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1 Introduction

Let Ω be R3 or R2 × T1, where T1 = R/Z is one dimensional flat torus. We consider the

incompressible Navier-Stokes equations
∂tu−∆u+ u · ∇u+∇p = 0 in Ω× (0,∞),

divu = 0 in Ω× (0,∞),

u(0) = u0 in Ω,

(1.1)

where u = (u1(x, t), u2(x, t), u3(x, t)) and p(x, t) respectively stand for an unknown veloc-

ity field and a pressure. The functions u0 denote a given initial velocity. ∂t, ∆ denotes

partial derivative in time and Laplace operator on the Euclidean space respectively. The

differential operator u · ∇ denotes
∑

1≤j≤3 uj∂j.

Let us recall a special self-similar solution called the three dimensional Oseen vortex

or Lamb-Oseen vortex:

Os(xh, xv, t) =
Γ

2π

(−x2, x1, 0)

|xh|2
(1− e−

|xh|2

4t ), xh = (x1, x2), xv = x3, (1.2)

where Γ is the total circulations. The two-dimensional Oseen vortex is the Navier-Stokes

flow whose initial vorticity is a Dirac measure supported at the origin, and it stands

for one of the simplest vortex. The three-dimensional Oseen vortex is an extension of

two-dimensional one. In this paper, we discuss L2 asymptotic stability to somewhat

generalized Oseen vortex (Oseen type Navier-Stoke flow) under large three-dimensional

perturbation in R2
h × T1

v.

We will introduce some results on solvability of the Navier-Stokes equations. There

are many results on the existence of the solution to (1.1). It is well known that Leray

[18] showed the existence of a global-in-time weak solution u in Rn to (1.1) satisfying the

following energy estimate:

∥u(τ)∥2L2 +

∫ t

0

∥∇u(τ)∥2L2dτ ≤ ∥u0∥2L2
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for initial data u0 ∈ L2. Unfortunately, the Oseen vortex is not a Leray’s weak solution

since the energy of the Oseen vortex is infinite.

For non-L2-initial data, Kato [12] proved that (1.1) is globally well-posed for small

Lm-initial data in Rm with m ≥ 2 by using iteration to the integral formulation of (1.1):

u(t) = et∆u0 −
∫ t

0

e(t−τ)∆P (u(τ) · ∇u(τ))dτ, (1.3)

where et∆ and P are the heat kernel and the Helmholtz projection respectively. The

choice of function space is related to the scaling transformation:

v(x, t) → λv(λx, λ2t), p(x, t) → λ2p(λx, λ2t),

which dose not change the equation. Scale-invariant function spaces are critical ones

that iteration method works. In this case Lm(Rm) and L∞
t Lm

x (Rm × (0,∞)) are scale-

invariant function space under the above scaling transformation. Independently, Giga and

Miyakawa [7] proved the existence of the solutions in Lr(Rr) in bounded domains with

the Dirichlet boundary condition. The result of this paper was obtained even before [12]

but it took long time to be published after the paper was accepted.

In three-dimensional case, L3(R3) is the critical Lebesgue space, but it does not include

homogeneous functions like 1
|x| . This means that L3(R3) is too restrictive to construct a

self-similar solution. In this direction, Giga and Miyakawa [6] proved that the vorticity

equations is well-posed for small initial data and there is a unique self-similar solution by

taking initial vorticity in the Morrey space M
3
2 (R3). The Morrey space is scale-invariant

under natural the above natural scaling and include homogeneous functions. Moreover,

since rotOs(·, 0) ∈ M
3
2 , the result of [6] provides generalized Navier-Stokes flows that

contain the three dimensional Oseen vortex provided that Γ is sufficiently small. However,

in [6], smoothness for initial data is needed to define rotu0. For instance, for a bounded

function Θ(x) on the two dimensional unit sphere whose derivative is not a Radon measure,

rot(Θ( x
|x|)Os(x, 0)) is not in M

3
2 . On the other hand, Kozono and Yamazaki [15] proved

well-posedness for small initial data in weak-L2 space in two-dimensional exterior domains.

Since the two-dimensional Oseen vortex is in weak-L2 space, the results of [15] provide its

generalization. There is no restriction on smoothness of initial data in [15]. In Cannone [2]

and Koch and Tataru [13], it was showed that (1.1) is globally well-posed for small initial

data in the Besov spaces B
−1+n

p
p,∞ (Rn) (1 < p < ∞) and BMO−1(Rn) space respectively.

The result of [13] is the most general on the well-posedness to (1.1).

Our aim is to show asymptotic stability to the solution that is constructed in the first

aim under large three-dimensional perturbation. Asymptotic stability for the Navier-

Stokes equations has been widely studied. However, there are few the results on the

asymptotic stability under large perturbation. In three-dimensional case, Schonbek [21]

proved that 0 is asymptotically stable for L2 ∩ L1-perturbation on R3. Subsequently,
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Miyakawa and Schonbek [20] study optimal decay rate. On the other hand, Kozono [14]

proved asymptotic stability for the Leray’s weak solution u ∈ Lp
tL

q
x satisfying Serrin’s

condition [22] (2
p
+ 3

q
= 1 for 2 ≤ p < ∞ and 3 < q ≤ ∞) on uniformly C3 domains. This

result allows unbounded domains such as a exterior domain or a domain with non-compact

boundbary. Karch, Pilarczyk and Schonbek [11] proved L2-asymptotic stability for small

mild solution V ∈ Xσ, where Xσ is a function space of solenoidal vector fields satisfying

|⟨v ·∇V,w⟩| ≤ C(supt>0∥V (t)∥Xσ)∥∇v∥L2∥∇w∥L2 for all v, w ∈ L∞
t L2

x∩L2
t Ḣ

1
x. This result

allows many function spaces. For instance, weak L3 space satisfies above estimate, and

then it is a subspace of Xσ. The decay rate to L3,∞-mild solutions was also studied by

[8]. Although [11] is the most comprehensive result for the asymptotic stability of small

mild solutions to (1.1), the three dimensional Oseen vortex is not included in this result.

In the two-dimensional case, Iftimie, Karch and Lacave [10] show that, for initial

perturbation v0 ∈ L2, there exists a positive constant δ = δ(∥v0∥L2), if the total circulation

is smaller that δ, the Oseen vortex is asymptotically stable in exterior domain. In this

result, size of the total circulation need to be smaller as initial perturbation beocome to be

larger. Gallay and Maekawa [5] inproved this point. They show the asymptotic stability

of the small Oseen vortex forLq ∩ L2-initial perturbation ( 1 < q < 2 ). In this result,

smallness of initial perturbation is independent of size of the total circulation. Maekawa

[19] proved asymptotic stability for the solutions obtained by [15] under C∞
0

L2,∞

-large

perturbation in the whole space and the exterior domain. This result give us asymptotic

stability to the small two-dimensional Oseen vortex.

Let us consider our problem in more detail. We will first generalize three dimensional

Oseen vortex. For the this point, since the two-dimensional Oseen vortex is in L2,∞

and three dimensional Oseen vortex is independent of xv variable, it is good idea to

construct mild solution in an anisotropic function space Y 2 := L∞
v L2,∞

h with the norm

∥f∥Y 2 = ∥∥f(xh, xv)∥L2,∞
h

∥L∞
v
. Note the three dimensional Oseen vortex is in Y 2 at

fixed time. Moreover, Y 2 is scale-invariant under the natural scaling. Therefore we can

construct a mild solution to (1.1) by Fujita-Kato principle.

Our aim is to show asymptotic stability of Oseen type Navier-Stokes flow under arbi-

trarily large perturbation v0 ∈ L∞
v C∞

0,h(R2
h × T1

v). We call the mild solution constructed

in the above procedure the basic flow with initial data b0. To prove asymptotic stability,

there are several step. For simplicity, we assume v0 ∈ L∞
v C∞

0,h.

We first have to show the existence of a weak solution to the perturbed Navier-Stokes

equations:
∂tv −∆v + v · ∇v + vb · ∇v + v · ∇b+∇q = 0, in R2

h × T1
v × (0,∞),

div v = 0, in R2
h × T1

v × (0,∞),

v(0) = v0, on R2
h × T1

v.

(1.4)
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For the vertor field v satisfying above eqations, we find that v + b̃ satisfies (1.1) with

initial data v0 + b0. Since the fifth term of the left-hand side of the above equation v · ∇b̃

has singularity at t = 0, it is difficult to get the energy inequality by integrating on

R2
h × T1

v × (0, t) and show the existece of a weak solution to (1.4) directly. To avoid this,

we construct a unique local-in-time mild solution v to (1.4) on (0, T ] for some T > 0 with

initial data ṽ0 in a subspace of L2(R2
h×T1

v), after that, we show the existence of global-in-

time weak solution with initial data v(T ). The local-in-time mild solution is constructed

as in [19] for two-dimensional case. we follow his approach. To show the existence of a

weak solution with initial data v(T ), we first construct a unique solution to approximated

equations to (1.4) with energy inequality that is independent of approximation parameter.

Next, taking limit to the approximated solution, we obtain a weak solution to (1.4).

Finally, we prove the decay of ∥v(t)∥L2(R2
h×T1

v)
as t → ∞. To this end, since the domain

is vertically periodic, we can apply the Fourier expansion to v with respect to xv variable:

v(xh, xv, t) = v0(xh, t) +
∑
j ̸=0

vj(xh, t) e
2πij

=: v0 + vos.

Using orthogonality of the Fourier series, we can derive the equation that v0 satisfies.

Since the averaged term v0 is independent of xv, we can apply two-dimensional argument

as in [19] to get the decay of ∥v0(t)∥L2(R2
h×T1

v)
as t → ∞. Unfortunately, because of the

non-linearity of (1.4) and dependence of vos on xv variable, it is difficult to show the decay

to the oscillating term by using same way as the averaged term. However, we can avoid

this difficulty the Poincáre inequality and get the decay of ∥vos∥L2(R2
h×T1

v)
. It is worth to

mention that there was no result on asymptotic stability to the three-dimensional Oseen

vortex under three-dimensional perturbation, even if basic flows or initial perturbation

are small, and domain has no boundary. Our result is somewhat restrictive in terms of

domain.

2 Main results

In this section, we firstly define some notations and notions to state our two main

theorem. Secondly, we mention them.

We define vertically anisotropic function spaces to define the mild solutions to (1.4)

that include the three dimensional Oseen vortex.

Definition 2.1. Let Ω = R3 or R2
h × T1

v. We define vertically anisotropic spaces

Xp(Ω)(1 ≤ p ≤ ∞) and Y q((Ω)) (1 < q < ∞) by

Xp :=
{
f = (f1, f2, f3) ∈ L1

loc(Ω) : div f = 0, ||f ||Xp < ∞
}
, (2.1)

Y q :=
{
f = (f1, f2, f3) ∈ L1

loc(Ω) : div f = 0, ||f ||Y q < ∞
}
, (2.2)
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where

∥f∥Xp := sup
xv∈R

(

∫
R2
h

|f(xh, xv)|pdxh)
1
p < ∞,

∥f∥Y q := sup
xv∈R

sup
λ>0

λ(|{xh ∈ R2 : |f(xh, xv)| > λ}|)
1
q < ∞

respectively, where |S| denotes the Lebesgue measure of S.

We note our main theorem. First one is a existence of the Oseen type solutions;

Theorem 2.2. Let Ω = R3 or R2 × T1. Let u0 ∈ Y 2(Ω). Then there exists a positive

number δ such that, if ∥u0∥Y 2(Ω) ≤ δ, there exists a unique mild solutions u ∈ CtY
2
x (Ω×

(0,∞)) of (1.1):

u(t) = et∆u0 −
∫ t

0

e(t−τ)∆Pdivu(τ)⊗ u(τ))dτ in Y 2(Ω), (2.3)

for all t ∈ (0, T ), where et∆ and P are the heat kernel and the Helmholtz projection

respectively, such that

sup
0<t<T

∥u(t)∥Y 2(Ω) + sup
0<t<T

t
1
4∥u(t)∥X4(Ω) ≤ C∥u0∥Y 2(Ω), (2.4)

u(t) → u0 weakly ∗ in Y 2(Ω) +Xp(Ω) as t → 0 (2.5)

where 1
p
= 1

r
+ 1

4
for all 1

2
< 1

r
< 3

4
.

Proof of this theorem based on Fujita-Kato iteration scheme. We omit details here.

Second our theorem is a asymptotic stability result of the Oseen type solution in vertically

periodic domain;

Theorem 2.3. Let Ω = R2
h × Tv, δ > 0 be sufficiently small and b(x, t) (basic flow) be

a solution to (NS) in Theorem 2.2 with initial data b0 ∈ Y 2(Ω) with ∥b0∥Y 2 < δ. Then,

for v0 ∈ L∞
v C∞

0,h

L2,∞

σ
(Ω)(initial perturbation), there exists a weak solution w(x, t) to (1.1)

with initial data w0 = v0 + b0, which satisfies such that (1.1) in the sense of distribution,

such that

lim
t→∞

∥w(t)− b(t)− et∆v0∥L2(Ω) = 0

In this paper, we give a outline of the proof this Theorem 2.3 when v0 ∈ L∞
v C∞

0,h

3 Out line of the proof of Theorem 2.3

There are two step to show Theorem 2.3 :
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Step1 Proof of the existence of a weak solution to the perturbed equation (1.4) with

logarithmic energy estimate.

Step2 Proof of energy decay of the solution to the perturbed equation.

On step1, we first construct a unique solution to a approximate equation of perturbed

equation, and taking its limit, we can get a weak solution to the perturbed equation with

logarithmic energy estimate as in Maekawa [19]. Summing up this procedure, we get the

following proposition.

Proposition 3.1. Let T > 0, v0 ∈ L∞
v C∞

0,h(Ω) with div v0 = 0 and b be a solution to

(1.1) in Theorem 2.3. Then there exists a weak solution v ∈ L∞
t L2

x(Ω × (0, T )) to (1.4)

such that

||v(t)||2L2 +

∫ t

1

||∇v(s)||2L2 ds ≤ C1 + C2||b0||2Y 2 log(1 + t) (3.1)

for all t ∈ (1, T ), where C1 = C1(v0) and C2 is independent of T .

Applying the Fourier expansion to v with respect to xv, we can decompose v into

averaged part va and oscillating part vos;

v(xh, xv, t) =
∑
k∈Z

vk(xh, t)e
2πixvk = v0(xh, t) +

∑
k ̸=0

vk(xh, t)e
2πxvk

=: va(xh, t) + vos(xh, xv, t).

Because of orthogonality of the Fourier series, it follows from (3.1) that

∥va(t)∥2L2(R2) +

∫ t

1

∥∇hva∥2L2(Ω) ≤ C + Cδ2 log(1 + t) (3.2)

∥vos(t)∥2L2(R2
h×T1

v)
+

∫ t

1

∥∇vos∥2L2(Ω) ≤ C + Cδ2 log(1 + t), (3.3)

where δ > 0 is a constant in Theorem 2.3. Since we can apply the Poincaré inequality

to the oscillating part, we can derive the decay of vos directly from (3.3). Therefore, it is

essential to show the decay of va. We first show the following proposition to show this.

Proposition 3.2. Let T > 0. Put wa := (−∆h)
− 1

4va, where (−∆h)
s/2f = F−1(|ξh|sFf)

for s ∈ R. Then there exist constants C > 0 and M > 0 such that

∥wa(t)∥2L2(R2) +

∫ t

1

∥∇hwa(t)∥2L2(R2)dτ

≤ C(1 + t)Mδ2
(
1 + log(1 + t) + sup

1≤τ≤t
∥vos(τ)∥L2(R2

h×T1
v)
log(1 + t)

)
(3.4)

for all 1 < t ≤ T .
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Proof. Integrate (1.4) with respect to xv, then we get

∂tv
1
a −∆hv

1
a + div

∫
T1

(v1v + b1v + v1b)dxv + ∂1q = 0 (3.5)

∂tv
2
a −∆hv

2
a + div

∫
T1

(v2v + b2v + v2b)dxv + ∂2q = 0 (3.6)

∂tv
3
a −∆hv

3
a + div

∫
T1

(v3v + b3v + v3b)dxv = 0. (3.7)

(3.5) (3.6) are the two dimensional perturbed Navier-Stokes system and (3.7) is two

dimensional heat equation respectively. It follows from integration by parts that

1

2
∂t∥wa∥2L2(R2) + ∥∇wa∥2L2(R2)

≤ |
∫
R2

∫
T1

(v ⊗ v + b⊗ v + v ⊗ b)dxv : ∇h(−∆h)
− 1

4wadxh|

= |
∫
R2

∫
T1

((va + vos)⊗ (va + vos) + b⊗ (va + vos)

+ (va + vos)⊗ b)dxv : ∇(−∆h)
− 1

4wadxh|

= |
∫
R2

∫
T1

(va ⊗ va + vos ⊗ vos + b⊗ va + b⊗ vos + va ⊗ b

+ vos ⊗ b)dxv : ∇(−∆h)
− 1

4wadxh|
=: I1 + I2 + I3 + I4 + I5 + I6. (3.8)

Estimate for I1 The Sobolev embedding

∥va∥L4(R2) ≤ C∥(−∆h)
1
4 va∥L2(R2) (3.9)

and the interpolation inequality

∥(−∆h)
1
4va∥L2(R2) ≤ C∥va∥

1
2

L2(R2)∥∇hva∥
1
2

L2(R2) (3.10)

yield

|I1| ≤ C∥va∥2L4(R2)∥(−∆h)
1
4wa∥L2(R2)

≤ C∥(−∆h)
1
4va∥2L2(R2)∥(−∆h)

1
4wa∥L2(R2)

≤ C∥va∥L2(R2)∥(−∆h)
1
2va∥L2(R2)∥(−∆h)

1
4wa∥L2(R2)

≤ C∥∇hva∥L2(R2)∥(−∆h)
1
4wa∥2L2(R2)

≤ C∥∇hva∥L2(R2)∥wa∥L2(R2)∥∇hwa∥L2(R2).

Applying the Young inequality to the last inequality, we find

|I1| ≤ C∥∇hva∥2L2(R2)∥wa∥2L2(R2) +
1

16
∥∇hwa∥2L2(R2)
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Estimate for I2 Using the Schwarz inequality, (3.9), (3.10) and the Young inequality,

we find

|I2| ≤ C

∣∣∣∣∣∣∣∣∫
T1

vos ⊗ vosdxv

∣∣∣∣∣∣∣∣
L2(Ω)

∥(−∆h)
1
4wa∥L2(R2)

≤ C

∫
T
∥vos∥2L4

h(R2)dxv∥wa∥
1
2

L2(R2)∥∇hwa∥
1
2

L2(R2),

≤ C

∫
T
∥(−∆h)

1
4vos∥2L2

h(R2)dxv∥wa∥
1
2

L2(R2)∥∇hwa∥
1
2

L2(R2)

≤ C∥vos∥L2(Ω)∥∇vos∥L2(Ω)∥wa∥
1
2

L2(R2)∥∇hwa∥
1
2

L2(R2)

≤ C1∥vos∥2L2(Ω)∥∇vos∥L2(Ω)

+ C2∥∇vos∥2L2(Ω)∥wa∥2L2(R2) +
1

16
∥∇hwa∥2L2(R2)

≤ C1∥vos∥L2(Ω)∥∇v∥2L2(Ω)

+ C2∥∇v∥2L2(Ω)∥wa∥2L2(R2) +
1

16
∥∇hwa∥2L2(R2).

In the last inequality, we used the Poincaré inequality.

Estimate for I3 and I5. Using the Hölder inequality,(3.9), (3.10) and the Young in-

equality, we find

|I3|+ |I5| ≤ C

∫
T1

∥b∥L4
h(R2)dxv∥va∥L4

h(R2)∥(∆h)
1
4wa∥L2(R2)

≤ C∥b∥X4(Ω)∥(−∆h)
1
4va∥L2(R2)∥wa∥

1
2

L2(R2)∥∇hwa∥
1
2

L2(R2)

≤ C∥b∥4X4(Ω)∥wa∥2L2(R2) +
1

16
∥∇hwa∥2L2(R2).

Estimate for I4 and I6. Using the Hölder inequality, (3.9), (3.10) and the Pincaré

inequality, we find

|I4|+ |I6| ≤ C

∫
T1

∥b∥L4
h(R2)∥vos∥L4

h(R2)dxv∥(−∆h)
1
4wa∥L2(R2)

≤ C∥b∥X4(Ω)

∫
T1

∥vos∥
1
2

L2
h(R2)

∥∇hvos∥
1
2

L2
h(R2)

dxv∥(−∆h)
1
4wa∥L2(R2)

≤ C∥b∥X4(Ω)∥vos∥
1
2

L2(R2
h×T1

v)
∥∇vos∥

1
2

L2(Ω)∥wa∥
1
2

L2(R2)∥∇hwa∥b
1
2

L2(R2)

≤ C1∥b∥2X4(Ω)∥vos∥L2(R2
h×T1

v)

+ C2∥∇vos∥2L2(R2
h×T1

v)
∥wa∥2L2(R2) +

1

16
∥∇hwa∥2L2(R2)

≤ C1∥b∥2X4(Ω)∥∇vos∥L2(R2
h×T1

v)

+ C2∥∇vos∥2L2(R2
h×T1

v)
∥wa∥2L2(R2) +

1

16
∥∇hwa∥2L2(R2).
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Thus, from (3.8), above estimates and the Gronwall inequality, we get

∥wa(t)∥2L2
h
+

∫ t

1

∥∇wa(τ)∥2L2
h
dτ ≤ exp(Φ(t))∥wa(1)∥2L2

h
+

∫ t

1

Ψ(τ)dτ (3.11)

where

Φ(t) = C1

∫ t

1

(∥∇v(τ)∥2L2 + ∥b(τ)∥4X4)dτ

Ψ(t) = C2 exp(

∫ t

τ

Φ(s)ds)(∥vos(t)∥L2∥∇vos(t)∥2L2 + ∥b(t)∥2X4∥∇vos(t)∥L2).

Using (3.3) and (2.4), we find

Φ(t) ≤ C1(1 + δ2 log(1 + t)).

and ∫ t

1

Ψ(t)dτ

≤ C2(1 + t)C1δ2( sup
1≤τ≤t

∥vos(τ)∥L2

∫ t

1

∥∇vos(τ)∥2dτ +

∫ t

1

∥b(τ)∥2X4∥∇vos(τ)∥L2dτ)

≤ C2(1 + t)C1δ2( sup
1≤τ≤t

∥vos(τ)∥L2

∫ t

1

∥∇vos(τ)∥2dτ

+ (

∫ t

1

∥b(τ)∥4X4dτ)
1
2 (

∫ t

1

∥∇vos(τ)∥2L2dτ)
1
2 )

≤ C2(1 + t)C1δ2(1 + log(1 + t) + sup
1≤τ≤t

∥vos(τ)∥L2 log(1 + t)).

Thus, we obtain

∥wa(t)∥2L2(R2) +

∫ t

1

∥∇wa(t)∥2L2(R2)dτ

≤ C(1 + t)Mδ2
(
1 + log(1 + t) + sup

1≤τ≤t
∥vos(τ)∥L2(R2

h×T1
v)
log(1 + t)

)
. (3.12)

Let t > 1. Using Proposition 3.2 and (3.3), we find

||wa(t)||2L2 + ||vos(t)||2L2 +

∫ t

1

||∇wa(τ)||2L2 dτ +

∫ t

1

||∇vos(τ)||2L2 dτ

≤ C(1 + t)Mδ2 log
3
2 (1 + t) + (lower order). (3.13)

We see from (3.13) that there exists t0 ∈ [t/2, t] such that

||wa(t0)||2L2 + ||vos(t0)||2L2 + t0||∇wa(t0)||2L2 + t0||∇vos(t0)||2L2

≤ C(1 + t0)
Mδ2 log

3
2 (1 + t0) + (lower order). (3.14)
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Therefore, we find from the Poincaré inequality and the above inequality that

∥v(t0)∥2L2

≤ 2(∥va(t0)∥2L2 + ∥vos(t0)∥2L2)

≤ C(∥wa(t0)∥L2∥∇wa(t0)∥L2 + ∥vos(t0)∥L2∥∇vos(t0)∥L2)

≤ C(1 + t0)
− 1

2
+Mδ2 log

3
2 (1 + t0) + (lower order)

≤ C(1 + t)−
1
2
+Mδ2 log

3
2 (1 + t) + (lower order). (3.15)

Now we know that v satisfies

∂tv −∆v + div(v ⊗ v + b⊗ v + v ⊗ b) +∇q = 0 in Ω× (0,∞),

div v = 0 in Ω× (0,∞),

then, applying integration by part and the Gronwall inequality to the perturbed equation,

we find

∥v(t)∥2L2 +

∫ t

t0

∥∇v(τ)∥2L2dτ ≤ e
∫ t
t0

∥b(τ)∥4
X4dτ∥v(t0)∥2L2 , (3.16)

for t0 ∈ [ t
2
, t]. Since

∫ t

t0
∥b(τ)∥4X4dτ ≤ C log t

t0
< ∞ and (3.15) , we obtain

RHS (3.16) ≤ C∥v(t0)∥2L2

≤ C(1 + t)−
1
2
+Mδ2 log

3
2 (1 + t) + (lower order)

If we take δ > 0 so small that −1
2
+Mδ2 < 0 , we get the desired decay of v.
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