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1 Introduction

Davison and Shallit [2] introduced the sequence {g,} of positive integers
defined by the recurrence

w=1 q=wo Gut1=aqu-1(wngn+1) (n>1),

where {w,} is any sequence of positive integers. They gave the following
regular cotinued fraction representing alternating seriesO
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and proved its transecendence by using Roth’s theorem. As a spcial case,
transcendence of Cahen’s constant
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where Sy = 2, Sp41 = S2 — S, +1 (n > 0) is Sylvester’s sequence (cf.[7]),
was established. Finch [5, Section 6.7] asked what can be said about the

number
o
>
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Recently, Duverney, Kurosawa, and the author of this paper proved the fol-
lowing (see [3, Example 1.5]): For a positive integer | and algebraic numbers
a # 0 and p with S, # p for all n > 0, the number
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is transcendental except when [ = a =1 and p = 0, and if so
S
= Sn 2

For a sequence {w, } of positive integers and a sequence {y, } with y; > 0
of nonzero integers, we define

Go0=1 g =wo Gnt1=qu-1(Wnq +yn) (n>1) (1)

where m is a positive integer. We assume that

wo+ 21 (n>2), 2)
n
so that {g,}n>1 is an increasing sequence of positive integers. Moreover,
since log ¢n+1 > mlog, +log, _;, we have log g, > P, for all n > 2, where
P =1, P, =m and P41 = mP, + P,—1 (n > 2). Hence, there exists a
constant v > 1 such that

> (n22), (3)

where a > (14 +/5)/2 and 3 = —1/a are the roots of the equation X2 —
mX — 1 = 0. We define the series

- _1Y1Y2 - Yn
=) (-t (4)
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In this talk, we give exact value of the number £(cf.[6]), where the irra-
tionality exponent pu(«) of a real number « is defined by the supremum of
the set of numbers p for which the inequality

has infinitely many rational solutions p/q. Every irrational number « satis-
fies p(a) > 2. If p(er) > 2, then « is transcendental by Roth’s theorem. If
() = oo, then « is called a Liouville number.

We first expand the number ¢ in the irregular continued fraction:

Lemma 1. Let {q,} be the sequence defined by (1). Assume that the series
(4) is convergent. Then we have
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We then apply the next lemma to the above continued fraction.

Lemma 2 ([4, Corollary 4]). Let an infinite continued fraction
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be convergent, where a, and b, are non-zero integers. Assume that
2| a
Z n+1 < 00
n—0 bnbn—l—l
and
log |an| _
n—oo log |bn|
Then

. lOg |bn+1|
=92 +1 _
w(e) =24 limsup s ]

In this way, we find the following formula.
Theorem 1. Let £ be as in (4). Assume that
log |yn| = o(a™).

Then we have

1
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Furthermore, we show an expression of log ¢g,. Let P, be the linear

requrrent sequence defined by
P=1, Pb=m, Pby1y=mP,+P,_1 (n2>2),

or equivalently,
a” — ﬁn

=——— (n>0),
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with D = m? + 4 are the roots of the equation X? —mX — 1 =0.

Lemma 3. Let {g,} be defined by (1). Then we have

b,

where
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Using this formula, we obtain the explicit value of the number £.

Theorem 2. Make the same assumptions as in Theorem 1. Then we have
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Corollary 1. FEvery number & as in Theorem 1 is transcendental.
Finally, we give few examples.

Example 1. For any sequence {€,} of 1 or -1 with e, = 1, we define the
sequence {q,} by

@0 =1 ¢ =w @1 = m-1(wnq, +0n) (n>1),

where {w,} be any sequence of positive integers satisfying
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and 0, = €,/61 - 0p—1. Then we have by Theorem 2

N(i n >:1+a.
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As {wy,}, we can take for example any one of the following sequences;

{n}, {f()}, {7}, {10V ]},

where b > 1 is an integer, 1 < X\ < «, and f(x) is a polynomial of z, possibly
a constant, taking positive integral values at any positive integers.

Example 2. For any positive integer a, we put wo = a, Wy, = gn—1 (n > 1)
and y, = a (n >1). We have by (1) with m =1

=1, ¢ =a, ¢ui1=Gn-1(qn-1qn +a) (n>1), 9)



The assumption (2) is automatically satisfied. Define the number & by (4).

We set s, = qni1qn +a (n > 1)' Since gni1qni+2 = QnQn+l(QnQn+l +a) (n >
0), we find
50 =2a, Spy1 =52 —as, +a (n>0).

Taking logarithm of both sides of (9) and using the resulting formula repeat-
edly, we have
log gn = 52" 4 0(2").

Appying Theorem 1, we obtain

u((Z . ai a) =
n=0 """

In the case of a = 1, we have pu(C) = 3.

We note that, for any real A with 1 + o < A < 0o, we can construct
uncountably many numbers £ as in Theorem 1 having the irrationality ex-
ponent .
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