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Abstract

For any integer k ≥ 2, we prove combinatorially the following Euler (binomial)
transformation identity

NC
(k)
n+1(t) = t

n∑
i=0

(
n

i

)
NW

(k)
i (t),

where NC
(k)
m (t) (resp. NW

(k)
m (t)) is the enumerative polynomial on partitions of

{1, . . . ,m} avoiding k-crossings (resp. enhanced k-crossings) by number of blocks.
The special k = 2 and t = 1 case, asserting the Euler transformation of Motzkin
numbers are Catalan numbers, was discovered by Donaghey 1977. The result for
k = 3 and t = 1, arising naturally in a recent study of pattern avoidance in ascent
sequences and inversion sequences, was proved only analytically.

It is based on the preprint (arXiv:1905.10526) with Zhicong Lin.

§1 Introduction

We begin with the definition of set partition of [n] = {1, 2, . . . , n}. A family of
nonempty subsets of [n], P = {B1, B2, . . . , Bk}, is a set partition of [n] with k
blocks, if Bi’s are mutually disjoint, and ∪iBi = [n]. Let Πn denote the set of all
set partitions of [n]. The Stirling number of the second kind, S(n, k), is the number
of set partitions of [n] with k blocks.

Example 1 Elements of Π4 are usually listed as follows: 1234, 123−4, 124−3,
134−2, 1−234, 12−34, 13−24, 14−23, 12−3−4, 13−2−4, 14−2−3, 1−23−4, 1−24−3,
1−2−34, 1−2−3−4

There are many different ways of representing set partitions of [n]. One of them
is a representation by arc diagram. Any P ∈ Πn can be identified with its arc
diagram defined as follows:

∗This is an adapted version of the talk given at RIMS on 29 Octover 2019.
†dongsu.kim@kaist.ac.kr
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Definition 2 (Arc diagram of a partition) Nodes are 1, 2, . . . , n from left to
right. There is an arc from i to j, i < j, whenever both i and j belong to the
same block, say B ∈ P , and B contains no l with i < l < j. There is a loop from i
to itself if {i} is a block in P .

Example 3 The arc diagram of {{1, 3, 7}, {2, 5, 6}, {4}} ∈ Π7.

1 2 3 4 5 6 7

Arc diagram representation allows us to define ‘crossing’ in a set partiton. A
partition has a crossing if there exist two arcs (i1, j1) and (i2, j2) in its arc diagram
such that i1 < i2 < j1 < j2.

It is well known that the number of partitions in Πn with no crossings is given
by the n-th Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

The crossings of partitions have a natural generalization called k-crossings for any
fixed integer k ≥ 2. For instance, the arc diagram of {{1, 3, 7}, {2, 5, 6}, {4}} ∈ Π7

has two crossings:

1 2 3 4 5 6 7

Figure 1: {(1, 3), (2, 5)} and {(2, 5), (3, 7)} are crossings.

Crossings in set partitions can be generalized into k-crossings. A k-crossing of
P ∈ Πn is a k-subset {(i1, j1), (i2, j2), . . . , (ik, jk)} of arcs in the arc diagram of P
such that

i1 < i2 < · · · < ik < j1 < j2 < · · · < jk.

A partition without any k-crossing is called a k-noncrossing partition. A 3-crossing
is depicted below:

A weak k-crossing of P ∈ Πn is a k-subset {(i1, j1), (i2, j2), . . . , (ik, jk)} of arcs
in the arc diagram of P such that

i1 < i2 < · · · < ik = j1 < j2 < · · · < jk.

The k-crossings and weak k-crossings of P are collectively called the enhanced k-
crossings of P . A partition without any enhanced k-crossing is an enhanced k-
noncrossing partition. A 3-crossing and a weak 3-crossing are depicted below:
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We can classify set partitions by the number of k-crossings.

Definition 4 Let NC
(k)
n be the set of all k-noncrossing partitions in Πn.

Note that k-noncrossing means no k-crossing.

Definition 5 Let NW
(k)
n be the set of all enhanced k-noncrossing partitions in Πn.

Note that enhanced k-noncrossing means no k-crossing and no weak k-crossing.

If k is sufficently large, i.e. k > n+1
2 , then we have NW

(k)
n = NC

(k)
n = Πn.

Definition 6 Let NC
(k)
m (t) be the generating polynomial of k-noncrossing partitions

of [m] by number of blocks.

The following contributes t3 to NC
(3)
7 (t).

1 2 3 4 5 6 7

Definition 7 Let NW
(k)
m (t) be the generating polynomial of enhanced k-noncrossing

partitions of [m] by number of blocks.

The following contributes t3 to NW
(4)
7 (t).

1 2 3 4 5 6 7

§2 Main Result

The following is the main result. A bijective proof of this theorem will be introduced
later.

Theorem 8 For n ≥ 1 and k ≥ 2,

NC
(k)
n+1(t) = t

n∑
i=0

(
n

i

)
NW

(k)
i (t), (1)

where NW
(k)
0 (t) = 1 by convention.
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There are several partial results that lead to the discovery of (1).
We illustrate the case of (n, k) = (3, 2). The identity (1) for this case is

NC
(2)
4 (t) = t

3∑
i=0

(
3

i

)
NW

(2)
i (t).

There are 15 partitions in Π4 whose arc diagrams are drawn below:

Close examination of the list reveals that there are 14 partitions in NC
(2)
4 listed

below:

Collecting their weights, the generating polynomial is NC
(2)
4 (t) = t+6t2+6t3+t4.

The right hand side of the identity has four terms, involving NW
(2)
i (t) for i =

0, 1, 2, 3. These generating polynomials are shown below:

NW
(2)
0 (t) = 1

NW
(2)
1 (t) = t

NW
(2)
2 (t) = t+ t2

NW
(2)
3 (t) = 3t2 + t3

We can confirm that the above NC
(2)
4 (t) and NW

(2)
i (t) for i = 0, 1, 2, 3 satisfy

the identity.
The k = 2 and t = 1 case of the identity (1) is interesting. Enhanced 2-

noncrossing partitions in Πn are noncrossing partial matchings of [n], i.e. noncrossing
partitions for which the blocks have size one or two. Noncrossing partial matchings

of [n] are counted by the n-th Motzkin number Mn =
∑bn/2c

i=0

(
n
2i

)
Ci, identity (1)

reduces to

Cn+1 =

n∑
i=0

(
n

i

)
Mi, (2)

which is well known. But a t-extension of (2), seems new:

Cn+1(t) = t
n∑
i=0

(
n

i

)
Mi(t), (3)
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where Cn(t) and Mn(t) denote the generating functions of noncrossing partitions of
[n] and noncrossing partial matchings of [n].

If k is sufficently large, i.e. k > n+1
2 , then we have NW

(k)
n = NC

(k)
n = Πn, and

NC
(k)
n+1(t) = t

n∑
i=0

(
n

i

)
NW

(k)
i (t)

is equivalent to

for all m ≥ 0, S(n+ 1,m+ 1) =

n∑
i=0

(
n

i

)
S(i,m),

where S(a, b) denotes the Stirling number of the second kind.
Our objective is to prove that for all k,

NC
(k)
n+1(t) = t

n∑
i=0

(
n

i

)
NW

(k)
i (t)

holds as a polynomial in t. For t = 1, the above identity has multiple proofs. But
they, except what comes next, do not prove the above as a polynomial in t. We will
first illustrate our bijective proof of (1), for k = 2,

NC
(2)
n+1(t) = t

n∑
i=0

(
n

i

)
NW

(2)
i (t),

for noncrossing partitions, and then extend it to all k-noncrossing partitions.
The extension of our construction from k = 2 to general k is nontrivial. So we

show our framework for the noncrossing partition case first.
From now on, we let Πn denote the set of partitions of {0, 1, . . . , n − 1} rather

than partitions of [n], for convenience’s sake.
We give a combinatorial interpretation of identity (3),

Cn+1(t) = t
n∑
i=0

(
n

i

)
Mi(t).

First we interpret the right hand side

t

n∑
i=0

(
n

i

)
Mi(t)

as the generating function of all pairs (A,µ) such that A is a subset of {1, 2, . . . , n}
and µ is a noncrossing matching whose nodes are elements of A placed on the line
in the natural order. A pair (A,µ) is weighted by t|µ|+1, where |µ| is the number of
blocks of µ. If A is the empty set, then µ is the empty matching with weight t.

§3 Combinatorial bijections

We now define a combinatorial bijection Ψ from noncrossing partitions in Πn+1 to
the set of all pairs (A,µ) in the above.
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Let n = 10 and

π = {{0, 8, 10}, {1, 2, 7}, {3, 5, 6}, {4}, {9}}.

This π is a noncrossing partition:

0 1 2 3 4 5 6 7 8 9 10

Consider all blocks in π which do not contain 0: {{1, 2, 7}, {3, 5, 6}, {4}, {9}}.
From each block, delete all integers which are neither the smallest nor the largest
in the block. Let the resulting set be µ, and let A be the union of all blocks in µ:

(A,µ) = ({1, 3, 4, 6, 7, 9}, {{1, 7}, {3, 6}, {4}, {9}})

The next figure shows the elements of A, in blue, and the matching µ.

0 1 2 3 4 5 6 7 8 9 10

Let Ψ(π) = (A,µ). Clearly, this is weight-preserving.
The above procedure is reversible. Let (A,µ) be a pair such that A is a subset of

{1, 2, . . . , n} and µ is a noncrossing matching whose nodes are elements of A placed
on the line in the natural order.

We will construct the corresponding partition π of {0, 1, 2, . . . , n} as follows.
Interpret each block β in µ as an interval I(β) = {i : min{β} ≤ i ≤ max{β}}. Let
the block of π containing 0 be

{0, 1, 2, . . . , n} \ ∪β∈µI(β).

As an example, let n = 10 and (A,µ) = ({1, 3, 4, 6, 7, 9}, {{1, 7}, {3, 6}, {4}, {9}}).
The block containing 0 is {0, 8, 10}, shown in red below.

0 1 2 3 4 5 6 7 8 9 10

Other blocks of π are obtained by extending blocks in µ by the rule:

i ∈ {1, 2, . . . , n} \ A belongs to the block originating from a block β ∈ µ
if I(β) is the smallest interval containing i.
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In our example, two blocks {1, 7} and {3, 6} are enlarged, shown in blue below.

0 1 2 3 4 5 6 7 8 9 10

So Ψ−1(π) = {{0, 8, 10}, {1, 2, 7}, {3, 5, 6}, {4}, {9}}.
Since the block containing 0 is important in our discussion, we fix the following

terminology.

Definition 9 (Red block, colored arc diagram) In a partition P , the block con-
taining 0 is called a red block, denoted by red(P ), and other blocks are called black
blocks. The elements in red(P ) are colored red, and other elements are colored
black. Arcs in arc diagram of P between red elements are colored red and other arcs
are colored black. Such a colored version of arc diagram of P is called the colored
arc diagram, denoted by D(P ).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 164 8 15

Let’s recall what we want to prove, i.e. Theorem 8: For n ≥ 1 and k ≥ 2,

NC
(k)
n+1(t) = t

n∑
i=0

(
n

i

)
NW

(k)
i (t), (4)

where NW
(k)
0 (t) = 1 by convention.

To prove the above identity combinatorially, first we need to interpret the iden-

tity combinatorially. The right-hand side will be associated to NBW
(k)
n which is

defined below. A partition is called k-crossing if it has at least one k-crossing. A
k-crossing is called a black k-crossing, if all its arcs are black; a red k-crossing,
otherwise. A weak k-crossing is called a black weak k-crossing, if all its arcs are
black; a red weak k-crossing, otherwise.

Let’s recall that

• NC
(k)
n is the set of all k-noncrossing partitions in Πn.

• NW
(k)
n is the set of all partitions in Πn which avoid enhanced k-crossings, i.e.,

have neither k-crossings nor weak k-crossings. (Enhanced k-noncrossing)

Definition 10 Let NBW
(k)
n be the set of all partitions P in Πn whose colored arc

diagram, D(P ), has neither black k-crossings nor black weak k-crossings.

An example follows.
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Example 11 P ∈ NBW
(3)
17 and its colored diagram D(P ):

P = {{0, 4, 8, 15}, {1, 3, 10}, {2, 11}, {5, 16}, {6, 13}, {7, 9, 12, 14}}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 164 8 15

• There are no black 3-crossings and no black weak 3-crossings.

• There are red 3-crossings and red weak 3-crossings.

Decomposition of NBW
(k)
n

For any subset A of {1, 2, . . . , n− 1}, define a subset ΠA of Πn = Π{0,1,...,n−1} by

ΠA = {P ∈ Πn : red(P ) = {0, 1, . . . , n− 1} \A}.

Πn is partitioned into {ΠA}A⊆{1,2,...,n−1}, and there is a natural correspondence
between ΠA and Π|A|. If A = {a1, a2, · · · , al} with a1 < a2 < · · · < al then the
correspondence is obtained by mapping ai to i− 1 for each i. This correspondence
reduces the number of blocks by 1, since the red block is ignored. We define a subset

NBW
(k)
A of NBW

(k)
n by

NBW
(k)
A = ΠA ∩NBW(k)

n .

We can see that NBW
(k)
n is partitioned into

{NBW
(k)
A }A⊆{1,2,...,n−1},

and there is a natural correspondence between NBW
(k)
A and NW

(k)
|A|, i.e., the restric-

tion of the natural correspondence between ΠA and Π|A|.

Define a weight function w on Πn by w(P ) = t|P | for each P ∈ Πn, where |P |
denotes the number of blocks in P . Since we have∑

P∈NC
(k)
n+1

w(P ) = NC
(k)
n+1(t)

and ∑
P∈NBW

(k)
n+1

w(P ) =
∑

A⊆{1,...,n}

∑
P∈NBW

(k)
A

w(P )

=
∑

A⊆{1,...,n}

t
∑

P∈NW
(k)
|A|

w(P )

= t
n∑
i=0

(
n

n− i

)
NW

(k)
i (t),

identity (1) is equivalent to the following theorem.
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Theorem 12 For all n and k, there exists a weight-preserving combinatorial bijec-

tion Φ : NBW
(k)
n+1 → NC

(k)
n+1 proving∑
P∈NBW

(k)
n+1

w(P ) =
∑

P∈NC
(k)
n+1

w(P ).

First of all, let’s begin with a rough plan of proof:

1. Change red nodes under black (k − 1)-crossing into centers of black weak k-
crossings.

2. Change red k-crossings into red nodes under black (k − 1)-crossings.

We can describe the details but rigorous proofs for all steps are too complicated
to introduce here. So the descriprion for the desired bijection is given without proof.
In stead we illustrate the bijection by an example.

Since a (k − 1)-noncrossing partition has no enhanced k-crossings and an en-
hanced k-noncrossing partition has no k-crossings,

NC(k−1)
n ⊆ NW(k)

n ⊆ NC(k)
n

for all k ≥ 3. The combinatorial bijection, proving the above theorem,

Φ : NBW
(k)
n+1 → NC

(k)
n+1

is constructed by the following steps:

1. Let P = {B0, B1, . . . , Bl} ∈ NBW
(k)
n+1 with red(P ) = B0. If P ∈ NBW

(k−1)
n+1

then P belongs to NC
(k)
n+1 and we can set Φ(P ) = P . Otherwise, P ∈ NBW

(k)
n+1\

NBW
(k−1)
n+1 .

2. Start with D(P ), the colored arc diagram of P .

3. If there exists a red node under a black (k−1)-crossing in D(P ), do ‘enhanced
left shift’ on D(P ), i.e.,

• let a be the smallest such red node,

• let (i1, j1), (i2, j2), . . . , (ik−1, jk−1) be the innermost (that is to say the
word (j1, j2, . . . , jk−1) is smallest in the lexicographic order) black (k−1)-
crossing covering a,

• change arcs forming a black (k−1)-crossing (i1, j1), (i2, j2), . . . , (ik−1, jk−1)
into arcs of a black weak k-crossing (i1, a), (i2, j1), . . . , (ik−1, jk−2), (a, jk−1)
with a as the center,

• set B0 = B0 \ {a}, and let P̃ denote the resulting partition.

Repeat this step until the colored arc diagram of P̃ has no red node under a
black (k − 1)-crossing. The resulting partition P̃ has no black k-crossing.

4. If D(P̃ ) has no red k-crossing, then set Φ(P ) = P̃ ; otherwise, do ‘cyclic
rotation’ on D(P̃ ), i.e.,

• find the rightmost red arc in a k-crossing, say (i, j),

• let (i1, j1), (i2, j2), . . . , (ik, jk) be the greatest, in the lexicographic order
of (j1, j2, . . . , jk), k-crossing with (ip, jp) = (i, j) (here p is always greater
than 1 in the process).
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• change arcs forming a k-crossing (i1, j1), (i2, j2), . . . , (ip, jp), . . . , (ik, jk)
into arcs

(i1, j2), (i2, j3), . . . , (ip−1, jp), (ip, j1), (ip+1, jp+1), . . . , (ik, jk),

where (ip, j1) is recolored red,

• color jp black, j1 red, and recolor the nodes in the blocks containing jp
and j1 accordingly.

Repeat this process until the resulting colored arc diagram has no red k-
crossing. The partition P ′ corresponding to the resulting colored arc diagram
has no black k-crossing.

5. Finally we end up with a partition P ′ in NC
(k)
n+1. Set Φ(P ) = P ′.

Note that if P ∈ NBW
(k)
n+1 has a (k−1)-crossing then so does Φ(P ) but the converse

is not true. The reader is invited to check that Φ agrees with Ψ−1 when k = 2, even
though they are defined differently.

Example 13 An example of Φ with (n, k) = (16, 3) and P ∈ NBW
(3)
17 :

P = {{0, 4, 8, 15}, {1, 3, 10}, {2, 11}, {5, 16}, {6, 13}, {7, 9, 12, 14}}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 164 8 15

Red 8 is under four black 2-crossings of which the innermost is (3, 10), (6, 13). Make
8 the center of a black weak 3-crossing, (3, 8), (6, 10), (8, 13), and uncolor 8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 164 15

Dashed arcs form the weak 3-crossing. Arcs (2, 11), (4, 15), (5, 16) form a red 3-
crossing. Do ‘cyclic rotation’: (2, 11), (4, 15), (5, 16)→ (2, 15), (4, 11), (5, 16).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 164 11

Arcs (3, 8), (4, 11), (5, 16) form a red 3-crossing. Do ‘cyclic rotation’: (3, 8), (4, 11), (5, 16)→
(3, 11), (4, 8), (5, 16).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 164 8 13

The last colored arc diagram corresponds to Φ(P ) ∈ NC
(3)
17 :

Φ(P ) = ({0, 4, 8, 13}, {1, 3, 11}, {2, 15}, {5, 16}, {6, 10}, {7, 9, 12, 14}).

The crucial reason why Φ is reversible is that any ‘cyclic rotation’ to a red k-
crossing leaves a trace, i.e., a red node under a black (k−1)-crossing. In fact, though
we do not introduce it here, we can show that Φ is a bijection by defining its inverse
explicitly.

The combinatorial bijections prove the main result but this is the only proof
up to now. There is no algebraic or analytical proof yet. So we have the following
question.

Problem 14 Is there any generating function approach to (1)?

Remark

This talk is based on the preprint (arXiv:1905.10526) with Zhicong Lin. Interested
readers can read the preprint for details and references. The speaker would like to
thank RIMS for the partial support for the travel.
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