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Abstract. This note is a summary of a lecture on the results of [8] about estimates for the
complex Green operator, given by the author in the occasion of the conference: “Topology
of pseudoconvex domains and analysis of reproducing kernels” on November 20-22nd, 2017,
in RIMS, Kyoto, Japan. The results of this note are contained in [7] and [8].

1. Introduction

A CR-manifold M of Cn is of hypersurface type if the real codimension of the complex
tangent space inside the real tangent space is one. We will assume that M is compact, closed,
and orientable. A particular case of such CR-manifold is the boundary of pseudoconvex
domains in Cn. As such, a well-behaved L2-theory holds for the tangential Cauchy–Riemann
operator and the L2-Sobolev theory of its associated complex Green operator – inverse of the
Kohn Laplacian – may then be compared to that of the ∂̄-Neumann operator on pseudoconvex
domains. For a survey on the sufficient conditions for compactness estimates and Sobolev
estimates for the complex Green operator, we refer to [7]. However, compactness estimates for
the ∂̄-Neumann operator failed to hold simutaneously at symmetric bidegrees (see [12]), while
the compactness estimates for the complex Green operator are known to hold simultaneously
at symmetric bidegrees (p, q) and (p,m−1−q) ([18, 16, 7]), where m−1 is the CR-dimension
ofM . The first result presented in this note is the fact that Sobolev estimates for the complex
Green operator also hold simultaneously at symmetric bidegrees (p, q) and (m−p,m− q−1)
(Theorem 1). On the other hand, while the compactness estimates for the ∂̄-Neumann
operator percolate up to the ∂̄-complex on pseudoconvex domains, i.e. if the compactness
estimates hold for (p, q)-forms then the compactness estimates hold for (p, q + 1)-forms, the
compactness estimates for the complex Green operator do not. One of the main theorems,
presented in this note is to give an alternative to the percolation for the complex Green
operator on M , an interpolation result (Theorem 2). A similar result was proved recently in
[15] when M is an actual hypersurface.

The purpose of this note is to give a survey of the joint work with E. Straube [8]. After
recalling some fundamental properties on the tangential ∂̄-operator and the definition of
the complex Green operator, we give a short review of the properties of the complex Green
operator such as compactness estimates in Section 3. In Section 4, we state the Sobolev
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estimates for forms of symmetric bidegrees and give the idea of the proof. In Section 5, we
state the interpolation of compactness estimates for the complex Green operator that relies
on the microlocalization introduced and used in [17, 23]. We end this note by mentionning
a series of interesting remarks, including an open question related to the note.

2. Preliminaries and Notations

We keep the notations from [8]; it is fairly standard. Let M be a smooth compact CR-
submanifold in Cn, without boundary. Define m via dimCT

CM = (m − 1), where TC
P M

denotes the complex tangent space at P , i.e. TPM ∩ JTPM , where TPM is the real tangent
space toM and J the complex structure map on Cn (i.e. multiplication by i). This dimension,
called the CR-dimension of M is independent of P .

M is said to be of hypersurface type if, at each point P ∈ M , TC
P M has real codimension

one in TPM . Note that the real dimension of M is then 2m− 1. Indeed, CR-submanifolds of
hypersurface type can be represented locally as a graph over an actual hypersurface in Cm,
m ≤ n. We refer to [7] for sketches.

A vector field X(z) =
∑n

j=1 aj(z)∂/∂zj (on an open set of Cn or of M) is called of type

(1, 0), while a field Y (z) =
∑n

j=1 bj(z)∂/∂zj is of type (0, 1), as usual. X is tangential to M

if and only if (a1(z), . . . , an(z)) ∈ TC
z M , for all z; similarly, Y (z) is tangential if and only if

(b1(z), . . . , bn(z)) ∈ TC
z M , for all z. We say that X ∈ T 1,0M , Y ∈ T 0,1M (T 1,0M and TCM

are thus naturally isomorphic). For detailed information on CR-(sub)manifolds, the reader
may consult [10, 5].

We assume from now that M is orientable, then there exits a purely imaginary vector
field T on M of unit length that is orthogonal to TCM at all points. Let η be the form
dual to T , that is η(T ) ≡ 1, and η ≡ 0 on T 1,0M ⊕ T 0,1M . Denote by Lm the vector field
Lm := (1/

√
2)(T − iJT ) defined on M ; Lm is of type (1, 0) and has length one. Near a

point P ∈ M , choose an orthonormal basis {L1, . . . , L(m−1)} of T 1,0M . Choose (1, 0)-forms
{ω1, . . . , ωm} that at each point vanish on {L1, . . . , Lm}⊥ and so that ωk(Lj) = δkj, where
δkj is the Kronecker δ. These are the usual local frames.

An important point that plays a role in Section 3 is the following: when we restrict ωm

to M as a form, this restriction does not equal η; rather, we have ωm|M = (1/
√
2)η (see for

example [25], ch. III.3 for a discussion of the Hermitian structure on Cn that pays attention
to norms of the dzj, etc.).

The space of (p, q)–forms on M at P , Λp,qT ∗
PM , is defined as those forms in Λp,qT ∗

PCn that
have the form

(1) u =
∑′

|I|=p,|J |=q

uIJωI(P ) ∧ ωJ(P ), I ⊆ {1, . . . ,m}, J ⊆ {1, . . . ,m− 1}.

The notation
∑′ indicates summation over strictly increasing multi-indices. This definition

is independent of the choice of orthonormal basis {L1, . . . , L(m−1)} of T 1,0M near P (Lm is
defined globally, and therefore, so is ωm).

We remind the extrinsic tangential Cauchy–Riemann operator, defined in the usual way.
Locally, we represent a (p, q)–form as in (1). Extend u coefficientwise to a form ũ defined
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in a full neighborhood in Cn (note that the local frame ‘lives’ in such a full neighborhood).
Then from the ∂̄-operator in Cn, we define

(2) ∂̄Mu = (∂̄ũ)tM

where tM : Λp,qT ∗
PCn → Λp,qT ∗

PM is the orthogonal projection, for P ∈ M (that is tM gives
the tangential part of a form). This definition is independent of the local frame and/or the
extension chosen, so that ∂M is well defined by (2). The tangential ∂̄M -operator inherits
from the ∂̄-operator on Cn, the property to be a complex. It is useful to have the following
expression for ∂M in a local frame:

(3) ∂̄Mu =
m−1∑
k=1

∑′

|I|=p,|J |=q

L̄k(uIJ)ω̄k ∧ ωI ∧ ωJ + terms of order zero .

Here, terms of order zero’ means terms where the coefficients of u are not differentiated. We
refer to [10, 7] for more details.

The pointwise inner product between (p, q)–forms at P ∈ M ,

(4) < u, v > =
∑′

|I|=p,|J |=q

uIJvIJ

is independent of the choice of the local othonormal frame. It provides an L2-inner product
on M by integrating against the (Euclidean) volume element on M , as usual:

(5) (u, v)L2
(p,q)

(M) =

∫
M

< u(z), v(z) > dVM(z) .

L2
(p,q)(M), 0 ≤ p ≤ m, 0 ≤ q ≤ (m−1) denotes the completion of Λp,qT ∗M under the norm

induced by this inner product, that we also denote by ∥.∥ for short.
The tangential ∂̄-operator ∂̄M : L2

(p,q)(M) → L2
(p,q+1)(M) extends to an unbounded operator

on L2
(p,q)(M) acting in the sense of distributions, with the maximal domain of definition

dom(∂̄M) = {u ∈ L2
(p,q)(M) | ∂̄Mu ∈ L2

(p,q+1)(M)}, where ∂M acts in a local frame as in (3).

As a closed and densely defined operator on L2
(p,q)(M), 1 ≤ q ≤ m − 1, ∂̄M has a Hilbert

space adjoint, denoted by ∂̄∗
M . In a local frame, integration by parts gives

(6) ∂̄∗
Mu = −

m−1∑
j=1

∑′

|I|=p,|K|=q−1

Lj(uIjK)ωI ∧ ωK + terms of order zero .

We say that a CR-submanifold of hypersurface type is pseudoconvex if the Levi form λ
that appears in the commutator between two vector fields X,Y ∈ T 1,0

P (M) at a point P ∈ M ,

[X, Ȳ ]P = λP (X, Ȳ )TP mod T 1,0
P M ⊕ T 0,1

P M,

is positive semi-definite at each point P of M . Because T is chosen to be purely imaginary,
λ is a Hermitian form.

Orientable, smooth, compact and pseudoconvex CR-submanifolds M of hypersurface type
of Cn can be considered as a natural generalization of boundary of pseudoconvex domains.
Indeed, Baracco [1] proved that M has one-sided complexification to a complex submanifold
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M̂ of Cn, called a “strip” so that M is the connected pseudoconvex component of the bound-

ary of M̂ . He then proved that M bounds a complex manifold in the C∞ sense [2, 3]. We
also refer to [30].

The crucial property is that ∂̄M , hence ∂̄∗
M , have closed range in L2

(0,q)(M), 0 ≤ q ≤ m− 1.

This was first proved by Nicoara [23] for m ≥ 2 by microlocal methods and improved by
Baracco [3] form ≥ 11. From a well-behaved L2-theory for the ∂̄M -operator and its associated
Hodge decomposition, we get the corresponding L2-estimate:

(7) ∥u∥2L2
(p,q)

(M) ≲ ∥∂̄Mu∥2L2
(p,q+1)

(M) + ∥∂̄∗
Mu∥2L2

(p,q−1)
(M) + ∥Hp,qu∥2L2

(p,q)
(M) ,

where Hp,q : L
2
(p,q)(M) → Hp,q(M) := ker(∂M) ∩ ker(∂

∗
M) is the orthogonal projection.

Let 1 ≤ q ≤ (m − 2). The complex Laplacian on L2
(p,q)(M), denoted by □(p,q), is defined

as ∂̄M ∂̄∗
M + ∂̄∗

M ∂̄M ; its domain dom(□(p,q)) is understood to be the set of forms where this
expression makes sense. This operator is the unique self-adjoint operator associated to the
quadratic form Qp,q(u, u) = (∂̄Mu, ∂̄Mu)L2

(p,q+1)
(M) + (∂̄∗

Mu, ∂̄∗
Mu)L2

(p,q−1)
(M), via

(8) Qp,q(u, u) = (2p,qu, u)L2
(p,q)

(M) , u ∈ dom(□p,q) .

We denote ker(□(p,q)) = H(p,q)(M), the harmonic (p, q)-forms on M with L2-coefficients. The
dimension of H(p,q)(M) is known to be finite when 1 ≤ q ≤ (m− 2) ([23, 13]). It is reflected
in a version of the basic L2–estimate of (7) where the norm of the harmonic component of a
form u is replaced by ∥u∥W−1 , the dual of the L2-Sobolev space W 1 (see [30], estimate 7,[7],
Lemma 5):

(9) ∥u∥2L2
(p,q)

(M) ≲ ∥∂Mu∥2L2
(p,q+1)

(M) + ∥∂∗
Mu∥2L2

(p,q−1)
(M) + ∥u∥2

W−1
(p,q)

(M)
,

u ∈ dom(∂M) ∩ dom(∂
∗
M) , 0 ≤ p ≤ m , 1 ≤ q ≤ (m− 2) .

Because the range of ∂M is closed, so is that of 2. Also, 2(p,q) maps H(p,q)(M)⊥ onto itself.
The complex Green operator, Gp,q is defined to be the inverse operator of the restriction

of □(p,q) to H(p,q)(M)⊥. It is convenient to extend it to all of L2
(p,q)(M) by setting it equal

to zero on H(p,q)(M). Gp.q is a bounded self–adjoint operator. A detailed discussion of these
matters may be found in [7, 11].

3. Estimates for the complex Green operator

We keep the previous notations and M is a smooth compact orientable and pseudoconvex
CR-submanifold of hypersurface type in Cn and of CR-dimension m− 1.

Like the ∂̄-Neumann operator, the complex Green operator verifies a couple of properties
that makes its study very interesting. For example, the complex Green operator gives the
minimal solution ( also called the Kohn solution) to the inhomogeneous tangential Cauchy-
Riemann equation. Indeed if f is a (p, q)-form ∂̄M -closed and orthogonal to Hp,q(M), then

f = ∂̄M ∂̄∗
MGp,qf + ∂̄∗

M ∂̄MGp,qf = ∂̄M(∂̄∗
MGp,qf),

1This property holds in L2
(p,q)(M) since the holomorphic part is not getting involved in the proofs.
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since ∂̄∗
M ∂̄MGp,qf ∈ ker(∂̄M) by default and ∂̄∗

M ∂̄MGp,qf ∈ H⊥
p,q(M). Hence, u = ∂̄∗

MGp,qf ∈
Hp,q−1(M)⊥ and verifies ∂̄Mu = f .

Let jp,q : Hp,q(M)⊥ ∩ dom(∂̄M) ∩ dom(∂̄∗
M) ↪→ Hp,q(M)⊥ be the imbedding and we set

Qp,q(u, u) = ∥∂̄Mu∥2L2
(p,q+1)

(M) + ∥∂̄∗
Mu∥2L2

(p,q−1)
(M),

also called the graph norm. With respect this norm, Hp,q(M)⊥ ∩ dom(∂̄M) ∩ dom(∂̄∗
M) is

a Hilbert space that makes jp,q continuous and so its adjoint j∗p,q. When we study the
compactness estimates for Gp,q, the following expression is very useful. We refer to [7],
Lemma 4 for a proof.

Lemma 1.

Gp,q |Hp,q(M)⊥
= jp,q ◦ (jp,q)∗.

The interest of the compactness of the complex Green operator is as important as the
compactness of the ∂̄-Neumann operator. From compactness estimates, we recover a well-
behaved L2-theory for ∂̄M . Moreover, compactness estimates imply Sobolev estimates. The
following Lemma gives useful characterizations of compactness of Gp,q. We refer to [7],
Lemma 6 for a proof.

Lemma 2. Let 1 ≤ q ≤ (m− 2). The following properties are equivalent:

a) The complex Green operator Gp,q is compact.
b) jp,q is compact.
c) ∂̄M verifies the following compactness estimate: for all ε > 0, there exists a constant

Cε > 0 such that

(10) ∥u∥2L2
(p,q)

(M) ≤ ε
(
∥∂̄Mu∥2L2

(p,q+1)
(M) + ∥∂̄∗

Mu∥2L2
(p,q−1)

(M)

)
+ Cε∥u∥2W−1

(p,q)
(M)

u ∈ dom(∂M) ∩ dom(∂
∗
M).

The Lemma 2 holds when M is not orientable since compactness estimates are local, as
proved by [28] using the fact that locally M is CR-equivalent to a hypersurface.

The property c) is also referred to as compactness estimates for Gp,q. Note that by fixing
ε in (10), we have (9) and we get the finite dimension of the harmonic space Hp,q(M) for
1 ≤ q ≤ m − 2. As mentioned previously, the compactness estimates imply the L2-theory
discussed in Section 2. In particular, ∂̄M and ∂̄∗

M have closed range.
Since M has no boundary, subelliptic and compactness estimates for the complex Green

operator hold at symmetric levels i.e, G0,q is compact if and only if G0,m−q−1 is compact.
Compactness estimates are local, it is then enough to work on smooth forms supported in a
local coordinate chart via a partition of unity. The idea, from Koenig [16], is to construct an
operator denoted Tq that acts on a (0, q)-form u as follows

(11) Tq(
∑′

|J |=q

uJwJ ) =
∑′

|J |=q,|K|=(m−1−q)

εJK(1,...,m−1)uJwK ,
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where εJK(1,...,m−1) is the Kronecker symbol. Then,

T(m−1−q)Tqu = (−1)q(m−1−q)u

(12) ∂MTqu = (−1)qT(q−1)(∂
∗
Mu) + terms of order zero ,

and

(13) ∂
∗
MTqu = (−1)q+1T(q+1)(∂Mu) + terms of order zero .

This operator Tq intertwines ∂̄M and ∂̄∗
M up to terms of order zero. Those terms are absorbed

in the compactness estimates. For more details, we refer to [16].
As we mentioned in the introduction, the compactness estimates for the ∂̄-Neumann oper-

ator do not hold at symmetric levels on pseudoconvex domains. Let M be the boundary of a
smooth bounded convex domain in Cn. It was proved by [12] that the ∂̄-Neumann operator
N0,q is compact on the domain if and only if there is no q-dimensional complex variety on M
nor higher dimensional variety. If n ≥ 5 and M contains an analytic disc, then N0,1 is not
compact, but N0,n−1 is.

4. Symmetry

Let M be a smooth compact orientable pseudoconvex CR-submanifold of hypersurface
type in Cn of CR-dimension m− 1.

Koenig’s operator (11) does not work anymore to obtain Sobolev estimates at symmetric
levels, since the terms of order zero in (12) and (13) cannot be absorbed in Sobolev norms.
We wish then to construct an operator that intertwines ∂̄M and ∂̄∗

M without terms of order
0, similar to the Hodge-? operator that maps a (p, q)-form into (m − p,m − q − 1)-form.
However, the operator that we build is slightly different from the Hodge-? operator since the
pointwise inner product (4) between two forms in Λp,qT ∗

PM does not necessarily agree with
the inner product of their restrictions to M at P . This is due to the orthonormal frame in
Section 2: the unit form ωm(P ) ∈ Λ1,0T ∗

PM restricts to (1/
√
2)η ∈ CT ∗

PM , a form of norm
(1/

√
2).

In order to rectify this situation, we change the metric on CTM , hence on CT ∗M by
declaring, at each point P ∈ M , {ω1, . . . , ω(m−1), ω1, . . . , ω(m−1), (1/

√
2)η} to be an orthonor-

mal basis. In other words, we rescale in the direction of η by a factor of
√
2 (equivalently, by

a factor of 1/
√
2 in the direction of T ). When we equip M with this new Riemannian struc-

ture, the restriction of forms in Λp,qT ∗
PM to M (restriction as forms) becomes an isometry

(at the point P ). We use ?̃, < , >∼, and dṼ to denote, respectively, the Hodge-? operator,
the pointwise inner product on forms, and the volume element on M with respect to this
new Riemannian structure. All properties of the Hodge-? operator that we will use can be
found in [25], section III.3.4 and/or in [21], section 4.1 (c).
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This operator, denotedAp,q is a conjugate linear operatorAp,q : L
2
(p,q)(M) → L2

(m−p,m−1−q)(M),
defined via

(14) (v, Ap,qu) :=
√
2

∫
M

u ∧ v , u ∈ L2
(p,q)(M), v ∈ L2

(m−p,m−1−q)(M) ,

0 ≤ p ≤ m , 0 ≤ q ≤ (m− 1) .

This definition is analogous to the one in the appendix of [24]. It will be convenient to express
Ap,q with the help of ?̃. We have

(15) (v, Ap,qu) =
√
2

∫
M

u ∧ v =
√
2

∫
M

(?̃?̃(u|M)) ∧ v =
√
2

∫
?̃
(
?̃(u|M)

)
∧ v

=
√
2

∫
M

v ∧ ?̃
(
?̃(u|M)

)
=

√
2

∫
M

< v|M , ?̃(u|M) >∼ dṼ =

∫
M

< v, ?̃(u|M)) > dV .

Therefore,

(16) Ap,qu = ?̃
(
u|M

)
, u ∈ L2

(p,q)(M) ,

in the sense that Ap,qu equals the unique form in L2
(m−p,m−1−q)(M) whose restriction to M

equals ?̃(u|M) (that is, η is replaced by ωm). We are then able to prove

Theorem 1. Let M be a smooth compact pseudoconvex orientable CR-submanifold of Cn of
hypersurface type, of CR-dimension m − 1. Let 0 ≤ p ≤ m, 1 ≤ q ≤ (m − 2). Then Gp,q is
regular in Sobolev norms (respectively globally regular) if and only if Gm−p,m−1−q is.

Note that by regular in Sobolev spaces, we mean Gp,q satisfy the Sobolev estimates
∥Gp,qu∥s ≤ Cs∥u∥s, where ∥ · ∥s denotes the L2–Sobolev norm of order s > 0. We say
that Gp,q is globally regular if it maps (C∞) smooth forms to smooth forms.

Proof. The expression of Ap,q in terms of the Hodge-?̃ operator shows that Ap,q is continuous
in L2 but also in Sobolev norms. Hence, it is enough to prove that Ap,q commutes with Gp,q.
We resume the properties of this operator in the following proposition:

Proposition 1. Let 0 ≤ p ≤ m, 0 ≤ q ≤ (m− 1). Then

Ap,q : L
2
(p,q)(M) → L2

(m−p,m−1−q)(M) is an isometry ,(17)

Am−p,m−q−1Ap,qu = u, ∀u ∈ L2
(p,q)(M) .(18)

Let 0 ≤ p ≤ m, 1 ≤ q ≤ (m− 2). Then

∂̄MAp,qu = (−1)p+qAp,q−1∂̄
∗
Mu, ∀u ∈ dom(∂

∗
M) ⊆ L2

(p,q)(M) ,(19)

Ap,q∂̄Mu = (−1)p+q∂̄∗
MAp,q−1u, ∀u ∈ dom(∂M) ⊆ L2

(p,q−1)(M) ,(20)

Ap,q2p,qu = 2m−p,m−1−qAp,qu, ∀u ∈ dom(2p,q) ⊆ L2
(p,q)(M) ,(21)

Ap,qGp,q = Gm−p,m−1−qAp,q ,(22)
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Ap,q(H(p,q)(M)) = H(m−p,m−1−q)(M) .(23)

Proof of the Proposition. It suffices to prove all the statements for smooth forms; they are
dense in L2

(p,q)(M) and in the graph norms of both ∂M and ∂
∗
M . We remind that there is no

boundary conditions when we integrate by parts that makes things work perfectly. (17) and
(18) are immediate from (16) and the fact that ?̃ is an isometry in the modified metric on M ,
and that ?̃?̃u = u (there is a factor (−1)(p+q)(2m−1−p−q); however, (p+ q)(2m− 1− p− q) ≡
0mod 2).

To verify the crucial intertwining properties (19), (20), let us look at (20). The computation
is as follows. Let u ∈ Λp,q−1T ∗M , v ∈ Λm−p,m−1−qT ∗M . Note that

(24)

∫
M

∂Mu ∧ v =

∫
M

(∂M + ∂M)u ∧ v =

∫
M

du ∧ v

(

∫
M

∂Mu ∧ v = 0, because at least one of the ωj, 1 ≤ j ≤ m, will appear twice, or there will

be an ωj with j > m; in either case, the integral over M vanishes). Integration by parts
therefore gives

(25) (v, Ap,q∂Mu)L2
(m−p,m−1−q)

(M) =
√
2

∫
M

∂Mu ∧ v = (−1)p+q
√
2

∫
M

u ∧ ∂Mv

= (−1)p+q
√
2

∫
M

?̃(?̃u|M) ∧ ∂Mv = (−1)p+q
√
2

∫
M

∂Mv ∧ ?̃(?̃u|M) .

We have also used that ?̃ is real, so that ?̃(?̃u|M) = u|M . Using ?̃ to mediate between wedge
products and inner products gives

(26)
√
2

∫
M

∂Mv ∧ ?̃(?̃u|M) =
√
2

∫
M

< ∂Mv|M , ?̃u|M >∼ dṼ

= (∂Mv, ?̃u|M)L2
(m−p,m−q)

(M) = (v, ∂
∗
MAp,q−1u)L2

(m−p,m−1−q)
(M) .

In the second equality, we use that
√
2 < , >∼ dṼ =< , > dV , as well as (16). (25) and (26)

now imply (20).
The remaining properties easily follow from (20), (17) and (18). □

5. Interpolation

Let M be as in Section 4. We mentionned previously that subelliptic and compactness
estimates for the ∂̄-Neumann operator percolate up the ∂̄-complex on pseudoconvex domains
in Cn: if these estimates hold for (p, q)-forms then they hold for (p, q + 1)-forms. See for
example [27] Proposition 4.5. The question of what happens for the complex Green operator
on the boundary of those domains arises naturally. Since compactness estimates for Gp,q

hold at symmetric levels, if such percolation property holds, then the compactness of Gp,q

would imply the compactness estimates for all forms. That is, unfortunately, too good to be
true as the following example witnesses: Similar to the property of the ∂̄-Neumann operator
on convex domains, in [24], Theorem 1.5, the authors proved that if M is the boundary
of a smooth bounded convex domain in Cn, then Gp,q is compact if and only if M has no
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q-dimensional nor (n−1− q)-dimensional complex varieties. Again, if n ≥ 5 and M contains
an analytic disc but no higher dimensional complex variety, then by this property, all the
complex Green operators G0,2, . . . G0,n−3 are compact but G0,1 and G0,n−2 are not. There is
no percolation of compactness estimates from (0, n− 3)-forms to (0, n− 2)-forms.

However, we obtain a substitute of the percolation, that is analogous to an interpolation:

Theorem 2. Let M be a smooth compact pseudoconvex orientable CR-submanifold of Cn of
hypersurface type, of CR-dimension m − 1, let 0 ≤ p ≤ m and 1 ≤ q1 ≤ q2 ≤ (m − 2). If
Gp,q1 and Gp,q2 are compact, then so is Gp,r for q1 ≤ r ≤ q2.

To prove this result, we use the microlocalization from [17, 19] and an idea from [22]. Since
compactness estimates are local, we choose a good cover of M by local coordinate charts and
work with smooth forms supported in such chart. The microlocalization allows to decompose
the complex Green operators into 3 pseudodifferential operators P± and P0 supported in 3
different cones: Gp,qu = P+Gp,qu + P0Gp,qu + P−Gp,qu. To prove the compactness of Gp,q

is then equivalent to prove the compactness of P±Gp,q and P0Gp,q. But Pj, j ∈ {−,+, 0}
are bounded in L2

(p,q)(M) and in particular, P0Gp,q is always compact because of elliptic

estimates for ∂M ⊕ ∂
∗
M on that part of the microlocalization, so only P+Gp,q and P−Gp,q are

relevant for the question of compactness of Gp,q. The key result is the fact that P+Gp,q and

P−Gp,q do percolate. However, while for P+Gp,q, percolation is indeed up the ∂M–complex,
for P−Gp,q it is down the complex. Theorem 2 is then just a corollary: if Gp,q is compact at
two levels (p, q1) and (p, q2), q1 ≤ q2, then both P+Gp,qj and P−Gp,qj are compact, j = 1, 2,
and percolation (up from P+Gp,q1 , down from P−Gp,q2) implies that at the intermediate form
levels (p, r), q1 ≤ r ≤ q2, both P+Gp,r and P−Gp,r are compact. Hence so is Gp,r.

The meaning of compactness of those operators is given by the following Lemma. We refer
to [8], Lemma 1 for the proof.

Lemma 3. Let 0 ≤ p ≤ m, 1 ≤ q ≤ (m − 2), k ∈ {+,−, 0}. Then the following are
equivalent:

(i) PkGp,q is compact.

(ii) Pkjp,q : dom(∂M) ∩ dom(∂
∗
M) ∩H(p,q)(M)⊥ → L2

(p,q)(M) is compact.

(iii) For all ε > 0, there is a constant Cε > 0 such that

(27) ∥Pku∥2 ≤ ε
(
∥∂Mu∥2 + ∥∂∗

Mu∥2
)
+Cε∥u∥2W−1 , u ∈ dom(∂M)∩dom(∂

∗
M)∩H(p,q)(M)⊥ .

(iii)* For all ε > 0, there is a constant Cε such that

(28) ∥Pku∥2 ≤ ε
(
∥∂Mu∥2 + ∥∂∗

Mu∥2
)
+ Cε∥u∥2W−1 , u ∈ dom(∂M) ∩ dom(∂

∗
M) .

Note that the dimension m ≥ 3 is required since we invoke the finite dimension of Hp,q(M)
to obtain the equivalence between (iii) and (iii)∗. The property (iii)∗ is the one we will use.

So the most important result of this section is the following:

Theorem 3. Let M be a smooth compact pseudoconvex orientable CR-submanifold of Cn of
hypersurface type, of CR-dimension m− 1, let 0 ≤ p ≤ m. We have:
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(i) if P+Gp,q is compact, then so is P+Gp,q+1, 1 ≤ q ≤ (m− 3).
(ii) if P−Gp,q is compact, then so is P−Gp,q−1, 2 ≤ q ≤ (m− 2).

We give below the idea of the proof for (i), the proof of (ii) working with similar arguments.
We refer to [8] for the details.

Proof. Since smooth forms are dense in dom(∂M)∩dom(∂
∗
M) by the Friedrichs Lemma, via a

partition of unity argument, it is enough to work with smooth forms supported in a special
boundary chart. We define Pj by use of the microlocalization from [17, 19]. Let χ, χ+, χ−, χ0

be functions with compact support in a neighborhood of such chart and define

(29) P+u = χF−1χ+û , P−u = χF−1χ−û , P0u = χF−1χ0û ,

where û = Fu is the Fourier transform on R2m−1 and the operators act coefficientwise with
respect to a fixed (chosen) frame {ω1, . . . , ωm}. Then P± and P0 also act coefficientwise, as
pseudo-differential operators of order zero. Note that P+u+ P−u+ P0u = u.

By assumption, for any v ∈ L2
(p,q)(M), P+Gp,qv is compact. We want to obtain the

compactness estimates (iii)∗ for a form (p, q + 1)-form u in dom(∂̄M) ∩ dom(∂̄∗
M). The idea

is to build, from any smooth (p, q+1)-form u, a set (p, q)-forms vk whose norms control that
of u, for which the compactness estimate (iii)∗ are satisfied, in such away that the resulting
right hand sides can be estimated by the corresponding right hand side for u. The first part
is standard (but see [27], proof of Proposition 4.5).

vk =
∑′

|I|=p,|K|=q

uIkKωI ∧ ωK .

Since P+ acts coefficientwise, observe that

∥P+u∥2 = 1

q + 1

m−1∑
k=1

∥P+vk∥2,(30)

where ∥.∥ holds for ∥.∥L2(M). The norms being equivalent, the idea is to get (iii)∗ in terms of
u by estimating ∥P+vk∥. However, there is here a difference from [27], applying directly the

compactness estimates (iii)∗ on vk will make appear ∂Mvk and ∂
∗
Mvk. While ∂

∗
Mvk is easily

related to ∂
∗
Mu, the same is not true for ∂Mvk and ∂Mu. To address this difficulty, we note

that P+ is essentially a projection, so ∥(P+)2vk − P+vk∥ ≲ ∥(P+)2u − P+u∥ and then we

can invoke the microlocal ellipticity of ∂M ⊕ ∂
∗
M on the support of (χ+)2 − χ+ (since this

support stays away from the direction dual to the ”bad”, or T direction). We get

(31) ∥(P+)2u− P+u∥ ≲ ε
(
∥∂Mu∥+ ∥∂∗

Mu∥
)
+ Cε∥u∥W−1 .

More needs to be precised and some care is required here but we refer to [8] p. 10 for the
details. Hence, by using (31), we obtain

∥P+vk∥2 ≲ ∥(P+)2vk − P+vk∥2 + ∥(P+)2vk∥2

≲ ε
(
∥∂Mu∥2 + ∥∂∗

Mu∥2
)
+ Cε∥u∥2W−1 + ∥(P+)2vk∥2.(32)
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Only the last term of (32) is left to estimate. We then invoke the assumption that P+ is
compact on (p, q)-forms P+vk and we obtain from (iii)∗ of Lemma 3,

∥(P+)2vk∥2 ≤ ε
(
∥∂M(P+vk)∥2 + ∥∂∗

M(P+vk)∥2
)
+ Cε∥P+vk∥2W−1

≤ ε
(
∥∂M(P+vk)∥2 + ∥P+∂

∗
Mvk∥2 + ∥vk∥2

)
+ Cε∥P+vk∥2W−1(33)

≲ ε
(
∥∂M(P+vk)∥2 + ∥∂̄∗

Mu∥2
)
+ Cε∥u∥2W−1 .(34)

In (33), we have commuted P+ with ∂
∗
M , and used that the commutator is an operator of

order zero. As we mentionned earlier, we have used in (34) that ∂
∗
Mvk is related to ∂

∗
Mu like

it is done in [27], p.79–80 (see also [8]). Note that P+ is of order zero, the last term in (33)
is not a problem: ∥P+vk∥W−1 ≲ ∥vk∥W−1 ≲ ∥u∥W−1 . It suffices to estimate ∥∂M(P+vk)∥2 in
terms of u.

To do that, we use the local expression (3) of ∂̄ by noting that via a partition of unity, we
can work on a good boundary chart where L1, · · · , Lm−1 are defined. We get

(35) ∥∂̄M(P+vk)∥2 ≲
m−1∑
j=1

∑′

|I|=p,|J |=q+1

∥LjP+(uIJ)∥2 + ∥P+u∥2.

Because of the presence of P+, it turns out that the Lj–derivatives of P+u on the right-hand

side of (35) can be estimated by ∥∂M(P+u)∥ + ∥∂∗
M(P+u)∥ (plus the benign term ∥P+u∥);

thanks to the usual formula, obtained from integration by parts (see for example the proof
of Theorem 8.3.5 in [11]),

(36) ∥∂̄M(P+u)∥2 + ∥∂̄∗
M(P+u)∥2

=
m−1∑
j=1

∑′

|I|=p,|J |=q+1

∥Lj(P+uIJ)∥2 +
∑′

|I|=p,|K|=q

m−1∑
j,k=1

(
[Lj, Lk]P+uIjK ,P+uIkK

)
L2
(p,q+1)

(M)

+O
(
∥P+u∥

(
∥L̄(P+u)∥+ ∥L(P+u)∥

)
+ ∥P+u∥2

)
,

where ∥L(P+u)∥2 =
m−1∑
j=1

∑′

|I|=p,|J |=q+1

∥Lj(P+uIJ)∥2. Note that

[Lj, Lk] = cjkT mod T 1,0M ⊕ T 0,1M,

where (cjk) the matrix of the Levi form in the basis L1, . . . , Lm−1.
The presence of P+ in the second term of the right-hand term of (36) and the pseudo-

convexity allow to conclude: commuting T with F−1 (from P+) makes appear the positivity
required to apply G̊arding’s inequality (see for example [19], Lemma 2.5, [20], Theorems 3.1,
3.2) on this term:

(37) Re

 ∑′

|I|=p,|K|=q

m−1∑
j,k=1

(cjkT (P+uIjK),P+uIkK)

 ≳ −∥u∥2 .
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Combining (37) with the real part of (36), we obtain

(38)
m−1∑
j=1

∑′

|I|=p,|J |=q+1

∥Lj(P+uIJ)∥2 ≲ ∥∂̄Mu∥2 + ∥∂̄∗
Mu∥2 + ∥u∥2.

Finally, combining (38) with (35), inserting the result together with (34) into (32) gives the
desired estimate for ∥P+vk∥2 as in (iii)∗ of Lemma 3.

The proof of (ii) is similar in terms of arguments, however instead of building a (p, q)-form
from a (p, q + 1)-form, we build a (p, q)-form from (p, q − 1)-form u as follows:

(39) vk =
∑′

|I|=p,|J |=q−1

uIJ ωk ∧ ωI ∧ ωJ = ωk ∧ u .

Now, contrary to (i), ∂Mvk is easily related to ∂Mu, but relating ∂
∗
Mvk to ∂

∗
Mu plus benign

terms requires work. The arguments are analogous, but with an additional twist. ∂
∗
M pro-

duces Lj terms, rather than Lj terms, and one has to first integrate by parts to convert these
to barred terms. This has the effect that instead of the Levi matrix (cjk) in (37), the matrix
(cjk− 1

q−1
δjktr(crd)) appears, where tr(crd) denotes the trace of the Levi matrix. This matrix

is no longer positive semi definite, but it still has the property that the sum of any (q − 1)
eigenvalues is nonnegative. This suffices to make the argument with G̊arding’s inequality
work. We refer to [8] p. 13-14 for the details. □

6. Further curiosities

In this section, we present an open problem, that is not new but which is related to the
theory of foliations and fits with the general interest of the conference. We will end with a
result obtained by Haslinger [14] that shows that the interpolation of compactness estimates
holds when the percolations fails for the ∂̄-Neumann operator.

In [30], Straube and Zeytuncu give a sufficient condition for Sobolev estimates for the
complex Green operator on a smooth compact orientable and pseudoconvex CR-submanifold
of hypersurface type of Cn in terms of the negative Lie derivative of the form η, introduced
in Preliminaries, in the direction of T that is denoted by α := −LTη. Note that this form α
acts on the null space of the Levi form, denoted Nz at a point z ∈ M as follows:

−LTη(L̄) = η([T, L̄]), ∀L ∈ Nz,

since η(L̄) = 0. α is then on Nz the T -component of the commutators [T, L̄] mod T 1,0
z M ⊕

T 0,1
z M , which needs to be controlled to obtain Sobolev estimates. We refer to [30] for the

details and to [7] for the idea. This form α is closed on the null space, i.e, dα|Nz
= 0 for any

z ∈ M . In particular, if S is a complex submanifold of M , [α|S ] defines a De Rham class of
cohomology in H1(M). To obtain Sobolev estimates, the sufficient condition given in [30] is
the exactness of α on Nz, z ∈ M , i.e,

∃h ∈ C∞(M), dh(L)(z) = α(L)(z), ∀L ∈ Nz, z ∈ M.
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It was proved in the same paper, that this condition happens if M is given by a set of
defining plurisubharmonic functions or if M is strictly pseudoconvex except on a smooth
complex submanifold S such that [α|S ] = 0. Note that [α|S ] = 0 if S is simply connected.
However, [α|S ] may vanish when S is not simply connected, for example in an annuli in the
boundaries of certain Hartogs domains in C2 (see [9]). In such domains that are in particular
“nowhere wormlike”, the Bergman projection is regular. Here is then the open question:

Open Problem. Assume that the complex Green operator G0,1 satisfies Sobolev estimates
or is globally regular on a smooth orientable compact pseudoconvex CR-submanifold M of
hypersurface type of Cn that is strictly pseudoconvex except on a smooth complex submanifold
S of M . Do we have [α|S ] = 0?

If S is a flat piece that is foliated by complex submanifolds, then the question is equivalent
to proving that α is d-exact on each leaf L of the foliation, i.e, α|L = dh|L . This is also
equivalent to saying that the foliation is globally defined by a closed one form, which is
a crucial matter in the theory of foliation. The same problem occurs for the ∂̄-Neumann
operator on pseudoconvex domains and is still open. We refer to [29], Proposition 2 for more
on this connection, also to [27], Section 5.11 and [4], Section 3.6.

In [14], Haslinger studies the sufficient assumption for the compactness of the ∂̄-Neumann
operator in the weighted L2-space L2(Cn, ϕ), that is on the plurisubharmonic weight function
ϕ. However, Berger and Haslinger in [6] show that something remarkable happens when we
consider a particular weight, said “decoupled weight” that is of the form ϕ(z1, . . . , zn) =
ϕ1(z1) + · · · + ϕn(zn) where each ϕj, j ∈ {1, . . . , n} is smooth and subharmonic on C
and ∆ϕj is a nontrivial doubling measure (see Definition p.4 in [6]): the ∂̄-Neumann op-
erator Nφ

0,q fails to be compact for 0 ≤ q ≤ n − 1 but Nφ
0,n is compact if and only if

limz→+∞
∫
B1(z)

tr((i∂̄∂ϕ(z)))dλ = +∞ where B1(z) is the unit ball in Cn. The percola-

tion of compactness estimates between Nφ
0,n−1 and Nφ

0,n fails. The decoupled weights are an
obstruction to the compactness. However, they pointed out that for a variation of decoupled
weights such as,

ϕq(z1, . . . , zn) = |(z1, . . . , zq−1)|4 + |(zq, . . . , zn)|4, q >
n

2
,

the weighted ∂̄-Neumann operator N
φq

0,k is compact for q ≤ k ≤ n. When percolation fails,
an interpolation result holds.

References

[1] Baracco, Luca, The range of the tangential Cauchy–Riemann system to a CR embedded manifold,
Invent. Math. 190, (2012), 505–510.

[2] , Erratum to: The range of the tangential Cauchy–Riemann system to a CR embedded manifold,
Invent. Math. 190, (2012), 511–512.

[3] , Boundaries of analytic varieties, preprint, arXiv:1211.0787.
[4] Barletta, E., Dragomir, S., and Duggal, K. L., Foliations in Cauchy-Riemann Geometry, Mathematical

Surveys and Monographs 140, Amer. Math. Soc., 2007.

13



[5] M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, Real Submanifolds in Complex Space
and Their Mappings, Princeton University Press, Princeton, 1999.

[6] Berger, Franz and Haslinger, Friedrich, on some spectral properties of the weighted ∂̄-Neumann operator,
arXiv:1509.08741
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