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Abstract. This note is an announcement of the author’s recent works [1, 2, 3] on
Levi-flat real hypersurfaces, which are motivated by the non-existence conjecture of
smooth Levi-flat real hypersurface in the complex projective plane.

1 An approach to the non-existence conjecture of

Levi-flats in CP2

This work is motivated by the following

Conjecture. There is no C∞-smooth closed Levi-flat real hypersurface in the complex
projective plane CP2.

A smooth real hypersurface M in a complex manifold X is said to be Levi-flat if
M has a smooth foliation, called the Levi foliation of M , by complex hypersurfaces of
X. Typical examples are invariant real hypersurface of (possibly singluar) holomorphic
foliations of codimension one on X, and they can be regarded as holomorphic counterpart
of limit cycles of trajectories of vector fields. One of the origin of this conjecture is the
celebrated Poincaré–Bendixson’s theorem and its holomorphic counterpart (cf. [10], [11]),
and this conjecture is an important part of exceptional minimal set conjecture: any leaf
of a singular holomorphic foliation F of CP2 must have an accumulation point in the
singular locus of F .

In higher dimensional setting, we have affirmative answers on the non-existence of
Levi-flats or exceptional minimal sets. In particular, the non-existence of closed Levi-flat
real hypersurface in CPn, n ≥ 3, was settled by Lins Neto [22] for real analytic ones,
and by Siu [25] for C∞-smooth ones. Since these works depend on vanishing of certain
Dolbeault cohomology at (0, 2) or the fact that singular locus of holomorphic foliation of
CPn has positive dimension, the proof for higher dimensional setting does not work at all
in two-dimensional setting (cf. [9]).

Although there have been several published papers and preprints claiming affirmative
solutions to this conjecture, up to 2018, the gaps in their proofs have not been fixed yet
and the conjecture is still open. We refer the interested readers to [19] for the status of
papers published before 2008. As far as the author knows, at the moment, we do not have
any promising strategy to attack this conjecture, nor strong evidence that the conjecture
must be true in two-dimensional case.

Some years ago, Brinkshulte and the author gave a supporting evidence for the con-
jecture:
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Theorem 1.1 (A.-Brinkschulte [5]). Suppose that there exists hypothetical C∞-smooth
closed Levi-flat real hypersurface M in CP2. We equip the Fubini–Study metric on CP2

and restrict it to M . Denote by ν the unit normal vector field of M ⊂ CP2 and rotate it
to a totally real vector field ξ := −Jν on M using the complex structure J of CP2. Then,
there exists p ∈M with RicM(ξp, ξp) ≤ −4.

A weaker restriction to the hypothetical Levi-flat, the existence of p ∈ M with
RicM(ξp, ξp) ≤ 0, was previously shown by Bejancu and Deshmukh [6] using differen-
tial geometric techniques. We improved the curvature restriction by looking at the fi-
nite/infinite dimensionality of the Bergman space of the complement of the hypothetical
Levi-flat M .

Sketch of the proof of Theorem 1.1. The hypothetical Levi-flat M divides CP2 into two
domains Ω and Ω′. These domains are Stein from Takeuchi’s theorem [26]. Moreover,
Ohsawa and Sibony [23] showed that the distance function δ to M with respect to the
Fubini–Study metric induces a bounded strictly plurisubharmonic function −δη on Ω∪Ω′

for some η ∈ (0, 1). Namely, the Diederich–Fornæss index of Ω and Ω′ is positve. Once
we know this positivity, a Donnelly–Fefferman type L2-estimate for the ∂-equation (cf.
[7]) yields the infinite dimensionality of

A2(Ω, KCP2) := {f : holomorphic 2-form on Ω |
∫
Ω

f ∧ f <∞}.

Now, we assume RicM(ξ, ξ) > −4 everywhere on M and try to deduce a contradiction.
By Gauss–Codazzi equations and the adjunction formula KCP2|M ⊗NF = KF , where NF
and KF denote the normal and canonical bundles of the Levi foliation F respectively, this
curvature condition can be rephrased with D’Angelo (1, 0)-form α,

|α|2 =
1

4
(H(TF , T

⊥
F ) − RicM(ξ, ξ)) <

1

4
(2 − (−4)) =

3

2
= −1

2
degKCP2 on M.

Applying an integral formula of Griffiths or Lelong–Jensen formula of Demailly, this
boundary inequality yields the finite dimensionality of A2(Ω, KCP2). Contradiction.

Iordan [20] asked the author whether we could improve the curvature restriction by
looking at the weighted Bergman space instead of A2(Ω, KCP2).

Definition 1.2. Let L be a holomorphic line bundle over a complex manifold X with
smooth hermitian metric h, and let Ω ⋐ X be a smoothly bounded domain with smooth
defining function −δ. For each η > −1, the L-valued weighted Bergman space of Ω of
order η is defined by

A2
η(Ω, L) := {f ∈ H0(Ω, L) | ‖f‖2η :=

1

Γ(1 + η)

∫
Ω

|f |2hδηdV <∞}

where dV is a volume form of X and Γ denotes the gamma function.

In fact, it is possible to obtain another curvature restriction by modifying the proof
of Theorem 1.1 to the case A2

η(Ω,OCP2(d)). However, we are too far from the conjecture
since we have severe technical limitation in producing holomorphic functions belonging to
weighted Bergman space of order close to −1. For instance, take a look at A2

η(Ω, KCP2) for
η > −1. The same argument as in the proof of Theorem 1.1 implies infinite dimensionality
of weighted Bergman spaces too:
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Proposition 1.3. Let X be complex manifold and Ω ⋐ X be a smoothly bounded domain
with smooth defining function −δ. Suppose that this defining function has the Diederich–
Fornæss exponent η ∈ (0, 1) in the strongest sense, namely, −δη is strictly plurisubhar-
monic on Ω. Then, A2

−η(Ω, KX) is infinite dimensional.

This is a beautiful application of the L2-estimate of ∂-equation. However, Proposition
1.3 is not powerful enough to approach the conjecture. When the boundary of domain Ω
is Levi-flat, the Diederich–Fornæss exponent of any defining function −δ cannot exceed
1/ dimCX ([4], [14]. cf. [12]). Hence, Proposition 1.3 cannot tell us infinite dimensionality
of A2

η(Ω, KCP2) for η ∈ (−1,−1/2), which is not satisfactory in view of our main theorem:

Main Theorem (A. [1, 2, 3]). There is an explicit example of smoothly bounded domain
Ω with Levi-flat boundary in compact complex surface X such that

• There exists a smooth defining function −δ of Ω having the Diederich–Fornæss ex-
ponent 1/2, which is the best possible value.

• The weighted Bergman space A2
η(Ω) is infinite dimensional not only for η ≥ −1/2

but also for η ∈ (−1,−1/2).

• The Hardy space A2
−1(Ω) is one-dimensional, namely, consists of constant functions

only.

Definition 1.4. Let (L, h) → X, Ω ⋐ X and ‖ · ‖η as in Definition 1.2. For η = −1, the
L-valued Hardy space of Ω is defined by

A2
−1(Ω, L) := {f ∈ H0(Ω, L) | ‖f‖−1 := lim

η↘−1
‖f‖η <∞}.

In §2, we explain the construction of the example and show that the example has the
Diederich–Fornæss index 1/2. In §3, we give a sketch of proof for the infinite dimensional-
ity of weighted Bergman spaces, which is done by explicit construction since it is beyond
the scope of Proposition 1.3. If we could develop the L2-theory of ∂-equation deeply
enough so that it recovers this result, we might have a chance to reach the conjecture via
our approach. In §4, we give a sketch of proof for a slightly weaker finite dimensionality
statement: the space of bounded holomorphic functions A∞(Ω) and A∞(Ω′) consist of con-
stant functions. Although this is an immediate consequence of Hopf’s ergodicity theorem,
we explain another proof in the spirit of the proof of Theorem 1.1, which suggests that
our finite dimensionality argument in Theorem 1.1 should be“sharp”.

2 The Example

Let Σ be a compact Riemann surface of genus > 1. By Koebe–Poincaré uniformization
theorem, the universal covering of Σ is isomorphic to the unit disk D and we may regard
Σ as the quotient space of D by a Fuchsian group Γ. Since each element of Γ is a linear
fractional transformation, Γ also acts on the Riemann sphere CP1.

We define a ruled surface over Σ by X := D × CP1/Γ where Γ acts on D × CP1

diagonally. The ruling map is given by the first projection π : X → D/Γ = Σ. Since
the action of Γ on CP1 preserves the decomposition CP1 = D ∪ S1 ∪ (CP1 \ D), we can
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define domains Ω := D×D/Γ and Ω′ := D× (CP1 \D)/Γ in X which share the common
boundary M := D× S1/Γ. This M is Levi-flat since the product foliation {D× {t}}t∈S1

induces a foliation on M . These Ω and Ω′ are the examples claimed in our main theorem.

Proposition 2.1. The domain Ω′ admits a smooth defining function −δ′ whose Diederich–
Fornæss exponent is 1/2 in the strongest sense. On the other hand, the domain Ω admits
a smooth defining function −δ whose Diederich–Fornæss exponent is 1/2 in a weak sense,
namely, −

√
δ is strictly plurisubharmonic on Ω away from a compact subset.

Proof. Following Diederich and Ohsawa [13], we define δ : D× D → [0, 1] by

δ(z, w) = 1 −
∣∣∣∣ w − z

1 − zw

∣∣∣∣2 .
Then, we can easily check that δ induces a well-defined function on a neighborhood of Ω
and −δ is a defining function of Ω. By direct computation, we see that −

√
δ is strictly

plurisubharmonic on Ω \ D where D := {(z, z) | z ∈ D}/Γ is a divisor isomorphic to Σ.
Hence, −δ has the Diederich–Fornæss exponent 1/2 in the weak sense.

To explain the construction of δ′, we first remark that Ω′ is isomorphic to the quotient
of D× D by “conjugated” action of Γ:

Γ × (D× D) → D× D, γ · (z, w′) = (γ · z, γ · w′).

The isomorphism is induced from D × (CP1 \ D) → D × D, (z, w) 7→ (z, w′) = (z, 1/w).
Using this (z, w′)-coordinate, we define δ′ : D× D → [0, 1] by

δ′(z, w′) = 1 −
∣∣∣∣ w′ − z

1 − zw′

∣∣∣∣2 .
Then, we can easily check that −δ′ gives a defining function of Ω′ as before. By direct
computation, we see that −

√
δ′ is strictly plurisubharmonic on entire Ω′. Hence, −δ′ has

the Diederich–Fornæss exponent 1/2 in the strongest sense.

As the proof of Proposition 2.1 explains, Ω and Ω′ are similar but not biholomorphic.
The domain Ω contains the divisor D, but Ω′ is Stein and does not contain any divisor.
One might say that Ω and Ω′ are “half”-biholomorphic, or they are in a “mirror image”.
We remark that the “mirror image” of D is a totally real subset D′ ⊂ Ω′ given by the
quotient of “anti-diagonal” subset {(z, z) | z ∈ D} ⊂ D × D by the conjugated action of
Γ. Since D′ is real analytically isomorphic to Σ, we can regard Ω′ as a complexification
of Σ, in fact, Ω′ is the Grauert tube of hyperbolic surface Σ in the sense of Guillemin and
Stenzel [16] and Lempert and Szőke [21].

Remark 2.2. The canonical bundle KX of X can be described as KX = −2[D] since
meromorphic 2-form dz ∧ dw/(z − w)2 on D× CP1 induces a meromorphic 2-form on X
that trivializes KX over X \ D and has second order pole along D. Hence, our main
theorem can be read as a claim for KX-valued weighted Bergman space A2

η(Ω, KX) or
KX-valued Hardy space A2

−1(Ω, KX).
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3 Infinite dimensionality of the weighted Bergman

spaces

In this section, we explain how to construct holomorphic functions of slow growth without
appealing to Proposition 1.3 to show the infinite dimensionality of the weighted Bergman
spaces. The proof consists of direct computations on the weighted L2 norm of holomorphic
functions to be constructed. For a detailed account, we refer the reader to [1, 3].

Theorem 3.1 (A. [1]). For Ω ⋐ X constructed in §2, dimCA
2
η(Ω) = ∞ for any η > −1.

The idea is to extend given jet ψ of holomorphic function along the divisor D ⊂ Ω
to a holomorphic function I(ψ) on Ω with smallest possible L2 norm, and to check that
I(ψ) has finite weighted L2 norm of any order η > −1. There have been numerous
number of studies dealing with this kind of problem since the discovery of Ohsawa–
Takegoshi L2-extension theorem [24]. Recently, optimal versions of L2-extension theorem
were established by B locki [8] and Guan and Zhou [15], and an optimal jet L2-extension
theorem was shown by Hosono [18]. The author does not know whether there is an optimal
jet L2-extension theorem that is applicable to this setting and enables us to estimate the
weighted L2-norm of the optimal extension. So, at the moment, we try to construct the
optimal estimate in a direct way, by power series.

Sketch of the proof of Theorem 3.1. We use non-holomorphic coordinate (z, t) ∈ D×D of
the universal covering space of Ω given by

t =
w − z

1 − zw

where (z, w) is the original holomorphic coordinate of D × D. Notice that the divisor
D ⊂ Ω is expressed as D × {0} ⊂ D × D in this (z, t)-coordinate. We try to construct a
holomorphic function f on Ω, that is, holomorphic function on D× D invariant under Γ,
by determining coefficients {fn}∞n=k ⊂ C∞(D) in the power series expansion in t

f(z, t) =
∞∑
n=k

fn(z)tn

when the first coefficient fk(z), corresponding to a k-jet of holomorphic function along D,
is given. From Γ-invariance of f , we see that each coefficient fn(z) should correspond to
a n-differential ψn ∈ C∞(Σ, K⊗n

Σ ) on Σ in a way that

π∗ψn = fn(z)

( √
2dz

1 − |z|2

)⊗n

where π : D × D → D × D/Γ = Ω is the covering map. In particular, the given jet data
fk(z) should be identified with a holomorphic k-differential ψk ∈ H0(Σ, K⊗k

Σ ).
Since f should be holomorphic in (z, w), the coefficients {fn}∞n=k should enjoy

∂fn
∂z

+
nz

1 − |z|2
fn +

n− 1

1 − |z|2
fn−1 = 0.
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We can inductively solve this ∂-equation so that the coefficients fn identified with ψn have
smallest possible L2-norm in C∞(Σ, K⊗n

Σ ) at each step. Then, it turned out, after direct
computations, that the resulting power series I(ψk) converges to a holomorphic function
on Ω and we can describe its expression by an integral transform

I(ψk)(z, w) =
1

B(k, k)

∫ w

z

(
(w − τ)(τ − z)

(w − τ)dτ

)⊗(k−1)

π∗ψk(τ)(dτ)⊗k

where B(p, q) is the beta function and the integration is performed along any path from
z to w in D.

We can compute the weighted L2-norm of I(ψk) on Ω for suitably chosen volume form
and defining function as

‖I(ψk)‖2η = π‖ψk‖2H0(Σ,K⊗k
Σ )3

F2

(
k + 1, k, k

2k, k + 2 + η
; 1

)
,

which is finite for any η > −1. Here 3F2 denotes the generalized hypergeometric function.
In summary, we have constructed a linear map

I :
∞⊕
k=0

H0(Σ, K⊗k
Σ ) →

⋂
η>−1

A2
η(Ω) ⊂ O(Ω),

which is easily seen to be injective and have a dense image in the compact open topology
of O(Ω). Hence, A2

η(Ω) is infinite dimensional for any η > −1.

For the “mirror” side Ω′, the same strategy works. :

Theorem 3.2 (A. [3]). For Ω′ ⋐ X constructed in §2, dimCA
2
η(Ω

′) = ∞ for any η > −1.

Rough sketch of the proof. We begin with the totally real set Σ ' D′ ⊂ Ω′ instead of the
divisor D ⊂ Ω. It is a classical fact that any eigenfunction fλ of the hyperbolic laplacian
4 on Σ is analytically continued to a holomorphic function I ′(fλ) on Ω′. We can reprove
this fact by the same method as in the proof of Theorem 3.1 having an advantage that
we have the power series expression of I ′(fλ). We can confirm that the weighted L2-norm
‖fλ‖η is finite thanks to its explicit expression in terms of ‖fλ‖L2(Σ) and 3F2 as in Theorem
3.1.

In summary, we have an injective linear map

I ′ :
∞⊕
k=0

Ker(4− λkI) →
⋂

η>−1

A2
η(Ω

′) ⊂ O(Ω′),

having a dense image in the compact open topology of O(Ω′), where {λk} is the eigenvalues
of the hyperbolic laplacian 4. Hence, A2

η(Ω
′) is infinite dimensional for any η > −1.

4 Finite dimensionality of the Hardy space

In this section, we first see that the finite dimensionality of the space of bounded holo-
morphic functions A∞(Ω) and A∞(Ω′) is a corollary of Hopf’s ergodicity theorem:
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Theorem 4.1 (Hopf [17]). Let Σ = D/Γ be a Riemann surface of finite hyperbolic area.
Then, the diagonal action of Γ on S1×S1 is ergodic with respect to its Lebesgue measure.
Namely, for any Lebesgue measurable subset E ⊂ S1 × S1 invariant under the diagonal
action of Γ has Lebesgue measure zero or full Lebesgue measure.

Corollary 4.2. For Ω,Ω′ ⋐ X constructed in §2, A∞(Ω) and A∞(Ω′) consist of constant
functions only.

Sketch of the proof. Let f be a bounded holomorphic function on Ω = D × D/Γ. We
identify this f with a Γ-invariant holomorphic function on D × D. Then, a Fatou type
theorem (cf. [27, Theorem IV.13]) yields the boundary value function of f , which is a
Γ-invariant bounded measurable function on S1 × S1. From Theorem 4.1, this boundary
value function must be constant almost everywhere in the Lebesgue measure, and it follows
from the Fatou type theorem that f itself is constant on D× D.

The same argument applies to bounded holomorphic functions on Ω′.

We give another proof of Corollary 4.2 in the spirit of the finite dimensionality part in
the proof of Theorem 1.1. For a detailed account of the proof, we refer the reader to [2].

Sketch of another proof for Corollary 4.2. We explain it for A∞(Ω′). Define a potential
function φ : Ω′ → [0, π/2) by φ := arccos

√
δ′ where δ′ is the one given in Proposition

2.1. Then, by direct computation, we see that φ2 is a smooth strictly plurisubharmonic
function on Ω′ and (i∂∂φ)2 = 0 on Ω′ \ D′. This, in particular, means that Ω′ is the
Grauert tube of hyperbolic surface Σ of maximal radius.

We combine this potential function φ with the integral formula used in the proof of
Theorem 1.1. For any holomorphic function f on Ω′, we have∫

φ−1(s,t)

i∂∂|f |2 ∧ dφ ∧ dcφ =

∫
φ−1(t)

|f |2dcφ ∧ i∂∂φ−
∫
φ−1(s)

|f |2dcφ ∧ i∂∂φ (4.1)

thanks to (i∂∂φ)2 = 0. Substituting φ = arccos
√
δ′ yields∫

φ−1(s,t)

i∂∂|f |2 ∧ dδ′ ∧ dcδ′

δ′(1 − δ′)

=
1

sin2 t

∫
φ−1(t)

|f |2dc(−δ′) ∧ i∂∂(−δ′)
δ′

− 1

sin2 s

∫
φ−1(s)

|f |2dc(−δ′) ∧ i∂∂(−δ′)
δ′

.

When f ∈ A∞(Ω′), we can show that RHS remains bounded as t ↗ π/2 since the
boundary M of Ω′ in X is Levi-flat. On the other hand, since

(LHS) =

∫ cos2 s

cos2 t

dx

x(1 − x)

∫
φ−1(x)

i∂f ∧ ∂f ∧ dc(−δ′),

the integrability requires that

lim
x↗π/2

∫
φ−1(x)

i∂f ∧ ∂f ∧ dc(−δ′) = 0

if this limit exists.
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We can compute this limit in two other ways. One is

lim
x↗π/2

∫
φ−1(x)

i∂f ∧ ∂f ∧ dc(−δ′) =

∫
M

i∂f ∧ ∂f ∧ dc(−δ′)

where f in the RHS should be understood as the boundary value function. To explain
the other way, we embed Ω′ to X̃ := CP1 ×D/Γ, where the action of Γ is the conjugated

one, and attach Ω′ another boundary M̃ ⊂ X̃. Then, we can check

lim
x↗π/2

∫
φ−1(x)

i∂f ∧ ∂f ∧ dc(−δ′) =

∫
M̃

i∂f ∧ ∂f ∧ dc(−δ′).

Now we identify f with a holomorphic function on D×D which is invariant under the
conjugated action of Γ. Since these integrals are zero, the boundary value function of f
enjoys

∂f

∂z
(z, w) = 0 a.e. on D× S1,

∂f

∂w
(z, w) = 0 a.e. on S1 × D.

This implies that the boundary value of f , which is a CR function, is independent of z on
D× S1 and of w on S1 × D. Thanks to the Fatou type theorem, it follows that f should
be constant function on D× D.

This proof also applies to A∞(Ω) since the essential point in the proof was the fact
that the defining function chosen has the Diederich–Fornæss exponent 1/2. One may use
φ = −

√
δ′ instead of the good choice of φ above. Then, (i∂∂φ)2 6= 0 but it modifies

the integral formula (4.1) only up to a bounded term, hence, the rest of the proof still
works.

Remark 4.3. In [1], the finite dimensionality of A2
−1(Ω) was shown via the topological

basis of O(Ω) constructed in the proof of Theorem 3.1. This method also works for
A2

−1(Ω
′).
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