THE $\Pi^1_1 \downarrow$ LÖWENHEIM-SKOLEM-TARSKI PROPERTY OF STATIONARY LOGIC

SEAN COX

ABSTRACT. Fuchino-Maschio-Sakai [7] proved that the Löwenheim-Skolem-Tarski (LST) property of Stationary Logic is equivalent to the Diagonal Reflection Principle on internally club sets (DRP_{IC}) introduced in [4]. We prove that the restriction of the LST property to (downward) reflection of Π_1^1 formulas, which we call the $\Pi_1^1 \downarrow$ -LST property, is equivalent to the *internal* version of DRP from [2]. Combined with results from [2], this shows that the $\Pi_1^1 \downarrow$ -LST Property for Stationary Logic is strictly weaker than the full LST Property for Stationary Logic, though if CH holds they are equivalent.

Contents

1.	Introduction	1
2.	Preliminaries	3
3.	Proof of Theorem 1.2	5
4.	Concluding remarks	8
References		9

1. Introduction

Stationary Logic is a relatively well-behaved fragment of Second Order Logic introduced by Shelah [12], and first investigated in detail by Barwise et al [1]. Stationary Logic augments first order logic by introducing a new second order quantifier stat; we typically interpret "stat $Z \phi(Z,...)$ " to mean that there are stationarily many countable Z such that $\phi(Z,...)$ holds. The quantifier aa stands for "almost all" or "for club many"; so

$$aaZ \phi(Z,...)$$

is an abbreviation for

$$\neg \operatorname{stat} Z \neg \phi(Z, \dots).$$

 $^{2010\} Mathematics\ Subject\ Classification.\ 03E05,\ 03E55,\ 03E35,\ 03E65\ .$

The author thanks Hiroshi Sakai (JSPS Kakenhi Grant Number 18K03397) for travel support to the RIMS Set Theory Workshop 2019, and also gratefully acknowledges support from Simons Foundation grant 318467.

¹Other interpretations, e.g. for uncountable Z, or for filters other than the club filter, are often considered too.

Section 2 provides more details.

By structure we will always mean a first order structure in a countable signature. The question of whether every structure has a "small" elementary substructure in Stationary Logic was raised already in [1]. One cannot hope to always get countable elementary substructures; e.g. if κ is regular and uncountable, then (κ, \in) satisfies " \in is a linear order and

 $aaZ \exists x \ x \text{ is an upper bound of } Z$ ",

but no countable linear order can satisfy that sentence. In a footnote in [1], it was observed that even the statement

(LST) "Every structure has an elementary (w.r.t. Stationary Logic) substructure of size $< \omega_1$ "

carries large cardinal consistency strength.² The quoted statement above is now typically called the *Löwenheim-Skolem-Tarski* (LST) property of Stationary Logic.³

Fuchino et al. recently proved that LST is equivalent to a version of the Diagonal Reflection Principle introduced in Cox [4]:

Theorem 1.1 (Fuchino-Maschio-Sakai [7]). LST is equivalent to the Diagonal Reflection Principle on internally club sets (DRP_{IC}).

The purpose of the present note is to prove the following variant of Theorem 1.1 involving Π_1^1 formulas in Stationary Logic (defined in Section 2 below) and the principle DRP_{internal} from [2]:

Theorem 1.2. The $\Pi_1^1 \downarrow$ -LST property of Stationary Logic (see Definition 2.2) is equivalent to the principle $DRP_{internal}$.

Cox [2] proved that DRP_{IC} is strictly stronger than DRP_{internal}. This was obtained by forcing over a model of a strong forcing axiom in a way that preserved DRP_{internal} while killing DRP_{IC} (in fact killing RP_{IC}; the argument owed much to Krueger [10]). Furthermore, if CH holds, then DRP_{IC} is equivalent to DRP_{internal}. Combining those results with Theorem 1.2 immediately yields:

Corollary 1.3. The LST property of Stationary Logic is **strictly** stronger than the $\Pi_1^1 \downarrow$ -LST property of Stationary Logic.

However, if the Continuum Hypothesis holds, they are equivalent.⁴

 $^{^{2}}$ See Definition 2.2 for precisely what is meant by "elementary substructure" in this context

³The weaker assertion that every consistent theory (in Stationary Logic) has a model of size ω_1 , on the other hand, is a theorem of ZFC, as proven in [1].

⁴One doesn't actually need the full continuum hypothesis for this equivalence to hold, but rather a variant of Shelah's Approachability Property, namely that the class of internally stationary sets is the same (mod NS) as the class of internally club sets. See Cox [2] for more details.

FIGURE 1. An arrow indicates an implication, an arrow with an X indicates a non-implication

We note that while the technical strengthening MM⁺⁺ of Martin's Maximum implies DRP_{IC} (see [4]), recent work of Cox-Sakai [6] shows that Martin's Maximum alone does not imply even the weakest version of DRP. Figure 1 summarizes the relevant implications and non-implications discussed in this introduction.

Section 2 covers the relevant preliminaries, and Section 3 proves Theorem 1.2. Section 4 ends with some concluding remarks.

2. Preliminaries

Recall that $S \subseteq [A]^{\omega}$ is stationary if it meets every closed, unbounded subset of $[A]^{\omega}$ (in the sense of Jech [9]). By Kueker [11] this is equivalent to requiring that for every $f: [A]^{<\omega} \to A$ there is an element of S that is closed under f.

In what follows, we will use uppercase letters to denote second order variables/parameters, and lowercase letters to denote first order variables/parameters. We will also use some standard abbreviations; e.g. if our language includes the \in symbol, v is a first order variable, and Z is a second order variable, "v = Z" is short for

$$\forall x \ x \in v \iff Z(x).$$

Given a structure $\mathfrak{A}=(A,\dots)$ (which we always assume to have a countable signature), the satisfaction relation in Stationary Logic is defined recursively by:

$$\mathfrak{A} \models \operatorname{stat} Z \ \phi(Z, U_1, \dots, U_\ell, p_1, \dots, p_k) \iff \{ Z \in [A]^\omega : \mathfrak{A} \models \phi(Z, U_1, \dots, U_\ell, p_1, \dots, p_k) \} \text{ is stationary in } [A]^\omega.$$

We define a hierarchy of formulas in Stationary Logic that mimics the usual hierarchy in Second Order Logic. Since

$$aaZ \phi(Z,...)$$

roughly translates as

$$\exists C \ C \text{ is club and } \forall Z \in C \ \phi(Z, \dots),$$

the aa quantifier will correspond to the existential second order quantifier when constructing the hierarchy. Similarly, since

$$\operatorname{stat} Z \phi(Z, \dots)$$

roughly translates as

$$\forall C \ C \text{ is club} \implies \exists Z \in C \ \phi(Z, \dots),$$

the stat quantifier will correspond to the universal second-order quantifier.

Definition 2.1. A formula in Stationary Logic without second order quantifiers will be denoted by Σ_0^1 or Π_0^1 . For n > 0, a formula of the form

$$statZ_1 \ldots statZ_k \quad \phi(Z_1, \ldots, Z_k, \ldots)$$

where ϕ is Σ_{n-1}^1 will be called a Π_n^1 formula, and a formula of the form

$$aaZ_1 \ldots aaZ_k \ \psi(Z_1,\ldots,Z_k,\ldots)$$

where ψ is Π^1_{n-1} will be called a $\pmb{\Sigma^1_n}$ formula.

For example, if $\phi(Z_0, Z_1, v_1, \dots, v_\ell)$ has no stat or aa quantifers, then

$$stat Z_0 \ aa Z_1 \ \phi(Z_0, Z_1, v_1, \dots, v_{\ell})$$

is a Π_2^1 formula.

Definition 2.2. We say that the **LST property holds for Stationary Logic** iff for every structure $\mathfrak{A} = (A, ...)^5$ there exists a $W \subseteq A$ of size $\leq \omega_1$ such that for all formulas ϕ in Stationary Logic with no free occurrences of second order variables, and all first order parameters $p_1, ..., p_k \in W$,

$$\mathfrak{A} \models \phi[\vec{p}] \text{ if and only if } \mathfrak{A}|W \models \phi[\vec{p}].$$

We say that the $\Pi_1^1 \downarrow LST$ property holds for Stationary Logic iff for every structure $\mathfrak{A} = (A, ...)$ there exists a $W \subseteq A$ of size $\leq \omega_1$ such that for all Π_1^1 formulas ϕ in Stationary Logic with no free occurrences of second order variables, and all first order parameters $p_1, ..., p_k \in W$,

if
$$\mathfrak{A} \models \phi[\vec{p}]$$
, then $\mathfrak{A}|W \models \phi[\vec{p}]$.

Remark 2.3. Note that in the definition of the $\Pi_1^1 \downarrow LST$ property, we only require that Π_1^1 formulas reflect **downward**. If there is always an ω_1 sized substructure that reflects Π_1^1 formulas both upward and downward, then the full LST property holds. This issue is discussed further in Section 4.

⁵Recall we always assume countable signature, though for everything discussed in this paper an ω_1 -sized signature would still be fine.

We consider variants of the **Diagonal Reflection Principle** introduced in Cox [4] and [2]. We use the following definition, which by Cox-Fuchs [5] is equivalent to the definitions from [4] and [2]:

Definition 2.4. $DRP_{internal}$ asserts that for every sufficiently large regular θ , there are stationarily many $W \in \wp_{\omega_2}(H_\theta)$ such that:

- $|W| = \omega_1 \subset W$; and
- Whenever $A \in W$ is uncountable and $S \in W$ is a stationary subset of $[A]^{\omega}$, the set $S \cap W \cap [W \cap A]^{\omega}$ is stationary in $[W \cap A]^{\omega}$.

The "internal" part of the definition refers to the fact that we require that $S \cap W \cap [W \cap A]^{\omega}$ is stationary, not merely that $S \cap [W \cap A]^{\omega}$ is stationary. Definition 2.4 is simply the diagonal version of an internal variant of WRP introduced in Fuchino-Usuba [8] (see Cox [2] for a discussion).

3. Proof of Theorem 1.2

We prove a slightly stronger variant of Theorem 1.2. The proof below is strongly influenced by Fuchino et al [7].

Theorem 3.1. The following are equivalent:

- (1) $DRP_{internal}$.
- (2) For every structure $\mathfrak{A} = (A, ...)$, there is a $W \subseteq A$ of size at most ω_1 such that for every finite list $p_1, ..., p_k \in W \cap A$ and every formula ϕ without 2nd order quantifiers,

$$\Big(\mathfrak{A} \models \ \mathit{statZ} \ \phi[Z, \vec{p}]\Big) \ \Longrightarrow \ \Big(\mathfrak{A}|W \models \mathit{statZ} \ \phi[Z, \vec{p}]\Big).$$

- (3) The $\Pi_1^1 \downarrow$ -LST property holds of Stationary Logic (as in Definition 2.2);
- (4) For every structure $\mathfrak{A} = (A, ...)$, there is a $W \subseteq A$ of size at most ω_1 such that for every formula ψ in 2nd order prenex form with no free occurrences of second order variables, and every finite list $p_1, ..., p_k$ of elements of W, **if**

$$\mathfrak{A} \models \psi[\vec{p}]$$

then, letting $\hat{\psi}$ be the formula obtained from ψ by changing all aa quantifiers to stat quantifiers,

$$\mathfrak{A}|W \models \hat{\psi}[\vec{p}].$$

Before proving the theorem, we remark that in parts 2, 3, and 4 of Theorem 3.1, we only mentioned first order parameters from $W \cap A$. If the structure $\mathfrak A$ is sufficiently rich then it often makes sense to also speak of second-order parameters that are elements of W. But in general (e.g. when $\mathfrak A$ is a group) it is more natural to only speak of first order parameters from $W \cap A$.

Proof. (of Theorem 3.1): (4) trivially implies (3), since if ψ is represented as a prenex Π_1^1 formula, then $\hat{\psi} = \psi$ (because there are no aa quantifiers in the original formula at all). Similarly, (3) trivially implies (2) because if ϕ has no second order quantifiers,

$$\operatorname{stat} Z \phi$$

is obviously a Π_1^1 formula.

To see that (2) implies (1), assume (2) and suppose θ is a regular cardinal $\geq \omega_2$. We need to find a $W \prec (H_{\theta}, \in)$ such that $|W| = \omega_1 \subset W$ and for every $s \in W$ that is a stationary collection of countable sets,

$$s \cap W \cap \left[W \cap \bigcup s\right]^{\omega}$$
 is stationary.

Consider $\mathfrak{A} = (H_{\theta}, \in)$. Let $W \subset H_{\theta}$ be as in the statement of (2). Fix any $s \in W$ that is a stationary collection of countable sets. Then

$$\mathfrak{A} \models \operatorname{stat} Z \exists p \ p = Z \cap \bigcup s \text{ and } p \in s$$

and hence, since $s \in W$ and the only second order quantifier in the (prenex) formula above is a *stat* quantifier,

$$\mathfrak{A}|W \models \operatorname{stat} Z \; \exists p \; p = Z \cap \bigcup s \; \text{and} \; p \in s.$$

Unravelling the definition of the satisfaction relation, this means that

$$\{Z \in [W]^{\omega} : Z \cap \bigcup s \in W \cap s\}$$
 is stationary in $[W]^{\omega}$

and it follows that $W \cap s \cap [W \cap \bigcup s]^{\omega}$ is stationary in $[W \cap \bigcup s]^{\omega}$.

To see that $\omega_1 \subset W$, it suffices to show that $W \cap \omega_1$ is uncountable (since by first-order elementarity of W in (H_{θ}, \in) , $W \cap \omega_1$ is transitive). Now

$$\mathfrak{A} \models \operatorname{stat} Z \ \exists p \ \exists \alpha \ (p = Z \cap \omega_1, \ \alpha < \omega_1, \ \operatorname{and} \ \alpha \text{ is an upper bound of } p),$$

so by assumption on W, this statement is also satisfied by $\mathfrak{A}|W$ (note that the parameter ω_1 is an element of W because ω_1 is first-order definable in \mathfrak{A} and W is at least first-order elementary in \mathfrak{A}). If $W \cap \omega_1$ were countable, say $W \cap \omega_1 = \delta < \omega_1$, it would follow that for stationarily many $Z \in W \cap [W]^{\omega}$, there is an $\alpha < W \cap \omega_1 = \delta$ such that α is an upper bound of $Z \cap \delta$. This would be a contradiction, since due to the countability of δ , the set of $Z \in [W]^{\omega}$ such that $\delta \subseteq Z$ is a club.

Finally, to prove that (1) implies (4): fix a structure $\mathfrak{A} = (A, ...)$ and let θ be a sufficiently large regular cardinal with $\mathfrak{A} \in H_{\theta}$. By (1) there is a $W \prec (H_{\theta}, \in, \mathfrak{A})$ witnessing DRP_{internal}. We prove by induction on complexity of formulas ψ in 2nd order prenex form that if $p_1, ..., p_k \in W \cap A$ and

$$\mathfrak{A} \models \psi[\vec{p}]$$

then, letting $\hat{\psi}$ be the result of replacing all aa quantifiers with stat quantifiers,

$$\mathfrak{A}|(W\cap A)\models \hat{\psi}[\vec{p}].$$

We actually need to inductively prove a slightly stronger statement: namely, that whenever ψ is a 2nd order prenex formula, $p_1, \ldots, p_k \in W \cap A$, and $Z_1, \ldots, Z_\ell \in W \cap [A]^\omega$,

$$\mathfrak{A} \models \psi[\vec{Z}, \vec{p}] \implies \mathfrak{A}|(W \cap A) \models \hat{\psi}[\vec{Z}, \vec{p}].$$

So suppose

(2)
$$\mathfrak{A} \models QZ \phi[Z, U_1, \dots, U_k, p_1, \dots, p_\ell]$$

where Q is either the aa or stat quantifier, U_1, \ldots, U_k are each elements of $W \cap [A]^{\omega}$, $p_1, \ldots, p_{\ell} \in W \cap A$, and the inductive hypothesis holds of the formula ϕ .

Now regardless of whether Q is the aa or stat quantifier,

$$\widehat{QZ \ \phi} \equiv \operatorname{stat} Z \ \hat{\phi}.$$

and by (2) (since the aa quantifier is stronger than the stat quantifier)

$$\mathfrak{A} \models \operatorname{stat} Z \phi[Z, U_1, \dots, U_k, p_1, \dots, p_\ell].$$

Hence, by the definition of the stationary logic satisfaction relation,

$$s:=\left\{Z\in [A]^\omega\ :\ \mathfrak{A}\models \phi[Z,\vec{U},\vec{p}\,]\right\} \text{ is stationary in } [A]^\omega.$$

Note that since \vec{U} , \vec{p} , ϕ , and \mathfrak{A} are elements of W, it follows that $s \in W$. Since W is internally diagonally reflecting,

$$s \cap W \cap [W \cap A]^{\omega}$$
 is stationary in $[W \cap A]^{\omega}$.

Consider for the moment an arbitrary $Z \in s \cap W \cap [W \cap A]^{\omega}$. Then

$$\mathfrak{A} \models \phi[Z, \vec{U}, \vec{p}]$$

and it follows by the induction hypothesis (and that Z, \vec{U} , and \vec{p} are each elements of W) that:

$$\mathfrak{A}|(W \cap A) \models \hat{\phi}[Z, \vec{U}, \vec{p}].$$

Hence, we have shown that

$$s \cap W \cap [W \cap A]^{\omega} \subseteq \big\{ Z \in [W \cap A]^{\omega} : \mathfrak{A}|(W \cap A) \models \hat{\phi}[Z, \vec{U}, \vec{p}] \big\}.$$

Since the set on the left side is stationary, the set on the right side is too. So by the definition of the satisfaction relation,

$$\mathfrak{A}|(W\cap A)\models \ \mathrm{stat} Z\ \hat{\phi}[Z,\vec{U},\vec{p}\].$$

This completes the proof of the $(1) \implies (4)$ direction.

4. Concluding remarks

We remark that it is straightforward to show, in ZFC alone, that:

Lemma 4.1. For every structure $\mathfrak{A} = (A, ...)$ there exists a $W \subseteq A$ of size at most ω_1 such that

$$\mathfrak{A}|W \prec^{\Sigma^1_1}_{\perp} \mathfrak{A}$$

(i.e. such that Σ_1^1 formulas satisfied by \mathfrak{A} are also satisfied by $\mathfrak{A}|W$). In fact, if θ is a regular cardinal such that $\mathfrak{A} \in H_{\theta}$, and

$$W \prec_{1st\ order} (H_{\theta}, \in, \mathfrak{A})$$

is such that $|W| = \omega_1$ and

(3)
$$W \cap [W \cap A]^{\omega}$$
 contains a club in $[W \cap A]^{\omega}$

(this always holds for stationarily many W, e.g. for those W that are internally approachable), then

$$\mathfrak{A}|(W\cap A) \prec^{\Sigma^1_1}_{\perp} \mathfrak{A}.$$

We briefly sketch the proof of the lemma; more details, and other related results, can be found in Cox [3]. One proves by induction on complexity of formulas, making use of (3), that if ϕ is $\Sigma_1^1, p_1, \ldots, p_k \in W \cap A$, and $Z_1, \ldots, Z_\ell \in W \cap [A]^\omega$, then

if
$$\mathfrak{A} \models \phi[\vec{Z}, \vec{p}]$$
, then $\mathfrak{A}|(W \cap A) \models \phi[\vec{Z}, \vec{p}]$.

This was basically part of the proof from Fuchino et al [7] that DRP_{IC} implied the LST for Stationary Logic. See [3] for some other related ZFC theorems.

So by Lemma 4.1 one can always get an ω_1 sized substructure that reflects all Σ_1^1 statements downward. And if DRP_{internal} holds, one can also get an ω_1 sized substructure that reflects all Π_1^1 statements downward. But it is consistent that both of these are true, yet no single ω_1 -sized substructure downward reflects all Π_1^1 and all Σ_1^1 statements. In particular, in any model where DRP_{internal} holds and DRP_{IC} fails, Theorem 1.2 tells us that there is a structure such that no ω_1 -sized substructure reflects all Π_1^1 and all Σ_1^1 statements (though there are structures that reflect one or the other).

Another way to view this phenomenon, in terms of DRP-like principles, is that DRP_{internal} yields stationarily many $W \in \wp_{\omega_2}(H_\theta)$ such that the transitive collapse H_W of W is "correct about stationary sets"; i.e. whenever $s \in H_W$ and $H_W \models$ "s is a stationary set of countable sets", then V believes this too. However, if W is not internally club, it is possible (by [2]) that H_W is correct about stationary sets, but is not correct about clubs; i.e. there can be a $c \in H_W$ such that $H_W \models$ "c is a club of countable sets", but V does not believe this. If, on the other hand, W witnesses DRP_{IC}, then H_W is correct about both stationarity and clubness.

References

- Jon Barwise, Matt Kaufmann, and Michael Makkai, Stationary logic, Ann. Math. Logic 13 (1978), no. 2, 171–224, DOI 10.1016/0003-4843(78)90003-7. MR486629
- [2] Sean Cox, Forcing axioms, approachability at ω_2 , and stationary set reflection, Journal of Symbolic Logic, to appear, available at https://arxiv.org/abs/1807.06129.
- [3] _____, Internal reflection and applications, in preparation.
- [4] ______, The Diagonal Reflection Principle, Proceedings of the American Mathematical Society 140 (2012), no. 8, 2893–2902.
- [5] Sean Cox and Gunter Fuchs, in preparation.
- [6] Sean Cox and Hiroshi Sakai, Martin's Maximum and the Diagonal Reflection Principle, under review, available at https://arxiv.org/abs/1904.00262.
- [7] Sakaé Fuchino, André Rodrigues Ottenbreit Maschio, and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, I, preprint (2018).
- [8] Sakaé Fuchino and Toshimichi Usuba, A reflection principle formulated in terms of games, RIMS Kokyuroku 1895, 37–47.
- [9] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR1940513 (2004g:03071)
- [10] John Krueger, Internal approachability and reflection, J. Math. Log. 8 (2008), no. 1, 23–39.
- [11] David W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), no. 1, 57–103. MR0457191 (56 #15406)
- [12] Saharon Shelah, Generalized quantifiers and compact logic, Trans. Amer. Math. Soc. 204 (1975), 342–364, DOI 10.2307/1997362. MR376334

Email address: scox9@vcu.edu

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, VIRGINIA COMMON-WEALTH UNIVERSITY, 1015 FLOYD AVENUE, RICHMOND, VIRGINIA 23284, USA