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1 Introduction

As is well known, the steady-state Oseen problem consists in solving the following set of
equations 

−∆u+ λ∂1u+∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

lim
|x|→∞

u(x) = 0,

(1.1)

where Ω is an exterior domain of Rn, f : Ω → Rn and λ (> 0) are given external force
and dimensionless (Reynolds) number, whereas u : Ω→ Rn and p : Ω→ R are unknown
velocity and pressure fields, respectively.

Problem (1.1) has been investigated by a number of authors, beginning with the
pioneering work [4]; for a rather detailed, yet incomplete, list of contributors and corre-
sponding contributions we refer the reader to [5, Chapter VII], [2] and the bibliography
there included. The peculiarity of these results is due to the circumstance that the
function space where u belongs is not a full Sobolev space but, instead, a homogeneous
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Sobolev space. The latter means that for a given f in the Lebesgue space Lq3(Ω) (suit-
able q3 ∈ (1,∞)), the associated velocity-field solution u, its first derivatives and its
second derivatives belong, in the order, to different Lqi-spaces, i = 1, 2, 3, with

q1 > q2 > q3. (1.2)

These findings are sharp, in the sense that, under the stated assumptions on f , it can
be shown by means of counterexamples that the numbers q1, q2, q3 must, in general, be
different and satisfy (1.2).

However, particularly motivated by the recent approaches to the study of time-periodic
well-posedness [9, 8] and time-periodic bifurcation [6, 7], we would like to investigate
which further assumptions (if any) f must satisfy in order to ensure that u belongs to
the full Sobolev space W2,q(Ω) (q ≡ q3). A positive answer to this question would, for
example, allow to frame time-periodic bifurcation in a full Sobolev space and hopefully,
analyze the phenomenon of secondary bifurcation in a similar way as that employed for
flow in bounded domains [10]. Notice that the rigorous interpretation of this phenomenon
in the case of an exterior domain is, to date, an entirely open problem.

The main objective of this paper is to show that if, in addition to being in Lq, f is
in the dual, D−1,r

0 (Ω), of a suitable homogeneous Sobolev space1, with r = r(q, n), then
there exists a unique (u, p) solving (1.1) with, in particular, u ∈ W2,q(Ω),∇p ∈ Lq(Ω).
Moreover, the solution depends continuously on f , uniformly in λ ∈ (0, λ0) for arbitrarily
fixed λ0 > 0; see Theorem 2.1.

In view of the results established in [9], Theorem 2.1 produces an immediate corollary
that ensures that a similar property holds also for time-periodic solutions of period T > 0
to the (linear) Oseen problem (see (2.7)), provided f is periodic of the same period T ;
see Theorem 2.3.

Finally, combining Theorem 2.1 and Theorem 2.3 with the contraction mapping the-
orem, we may extend the results proved there to the fully nonlinear Navier–Stokes case
(see (2.10), (2.12)), on condition that the “size” of f and λ is suitably restricted, and
n ≥ 3. We thus show existence in full Sobolev space for both steady-state (Theorem
2.5) and time-periodic (Theorem 2.7) Navier–Stokes problems in exterior domain.

The plan of the paper is as follows. In Section 2, after recalling some basic notation
used in the paper, we state and comment our main results. In the subsequent Section
3, we provide the proof of well-posedness for the steady-state (Theorem 2.1) and time-
periodic (Theorem 2.3) Oseen problem. Finally, in Section 4 we extend the results of
the preceding section to the fully nonlinear case; see Theorem 2.5 and Theorem 2.7.

2 Statement of the Main Results

We begin to introduce our principal notation. Unless otherwise stated, by the symbol Ω
we mean a (smooth) exterior domain of Rn, i.e., the complement of a (smooth) compact
set Ω0. With the origin of coordinates in the interior of Ω0 we put BR := {x ∈ Rn :
|x| < R}, ΩR := Ω ∩ BR, and ΩR := Ω \ BR.

1See the next section for the precise definition of D−1,r
0 (Ω).

2



For (t, x) ∈ R × Ω, we set ∂t := ∂/∂t, ∂j := ∂/∂xj , j = 1, . . . , n, and, as customary,
for α ∈ Nn0 we set Dα := ∂α1

1 · · · ∂αnn , and denote by ∇ku the collection of all spatial
derivatives Dαu of u of order |α| = k.

For A an open set of Rn and q ∈ [1,∞], we denote by Lq(A) and Wk,q(A) the classical
Lebesgue and Sobolev spaces of order k ∈ N, equipped with norms ‖·‖q = ‖·‖q;A and
‖·‖k,q = ‖·‖k,q;A, respectively. We also consider homogeneous Sobolev spaces:

Dk,q(A) := {u ∈ L1
loc(A) | ∇ku ∈ Lq(A)},

with corresponding seminorm

|u|k,q = |u|k,q;A := ‖∇ku‖q;A :=
∑
|α|=k

‖Dαu‖q;A ,

and Dk,q
0 (A) obtained by (Cantor) completing C∞0 (A) in the norm | · |k,q. We indicate

the latter’s dual space by D−k,q
′

0 (A), where q′ = q/(q−1), q ∈ (1,∞), with norm | · |−k,q′ .
Let X be a seminormed vector space, T > 0, and q ∈ [1,∞]. Then Lqper(R;X) is the

space of all measurable f : R → X such that f(t + T ) = f(t) for almost all t ∈ R and
‖f‖Lqper(R;X) <∞, where

‖f‖Lqper(R;X) :=

(
1

T

∫ T
0
‖f(t)‖qX dt

) 1
q

if q <∞, ‖f‖L∞per(R;X) := ess sup
t∈R

‖f(t)‖X .

For simplicity, we set Lqper(R × A) := Lqper(R; Lq(A)) and ‖f‖q := ‖f‖Lqper(R;Lq(A)) for

f ∈ Lqper(R×A). Moreover, we introduce the “maximal regularity space”

W1,2,q
per (R×A) :=

{
u ∈ Lqper(R×A)

∣∣ u ∈ Lqper(R; W2,q(A)), ∂tu ∈ Lqper(R×A)
}
,

equipped with the norm

‖u‖1,2,q := ‖u‖
W1,2,q

per (R×A)
:= ‖u‖Lqper(R;W2,q(A)) + ‖∂tu‖Lq(R×A).

For functions f ∈ Lqper(R;X) we introduce the projections

Pf :=
1

T

∫ T
0
f(t) dt, P⊥f := f − Pf,

and we call Pf ∈ X the steady-state part and P⊥f ∈ Lqper(R;X) the purely oscillatory
part of f . Setting Lqper,⊥(R;X) := P⊥Lqper(R;X), we obtain the decomposition

Lqper(R;X) = X ⊕ Lqper,⊥(R;X).

We shall also use the notation

Lqper,⊥(R×A) := P⊥Lqper(R×A), W1,2,q
per,⊥(R×A) := P⊥W1,2,q

per (R×A).
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Unless otherwise stated, we do not distinguish between the real-valued function space
X and its Rn-valued analogue Xn, n ∈ N.

We use the letter C to denote generic positive constants in our estimates. The depen-
dence of a constant C on quantities a, b, . . ., will be emphasized by writing C(a, b, . . .).

We are now in a position to state our main findings. We begin with the following
theorem that, in fact, represents the key result upon which all the others rely.

Theorem 2.1. Let Ω ⊂ Rn, n ≥ 2, and let q ∈ (1,∞), r ∈ (n+1
n , n + 1), 0 < λ ≤ λ0.

Set s := (n+1)r
n+1−r . Then, for every f ∈ Lq(Ω)n ∩D−1,r

0 (Ω)n there exists a solution

u ∈ D2,q(Ω)n ∩D1,r(Ω)n ∩ Ls(Ω)n, p ∈ D1,q(Ω)

to (1.1). This solution satisfies ∂1u ∈ Lq(Ω)n and obeys the estimates

|u|1,r + λ
1+δ
n+1 ‖u‖ (n+1)r

n+1−r
≤ Cλ−

M
n+1 |f |−1,r, (2.1)

|u|2,q + λ‖∂1u‖q + ‖∇p‖q ≤ C
(
‖f‖q + λ−

M
n+1 |f |−1,r

)
(2.2)

for some constant C = C(n, q, r,Ω, λ0) > 0, where

M =


2 if n+1

n < r ≤ n
n−1 ,

0 if n
n−1 < r < n,

1 if n ≤ r < n+ 1,

δ =

{
1 if n = r = 2,

0 else.
(2.3)

In particular, if s ≤ q, then u ∈W2,q(Ω)n and

λ
(1+δ)θ
n+1 ‖u‖q + λ

(1+δ)θ
2(n+1) |u|1,q + |u|2,q ≤ C

(
‖f‖q + λ−

M
n+1 |f |−1,r

)
(2.4)

where

θ :=
qs

n(q − s) + qs
=

(n+ 1)qr

n(n+ 1)(q − r) + qr
∈ [0, 1]. (2.5)

Moreover, if (u1, p1) is another solution to (1.1) that belongs to the same function class
as (u, p), then u = u1 and p = p1 + c for some constant c ∈ R.

Additionally, if r > n
n−1 , we can choose p such that p ∈ Lr(Ω). Then ∂1u ∈ D−1,r(Ω)

and it holds

‖p‖r + λ|∂1u|−1,r ≤ Cλ
− M
n+1 |f |−1,r. (2.6)

Remark 2.2. Note that the condition s ≤ q is equivalent to 1
q ≤

1
r −

1
n+1 . Therefore, the

assumption r > n+1
n in Theorem 2.1 implies the necessary condition q > n+1

n−1 .
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The first, important consequence of this theorem is presented in the next one concern-
ing the corresponding linear time-periodic problem

∂tu−∆u+ λ∂1u+∇p = f in R× Ω,

div u = 0 in R× Ω,

u = 0 on R× ∂Ω,

lim
|x|→∞

u(t, x) = 0, t ∈ R,

(2.7)

with f : R × Ω → Rn a given time-periodic external force. Precisely, we will prove the
following.

Theorem 2.3. Let Ω ⊂ Rn, n ≥ 2, and let q ∈ (1,∞), r ∈ (n+1
n , n+ 1) and 0 < λ ≤ λ0.

Set s := (n+1)r
n+1−r . Then, for every f ∈ Lq(R×Ω)n with Pf ∈ D−1,r(Ω)n there is a solution

(u, p) = (v + w, p+ q) to (2.7) with

v ∈ D2,q(Ω)n ∩D1,r(Ω)n ∩ Ls(Ω)n, p ∈ D1,q(Ω),

w ∈W1,2,q
per,⊥(R× Ω)n, q ∈ Lqper,⊥(R; D1,q(Ω)),

which satisfies

|v|1,r + λ
1+δ
n+1 ‖v‖s ≤ Cλ−

M
n+1 |Pf |−1,r,

|v|2,q + λ‖∂1v‖q + ‖∇p‖q ≤ C
(
‖Pf‖q + λ−

M
n+1 |Pf |−1,r

)
,

‖w‖1,2,q + ‖∇q‖q ≤ C‖P⊥f‖q

(2.8)

for a constant C = C(q, r,Ω, λ0) > 0 and M and δ as in (2.3). Moreover, if (u1, p1) is
another solution to (2.7) that belongs to the same function class as (u, p), then u = u1

and p = p1 + p0 for some T -periodic function p0 : R→ R.
In particular, if s ≤ q, then u ∈W1,2,q

per (R× Ω)n and

λ
(1+δ)θ
n+1 ‖v‖q + λ

(1+δ)θ
2(n+1) |v|1,q + |v|2,q ≤ C

(
‖Pf‖q + λ−

M
n+1 |Pf |−1,r

)
(2.9)

where θ ∈ [0, 1] is given in (2.5).

Remark 2.4. The observation made in Remark 2.2 applies to Theorem 2.3 as well.

Next, combining the above theorems with the contraction mapping theorem, we are
able to extend analogous results to the nonlinear case, under the assumption of “small”
data.

More specifically, let us begin to consider the steady-state problem
−∆v + λ∂1v +∇p+ v · ∇v = f in Ω,

div v = 0 in Ω,

v = −λ e1 on ∂Ω,

lim
|x|→∞

v(x) = 0.

(2.10)

We shall prove the following result.
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Theorem 2.5. Let Ω ⊂ Rn, n ≥ 3, and let q, r ∈ (1,∞) with

q ≥ n

3
,

1

3q
+

1

n+ 1
≤ 1

r
,

2

q
− 4

n
≤ 1

r
,

2

n+ 1
≤ 1

r
<

{
n−1
n if n = 3, 4,
n
n+1 if n ≥ 5.

(2.11)

Then there is λ0 > 0 such that for all 0 < λ ≤ λ0 we may find ε > 0 such that for all
f ∈ Lq(Ω) ∩D−1,r

0 (Ω) satisfying ‖f‖q + |f |−1,r ≤ ε there exists a pair (v, p) with

v ∈ D2,q(Ω) ∩D1,r(Ω) ∩ L
(n+1)r
n+1−r (Ω), ∂1v ∈ Lq(Ω), p ∈ D1,q(Ω)

satisfying (2.10). In particular, if s ≤ q, then v ∈W2,q(Ω)n.

Remark 2.6. As in Remark 2.2, the additional assumption s ≤ q is equivalent to 1
q ≤

1
r −

1
n+1 . Therefore, the upper bound in (2.11) leads to the necessary conditions

q >
n(n+ 1)

n2 − n− 1
if n = 3, 4, q >

n+ 1

n− 1
if n ≥ 5.

Likewise, consider the problem
∂tv −∆v + λ∂1v +∇p+ v · ∇v = f in R× Ω,

div v = 0 in R× Ω,

v = −λ e1 on R× ∂Ω,

lim
|x|→∞

v(t, x) = 0, t ∈ R.

(2.12)

where f is a suitably prescribed time-periodic function. We shall prove the following.

Theorem 2.7. Let Ω ⊂ Rn, n ≥ 3, and let q, r ∈ (1,∞) with

n+ 2

3
≤ q ≤ n+ 1,

n(n+ 1)

n2 − n− 1
< q, (2.13)

2

q
− 4

n
≤ 1

r
≤ 2

q
,

1

q
+

1

n+ 1
≤ 1

r
<

{
n−1
n if n = 3, 4,
n
n+1 if n ≥ 5.

(2.14)

Then there is λ0 > 0 such that for all 0 < λ ≤ λ0 we can find ε > 0 such that for all
f ∈ Lqper(R × Ω)n with Pf ∈ D−1,r

0 (Ω)n satisfying ‖f‖q + |Pf |−1,r ≤ ε there exists a
unique solution

(v, p) ∈W1,2,q
per (R× Ω)n × Lqper(R; D1,q(Ω)), Pp ∈ Lr(Ω)

to (2.12).

Remark 2.8. For n = 3, condition (2.13) yields q ∈ (12
5 , 4]. For n ≥ 4, the second

restriction in (2.13) is redundant and it simplifies to q ∈ (n+2
3 , n+ 1].
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3 Proofs of Theorem 2.1 and Theorem 2.3

In order to prove Theorem 2.1, we first establish the following density result, which
enables us to consider problem (1.1) only for right-hand sides f ∈ C∞0 (Ω)n.

Proposition 3.1. Let Ω ⊂ Rn be an arbitrary domain and let q, r ∈ (1,∞). Then
C∞0 (Ω) is a dense subset of Lq(Ω) ∩D−1,r

0 (Ω).

Proof. The space Lq(Ω) ∩ D−1,r
0 (Ω) can be identified with the dual space of Lq

′
(Ω) +

D1,r′

0 (Ω), where s′ = s/(s − 1). Identifying elements of C∞0 (Ω) with the corresponding

functionals, we consider g ∈ Lq
′
(Ω) + D1,r′

0 (Ω) that is an element of the kernel of each
functional in C∞0 (Ω), i.e., ∫

Ω
ϕg dx = 0

for all ϕ ∈ C∞0 (Ω). This implies g = 0. Consequently, by a standard duality argument,
C∞0 (Ω) is dense in Lq(Ω) ∩D−1,r

0 (Ω).

We recall the notion of weak solutions: A pair (u, p) ∈ D1,r
0 (Ω)n × Lrloc(Ω) is called

weak solution to (1.1) if div u = 0 and∫
Ω
∇u : ∇ϕ+ λ∂1u · ϕdx =

∫
Ω
p divϕ+ f · ϕdx

for all ϕ ∈ C∞0 (Ω)n with divϕ = 0. We show that weak solutions have better regularity
when f is sufficiently regular.

Lemma 3.2. Let Ω ⊂ Rn be an exterior domain of class C2. Let q, r, s ∈ (1,∞),
f ∈ C∞0 (Ω)n, and let (u, p) ∈

(
D1,r(Ω)n ∩ Ls(Ω)n

)
× Lrloc(Ω) be a weak solution to (1.1).

Then u ∈ D2,q(Ω)n, ∂1u ∈ Lq(Ω)n and p ∈ D1,q(Ω), and for each R > 0 with ∂Ω ⊂ BR

there exists C = C(n, q,Ω, R) > 0 such that

|u|2,q + λ‖∂1u‖q + |p|1,q ≤ C(1 + λ4)
(
‖f‖q + ‖u‖q;ΩR + ‖p‖q;ΩR

)
. (3.1)

Proof. By [5, Theorem VII.1.1], we have u ∈W2,q
loc(Ω)∩C∞(Ω) and p ∈W1,q

loc(Ω)∩C∞(Ω).
Let 0 < R0 < R1 < R such that ∂BR0 ⊂ Ω, and let χ ∈ C∞0 (BR1) with χ ≡ 1 on BR0 . We
set v := (1−χ)u+B(u ·∇χ), where B denotes the Bogovskĭı operator, and p := (1−χ)p.
Then v ∈W2,q

loc(Rn) ∩D1,r(Rn) ∩ Ls(Rn) and p ∈W1,q
loc(Rn) satisfy{

−∆v + λ∂1v +∇p = F in Rn,
div v = 0 in Rn

(3.2)

with

F := (1− χ)f + 2∇χ · ∇u+ ∆χu− λ∂1χu+ p∇χ+
[
−∆ + λ∂1

]
B(u · ∇χ).
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By [5, Theorem VII.7.1], there exists a solution (v1, p1) ∈ D2,q(Ω)×D1,q(Ω) to (3.2) that
satisfies

|v1|2,q + λ‖∂1v1‖q + |p1|1,q ≤ C‖F‖q. (3.3)

Now set w := v−v1. Then w is a solution to the homogeneous Oseen system in the whole
space. Therefore, w = v−v1 is a polynomial, which can be readily shown with the help of
Fourier transform. From [5, Theorem VII.6.1] and f ∈ C∞0 (Ω) we conclude Dαu(x)→ 0
and thus Dαv(x)→ 0 as |x| → ∞ for each α ∈ Nn0 . In virtue of Dαv1 ∈ Lq(Ω) for |α| = 2,
the polynomial Dαw = Dαv − Dαv1 must thus be zero, i.e., Dαw = 0 for |α| = 2. In
the same way we conclude ∂1w = 0 and, in consequence, ∇q = 0. Hence we can replace
(v1, p1) with (v, p) in estimate (3.3). Since u = v and p = p on ΩR1 , estimate (3.3) thus
implies

|u|2,q;ΩR1 + λ‖∂1u‖q;ΩR1 + |p|1,q;ΩR1 ≤ |v|2,q + λ‖∂1v‖q + |p|1,q
≤ C

(
‖f‖q + (1 + λ)‖u‖1,q;ΩR1

+ ‖p‖q;ΩR1

)
.

(3.4)

To derive the estimate near the boundary, we use another cut-off function χ1 ∈ C∞0 (BR)
with χ1 ≡ 1 on BR1 , and we set v := χ1u and p := χ1p. Then (v, p) ∈W2,q(Ω)×W1,q(Ω)
is a solution to

−∆v +∇p = χ1f − 2∇χ1 · ∇u−∆χ1u− χ1λ∂1u+ p∇χ1 in ΩR,

div v = u · ∇χ1 in ΩR,

v = 0 on ∂ΩR.

It is well known (see [5, Exercise IV.6.3] for example) that then (v, p) is subject to the
estimate

‖v‖2,q + ‖∇p‖q ≤ C
(
‖f‖q;ΩR + (1 + λ)‖u‖1,q;ΩR + ‖p‖q;ΩR

)
.

Since u = v and p = p on ΩR1 , a combination of this estimate with (3.4) yields

|u|2,q + λ‖∂1u‖q + |p|1,q ≤ C(1 + λ)
(
‖f‖q + (1 + λ)‖u‖1,q;ΩR + ‖p‖q;ΩR

)
.

Finally, an application of Ehrling’s inequality

|u|1,q;ΩR ≤ C(ε−1‖u‖q;ΩR + ε|u|2,q;ΩR)

(see [1, Theorem 5.2]) for ε > 0 sufficiently small leads to (3.1).

Proof of Theorem 2.1. For the moment, consider f ∈ C∞0 (Ω). The existence of a weak
solution (u, p) to (2.1) with u ∈ D1,r(Ω)∩Ls(Ω) satisfying (2.1) follows from [11, Theorem

2.2]. In the case q > n
n−1 , one shows p ∈ Lr(Ω) and ‖p‖r ≤ Cλ−

M
n+1 |f |−1,r in the same

way as in [5, Proof of Theorem VII.7.2]. Then, for ϕ ∈ C∞0 (Ω)n we have

λ

∫
Ω
∂1u · ϕdx =

∫
Ω

(
f · ϕ+ pdivϕ−∇u : ∇ϕ

)
dx ≤

(
|f |−1,r + ‖p‖r + ‖∇u‖r

)
‖∇ϕ‖r′ ,
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where r′ = r/(r − 1), which implies ∂1u ∈ D−1,r
0 (Ω) and

λ|∂1u|−1,r ≤ C
(
|f |−1,r + ‖p‖r + ‖∇u‖r

)
≤ Cλ−

M
n+1 |f |−1,r.

This shows (2.6) if r > n
n−1 . If this is not the case, we instead obtain a local estimate in

the following way: First of all, by [5, Lemma VII.1.1] we have p ∈ Lr(ΩR) for all R > 0
with ∂BR ⊂ Ω. For fixed R, we can add a constant to p such that

∫
ΩR

p = 0. Now let

ψ ∈W1,r′

0 (ΩR)n, r′ = r/(r − 1), be a solution to the problem

divψ = |p|r−2p− 1

|ΩR|

∫
ΩR

|p|r−2pdx =: g in ΩR,

which exists since g has vanishing mean value and satisfies g ∈ Lr
′
(ΩR) (see [5, Theorem

III.3.6] for example). Moreover, we have

‖ψ‖1,r′;ΩR ≤ C‖g‖r′;ΩR ≤ C‖p‖
r−1
r;ΩR

.

Since (u, p) is a weak solution and p has vanishing mean value on ΩR, we deduce

‖p‖rr;ΩR =

∫
ΩR

pdivψ dx+

∫
ΩR

pdx
1

|ΩR|

∫
ΩR

|p|r−2pdx

=

∫
ΩR

∇u : ∇ψ − λ∂1u · ψ − f · ψ dx

≤ C(1 + λ0)
(
‖∇u‖r + ‖f‖−1,r;ΩR

)
‖ψ‖1,r′;ΩR

≤ C(1 + λ0)
(
‖∇u‖r + |f |−1,r

)
‖p‖r−1

r;ΩR
.

Using estimate (2.1), this leads to

‖p‖r;ΩR ≤ Cλ
− M
n+1 |f |−1,r. (3.5)

Next, by Lemma 3.2, from f ∈ C∞0 (Ω) we conclude u ∈ D2,q(Ω) and p ∈ D1,q(Ω) and
the validity of (3.1). We apply the estimate

‖u‖q;ΩR ≤ C(ε)‖u‖σ;ΩR + ε|u|1,q;ΩR

for ε > 0 and σ ∈ (1,∞) several times to deduce

‖u‖q;ΩR ≤ C(ε)‖u‖s + C(ε)|u|1,r + ε|u|2,q,
‖p‖q;ΩR ≤ C(ε)‖p‖r;ΩR + ε|p|1,q.

Choosing ε > 0 sufficiently small and combining these with the estimates (3.1), (2.1) and
(3.5), we conclude (2.2) for f ∈ C∞0 (Ω). Employing the above estimates and Proposition
3.1, we can finally extend the result to general f ∈ Lq(Ω) ∩ D−1,r

0 (Ω) by a standard
density argument.
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Moreover, the additional assumption s ≤ q yields the embedding

Ls(Ω) ∩D2,q(Ω) ↪→W2,q(Ω),

so that u ∈W2,q(Ω) in this case, and the Gagliardo–Nirenberg inequality (see [3]) implies

‖u‖q ≤ C‖u‖θs|u|
1−θ
2,q ≤ Cλ

− (1+δ)θ
n+1

(
‖f‖q + λ−

M
n+1 |f |−1,r

)
and

|u|1,q ≤ C‖u‖
1/2
q |u|

1/2
2,q ≤ Cλ

− (1+δ)θ
2(n+1)

(
‖f‖q + λ−

M
n+1 |f |−1,r

)
,

where we used (2.2). This shows estimate (2.4) and completes the proof.

Now let us turn to the time-periodic Oseen problem (2.7). We recall the following
result, which treats the case Pf = 0.

Theorem 3.3. Let Ω ⊂ Rn, n ≥ 2, be an exterior domain of class C2, q ∈ (1,∞) and
λ ∈ [0, λ0], λ0 > 0. For any f ∈ Lqper,⊥(R× Ω)n there is a solution

(u, p) ∈W1,2,q
per,⊥(R× Ω)n × Lqper,⊥(R; D1,q(Ω))

to (2.7), which satisfies

‖u‖1,2,q + ‖∇p‖q ≤ C‖f‖q (3.6)

for a constant C = C(n, q,Ω, λ0) > 0. If (u1, p1) ∈W1,2,q
per,⊥(R×Ω)n × Lqper,⊥(R; D1,q(Ω))

is another solution to (2.7), then u = u1 and p = p1 + p0 for some T -periodic function
p0 : R→ R.

Proof. The result for n = 3 has been established in [9, Theorem 5.1]. The general case
n ≥ 2 is proved along the same lines.

A combination of Theorem 2.1 and Theorem 3.3 allows us to treat general time-
periodic forcing terms and immediately leads to a proof of Theorem 2.3.

Proof of Theorem 2.3. Set f1 := Pf and f2 := P⊥f . Let (v, p) ∈
(
Ls∩D2,q(Ω)

)
×D1,q(Ω)

be a solution to (1.1) with right-hand side f = f1 that exists due to Theorem 2.1.
Moreover, let (w, q) ∈ W1,2,q

per,⊥(R × Ω) × Lqper,⊥(R; D1,q(Ω)) be a solution to (2.7) with
right-hand side f = f2 that exists due to Theorem 3.3. Then (u, p) := (v+w, p+ q) is a
solution to (2.7) with the asserted properties. The uniqueness statement is deduced in
a similar way.

10



4 Proofs of Theorem 2.5 and Theorem 2.7

In the following we focus on the time-periodic case and the proof of Theorem 2.7. The
proof of Theorem 2.5 is very similar but less involved, and we will sketch it at the end
of this section.

First, we reformulate (2.12) as a problem with homogeneous boundary conditions. For
this purpose, let R > 0 with ∂BR ⊂ Ω, and let ϕ ∈ C∞0 (Rn) with ϕ ≡ 1 on BR. We
define the function V : Rn → Rn by

V (x) =
λ

2

[
−∆ +∇ div

]
(ϕ(x)x2

2 e1).

Then div V ≡ 0 and V (x) = −λ e1 for x ∈ ∂Ω, and V obeys the estimate

‖−∆V + λ∂1V ‖q + |−∆V + λ∂1V |−1,r ≤ Cλ(1 + λ). (4.1)

We set u(t, x) := v(t, x) − V (x), p := p. Then (v, p) is a T -time-periodic solution to
(2.12) if and only if (u, p) is a T -time-periodic solution to

∂tu−∆u+ λ∂1u+∇p = f +N (u) in R× Ω,

div u = 0 in R× Ω,

u = 0 on R× ∂Ω,

lim
|x|→∞

u(x) = 0,

(4.2)

where
N (u) = −u · ∇u− u · ∇V − V · ∇u− V · ∇V + ∆V − λ∂1V.

We will show existence of a solution to (4.2) in the function space

Xq,r
λ :=

{
u ∈W1,2,q

per (R× Ω)n
∣∣ div u = 0, u

∣∣
R×∂Ω

= 0, ‖Pu‖λ <∞
}
,

‖v‖λ := |v|2,q + |v|1,r + λ
1

n+1 ‖v‖s, s :=
(n+ 1)r

n+ 1− r
,

which we equip with the norm

‖u‖Xq,rλ := ‖Pu‖λ + ‖P⊥u‖1,2,q.

Then Xq,r
λ is a Banach space since s ≤ q by (2.14). The following lemma enables us to

derive suitable estimates for N (u) when u ∈ Xq,r
λ .

Lemma 4.1. Let q, r ∈ (1,∞) satisfy (2.13) and (2.14), 0 < λ ≤ λ0, and let u1, u2 ∈
Xq,r
λ . Set vj := Puj, wj := P⊥uj for j = 1, 2. Then

‖v1 · ∇v2‖q ≤ Cλ−
θ

n+1 ‖v1‖λ‖v2‖λ, (4.3)

|v1 · ∇v2|−1,r ≤ Cλ
− η
n+1 ‖v1‖λ‖v2‖λ, (4.4)

‖w1 · ∇w2‖q ≤ C‖w1‖1,2,q‖w2‖1,2,q, (4.5)

|P(w1 · ∇w2)|−1,r ≤ C‖w1‖1,2,q‖w2‖1,2,q, (4.6)

‖v1 · ∇w2‖q ≤ Cλ−
ζ

n+1 ‖v1‖λ‖w2‖1,2,q, (4.7)

‖w1 · ∇v2‖q ≤ Cλ−
ζ

n+1 ‖w1‖1,2,q‖v2‖λ, (4.8)
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where ζ ∈ [0, 1) and θ, η ∈ [0, 2]. Moreover, η = 2 if and only if r = (n+ 1)/2.

Proof. Due to (2.14), the Gagliardo–Nirenberg inequality (see [3]) implies

‖v1‖3q ≤ C|v1|θ12,q‖v1‖1−θ1s , ‖v2‖3q/2 ≤ C|v2|θ22,q‖v2‖1−θ2s ,

for θ1, θ2 ∈ [0, 1]. An application of Hölder’s inequality thus yields

‖v1 · ∇v2‖q ≤ ‖v1‖3q‖∇v2‖3q/2 ≤ C|v1|θ12,q‖v1‖1−θ1s |v2|θ22,q‖v2‖1−θ2s ≤ Cλ−
θ

n+1 ‖v1‖λ‖v2‖λ,

which is (4.3) with θ = 2 − θ1 − θ2. Since 1
q −

2
n ≤

1
2r ≤

1
s , in the same way one shows

(4.4) by estimating

|v1 · ∇v2|−1,r = |div(v1 ⊗ v2)|−1,r ≤ C‖v1‖2r‖v2‖2r ≤ Cλ−
η
n+1 ‖v1‖λ‖v2‖λ.

Note that (2.14) implies η ∈ [0, 2]. To derive (4.5), we distinguish two different cases.
On the one hand, if q > max{2, n/2}, Hölder’s inequality and the embedding theorem
from [9, Theorem 4.1] yield

‖w1 · ∇w2‖q ≤ ‖w1‖Lqper(R;L∞(Ω))‖∇w2‖L∞per(R;Lq(Ω)) ≤ C‖w1‖1,2,q‖w2‖1,2,q.

On the other hand, if (n+ 2)/3 ≤ q < (n+ 1)/2, we conclude in the same way

‖w1 · ∇w2‖q ≤ ‖w1‖
L2q
per(R;L

nq
n+1−2q (Ω))

‖∇w2‖
L2q
per(R;L

nq
2q−1 (Ω))

≤ C‖w1‖1,2,q‖w2‖1,2,q.

This yields (4.5). Since (2.13) and (2.14) imply 1
r ≥

2(n+2)
nq − 6

n , and we have 1
q −

2
n ≤

1
2r ≤

1
q , for the derivation of (4.6) we can again use Hölder’s inequality and [9, Theorem

4.1] to deduce

|P(w1 · ∇w2)|−1,r = |divP(w1 ⊗ w2)|−1,r ≤ C‖w1 ⊗ w2‖L1
per(R;Lr(Ω))

≤ C‖v‖L2
per(R;L2r(Ω))‖w‖L2

per(R;L2r(Ω)) ≤ C‖v‖1,2,q‖w‖1,2,q.

The remaining estimates (4.7) and (4.8) follow in a similar fashion.

Proof of Theorem 2.7. It suffices to show existence of a solution to (4.2). Consider the
solution operator

Sλ :
(
Lq(Ω)n ∩D−1,r

0 (Ω)n
)
⊕ Lqper,⊥(R× Ω)n → Xq,r

λ , f 7→ u,

where u is the unique velocity field of the solution (u, p) ∈ Xq,r
λ × Lqper(R; D1,q(Ω)) to

(2.7) that exists due to Theorem 2.3. This yields a family of continuous linear operators
with

‖Sλf‖Xq,rλ ≤ C
(
‖f‖q + λ−

M
n+1 |Pf |−1,r

)
, (4.9)
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with M as in (2.3), compare estimate (2.8). Then (u, p) is a solution to (4.2) if u is a
fixed point of the mapping

F : Xq,r
λ → Xq,r

λ , u 7→ Sλ(f +N (u)).

Now consider u ∈ Aρ :=
{
u ∈ Xq,r

λ

∣∣ ‖u‖λ ≤ ρ
}

for a radius ρ > 0 that will be chosen
below, and set v := Pu, w := P⊥u. Then we have

PN (u) = −v · ∇v − P(w · ∇w)− v · ∇V − V · ∇v − V · ∇V + ∆V − λ∂1V,

P⊥N (u) = −v · ∇w − w · ∇v − P⊥(w · ∇w)− w · ∇V − V · ∇w,

and an application of estimates (4.9) and (4.1) together with Lemma 4.1 leads to

‖F(u)‖Xq,rλ ≤ C
(
‖f +N (u)‖q + λ−

M
n+1 |P(f +N (u))|−1,r

)
≤ C

(
‖f‖q + λ−

M
n+1 |f |−1,r + (1 + λ−

M
n+1 )(λ+ λ2)

+
(
1 + λ−

θ
n+1 + λ−

ζ
n+1 + λ−

M+η
n+1
)(
‖u‖Xq,rλ + ‖V ‖Xq,rλ

)2)
≤ C

(
λ−

M
n+1 (ε+ λ) +

(
λ−

θ
n+1 + λ−

ζ
n+1 + λ−

M+η
n+1
)
(ρ+ λ)2

)
.

Similarly, for u1, u2 ∈ Aρ we obtain

‖F(u1)−F(u2)‖Xq,rλ ≤ C
(
‖N (u1)−N (u2)‖q + λ−

M
n+1 |P(N (u1)−N (u2))|−1,r

)
≤ C

(
1 + λ−

θ
n+1 + λ−

ζ
n+1 + λ−

M+η
n+1
)
(‖u1‖λ + ‖u2‖Xq,rλ + ‖V ‖Xq,rλ )‖u1 − u2‖Xq,rλ

≤ C
(
λ−

θ
n+1 + λ−

ζ
n+1 + λ−

M+η
n+1
)
(ρ+ λ)‖u1 − u2‖Xq,rλ .

Note that the assumptions imply max{θ, ζ,M +η} < n+1−M , so that we can consider
γ ∈ R with

1 ≤ n+ 1

n+ 1−M
< γ <

n+ 1

max{θ, ζ,M + η}
.

Now we choose λ = ε = ργ and ρ > 0 so small that

C
(
ργ−

γM
n+1 +ρ2−γ θ

n+1 +ρ2−γ ζ
n+1 +ρ2−γM+η

n+1
)
≤ ρ, C

(
ρ1−γ θ

n+1 +ρ1−γ ζ
n+1 +ρ1−γM+η

n+1
)
≤ 1

2
.

This ensures that F : Aρ → Aρ is a contractive self-mapping, and the contraction map-
ping principle finally yields the existence of a fixed point of F . This completes the
proof.

Proof of Theorem 2.5. We may proceed in a similar way as in the previous proof. Here
we introduce the function space

Zq,rλ :=
{
u ∈ D2,q(Ω)n ∩D1,r(Ω)n ∩ Ls(Ω)n

∣∣ div u = 0, u
∣∣
∂Ω

= 0
}
,

‖u‖Zq,rλ := ‖u‖λ := |u|2,q + |u|1,r + λ
1

n+1 ‖u‖s, s :=
(n+ 1)r

n+ 1− r
,
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and the solution operator Sλ :
(
Lq(Ω)n∩D−1,r

0 (Ω)n
)
→ Zq,rλ , f 7→ u, where u is the unique

velocity field of a solution (u, p) to (1.1) that exists due to Theorem 2.1. Then (v, p) is
a solution to (2.10) if and only if (u, p) := (v − V, p) is a fixed-point of the mapping

F : Zq,rλ → Zq,rλ , u 7→ Sλ(f +N (u)),

where V and N (u) are given as before. The existence of such a fixed point can then be
shown as in the proof of Theorem 2.7 by making use of estimates (4.3) and (4.4).
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