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1. INTRODUCTION

Let (M,B,m) be a probability space. Consider a family {7 }scs of m-nonsingular
transformations on (M, B, m) indexed by a measurable space (S, B(S)) such that the map
SxM> (s,z)— 1sx € M is (B(S) x B)/B-measurable. Let (€2, F, P) be a probability
space and o : Q) — () a P-preserving transformation. Take an S-valued random variable
¢ on (Q, F, P) and define an S-valued strictly stationary process {&,}22, by &, = £ o o™
(n > 0). The family X = {X,,} of random maps X,, : M — M is called the random
dynamical system given by ({7s}ses, 0,€) if the maps in X are defined by

Xo(w)r =2, Xpi1(w)r = ¢, () Xn(w)x for (z,w) € M x Q, (n>0)

For a random dynamical system X given by ({7s}ses,0,&), we introduce its (direct)
product as the random dynamical system given by ({7s X Ts}ses,0,&) and we denote
it by X x X. Following Kakutani [8], we introduce the skew product transformations
Ty : M xQ—MxQand Ty : M? x Q — M? x Q corresponding to X and X x X by

Ti(z,w) = (X1(w)z,0w) for (z,w) € M X Q

and
To(z,y,w) = (X (w)z, X1 (W)y, ow) for (z,y,w) € M* x Q,

respectively.

In this article we consider the case where there exists a unique m x P-absolutely contin-
uous probability measure ()7 with density H; such that the measure-preserving dynamical
system (77, Q1) is exact, i.e. (), Ty "(B x F) is trivial with respect to @, (see [6] Chap-
ter 10 for details). To make things much simpler we assume that the transfer operator
L, = Lg, mxp of Ty with respect to m x P is asymptotically stable. (Furthermore, we
will need to assume the asymptotic stability of L5, = L, m2xp later). Then the m-

absolutely continuous probability measure p-m on B with density p(- / H(

can be regarded as the physical measure for P-almost every sample w. In fact, for any
observable f in L*>°(m) there exists I' € F with P(I') = 1 such that w € I" yields that
n—1

1
lim — Zf(Xn(w)x) = / fpdm m-ae. z. So it is not too much to say that ‘almost
k=0 X
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sure sample-wise or quenched strong law of large numbers’ holds. Therefore it is only nat-
ural to consider the central limit theorem (abbr. CLT) for the sequence {f(X,(w)z)},>0
as the next problem.

For an observable f we put S,(T1)f Z fI7 (z,w) Z f(X ) for

(r,w) € M x Q. Our main concern is the sample—w1se (quenched) central limit prob-
lem for the sequence {X,,(w)},>o of random variables on the space (X, B,m) with fixed
w € ). More practically, we consider the problem allowing an exceptional P-null set, i.e.
the study of the condition for that there exists I' € F with probability one such that for
any w € I', the random variable on the probability space (M, B, m) obtained by making
an appropriate centering on S, (71)f(-,w) converges in law to a normal distribution as
n — oo.

From general theory of weakly dependent stationary sequence of random variables, the
sample-averaged (annealed) CLT with deterministic centering holds true for a large class

of observables f, i.e., Z,(T1)f = (1/v/n)(Su(Th)f — n/ f pdm) converges in law to an
M

appropriate normal distribution N(0,v(f)) with respect to m x P as n — oo (see [5]
and [7]). Moreover, we can show that such a sample-averaged CLT implies that for any

u € Cy(R), the sequence /Mu(Zn(Tl)f) dm in L'(P) converges to /Ru(t) N(0,v(f))(dt)

weakly in L!'(P) as n — oo (see [11] and c¢f. Theorem 3.1 below), where Cy(R) denotes the
totality of continuous functions on R with compact support. Therefore this fact may lead
us to wishful thinking that the Sample wise CLT with the same deterministic centering
also holds true. But the results in (see also [9]) make us recognize that the noise

dependent centering S,,(T7) f (-, / F(Xk( H(y,w) m(dy) seems natural and

even proper in view of the martingale approximation for stationary processes. In fact, a
counter-example given in Section 4.4 of [1] (see also Example 4.2 in Section 4) shows that
the deterministic centering does not work in general, even in the case where the {&,},>0
is independent and identically distributed if we consider ‘almost sure sample-wise CLT".
Therefore, it turns out that some of observations and assertions in [11] have difficulties
and fail to hold.

The purpose of the article is to announce the author’s recent results on the condition
for that the sample-averaged CLT for S,(T1)f/+/n implies the a.s.sample-wise CLT with
the same deterministic centering. To be more precise, the following results are stated in
Section 3. First we give the conditions for the sample-averaged CLT under the asymp-
totic stability of the transfer operator for the skew-product transformation 77. One may
notice that Theorem 3.1 is a sort of corrected version of Proposition 3.2 in [11]. Next
we discuss about the conditions which guarantee that the sequence of random variables



/ u(S,(Th) f/+/n) dm in the above converges strongly to /u dN(0,v(f))in L'(P) (Theo-
M R

rem 3.2). Finally, we shall announce an a.s.sample-wise CLT with deterministic centering
under some additional conditions (Theorem 3.4). Section 4 is devoted to examples. On
account, of limited space we have to restrict ourselves just give the statements of theses
results. So proofs and details will be given elsewhere.

2. ASYMPTOTIC STABILITY OF TRANSFER OPERATOR

In order to state the present results, we need to introduce the notion of asymptotic
stability of the transfer operator. Let (M, B, m) be a probability space and 7 an m-
nonsingular transformation. Then the transfer operator(the Perron-Frobenius operator)
L, = L;,, of T with respect to m is defined to be the operator on L'(m) satisfying

/f-Engm:/(for)gdm for f € L>(m) and g € L*(m).
M M

For the sake of convenience we put

A(1,g,m;h) = Llg — (/ gdm)h for g, h € L'(m).
M

The transfer operator £, is said to be asymptotically stable with respect to h € L'(m) if
for each g € L'(m) ||A(T,9,n;h)|lim — 0(n — o) holds. Note that such an A in the
condition turns out to be a unique 7-invariant density and the measure-theoretic dynam-
ical system (7,hm) is exact ie. ()_,7 "B is trivial with respect to the m-absolutely
continuous 7-invariant measure Am with density h.

Consider the random dynamical system X" given by ({7s}ses, 0, &) and its product X' x X',
Since T} and T, are m x P-nonsingular and m? x P-nonsingular, respectively, we can
consider the transfer operators Ly, = L, mxp on L*(m x P) and Ly, = L1, m2xp ON
L'(m? x P), respectively. It is not hard to see that if Lr, is asymptotically stable with
respect to Hy € L'(m? x P), so is Ly, with respect to H; € L'(m x P), where H,(z,w) =

/MHg(x,y,w)m(dy) ((x,w) € M x Q).

3. RESULTS

First we state that the sample-averaged CLT is equivalent to a sort of weak L!-version
of sample-wise CLT if L7, is asymptotically stable. Precisely, we have the following.

THEOREM 3.1. Consider the random dynamical system given by ({7s}ses, 0,€) such that
the transfer operator Lz, on L'(m x P) is asymptotically stable. Let N(0,v) denote the
normal distribution with mean 0 and variance v > 0, where N(0,0) is regarded as the point
mass &y at 0 € R. Let f be a real-valued element in L>°(m) satisfying the deterministic

centering condition / fpdm =0, where p is defined as p(- / Hi(-,w)P(dw) by using
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the unique invariant density Hy for Ty with respect to m x P. Then the following are
equivalent.

(1) Su(Th)f/+/n converges in law to N(0,v) with respect to some m x P-absolutely
continuous probability measure.

(2) Su(Th)f/+/n converges in law to N(0,v) with respect to any m x P-absolutely
continuous probability measure.

(3) There exists a probability density g € L*(m) such that for any bounded continuous

function u on R, /MU(Sn(T1)f(SC, ) /v/n)g(x)dm converges weakly to /Ru(t) N(0,v)(dt)

in L*(P) as n — 0.
(4) For any bounded continuous functionu on R and any probability density g € L*(m),

/Mu(Sn(Tl)f(x, ) /v/n)g(x) dm converges to /Ru(t) N(0,v)(dt) weakly in L*(P) asn —

(5)  There exists a probability density g € L'(m) such that for any t € R,

/ V=SS @IV o (1) dm conwerges to e/ weakly in L*(P) as n — oco.
M

(6) Foranyt € R and any probability density g € L*(m), / eV THETI @V (1) dm)
M

converges to e=""/2 weakly in L'(P) as n — oo.

For f € L'(m), we denote by Fy and f the elements in L'(m?) defined by Fy(z,y) =

f(x) — f(y) and f(z,y) = f(x)f(y), respectively. For B-measurable function f and
B?-measurable function F', we abuse the notation S, f(x,w) and S,F(z,y,w) to denote
Sp(T1) f(x,w) and S, (T3) F(x,y,w), respectively if there is no fear of confusion. Note that

if f € L°°(m) satisfies the deterministic centering condition / fpdm = 0 with respect
M
to T', then f also satisfies the deterministic centering condition fpg dm? = 0 with
M?2

respect to Ty, where po(z,y) = /Hg(:c,y,w) P(dw). Indeed,
Q

Foadot = [ (160 = 1) [ Halisywyap) an

M2

= [ (@) = F)Hala ) o  P) =0

holds true since Hy is symmetric.

From now on we impose the stronger condition that L, is asymptotically stable on our
system. Recall that this yields that L7, is asymptotically stable. For @ € L'(m x P),



¥ € L'(m? x P), and nonnegative integer n, we put

A(Ty, P,n) =L}, P — / & d(m x P)- Hy, and
M xS

(3.1)

ATy, W, n) =L}, —/ v d(m? x P)- .

M2xQ

Next for a real-valued element f € L*(m), we consider autocorrelations

C(Ty, f,n) = / fHyd(m x Q)) and

M xS

o gorpsiamxP) - ([

2
C(TQ,Ff,n) = / FfHQ d(m2 X Q)) .

M2xQ

(FyoTy) fHyd(m? x P) — </M

2xQ

Under the condition

(3-3) Z IA(T3, fHi,n)|[1mxp < oo and Z |A(Ts, FHa,n)|1m2xp < 00,

the limit variances are given by the following absolutely convergent series.

(34) v(f) = C(Th, £,00+2Y C(Ty, f,n) and v(Fy) = C(Ty, Fy,0)+2 )~ C(Tz, Fy,n).

n=1 n=1
Now we are in a position to state the next result.

THEOREM 3.2. Assume that the transfer operator of the slew product transformation
Ty with respect to m* x P is asymptotically stable with respect to Hy € L'(m?* x P).
Let f be a real-valued element in L™(m) satisfying the deterministic centering condition

/ fpdm = 0. Furthermore, we assume that f and Fy satisfy the conditions in (3.3).
M

Then the following are equivalent.

(1) There exists a probability density g € L*(m) such that S, F;/\/n converges in law to
N(0,2v(f)) with respect to m* x P-absolutely continuous probability measure with density
g.

(2) For any probability density g € L*(m), S,Fy/v/n converges in law to N(0,2v(f))
with respect to m? x P-absolutely continuous probability measure with density §.

(3) There exists a probability density g € L*(m) such that for any bounded continuous

function u on R, /

u(S,/v/n)gdm converges to /u dN(0,v) strongly in L*(P) as (n —
M

00).

(4) For any probability density g € L*(m) and for any bounded continuous function u
on R, / u(S,/v/n)gdm converges to /u dN(0,v) strongly in L*(P) as (n — o0).
M R



(5)  There exists a probability density g € L'(m) such that for any t € R,
/ VISV g dm converges to e=*/2 strongly in L*(P) as (n — oo).
M

(6) For any probability density g € L'(m) and for any t € R, / eV =SV g dm
M

converges to e="""/2 strongly in L*(P) as (n — o).
(7) v(Fy) = 2v(f).
©) [ JHdm* < P23 [ @@y dn P =0
(9) Tim Sof(,0) S f (4, 0) Hy d(m? x P) = 0.

n—oo N M2xQ

REMARK 3.3. In the assertion (9) in Theorem 3.2, the single point set {Hs} can be re-
placed by the totality of probability densities in L'(m? x P) for which [|A(Ty, F,n) |1 m2xp
decays sufficiently fast. For example, under the same conditions in Theorem 3.2, (9) is
equivalent to the following.

1
(9) lim — S f(z,w)S,f(y, w)F(x,y,w)d(m? x P) =0 holds for any probability

n—oo M, M2
density F € L'(m? x P) satisfying lim n°||A(Ty, F,n)||1 mexp = 0.
n— oo

We note that the condition * lim n®||A(Ty, F,n)||1m2xp = 0’ is rather technical and it is
n—o0

not optimal.

Finally, we give the almost sure sample-wise CLT with deterministic centering. In [1],
2], and [3] a kind of quenched CLT(called almost sure sample-wise CLT in this article)
with deterministic centering condition is obtained by using an averaged large deviation
estimate. Here we give a slightly abstract result by using the estimate of fourth moment
rather than the large deviation estimate. Precisely, we have the following.

THEOREM 3.4. Assume that the transfer operator of the slew product transformation T,
with respect to m? x P is asymptotically stable. Let f be a real-valued element in L*(m)

satisfying the deterministic centering condition / fpdm =0 such that f and Fy satisfy
M

the conditions in (3.3) and v(Ty, Fy) = 2v(T1, f) holds. Let g € L'(m) be a probability
density. We assume that there exist constants C' > 0, a > 0, and S > 0 such that the
following conditions are fulfilled.

1
<C 1+t —. and

(a) ‘ eV TSIV d(m x P) — e ) 3
n

MXxQ

<C(14 1Y) L where v =v(f).

‘/ 6\/?1tSan/\/ﬁH2 d(m2 x P) o e—th ’
M2xQ n?




(b) sup/M . (Sn/)° Hyd(m x P) < C.

n n?
C _ C
(C> ||A(Tlagan)||l,m><P < ﬁ and ||A(T2agan)||1,m2><P < m
Then for P-a.s.w, S, f(-,w)/\/n converges in law to the normal distribution N(0,v) with
respect to the m-absolutely continuous probability measure gm, where g € L'(m?) is de-

fined by §(x,y) = g(x)g(y) for (x,y) € M.

4. EXAMPLES

Throughout this section, (M, B, m) is the unit interval with the usual Lebesgue space
structure, S = {0,1} with the discrete topology, and (Q,F) = (S%,B(S%)), where
Z, is the totality of nonnegative integers and B(S%+) is the topological Borel field of
S%Z+ endowed with the product topology of S. Each element w € €) can be expressed as
w = (w(0)w(l)w(2)---). Thus the shift ¢ : QO — Q satisfies (ow)(k) = w(k) for k € Z,.
Choose p and ¢ satisfying 0 < p, ¢ < 1 and p+¢q = 1 and define a locally constant function
U so that

Ulw) — logp if w(0) =w(1),
logg if w(0) # w(1).

Let P = Py be the Gibbs measure corresponding to the potential U, i.e. the unique

o-invariant probability measure satisfying / (foo)gdP = / fLygdP for continuous
o) Q

functions f and g, where £y is the transfer operator defined by Lyg(w) = V() g(0w) +
V1) g(1w) (see [4]). As an S-valued random variable £ : Q — S, we employ £(w) = w(0).
Clearly, P makes {&, = £ 00", n > 0} a symmetric stationary Markov chain.

Put 7(0) = [0,1/2] and I(1) = [1/2,1]. Let T be the totality of piecewise C*? uniformly
expanding maps 7 : M — M such that ess.inf|dr/dx| > 1 and 7|y @ intl(j) — M
is a C?-diffeomorphism which can be extended to a C? function on I(j) for j =0, 1. Tt
is well known that for each 7 € T there exists a unique invariant density h, € L'(m)
with Lipschitz continuous version and the transfer operator L. ,, is asymptotically stable
with respect to h,. Choose 19, 77 € T and consider a random dynamical system X given
by ({70, 71}, 0,&). Write as hy = h,, and hy = h,, for simplicity. Note that the transfer
operators of the skew product transformations 77 and 7, with respect to m x P and

m? x P are given by
p nfne)= VO Lo (@(-, 0w)) () + VL (-, 1w)) ()
4.1
ETzw(xa Y, w) = eU(OW)£7'0><7'0 (W(, K Ow))(x, y) + eU(l.w)ETl X Ty (W(, ) 1w))(x, y)

for € L'(m x P) and ¥ € L'(m? x P), where L, = L, ,, is the transfer operator of 7;
with respect to the Lebesgue measure m for 5 = 0, 1. We have the following.
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PropoSITION 4.1. Let (M,B,m), (0, F, P,0), and {19, 1} C T be as above. Consider
the random dynamical system X given by ({70, 71}, 0,€) and its direct product X x X.Then
there exist a probability densities Hy € L'(m x P) and Hy € L*(m? x P) such that the
transfer operators Lr, and L, are asymptotically stable with respect to Hy and H, respec-
tively. Moreover, Hy and Hy have continuous versions and for any Lipschitz continuous

real-valued function f on M, the autocorrelations given by (3.2) decay exponentially fast
as n — 0.

Note that if p = ¢ = 1/2, then {&,}°°, is independent and densities H; and Hs have
deterministic versions by virtue of the result in [10]. On the contrary, if hg # h; we
can show by using the formula (4.1) that p # ¢ implies that H; and H, can not have

deterministic versions.
First we give an example for which the deterministic centering does not work.

EXAMPLE 4.2. (cf. [1]) Choose 7y and 71 so that

2, if z € 1(0) 2 4 (3/2)x, if z € 1(0)
ToX = . mr = . .
2x — 1, otherwise 2?2+ (1/2)x — 1/2, otherwise

Clearly ho = 1. By L, hy = hy, it is not hard to see that hi(0) = 2h;(1/2) and hy(1) =

(2/3)h1(1/2). Therefore hy # hy. Consider the observable f = hy — h;. Then we have

/ fhodm — / fhidm = / (ho — h1)*dm > 0. Thus the symmetricity of the Markov
M M M

chain {,}>°, enable us to prove v(F}) < 2v(f) in the same way as in [1]. Note that we
also show that v(f) > 0.

It is obvious that if hg = h; the deterministic centering trivially works. Therefore we
are interested in a nontrivial example for which the deterministic centering works.

EXAMPLE 4.3. Let ¢ : M — M be the involution tx = 1 — 2. Choose 7; € T such that
toT; = 1;0¢ holds for j = 0, 1. Then it is not hard to see that the invariant densities
H, and H, satisty Hy(1z,w) = Hi(z,w) and Hy(1x,y,w) = Ho(x,wy,w) = Hy(1x, 1y, w) =

Hy(z,y,w). Therefore if f satisfies f o1 = —f, we have / f(x)Hy(z,y,w)m(dz) = 0.
M

This yields the condition (8) in Theorem 3.2. To be more concrete choose 7y and 7y so
that

2z, if 2 € 1(0) z? 4+ (3/2)x, if z € 1(0)
ToX = . T = . .
2 — 1, otherwise —2? 4 (7/2)x — 3/2, otherwise

Consider the observable f(x) = cos(kmx) with k& odd. Obviously f ot = —f. Moreover,
we can show that Theorem 3.4 is applicable to f with v(f) > 0.
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