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Here we survey our paper [4] and give an example of application, Corollary 2.1, that
is not contained in [4].

We are concerned with the following compressible Navier-Stokes equations:

(CNS) :


(ρu)t + div(ρu⊗ u)− µ∆u− µ′∇divu+∇P = 0 in R+ × Rd,

ρt + div(ρu) = 0 in R+ × Rd,

(ρ, u)|t=0 = (ρ0, u0) in Rd.

The unknowns are the velocity field u = u(t, x) ∈ Rd and the density ρ = ρ(t, x) ≥ 0
with t ≥ 0 and x ∈ Rd (d ≥ 1).

The pressure P is a given locally Lipschitz function of the density, and it is assumed
that the (constant) viscosity coefficients µ and µ′ fulfill

µ > 0 and µ+ µ′ > 0. (1)

The above system is supplemented with initial data ρ0 and u0 at time t = 0. We have
in mind the singular situation where the density is discontinuous along an interface, like
for instance:

ρ0 = ρ1
01D0 + ρ2

01cD0 with ρ1
0, ρ

2
0 > 0 and D0 ⊂⊂ Rd, (2)

where ρ1
0, ρ

2
0 and ∂D0 are reasonably smooth.

For such an initial density, we would like to find out suitable conditions on u0 ensuring
that (CNS) has a unique local-in-time solution, and that the structure (2) is propagated.
Let us underline that, in contrast with the incompressible situation, there is no chance
that the characteristic function structure is preserved stricto sensu, since the density need
not be conserved along the flow of the velocity field.

Before going into more details, let us shortly review some classical results for (CNS).
Thanks to the pioneering works by P.-L. Lions [13] in 1996 and E. Feireisl [6] in 2001, the
weak solution theory in the case of the isentropic pressure law P (ρ) = aργ with γ > d/2
is by now well understood. It is based on the following (formal) energy balance∫

Rd

(1

2
ρ|u|2+e(ρ)

)
(t) dx+

∫ t

0

∫
Rd

(µ|∇u|2+µ′(divu)2) dx =

∫
Rd

(1

2
ρ0|u0|2+e(ρ0)

)
dx
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1



where the internal energy e satisfies ze′′(z) = P ′(z), and on rather subtle compactness
arguments implemented on the solutions to a family of suitable approximate systems. It
goes without saying that uniqueness in the class of finite energy solutions is a widely open
question.

At the exact opposite, one can find the more ancient theory of local-in-time classical
solutions for smooth data with no vacuum (J. Serrin [16] in 1959 and J. Nash [15] in
1962), local strong solutions with Sobolev regularity (see the works of A. Tani [18] and
V. Solonnikov [17]), global solutions for small perturbations of a constant state (ρ̄, 0) with
P ′(ρ̄) > 0 (A. Matsumura and T. Nishida [14] in 1983), and works dedicated to solutions
with critical regularity (see [3] and more recent papers in the same spirit).

Unfortunately, none of those works fit in our goal since the weak solution theory does
not give much insight on the propagation of density discontinuities, and the strong solution
theory does not allow for density discontinuity.

In the 90ies, D. Hoff in [8] came up with an ‘intermediate solutions’ theory that cor-
responds to data (ρ0, u0) such that ρ0 is close to some constant ρ̄ > 0 in L∞ and
u0 ∈ Lq ∩Hs small with s ≥ d

2
−1 and q > d (d = 2, 3). This enabled him in [9] to prove

that if the pressure law is linear then, for any bounded domain D0 with a C1,α boundary
and ρ1

0, ρ
2
0 in C0,α, if ‖ρ2

0 − ρ1
0‖L∞ � 1 then the structure (2) is propagated for all time

and ‖(ρ2 − ρ1)(t)‖L∞ ≤ Ce−ct (see also [11] for a more general result).
However, to the best of our knowledge, it is not known whether Hoff’s solutions are

unique among a class of functions where the structure (2) is not prescribed. In this
direction, one can mention the work by D. Hoff in [10] where it is proved that, if the
pressure function is given by P (ρ) = Kρ, then one has weak-strong uniqueness on the
time interval [0, T ] if, essentially, one of the two solutions has velocity in L1

loc(0, T ; Lip).

Let us emphasize that Hoff’s results (as well as the weak solution theory) strongly rely
on the fundamental observation that the viscous effective flux

F := divu− ν−1P (ρ) with ν := µ+ µ′, (3)

is more regular than divu or P taken separately.

The main aims of this note are:

– to address the existence issue for a class of initial densities containing the particular
case of (2);

– to prove the propagation of related geometrical structures,

– to supplement Hoff’s result with a uniqueness statement,

– to present a unified method that works for all dimensions and pressure laws.

The rest of the text unfolds as follows. In the next section, by taking advantage of the
classical maximal regularity theory for parabolic systems, we establish an existence result
for rather general initial densities with no smoothness, then, in Section 2, we prove the
local-in-time propagation of geometrical structures that encompass (2). The last section
of the paper is devoted to sketching the proof of uniqueness for the solutions constructed
in Section 2.
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1 An existence result based on the classical maximal regularity

In the present section, we outline the main ideas leading to a local existence statement
in the case where the initial density is only bounded, but close enough to a positive
constant ρ̄. The overall approach is essentially based on the use of the viscous effective
flux defined in (3), and on parabolic maximal regularity estimates.

For notational simplicity, we shall assume throughout that ρ̄ = 1. Then, if one denotes
% := ρ− 1, the velocity equation may be written:

ut − µ∆u− µ′∇divu = g := % ut − ρu · ∇u−∇P (ρ). (4)

Recall that the maximal regularity theory for the heat equation tells us that, if z fulfills{
zt −∆z = f in R+ × Rd,

z|t=0 = z0 on Rd,

then one has, for all 1 < p, r <∞ and t > 0, the a priori estimate:

‖z‖Ep,rt := ‖z‖
L∞t (Ḃ

2− 2
r

p,r )
+ ‖(zt,∇2z)‖Lrt (Lp) . ‖z0‖

Ḃ
2− 2

r
p,r

+ ‖f‖Lrt (Lp),

where the homogeneous Besov norm in the right-hand side is defined by

‖z0‖
Ḃ

2− 2
r

p,r

:=
(∫ ∞

0

(
(
√
t)

2
r ‖∇2et∆z0‖Lp

)r dt
t

) 1
r

and the notation ‖ · ‖Lrt (X) is a shortcut for the norm in Lr([0, t];X).

Now, let us observe that the divergence free and potential parts Pu and Qu of u in
(4) fulfill the following heat equations:

(Pu)t − µ∆Pu = Pg and (Qu)t − (µ+ µ′)∆Qu = Qg.

Hence, since (1) has been assumed and P ,Q : Lp → Lp, we get for all t ≥ 0,

‖u‖Ep,rt . ‖u0‖
Ḃ

2− 2
r

p,r

+ ‖% ut‖Lrt (Lp) + ‖ρu · ∇u‖Lrt (Lp) + ‖∇P‖Lrt (Lp).

Obviously, the second term of the right-hand side may be absorbed by the left-hand side if
‖%‖L∞ � 1, and it is not difficult to check (by combining Sobolev embedding and Hölder
inequality) that the term with u ·∇u tends to 0 when t→ 0 whenever the function space
Ep,r
t is subcritical with respect to (CNS) (that is 2− 2/r > d/p− 1). The troublemaker

is ∇P (or equivalently ∇ρ) since having it in a Lebesgue space precludes our considering
discontinuity across an interface for the density.

To overcome the difficulty, let us introduce (in the spirit of (3)) the modified velocity
w := u+∇(−ν∆)−1P. Since divw = divu− ν−1P, one can expect the coupling between
ρ and w to be milder than between ρ and u. Indeed, using the fact that

Pt = h divu− div(Pu) with h := P − ρP ′,
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we discover that the equation for w reads

wt − µ∆w − µ′∇divw = %wt − ρu · ∇u+ (−ν∆)−1∇(h divu− div(Pu))·

The gain is that all the terms involving the density or the pressure are of order 0. There-
fore, after combining the standard maximal regularity estimate with Sobolev embedding
and Gagliardo-Nirenberg inequality, we get, if ‖%‖L∞ is small enough:

‖w‖Ep,rt . ‖w0‖
Ḃ

2− 2
r

p,r

+ ‖u · ∇u‖Lrt (Lp) + ‖Pu‖Lrt (Lp) + l.o.t.

Now, since % fulfills

%t + u · ∇%+ (1+%)divw + ν−1(1+%)P = 0,

classical estimates for the transport equation enable us to bound % in any Lebesgue space
provided that divw is in L1(0, T ;L∞).

Since we expect w to be in the space Ep,r
T , that latter condition will be achieved if

p > d. A technical point that we omit here is that the operator (−ν∆)−1 in the definition
of w is actually too singular (in particular in dimension 2), and has to be replaced with
the milder one (Id − ν∆)−1. In the end, one gets the following statement, the complete
proof of which may be found in [4]:

Theorem 1.1 Let d ≥ 1 and (p, r) satisfy d < p < ∞ and 1 < r < 2p
2p−d · Assume

that

• %0 := ρ0 − 1 belongs to Lp ∩ L∞ ;

• w0 := u0 − v0 is in Ḃ
2−2/r
p,r , with v0 := −∇(Id − ν∆)−1(P (ρ0)).

There exist ε > 0 and a time T > 0 such that, if

‖%0‖L∞ ≤ ε , (5)

then there exists a solution (ρ, u) to (CNS) on [0, T ]× Rd with % := ρ− 1 satisfying

‖%‖L∞([0,T ]×Rd) ≤ 2ε and % ∈ C([0, T ];Lq) for all p ≤ q <∞.

Furthermore, u = v + w with v := −∇(Id − ν∆)−1(P (ρ)) is in C
(
[0, T ];W 1,q(Rd)

)
for

all p ≤ q <∞, and

w ∈ C([0, T ]; Ḃ2−2/r
p,r ), ∂tw , ∇2w ∈ Lr(0, T ;Lp).

That solution is unique if d = 1.

In higher dimension, the uniqueness issue in the above functional framework is an open
question. In order to pinpoint where the difficulty lies, consider two solutions (ρ1, u1) and
(ρ2, u2) of (CNS) emanating from the same initial data. Then (δρ, δu) := (ρ2−ρ1, u2−u1)
fulfills

δρt + div(u1δρ) = −div(δu ρ2),

δut − µ∆δu− µ′∇divδu = (1− ρ1)δut + δρ (u2
t + u2 ·∇u2)

+ρ1(u1 ·∇δu+ δu·∇u2 +∇(P (ρ1)− P (ρ2)).
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The (unavoidable) loss of one derivative in the first equation spoils the second one
since, for instance, having δρ in a negative regularity space does not allow to get any
control on δρ (u2

t + u2 ·∇u2).

Another weakness of Theorem 1.1 is that, even though one may consider initial density
like (2), it does not tell us much on the evolution of that structure.

To some extent, the diagnostic in the two cases is the same: we lack the property that
∇u ∈ L1([0, T ];L∞), as this would ensure the solution to have a Lipschitz flow. Our
aim (and this is the object of the next part) is to exhibit additional assumptions on the
data, ensuring that ∇u ∈ L1([0, T ];L∞) but that, nevertheless, the density may have the
structure (2).

2 Striated regularity

A natural question is how far from Lipschitz we are, under the hypotheses of Theorem 1.1.
From it and Sobolev embedding, we know that both divu and curlu are in L1(0, T ;L∞),
since

divu = divw︸ ︷︷ ︸
W 1,p↪→L∞

+ν−1 P︸︷︷︸
L∞

−ν−1 (Id − ν∆)−1P︸ ︷︷ ︸
smooth

and curlu = curlw ∈ Lr(0, T ;W 1,p).

However, unless d = 1, those two conditions together do not quite imply that ∇u ∈
L1(0, T ;L∞) (only that ∇u ∈ L1(0, T ; BMO) actually), so that we do not know whether
u has a Lipschitz flow and if the Lipschitz regularity of the domain D0 in (2) is preserved.

In order to figure out what are the missing ingredients to achieve the Lipschitz regu-
larity, let us consider the ‘flat’ situation. Then, if both divu and curlu are in L∞ and,
in addition, first order derivatives of u in d− 1 independent directions are bounded, it is
obvious that we do have ∇u ∈ L∞.

The way to generalize that property to nonflat situations goes back to the work by
J.-Y. Chemin in [1], and relies on the notion of striated regularity that we introduce now.

Let X = (Xλ)1≤λ≤m be a family of vector-fields with components in the space

L∞,p := {X ∈ L∞, ∇X ∈ Lp},

that is non-degenerate in the following sense:

I(X ) := inf
x∈Rd

sup
Λ∈Λmd−1

∣∣∣∣d−1
∧ XΛ(x)

∣∣∣∣ 1
d−1

> 0 .

Here Λ ∈ Λm
d−1 means that Λ = (λ1, . . . , λd−1) with 1 ≤ λ1 < · · · < λd−1 ≤ m, while

d−1
∧ XΛ stands for the unique element of Rd such that

∀ Y ∈ Rd ,
(
d−1
∧ XΛ

)
· Y = det

(
Xλ1 . . . Xλd−1

, Y
)
·

Since for a general function f in L∞, ∂Xλf need not be defined (in contrast with div(Xλf)
and fdivXλ ) and, in the smooth case, we have

∂Xλf = div(Xλf)− fdivXλ,
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we adopt the following definition of regularity along a non-degenerate family of vector
fields.

Definition 2.1 Let Y be in L∞,p for some p ∈]d,∞]. A function f ∈ L∞ is said to
be in LpY if div (f Y ) ∈ Lp

(
Rd
)

. If X = (Xλ)1≤λ≤m is a non-degenerate family of
vector-fields in L∞,p, then we set

LpX :=
⋂

1≤λ≤m

LpXλ and ‖f‖LpX :=
1

I(X )

(
‖f‖L∞‖X‖L∞,p + ‖div (f X )‖Lp

)
·

The generalization of the above observation to the nonflat situation is a consequence of
the following statement.

Proposition 2.1 Let d < p <∞ and m ≥ d − 1. Take a nondegenerate family X =
(Xλ)1≤λ≤m of vector-fields belonging to L∞,p . Then, the following inequality holds true
for all ν > 0:∥∥∇2(Id−ν∆)−1P

∥∥
L∞
.

(
1 +
‖X‖4d−5

L∞ ‖∇X‖Lp
(I(X ))4d−4

)
‖P‖L∞ +

‖X‖4d−5
L∞

(I(X ))4d−4
‖∂XP‖Lp·

Proof. Fix some Λ ∈ Λm
d−1 and consider the set UΛ of those x in Rd satisfying(

d−1
∧ XΛ(x)

)
≥ (I(X ))d−1.

Then, for all x ∈ UΛ and ξ ∈ Rd, one has the following algebraic identity (see [2,
Lemma 3.2]):

ξi ξj =

(
d−1
∧ XΛ(x)

)i (d−1
∧ XΛ(x)

)j
∣∣∣d−1
∧ XΛ(x)

∣∣∣2 |ξ|2 +
1∣∣∣d−1

∧ XΛ(x)
∣∣∣4
∑
k,`

bk`ij (x) ξk(Xλ`(x) · ξ)

where the bk`ij ’s are homogeneous of degree 4d− 5 with respect to the Xλ ’s.

Multiplying by (1 + ν|ξ|2)−1P̂ (ξ) then taking the inverse Fourier transform yields:

(Id−ν∆)−1∂i∂jP =

(
d−1
∧ XΛ

)i(d−1
∧ XΛ

)j
∣∣∣d−1
∧ XΛ

∣∣∣2 ∆(Id−ν∆)−1P

+
1∣∣∣d−1

∧ XΛ

∣∣∣4
∑
k,`

bk`ij ∂Xλ`

(
∂k(Id−ν∆)−1P

)
·

We conclude thanks to the following inequality based on commutator estimates (see
the appendix of [4]):

‖∂Xλ`∂k(Id − ν∆)−1P‖L∞ . ‖P‖L∞‖∇Xλ`‖Lp + ‖∂Xλ`P‖Lp if p > d.

Since the union of all UΛ ’s is equal to Rd, one gets the desired inequality.
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The above proposition is the key to the following existence and uniqueness statement.

Theorem 2.1 Let the assumptions of Theorem 1.1 be in force and assume in addition
that there exists a non-degenerate family X0 = (X0,λ)1≤λ≤m in L∞,p such that ρ0 is in
LpX0

.

Then, there exists a time T > 0 and a unique solution (ρ, u) to (CNS) on [0, T ]
satisfying the properties of the previous theorem and ∇u ∈ L1([0, T ];L∞(Rd)).

In particular, u has a unique Lipschitz flow ψ , that is the solution of

ψ(t, x) = x +

∫ t

0

u(τ, ψ(τ, x)) dτ for all (t, x) ∈ [0, T ]× Rd,

and the family Xt := (Xt,λ)1≤λ≤m with Xt,λ(x) := ∂X0,λ
ψ(t, ψ−1(t, x)) is non-degenerate

for all t ∈ [0, T ] and in L∞,p , and ρ(t) belongs to LpXt .

Proof. Let us report the main steps of the proof of the existence part of Theorem
2.1 (uniqueness will be discussed in the next section). Since Theorem 1.1 ensures
the existence of a solution (ρ, u) on [0, T ]× Rd for some T > 0 with the regularity
described therein, it is only a matter of checking that striated regularity is preserved.

Now, the evolution equation for transported vector-fields reads:

(∂t + u · ∇)Xλ = ∂Xλu.

We need to estimate Xλ in L∞ and ∇Xλ in Lp, which requires at a minimum that

∇u ∈ L1(0, T ;L∞), ∂Xλu ∈ L1(0, T ;L∞) and ∇(∂Xλu) ∈ L1(0, T ;Lp). (6)

Next, in order to study the propagation of striated regularity for ρ and P, one may
use that

∂Xλρ = div(Xλρ)− ρ divXλ and (∂t + u · ∇)(div(Xλρ)) = −divu div(Xλρ).

Hence, to estimate div(Xλρ) in Lp, we need divu ∈ L1(0, T ;L∞).

Finally, since u = w −∇(Id − ν∆)−1P, we have

∇u = ∇w −∇2(Id − ν∆)−1P and ∂Xλ∇u = ∂Xλ∇w − ∂Xλ∇(Id − ν∆)−1∇P.

Hence, to achieve (6), it suffices to prove that:

– ∇w ∈ L1(0, T ;L∞) and ∇(∂Xλw) ∈ L1(0, T ;Lp);

– ∇2(Id − ν∆)−1P ∈ L∞(0, T ;L∞);

– ∇(∂Xλ∇(Id − ν∆)−1P ) ∈ L1(0, T ;Lp).

The first item is an easy consequence of the fact that w ∈ Ep,r
T and of the embedding

W 1,p ↪→ L∞ while the second one is given by Prop. 1. The last part follows from
rather tricky commutator estimates that are omitted here.
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Of course, the estimates given by the above arguments depend the one from the
others, hence one has to resort to a bootstrap argument in order to eventually close
the estimates for small enough time.

Corollary 2.1 Assume that ρ0 = ρ1
01D0 + ρ2

01cD0 where ρ1
0 and ρ2

0 are in L∞ ∩ Ẇ 1,p and
D0 is a W 2,p bounded domain of Rd with p > d. If u0 is as above and, in addition,
‖ρ1

0 − ρ2
0‖L∞ � 1 then (CNS) admits a unique solution on [0, T ] such that

ρ(t) = ρ1
t1Dt + ρ2

t1cDt for all t ∈ [0, T ],

with Dt := ψ(t,D0) having W 2,p regularity, and ρ1
t and ρ2

t in W 1,p.

Proof. Assume that D0 corresponds (locally) to the level set {φ0 = 0} of some W 2,p

function with nondegenerate gradient on ∂D0. Then, one can take for (X0,λ)1≤λ≤m
a suitable family constructed from linear combinations of components of ∇φ0 (one
may use for instance the construction given in Prop. 5.1 of [2]) and check that ρ0 is
in LpX0

. Hence Theorem 2.1 applies.

Now, if one defines φt := φ0(ψ(t, ·)), then ∂Dt corresponds to {φt = 0} and we have
∂Dt in W 2,p (one may argue as in [2]). Furthermore,

(∂t + u · ∇)1Dt = 0.

Let F := divu− ν−1P (ρ). Let us define ρ1 and ρ2 to be the solutions of

(∂t + u · ∇)ρi + ρiF + ν−1Π(ρi) = 0 with Π(z) := zP (z)

and data ρ1
0 and ρ2

0, respectively.

The fact that ρ1
0 and ρ2

0 are bounded, and that the function F is in L1(0, T ;L∞)
ensures that ρi ∈ L∞(0, T ;L∞). Furthermore, ρ̃ := 1Dρ

1 + 1cDρ
2 fulfills

(∂t + u · ∇)ρ̃+ ρ̃ F + ν−1Π(ρ̃) = 0

while
(∂t + u · ∇)ρ+ ρF + ν−1Π(ρ) = 0.

Since ρ̃|t=0 = ρ|t=0 = ρ0, this ensures that ρ̃ ≡ ρ on [0, T ] : to prove it, one can for
instance estimate δρ := ρ̃− ρ in L∞ after noticing that

(∂t + u · ∇)δρ+ δρ F + ν−1δρ

∫ 1

0

Π′(ρ+ τδρ) dτ = 0.

Now, differentiating the equation of ρi, we see that

(∂t + u · ∇)(∇ρi) +∇u · ∇ρi + (F + ν−1Π′(ρi))∇ρi = −ρi∇F.

Since our assumptions guarantee that the right-hand side of the above equality is in
L1(0, T ;Lp), one can deduce that ∇ρi is in L∞(0, T ;Lp).
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3 Uniqueness

Since the main responsible for the loss of one derivative in the stability estimates for
(CNS) is the density equation (note that the velocity equation is parabolic), it is tempting
to use Lagrangian coordinates, since they allow to compute the density from the initial
one and the flow, and thus only the velocity equation would have to be considered.

More specifically, we go from Eulerian coordinates (t, x) to Lagrangian coordinates
(t, y) by making the change of unknowns:

ρ̄(t, y) := ρ(t, x) and ū(t, y) := u(t, x) with x := ψ(t, y)

where ψ is the unique flow of u defined (according to the Cauchy-Lipschitz theorem) by

ψ(t, y) = y +

∫ t

0

u(τ, ψ(τ, y)) dτ.

Hence

ψ(t, y) = y +

∫ t

0

ū(τ, y) dτ and Dψ(t, y) = Id +

∫ t

0

Dū(τ, y) dτ.

We thus have
(Jρ̄)(t) = ρ0 with J := det(Dψ).

At the same time, using the following identities:

∇xK = J−1
u divy(adjDψuK) for K : Rd → Rd

divxH = J−1
u divy(adjDψuH) for H : Rd → R

where adj(Dψ) stands for the adjugate matrix of Dψ, we discover that

ρ0ūt − µdiv(adj(Dψ)TA∇u)− µ′div(adj(Dψ)TA :∇u) + div(adj(Dψ)P (J−1ρ0)) = 0

with A := (Dyψ)−1.

Note that if
∫ t

0
Dū(τ, ·) dτ is small enough, then

A =
+∞∑
k=0

(−1)k
(∫ t

0

Dū(τ, ·) dτ
)k
. (7)

Now, consider two solutions (ρ1, u1) and (ρ2, u2) for the same data (ρ0, u0), and perform
the Lagrangian change of coordinates for the two solutions, with respect to their own
flow:

(ρi, ui) (J−1
i ρ0, ūi), i = 1, 2.

Then δu := u2 − u1 fulfills

ρ0δut − L1δu = (L2 − L1)ū2 + div(adj(Dψ1)P (J−1
1 ρ0)− adj(Dψ2)P (J−1

2 ρ0))

with Lj := µdiv(adj(Dψj)
TAj∇uj) + µ′div(adj(Dψj)

TAj : ∇uj).
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Performing an energy method and assuming that
∫ T

0
‖Dūi‖L∞ dt, i = 1, 2, is small

enough (so that one may use (7) and similar identities) eventually leads to

d

dt

∫
ρ0|δu|2 dx+

∫
|∇δu|2 ≤ Ct(1 + ‖∇ū2‖2

L∞)

∫ t

0

‖∇δu‖2
L2 dτ on [0, T ].

It is then easy to conclude to uniqueness by Gronwall lemma, if∫ T

0

t‖∇u2(t)‖2
L∞ dt <∞.

That latter property which is not utterly obvious stems from the fact that (ρ2, u2) is a
solution to (CNS), and from the regularity properties that have been exhibited so far.
Here one has to first prove time weighted maximal regularity estimates (see Proposition
4.1 in [4], and its corollary therein).
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[1] J.-Y. Chemin: Persistance de structures géométriques dans les fluides incompressibles
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