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1 Introduction

For a knot K and a linear algebraic group G, there is the space of G representations of
K, which is the set of all homomorphisms from the fundamental group m(S®\ K) to
(G. This space is reconstructed from the view point of the fundamental quandle and its
representation associated with a Hopf algebra. Here we extend this construction to any
braided Hopf algebra with braided commutativity. The typical example of a braided Hopf
algebra is BSL(2), which is the braided quantum SL(2) introduced by S. Majid [3]. By
applying the above construction to BSL(2), we get a quantized SL(2) representation of
K. This is based on [4] which is a joint work with Roland van der Veen.

2 Wirtinger presentation for a closed braid

Let K be a knot in S? and D be its diagram. Then the fundamental group (5% \ K) of
the complement of K has the following presentation.

7T1<S3\K) = <I1,1‘2,"' 7xn|T17T2a"' arn>

where n is the number of crossings of D, the generators xy, ---, x, corresponds to the
overpasses of D and r; is the relation coming from the i-th crossing as follows.
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Every knot can be expressed as a closed braid. For a knot K, let b € B,, be a braid
whose closure is isotopic to K. Let y1, 4o, - - -, ¥ be elements of 7 (S \ K) corresponding
to the overpasses at the bottom (and the top) of b. By applying the relations of the



Wirtinger presentation at every crossings from bottom to top, we get ®1(y1,...,Yn), -
D, (y1,- -+ ,yn) at the top of b, and the Wirtinger presentation is equivalent to

77'1(53\[() = <y17'” 1y Yn | n z@l(ylv"' 7yn)7"' 7yn:@n<y17"' 7yn)>
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3 SL(2) representation space

An SL(2) representation p of m(S® \ K) is determined by p(y1), ---, p(y.) € SL(2)
satisfying

D1(p(y1), -+ 5 pyn)) = ply1),
Cu(p(yr), -+ p(yn)) = pln).
Let I, be the ideal in the tensor C[SL(2)]*" of the coordinate ring of SL(2) generated by

the above relations.

Theorem 1. The quotient C[SL(2)]%" /I, does not depend on the presentation of w1 (S®\
K) and is called the SL(2) representation space of (5% \ K).

The ccordinate algebra C[SL(2)] of SL(2) is generated by a, b, ¢, d corresponding to

the matrix elements of (Z 2) € SL(2). The algebra C[SL(2)] has natural Hopf algebra

structure coming from the group structure of SL(2).
A : CISL(2)] - C[SL(2)] & CISL(2)] with A(f)(z @ y) = /(ay),
S : C[SL(2)] — C[SL(2)] with S(f)(z) = f(z™1),
e : C[SL(2)] — C with e(f) = f(1).

Let ®* : C[SL(2)]®™ — CI[SL(2)]*" be the dual map of ® = (®y,---,P,). At a crossing,
d* acts as follows.
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Theorem 2. Let J, be the ideal generated by the image of ®* —id, then J, is equal to the
previous ideal I, and C[SL(2)]%"/Jy is the SL(2) representation space of m1(S%\ K).

Remark. This construction can be generalized to any commutative Hopf algebra.

4 Braided Hopf algebra

Definition 1. An algebra A is called a braided Hopf algebra if it is equipped with following
linear maps satisfying the relations given in the next picture.

multiplication py: A® A — A, counit ¢: A — k,

comultiplication A: A — AR A, antipode S: A — A,

unit 1: &k — A, braiding V: A® A - A® A.
multiplication comultiplication unit counit
antipode inverse antipode positive braiding negative braiding

Figure 1: Operations of a braided Hopf algebra

Definition 2. The adjoint coaction ad : A — A ® A is defined by
ad(z) = (id @ 1) (¥ ® id)(S © A)A(z).

The adjoint coaction is explained graphically as follows.

-/

The adjoint coaction ad satisfies the following relations.
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Figure 2: Relations of a braided Hopf algebra

The first relation means
(id ®id @ p)(id @ ¥ @ id)(ad @ ad) A = (A ® id)ad.
The second relation means
(ad ®@ id)ad = (id ® A)ad.

Now we introduce braided commutativity, which is a weakened version of the commu-
tativity.

Definition 3. A braided Hopf algebra A is braided commutative if it satisfies

(id @ p) (¥ ® id)(id ® ad)¥ = (id ® p1)(ad @ id).

e



If A is braided commutative, the following relations hold.

= [
ad ® ad and ¥ ad and p ad and S

As an example, we prove the last relation. These relations are proved graphically as

follows.
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5 Representation space from a braided Hopf algebra

We first construct a representation of the braid group by using a braided Hopf algebra.
Let A be a braided Hopf algebra which may not be braided commutative. Let R and R~}
be elements of End(A%?) given by the following.

For 0! € B, let p(0;) = id® V0 R0id®™ == and p(o; ') = id®0~ YD R id®"==1),

Theorem 3. The above p defined for generators of B, extends to a representation of B,
in End(A®™).

ot



If A is a usual Hopf algebra, such representation of the braid group was constructed in
[5]. The proof for this theorem was given in [2] for a usual Hopf algebra, and their proof
is easily generalized for a braided Hopf algebra.

From now on, we assume that the braided Hopf algebra A is braided commutative.
For b € B, let p(b) € End(A®") be the representation of b defined as above. Let I, be
the left ideal of A®™ generated by the image of the map p(b) — id®".

Proposition 1. The left ideal I, is a two-sided ideal.
This proposition comes from the following lemma.

Lemma 1. For x,y € A, we have

pO)u(x 2 y) = p(p(b)x @ p(b)y).
To prove this lemma, we need the braided commutativity.

Theorem 4. Let X be a set of generators of A and x; = 120D 22 0190 forx € X.
Then the ideal I in A®™ is generated by

{pO)x; —x; |z e X, i=1,--- ,n—1}.
Proof. Since
d(b) pn (T 2 Y) = pn(® @ y)
= i (d0) 2 % () y —y)) + pa ((dB) 2 — x) 0 y).
and d(b) x — x, d(b) y — y are both contained in . O
For an n braid b, let A, = A®"/I,.

Theorem 5 (Main theorem). If the closures of two braids by € B,, and by € B,, are
isotopic, then Ay, and Ay, are isomorphic algebras. Moreover, Ay, and Ay, are isomorphic
A-comodules with adjoint coaction. In other words, Ay is an invariant of the knot (or link)
g, which is the closure of b.

Definition 4. The quotient algebra A, = A®"/I, is called the A representation space of
the closure b.

To prove the above theorem, we show that the quotient algebra A, is invariant under
the Markov moves.

Definition 5. These moves are called the Markov moves and such b; and by are called
Markov equivalent.
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Theorem 6. The closures of two braids by € B, and by € B, are isotopic in S if and
only if there is a sequence of the following two types of moves connecting by to bs.

The main theorem is proved by showing the invariancde under MI and MII. To prove
the invariance under MI is not difficult, but the invariance under MII is not so easy.
To show this, we need to introduce some moves of diagrams which are duals of Tietze
transformations which are moves to change the presentation of a combinatorial group
defined by generators and relations.

Definition 6. For b € B,, we present I, by p(b) ~ p(1). Similarly, for two diagrams
dy, dy representing elements of Hom(A®™, A®™), dy ~ dy present a two-sided ideal Iy, 4,
in A*™ generated by

di(x1 0 R Tp) — do(T7 & -+ - R Tpy)

for x1, -+, x,, € A. Such dy and d, are called the equivalent pair of diagrams correspond-
ing to the two-sided ideal Iy, 4, and the quotient algebra A®" /I, 4,.

Proposition 2 (dual of Tietze tranformation). Let dy ~ dy be an equivalent pair and let
dy ~ di, be the equivalent pair where d| and di, are obtained from dy and dy respectively by
one of the following operations (1), (2), (3), (3S), (4L), (4LS), (4R), (4RS) illustrated

in the following. Then the corresponding ideals 14, 4, and Iy, 4, are equal.
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The invariance under MII is proved by transforming the equivalent pair bo, ~ e to
the diagram in the next figure by using Proposition 2.

i ||||A o
|||/ - . .
b

b
Ll i Tl T i

Let p,, be the surjection from A®™+1) to A®" defined by
Pa(T1 @ @1y @ Tpy1) =2 D R Ty @ (VT (@, 241)) -

Then the above picture means that Iyq,,) is generated by (d(b) o p,)(x) ® 1 —  for
x e A For y € Iy, Y @1 € Ly, and po(y @ 1) =y, 0 pu(lape,)) = Loy For
x € Kerp,,

(d(b) opn)(x) ©®1 -2 = —,
and so © € Iy(,). This means that Kerp, C Iypo,), which implies p,; 1(Id(b)) = Li(boy)

since pp(Lipo,)) = Law). Therefore p, gives an isomorphism A®HL) ) Liwe,) = A% [T

Example. The figure eight knot 4; is isomorphic to the closure of the braid b =
oyt oy07 ! 05, The graphical expression of d(b) is given in Figure 3. So the space of A
representation of 41 is A® A® A/l where Iyy) is generated by d(b)(r®y®2z) —2Qy® 2
for x,y,z € A. We will see the relation for ;1 =2z ® 1® 1 and 5 = 1 ® z ® 1. Let d(b);

Figure 3: A graphical expression of d(b)

is a mapping from A to A®3 sending x € A to d(b)(x;) € A®3 for i = 1, 2. Then the ideal
Iy is generated by {d(b)(z) —2 ®1® 1, d(b)2(r) —1®2x®1|x e A} where

d(b)y(z) = (' @ id)(id ® S~ ®id)(ad ® id) ¥~ (id ® S~") ad(z),

d(b)2(z) = (id ® V) (ad(z) ® 1).

These elements are explained graphically in Figure 4. Let p be a mapping from A%3 to
A®? defined by p(r @ y ® z) = (u ® p)(z ® ad(y) ® z). Then p is surjective, kerp is



db)(z) ~r@1®1 g? ’”| N :
A .

N |
d(b)a(z) ~ 1@z ® 1 dN - )N :
A T TIT

where e = @ )

Figure 4: Relations for the figure eight knot.

generated by d(b)2(z) —1®z®1 for x € A, and A¥?/kerp = A¥%. Let I' = p(Iqs)), then
I’ is generated by

p(db)(z) —2@11) = (1@ u)ady (P ®id) Syt ad; U1 Sy ad(z) —r® 1

where ad;, S; L act to the i-th component of the tensor product. The ideal I’ is graphically
explained in Figure 5. Moreover, the mapping p gives the isomorphism between A ® A ®
Al and A A/I', so A® A/I' is isomorphic to the A representation space of 4;. It

corresponds to a presentation of m(S? \ 41) with two generators and one relator.

p(dD)i(z)) ~z®1 ~

T

Figure 5: Equivalent diagram for I’.

6 Braided SL(2)

Definition 7. A braided SL(2) is a one-parameter deformation of C[SL(2)] defined in [3]
by the following. It is denoted by BSL(2).

ba=tab, ca=t"'ac, da=ad, db=bd+(1—t")ab,
cd=dc+(1—t"ca, be=cb+(1—t"a(d—a), ad—tcb=1,
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J=a®a+b®c, Ab)=ax®b+b®d, Alc)=cxka+d®ec,
Ald)=c®b+d®d, S)=(1-t)a+td Sb)=-tb, S(c)=—tc,
S(d)=a, ela)=1, eb)=0, e(c)=0, e(d) =1,
wl)=1lwzr,V1lwzr)=zx 1,V (exa)=axa+ (1 -t)bxc,V(axb) =bxa,
Re)=cxa+(1-t)(d—a)®c, V(and) =dxa+(1-tHbxec,
®a)

)

) =

)

/\
9

a)=a@b+(1-t)b®(d—a), VO®b) =tbxb, V(dxb) =bxd,
bc)=tleab+(1+t) (1 -t bRc—(1—t1)(d—a)®(d—a),
UbRd) =d2b+(1-—tHbR(d-a), ¥(c®a)=aRec, V(b)) =t"b®ec,
Ulcwe)=tcwe UV(ewd) =dwe, V(dwa)=axwd+(1—t Hbwe,
V(dRe)=cxd+(1—t ) d—a)®c, Vded) =dxd—t"'(1-tbxec

Theorem 7. The braided Hopf algebra BSL(2) is braided commutative.

Since BSL(2) is an example of a braided commutative braided Hopf algebra, we have
BSL(2) representations of K, which is BSL(2)®"/I4@). We also call it the space of quan-

tized SL(2, C) representations of K. It follows directly from the relations and Proposition
1.8.17 of [1] that BSL(2) is Noetherian, so the ideal /) is finitely generated.
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