THE 11} LOWENHEIM-SKOLEM-TARSKI PROPERTY OF
STATIONARY LOGIC

SEAN COX

ABSTRACT. Fuchino-Maschio-Sakai [7] proved that the Lowenheim-Skolem-
Tarski (LST) property of Stationary Logic is equivalent to the Diagonal
Reflection Principle on internally club sets (DRPic) introduced in [4].
We prove that the restriction of the LST property to (downward) reflec-
tion of II formulas, which we call the II}|-LST property, is equivalent

to the internal version of DRP from [2]. Combined with results from [2],
this shows that the I1]-LST Property for Stationary Logic is strictly
weaker than the full LST Property for Stationary Logic, though if CH
holds they are equivalent.
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1. INTRODUCTION

Stationary Logic is a relatively well-behaved fragment of Second Order
Logic introduced by Shelah [12], and first investigated in detail by Barwise
et al [1]. Stationary Logic augments first order logic by introducing a new
second order quantifier stat; we typically interpret “statZ ¢(Z,...)” to mean
that there are stationarily many countable Z such that ¢(Z,...) holds.! The
quantifier aa stands for “almost all” or “for club many”; so

aaZ ¢(Z,...)

is an abbreviation for
- statZ - p(Z,...).
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L1Other interpretations, e.g. for uncountable Z, or for filters other than the club filter,
are often considered too.
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Section 2 provides more details.

By structure we will always mean a first order structure in a countable
signature. The question of whether every structure has a “small” elementary
substructure in Stationary Logic was raised already in [1]. One cannot hope
to always get countable elementary substructures; e.g. if x is regular and
uncountable, then (k, €) satisfies “€ is a linear order and

aaZ dr x is an upper bound of 77,

but no countable linear order can satisfy that sentence. In a footnote in [1],
it was observed that even the statement

(LST) “Every structure has an elementary (w.r.t. Stationary Logic)

substructure of size < w;”

carries large cardinal consistency strength.? The quoted statement above is
now typically called the Léwenheim-Skolem-Tarski (LST) property of Sta-
tionary Logic.?

Fuchino et al. recently proved that LST is equivalent to a version of the
Diagonal Reflection Principle introduced in Cox [4]:

Theorem 1.1 (Fuchino-Maschio-Sakai [7]). LST is equivalent to the Diag-
onal Reflection Principle on internally club sets (DRPj¢).

The purpose of the present note is to prove the following variant of The-
orem 1.1 involving I} formulas in Stationary Logic (defined in Section 2
below) and the principle DRPjpterna) from [2]:

Theorem 1.2. The UL -LST property of Stationary Logic (see Definition
2.2) is equivalent to the principle DRPipternai-

Cox [2] proved that DRPy¢ is strictly stronger than DRPjpternal. This
was obtained by forcing over a model of a strong forcing axiom in a way
that preserved DRPjpternal While killing DRPy¢ (in fact killing RPjc; the
argument owed much to Krueger [10]). Furthermore, if CH holds, then
DRPjc is equivalent to DRPjjternal. Combining those results with Theorem
1.2 immediately yields:

Corollary 1.3. The LST property of Stationary Logic is strictly stronger
than the II3-LST property of Stationary Logic.
However, if the Continuum Hypothesis holds, they are equivalent.*

2See Definition 2.2 for precisely what is meant by “elementary substructure” in this
context.

3The weaker assertion that every consistent theory (in Stationary Logic) has a model
of size w1, on the other hand, is a theorem of ZFC, as proven in [1].

40ne doesn’t actually need the full continuum hypothesis for this equivalence to hold,
but rather a variant of Shelah’s Approachability Property, namely that the class of inter-
nally stationary sets is the same (mod NS) as the class of internally club sets. See Cox [2]
for more details.



FIGURE 1. An arrow indicates an implication, an arrow with
an X indicates a non-implication

MM+ DRPi¢ Stationary Logic has
the LST property
X (these 4 statements

are equivalent if CH holds)

Martin’s —®s DRP;ptormal Stationary Logic has
Maximum the II1} LST property

We note that while the technical strengthening MM™* ™ of Martin’s Maxi-
mum implies DRP1¢ (see [4]), recent work of Cox-Sakai [6] shows that Mar-
tin’s Maximum alone does not imply even the weakest version of DRP. Fig-
ure 1 summarizes the relevant implications and non-implications discussed
in this introduction.

Section 2 covers the relevant preliminaries, and Section 3 proves Theorem
1.2. Section 4 ends with some concluding remarks.

2. PRELIMINARIES

Recall that S C [A]“ is stationary if it meets every closed, unbounded
subset of [A]“ (in the sense of Jech [9]). By Kueker [11] this is equivalent
to requiring that for every f : [A]<“ — A there is an element of S that is
closed under f.

In what follows, we will use uppercase letters to denote second order vari-
ables/parameters, and lowercase letters to denote first order variables/parameters.
We will also use some standard abbreviations; e.g. if our language includes
the € symbol, v is a first order variable, and Z is a second order variable,

“v =27 is short for

Verxev < Z(z).

Given a structure 2 = (A4, ...) (which we always assume to have a count-
able signature), the satisfaction relation in Stationary Logic is defined re-
cursively by:

2 ': statZ ¢(Z7 U17 sy Uf7p17 e 7pk)
—

{Z €A A= ¢(Z,Ur,...,Upp1,... ,pk)} is stationary in [A]“.
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We define a hierarchy of formulas in Stationary Logic that mimics the
usual hierarchy in Second Order Logic. Since

aaZ ¢(Z,...)
roughly translates as
3C Ciscluband VZ € C ¢(Z,...),

the aa quantifier will correspond to the existential second order quantifier
when constructing the hierarchy. Similarly, since

statZ ¢(Z,...)
roughly translates as
VC Cisclub = 3IZe€C ¢(Z,...),

the stat quantifier will correspond to the universal second-order quantifier.

Definition 2.1. A formula in Stationary Logic without second order quan-
tifiers will be denoted by E(l, or Htll. For n >0, a formula of the form

statZy ... statZy &(Z1,...,Zg,...)
where ¢ is XL | will be called a H}l formula, and a formula of the form
aaZy ... aaZy (21, ..., Zk,...)

where v is 11}, will be called a B formula.

For example, if ¢(Zy, Z1,v1,...,vs) has no stat or aa quantifers, then
statZy aaZi ¢(Zo, Z1,v1,...,0¢)
is a I13 formula.

Definition 2.2. We say that the LST property holds for Stationary
Logic iff for every structure A = (A, ...)> there exists a W C A of size < wy
such that for all formulas ¢ in Stationary Logic with no free occurrences of
second order vartables, and all first order parameters p1,....pp € W,

A = olp] if and only if A|W = ¢[p).
We say that the II}L LST property holds for Stationary Logic iff for
every structure A = (A,...) there exists a W C A of size < wy such that
for all I formulas ¢ in Stationary Logic with no free occurrences of second
order variables, and all first order parameters p1,...,pxr € W,

if % = o[p], then AW |= o[,

Remark 2.3. Note that in the definition of the 111 LST property, we only
require that Hi formulas reflect downward. If there is always an wy sized
substructure that reflects 113 formulas both upward and downward, then the
full LST property holds. This issue is discussed further in Section 4.

Recall we always assume countable signature, though for everything discussed in this
paper an wi-sized signature would still be fine.
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We consider variants of the Diagonal Reflection Principle introduced
in Cox [4] and [2]. We use the following definition, which by Cox-Fuchs [5]
is equivalent to the definitions from [4] and [2]:

Definition 2.4. DRP;,iermar asserts that for every sufficiently large regular
0, there are stationarily many W € @, (Hy) such that:
o [W|=w CW; and
e Whenever A € W is uncountable and S € W is a stationary subset
of [A]“, the set SNW N[W N A is stationary in [W N A]¥.

The “internal” part of the definition refers to the fact that we require that
SNWN[W N A is stationary, not merely that SN [W N A]“ is stationary.
Definition 2.4 is simply the diagonal version of an internal variant of WRP
introduced in Fuchino-Usuba [8] (see Cox [2] for a discussion).

3. PROOF OF THEOREM 1.2

We prove a slightly stronger variant of Theorem 1.2. The proof below is
strongly influenced by Fuchino et al [7].

Theorem 3.1. The following are equivalent:

(—Z) DRPinternal’

(2) For every structure A = (A, ...), there is a W C A of size at most wy
such that for every finite list p1,...,pr € W N A and every formula
¢ without 2nd order quantifiers,

(21 = statZ qu[Z,ﬁ]) — (qu = statZ qb[Z,ﬁ]).

(3) The 111}-LST property holds of Stationary Logic (as in Definition
2.2);

(4) For every structure A = (A, ...), there is a W C A of size at most wy
such that for every formula v in 2nd order prenex form with no free

occurrences of second order variables, and every finite list p1, ..., pg
of elements of W, if

A= Y[l

then, letting U be the formula obtained from 1 by changing all aa
quantifiers to stat quantifiers,

AW = G5l

Before proving the theorem, we remark that in parts 2, 3, and 4 of The-
orem 3.1, we only mentioned first order parameters from W N A. If the
structure 2 is sufficiently rich then it often makes sense to also speak of
second-order parameters that are elements of W. But in general (e.g. when
2 is a group) it is more natural to only speak of first order parameters from
W N A.
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Proof. (of Theorem 3.1): (4) trivially implies (3), since if ¢ is represented
as a prenex 11} formula, then = ¢ (because there are no aa quantifiers in
the original formula at all). Similarly, (3) trivially implies (2) because if ¢
has no second order quantifiers,

statZ ¢

is obviously a IT} formula.

To see that (2) implies (1), assume (2) and suppose € is a regular cardinal
> wa. We need to find a W < (Hyp, €) such that |[W| = w; C W and for
every s € W that is a stationary collection of countable sets,

w
sNWnN [W N U s} is stationary.

Consider A = (Hy, €). Let W C Hy be as in the statement of (2). Fix any
s € W that is a stationary collection of countable sets. Then

A = statZE!pp:ZﬁUsandpes

and hence, since s € W and the only second order quantifier in the (prenex)
formula above is a stat quantifier,

AW = statZ pr:ZﬁUs and p € s.
Unravelling the definition of the satisfaction relation, this means that
{(Ze W) : Zn U s € W s} is stationary in [W]*

and it follows that W NsN [WNJs]” is stationary in [W N |Js]".
To see that wy C W, it suffices to show that W Nwy is uncountable (since
by first-order elementarity of W in (Hy, €), W Nw; is transitive). Now

2Af=statZ Jp o (p=ZNwi. a <wi, and a is an upper bound of p),

so by assumption on W, this statement is also satisfied by 2A|WW (note that
the parameter wq is an element of W because w is first-order definable in 2A
and W is at least first-order elementary in 2(). If W Nw; were countable, say
WNwy = 9§ < wi, it would follow that for stationarily many Z € W N [W],
there is an « < W Nw; = J such that « is an upper bound of Z N J.
This would be a contradiction, since due to the countability of §, the set of
Z € [W]“ such that § C Z is a club.

Finally, to prove that (1) implies (4): fix a structure 2 = (A4,...) and
let 6 be a sufficiently large regular cardinal with 20 € Hy. By (1) there
is a W < (Hy, €,) witnessing DRPiyternal. We prove by induction on
complexity of formulas v in 2nd order prenex form that if p1,...,pr € WNA
and

A = [p]
then, letting 1]) be the result of replacing all aa quantifiers with stat quan-
tifiers,
AW NA) =l
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We actually need to inductively prove a slightly stronger statement: namely,
that whenever 1 is a 2nd order prenex formula, p1,...,pr € W N A, and
Z1,...,Zg e WNI[A,

(1) A P25 = AW NA) EDZ,7.

So suppose

(2> Ql': QZ ¢[Z7U17~Uk7p177pf]

where @ is either the aa or stat quantifier, Uy, ..., U are each elements of
W N [A], p1,...,pr € W N A, and the inductive hypothesis holds of the
formula ¢.

Now regardless of whether @ is the aa or stat quantifier,
m = statZ qub
and by (2) (since the aa quantifier is stronger than the stat quantifier)
A= statZ ¢[Z,Un,...,Uk,p1,-..,D0-
Hence, by the definition of the stationary logic satisfaction relation,
= {Z €AY : AE=9[Z, ﬁ,ﬁ]} is stationary in [A]”.
Note that since U, f, ¢, and 2 are elements of W, it follows that s € W.
Since W is internally diagonally reflecting,
sNW N [W N A]” is stationary in [W N AJ*.
Consider for the moment an arbitrary Z € s N W N [W N A]*. Then
A ¢Z,U, 5]

and it follows by the induction hypothesis (and that Z, U, and p are each
elements of W) that:

AW N A) 2,05,
Hence, we have shown that

sNWNAWNAYC{Ze[WnAY : A(WnNA)EZU,p}.

Since the set on the left side is stationary, the set on the right side is too.
So by the definition of the satisfaction relation,

AW NA) = statZ §[2,U,7].

This completes the proof of the (1) = (4) direction.
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4. CONCLUDING REMARKS

We remark that it is straightforward to show, in ZFC alone, that:

Lemma 4.1. For every structure A = (A, ...) there exists a W C A of size
at most wy such that

Zl
AW <" A

(i.e. such that %1 formulas satisfied by A are also satisfied by AW ).
In fact, if 0 is a reqular cardinal such that 2L € Hy, and

W <ist order (Ht97 672[)
is such that |W| = wy and
(3) W N [WnN A contains a club in [W N AJ*

(this always holds for stationarily many W, e.g. for those W that are inter-
nally approachable), then

b
AW N4 <" A

We briefly sketch the proof of the lemma; more details, and other related
results, can be found in Cox [3]. One proves by induction on complexity
of formulas, making use of (3), that if ¢ is X1, p1,...,pr € WN A, and
Zy, ..., Zp € WnN[A]Y, then

if A = ¢[Z, 5], then AW N A) = ¢[Z, 7).

This was basically part of the proof from Fuchino et al [7] that DRPic
implied the LST for Stationary Logic. See [3] for some other related ZFC
theorems.

So by Lemma 4.1 one can always get an w; sized substructure that reflects
all E} statements downward. And if DRPjyternal holds, one can also get an
w1 sized substructure that reflects all I} statements downward. But it is
consistent that both of these are true, yet no single wi-sized substructure
downward reflects all II} and all £1 statements. In particular, in any model
where DRPjpternal holds and DRP¢ fails, Theorem 1.2 tells us that there
is a structure such that no wj-sized substructure reflects all II1 and all %}
statements (though there are structures that reflect one or the other).

Another way to view this phenomenon, in terms of DRP-like principles,
is that DRPipternal yields stationarily many W € g, (Hp) such that the
transitive collapse Hyy of W is “correct about stationary sets”; i.e. whenever
s € Hy and Hyy = “s is a stationary set of countable sets”, then V believes
this too. However, if W is not internally club, it is possible (by [2]) that Hy
is correct about stationary sets, but is not correct about clubs; i.e. there can
be a ¢ € Hy such that Hy = “c is a club of countable sets”, but V' does
not believe this. If, on the other hand, W witnesses DRPi¢, then Hyy is
correct about both stationarity and clubness.
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