.
Let af be the R-vector space spanned by lattice X (7)) and ap = Hom(X (75) ®z R, R) its dual
space. The canonial pairing on aj X ag is denoted by (, ). Let Ag and Ay be the sets of simple
roots and simple coroots in aj and ay respectively. Write Ag and A, for the dual basis of A,
and AY repectively. (In other words, AY and A, are set of coweight and weight respectively.)
For a standard parabolic subgroup P = UM of G, write T' for a maximal split torus in the
center of M and a}, = X(M) ®z R and ap for its dual space.

For a pair of standard parabolic subgroups () C P of G, there is a canonial injection ap — ag
and surjection ag — ap induced by two inclusion maps Mg < Mp and Tp — T. So we have
a canonical decomposition

ag = a;, ® ap, a5, = (a5)* @ ap
In particular, if we take Q = I, we have a decompostion

d=a, ®ap, ay=(a)) Da}
for all standard subgroup P.

For every standard subgroup P, let Ap C Ag be the set of non-trivial restriction of simple
roots to ap. For any pair of standard sugroups () C P, denote by Ag the subset of Ag
appearing in the root decomposition of the Lie algebra of unipotent radical Uy N Mp. Then for
H e ap, (a,H) =0 for all & € Af and so Af) C (aj))*. Note that AF = Ap. For any o € A,
there is a @ € Ay whose restriction to ag is . Write oV for the projection of &@" to ag. Define

(AD)Y ={a"| a € AG}.
Define (AV)SAC (aS)*Aand Ag C ag to Abe the dual basis of A, and (Af)" respectively. We
simply write A}, for (AY)S and Ap for A%, respectively.

Let 7'5 be the characteristic function of the subset

{Hea:{a,H)>0forall o € AJ} C ag
and let %5 be the characteristic function of the subset

{H€ay:(w,H)>0forall we Ag} C ap.
Note that these two functions depends only on the projection of ag to ag. We write 7p and 7p
for 7§ and 75, respectively.

For each parabolic subgroup P = UM, we have height map

Hp : G(AF) — ap
characterized by the following properties : (see [1, page 917])

o |x|(m) = ePHrm) for all x € X(M) and m € M(Ay)
o Hp(nmk) = Hp(m) for all n € U(Ap).m € M(Ap), k € K.

The restriction of Hp on M (Ar) is surjective homomorphism. Denote the kernel of Hp|p/(a )
by M(Ay)" and the connected component of 1 in T'(R) by T'(R)°. Then M(Ap) is the direct
product of normal subgroup M (Ar)! with T(R)? and Hp gives an isomorphism between T'(R)°
and ap. Denote the inverse of this map by X — e*. We simply write H(g) for Hp,(g). Note
that Hp(g) is the projection of H(g) onto ap.



4 JAEHO HAAN

Let T € ay. For ¢, ¢’ € o/ (N x ), we define a mixed truncation by
A (0@ ¢)(g) = —1)dima® / dp(n,vg)dp(n,vg)dn ) 7p(H(vg) — T
( )(9) = (1) > ) (n,79)dp (1, 79) ) p(H(vg) = T)

P veP(F)\G(F

for g € G. More generally, we define a partlal mixed truncation by

AP (6@ ) (g) = S (-1imes S /N i, G0l 390, 89)dn ) 5 (H 39) ~ )

Qcp SEQI\P(F
for ¢, ¢ € /(N x G).

Lemma 3.1. Let ¢,¢' € /(N x G). Then AL (¢ ¢') is rapidly decreasing on G(F)\G(Ar)'.
For (¢,¢') € &/ (N x G)? and ¢’ € &/ (G), we consider the following integral
(3) / AL (6% ) (9)6 (9)dg
GIN\G(Ap)!

Thanks to Lemma 3.1, this integral converges.

Write py for half the sum of positive roots in aj and denote by pp the projection of py to

ap. Recall that 2P Hr®) = §,(p) for p € P(Ag). Tt is known that an automorphic form
¢ € @/p(G) admits a finite decomposition
o(ue mk: E Q:(X Qitop.X)

for u € U(Ap),X € ap,m € M(Ar)! and k € K, where \; € ap ®g C, Q; € Clap| and
¢; € p(Q) satisfies ¢;(eXg) = ¢i(g) for X € ap and g € G. (see [10, 1.3.2]) We denote the
finite set of exponents \; appearing in this decomposition by Ep(¢).

Proposition 3.2. Integral in (3.1) is a function of the form Y, pA(T)e™T), where py is a
polynomial in T and X can be taken from the set

AN 40 4 pp | A€ Ep(67), N € Ep(¢7), X' € Ep(dh) (i = 1,2,3)}
P

Definition 3.3. Let <% (N xG) be the subspace of triplets (¢, ¢/, ¢") € o/ (N xG)? x o/ (G) such
that the polynomial corresponding to the zero exponent of (3.1) is constant. For (¢, ¢/, ¢") €
(N x G), we define its regularized period P(¢p, ¢, ¢") as its value po(T'). We also write

Plo.6.0") = | * / * o, 9)6 (1, 9)6"(9)dg.

GUNG(AR)' JN(F)\N(AF)

Let &7 (N x G)* be the space of all triplets (¢, ¢', ¢") € & (N x G)? x &/ (G) such that
A+N4+N+pp,w) £0 WY e (AY)p, A€ &p(d"), N € Ep(¢), N € Ep(¢h))

for all parabolic subgroups P of G. If (¢, ¢, ¢") € &/ (N x G)*, then the #-integral

#

PL(p. &, ") = / ATP (6 ® &) (9)$(g)rp(H (g) — T)dg
P(F)\G(AF)!

is defined as the triple integral
/ / / ALP (¢ @ ¢ ) (eXmk) b (eXmk)e 2P X) rp(X — T)dX dmdk.
M(F)\M(Ap)!

Proposition 3.4. The following statements hold.
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(i) F(N x G)* C (N x G)
(i) If (¢, ¢/, ¢") € &/ (N x G)*, then

P(o.¢.¢") => Pl ¢ ¢")
P

It says that Y, PF is independent of T.
(iii) The regularized period is a G(A)'-invariant linear functional on o/ (N x G)*.

Let &7 (N x G)** be the subspace of all triplets (¢, ¢, ¢") € &/ (N x G)? x &/(G) such that
AN+ N +pp,w) #£0 (W € (A5, X € E(%), N € Eg(¢/?), N € Eq(d))
for all pairs of parabolic subgroups @ C P of G. Clearly o/ (N x G)** C /(N x G)*.
If (¢,¢,¢") € &/ (N x G)**, then the regularized integral

[ 61(n.9)0p(n. 9)dn ) 6 (9)dg
PF\G(A)T > JN(F)\N(Ap)

* #
:/ / / (/ op(n, eka)gb’P(n, eka')dn) ,IID(EX’mk)f'p(X—T)€_2<pP’X>ddedk
K JM(F)\M(AF) Jap NUI\N(Ap)

is well defined for every P.
Proposition 3.5. If (¢, ¢/, ¢") € &/ (N x G)**, then

A0 ® ¢')(9)¢"(9)dg

G(F\G(AF)!

= —1)dimap ' ! dn ) ¢'%(g)Tp(H(g) — T)dg.
S o e, P00t o)n )50 01(0) =

P

4. Jacquet module corresponding to Fourier-Jacobi character

In this section, E//F can be either quadratic extension of number fields or a non-archimedean
quadratic extension of local fields whose characteristics are zero. In the local field case, ¢ and
p denote a nontrivial character of ' and E* respecively. Write |- | and |- |z for the normailzed
absolute value on I and F respectively, viewed as a character of general linear group composed
with det.

Let (W, (+,-)) be a skew-hermition space over £ of dimension n and let G}, its unitary group.
Let a be the dimension of a maximal totally isotropic subspace of W,, and we assume a > 0.
We fix maximal totally isotropic subspaces X and Y of W), in duality, with respect to (-, ).
Fix a complete flag in X

0=XoCX;C---CX,=X,
and choose a basis {e, ea, - ,e,} of X, such that {ej, -, e} is a basis of X}, for 1 <k < a.
Let {f1, fa,- -+, fo} be the basis of X* which is dual to the fixed basis of X, i.e., (e;, fj) = d;;
for 1 <4,j <r, where 0; ; denotes the Kronecker delta. We write X for the subspace of X*
spanned by {fi, fa, -+, fr} and W,,_q for the orthogonal complement of X + X; in W,.

Denote by P, i the parabolic subgroup of G,, stabilizing X}, by U, its unipotent radical and
M, \. the Levi subgroup of P, stabilizing the above decomposition. Then M, ~ GL(X}) %
Gp—ok. (Here, we regard GL(Xy) ~ GLj as the subgroup of M, ; which acts as the identity
map on W, _o.)
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For a smooth representation ¢ of GL(X}) and a smooth representation m of G,_o, we
denote by Indg:k(a X 7) the normailized induced representation of G, and by indg:k(a X 7)

the unnormalized induction. For 1 < i < a — k, we write ¢® for the Bernstein-Zelevinski (7)-th
derivative of o. (For the definition of Bernstein-Zelevinski derivative, refer to [2, Section 4.3].)

For 0 < k < [%], we write N, (vesp. Nj) for the unipotent radical of the parabolic subgroup
of G, (resp. GL(X})) stabilizing the flag {0} C X; C -+ C Xj. If we regard N, as a subgroup
of My, ~ GL(X) X Gp_24, it acts on Uy, and so N, , = U, o X N,.

For any 0 < k < %, let H,,_o be the Heisenberg group of skew hermitian space W), _o; over £
and -1 1w, ,, be the Weil representation of H,,_a, X Gj,—2, With respect to 1 . Then
since Uy k—1\Un i =~ Hn_ok, we can pull back Qy-1 -1y, ,, to Uy X Gp_9, and denote it by

the same symbol Qy-1 -1, _,,. We define a character A, : A, = C* by
)\k(n) = LD((TT*E/F(HLQ +no3+ -+ nk_l,k)% u € N;.

Here, n; ;41 is the (4,7 + 1)-component of n when we regard n as an element in GL; and

Tyt Trg/p , local fields case
Trag/ap ,  number fields case.

Put vy 1w, o = Qu1 1w, @ Ap and denote H,, j, = Ny j X G We can embed H,, j,
into G, X G,,_9 by inclusion on the first factor and projection on the second factor. Then
V=1 -1, o, 15 @ smooth representation of H, , = N, X G,_g, and upto conjugation of the
normalizer of H,; in G, X G,_g, it is uniquely determined by ¢ modulo Nmg,rE* and pu.
We shall denote by wy-1 -1, _,, the restriction of vy-1 1w, to Gp_o.

For 0 <1 < "T_Z, we define a character 9, of N, ;+1, which factors through the quotient

n: Npivr = Unis1 \Nngg1 =~ Mg, by setting
Yi(u) = Ny (n(u)).

In the local fields case, for a smooth representation 7’ of Gy, we write Jy, (7' @Qy-1 -1 w,_,,_,)

for the Jacquet module of 7' ®€2y-1 ,-1 w, _,, , With respect to the group N, ;41 and its character

Wy, regarded as a representation of the unitary group G, _9_».

Lemma 4.1. Let n,m,a be positive integers such that n — m > 0 and even. Write q for
the residual characteristic of E. Let £,0 and m™ be smooth representations of finite lengths of
Guni24, GL(X,) and G,,, respectively. Then

dime Homg,, 5, (€ ® vy-1 -1 w10, ® indg::f“ (o] - 3 R 7))
1s equal or less than

dime 0@ - dimg Homp,m(efw%ﬂ_l (E@Q11w,),7))

except for finitely many q~°.

Proof. The proof is similar with [15, Lemma 4.1] except for the symplectic group is replaced
by unitary group. U
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5. Residual representation

For an irreducible cuspidal automorphic representations 7 of G,,(Ar) and ¢ of GL,(Ag), we
write L(s, o x ) for the Rankin-Selberg L-function L(s, o x BC(7)). We also wrtie L(s, o, As™)
for the Asai L-function of o and L(s, o, As™) for the u-twisted Asai L-function L(s,o® u, As™).
(cf. [5, Section 7))

Proposition 5.1 (][9], Proposition 5.3). Let w be an irreducible gloally generic cuspidal auto-
morphic representation of G,,(Ar) and o an irreducible cuspidal automorphic representation of

GL,(Ag). For ¢ € %ﬂfa’r(GnHa), the Eisenstein sereis E(¢,z) has at most a simple pole at

z = % and z = 1. Moreover, it has a pole at z = % as ¢ varies if and only if L(s,0 x w) is
non-zero at s = % and L(s, 0, As"™") has a pole at s = 1. Furthermore, it has a pole at z = 1
as ¢ varies if and only if L(s,0 X ©) has a pole at s = 1.

For ¢ € @/ M7 (Gry2q), We define the residue of the Eisenstein series to be the limit

£(6) = lim(z — 3)E(6,2). £(9) = lin(= - DE(,2).

3
For i = 0,1, let £ (o, m) be the residual representations of G, 2,(Ay) generated by E'(¢).

The assumption that 7 is globally generic ensures the existence of the weak base change
BC(m) and we can write it as an isobaric sum of the form oy B --- H o,, where o1, , 0, are
distinct irreducible cuspidal automorphic representations of the general linear groups such that
the (twisted) Asai L-function L(s, 0;, AsC"D" ') has a pole at s = 1.

Remark 5.2. Since L(s,o x ©¥) = II'_,L(s,0 x 0)), Proposition 5.1 implies that £'(o, 7) is
non-zero if and only if o ~ ¢; for some 1 <7 < t.

Remark 5.3. Let ¢ be the automorphism of GL,(F) induced by ~ : E — E and for a represen-
tation o of GL,(Ag), we define 0¢ := o oc. Note that L(s, o, As*) are nonzero at s = 1 by [12,
Theorem 5.1]. Thus if L(s, o, As(_l)n_l) has a pole at s = 1, the Rankin-Selberg L-function

L(s,0 x 0°) = L(s,0,As") - L(s,0, As™)

has a simple pole at s = 1 and so ¢ ~ ¢".

6. Lemmas

In this section, E/F denotes a quadration extension of number fields.

Let W,, C W, be two skew-hermitian spaces over E of dimension m,n such that W, =
X © W, @ X*. Let V be the Resg/p(W,y,), which is the restriction of scarlar of W,, to F.
Write n — m = 2a. Let V =Y 4 Y™ be the complete polarization of V. Then the global Weil
representation Q-1 -1y, of N'(X)xG,, has a realization on the Schrodinger model S(Y (Ap)).
For f € S(Y(AF)), we define theta funtion @w—1 u1(- f) on H(AF) = Npo(Ap) X Gp(Ar) by

Opryr (b f) = > sy, (h = > dui(n) - (1w, (u,9)f) ()

z€Y (F) z€Y (F)

where h = ((u,n),g) € (Upa X N(X)) % Gp,. Then Oy-1,-1(f) € & (H) and the space of these
theta functions {©y-1 ,-1(-, f) | f € S(Y(Ap))} is another realization of Weil representation
V=1 =1 W, of H(AF)
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Since we haved fixed p,1, we simply wrtie vy,, for vy-1,-1w, and its associated theta
function ©y-1 ,-1(-, ) as O(-, f).

Lemma 6.1. Let o be an irreducible cuspidal automorphic representation of GL,(Ag), 71,
an irreducible globally generic cuspidal automorphic representation of G,(Ar) and G,,(Ar)
respectively. We write BC(my) as an isobaric sum oy B --- B o, where o1,--- , 0y are dis-
tinct irreducible cuspidal automorphic representations of the general linear groups such that the
(twisted) Asai L-function L(s, oy, As(_l)n_l) has a pole at s = 1. If o ~ o; for some 1 <1 <'t,
then P(p,0(f), E(¢,2)) =0 for all ;o € EY(o,m), ¢ € %ﬂ;jgm(GmHa) and f € vw,, o, -

Lemma 6.2. With the same notation as in Lemma 6.1, we assume o =~ o; for some 1 < i <.
If o€ Eo,m), ¢ € %P’i:a g7r2(Gm+2a) and f € vw,, ..., then

P(p,0(f),€(¢)) =

/ / o(mk) (/ o, (nmk)Op, ((n,mk), f)dn) dmdk.
Km+2a Mm+2a(F)\Mm+2a(A)1 Nn+2a¢r(F)\Nn+2a,r(AF)

Proof. The proof is almost same with [15, Proposition 6.3]. Il

Lemma 6.3. With the same notation as in Lemma 6.1, we assume o =~ o; for some 1 < i < t.
If there are & € m, & € my and & € vy, such that FJ(&1,62,€) # 0, then there are ¢ €
ENo,m), ¢ € %P’ZUVXM(G,,ZHG) and f € vw,,,,, such that

/ / qb(mk‘)(/ gopa(mnk)@ﬁa((n, mk), f)dn) dmdk # 0.
Km+2a J\/[m+2a(F)\Mm+2a(A)1 Nn+2a,r(F)\Nn+2a,r(AF)

7. Main theroem

Theorem 7.1. Let wy, 7 be an irreducile globally generic cuspidal automorphic representations
of Go(Ar) and G,,(Ar) respectively. If there are @1 € w1, 9 € T and f € vy, such that
fjw,u(%’ P2, f) % 07 then L(%» BO(’Tﬁ) X BC(TQ) X /“L_l) % 0.

Proof. Since m; is globally generic, BC'(m;) is an isobaric sum of the form ¢y B - - - B o;, where
o1,---,0, are distinct irreducible cuspidal automorphic representations of the general linear
groups such that the (twisted) Asai L-function L(s, 0;, AsC""") has a pole at s = 1. Then for
each 1 <i <t, L(s,u™'-0;, As‘"1") has a pole at s = 1. On the other hand, £%(u - o), 7o) is
nonzero by Lemma 6.2 and Lemma 6.3. Thus by Proposition 5.1, we have L(%, BC(my) x -
o)) # 0 and so L(3, BC(my) x pto;) # 0. Thus

t

1 1
L(g,BC(Tfl) X BC(?TQ) (9 ,U_l) - HL(inC(T‘—Z) X ,u_lai) 7é 0.
i=1
O
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