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Abstract. This note gives a summary of the paper [5]. For a nonzero integer
n, a set of m positive integers is called a D(n)-m-tuple if the product of any
two distinct elements increased by n is a perfect square. Let A, K be positive
integers and ε ∈ {−2,−1, 1, 2}. The main theorem of this note asserts that
each of the D(ε2)-triples {K,A2K + 2εA, (A+ 1)2K + 2ε(A+ 1)} has unique
extension to a D(ε2)-quadruple.

1. Main Theorem

Let n be a nonzero integer. A set {a1, . . . , am} of m distinct positive integers is
called a D(n)-m-tuple if aiaj+n is a perfect square for all i, j with 1 ≤ i < j ≤ m.
In the case where n = 1, it is also called a Diophantine m-tuple. The first example
of a Diophantine quadruple, viz., {1, 3, 8, 120}, was found by Fermat. Euler
generalized it to get the Diophantine quadruple {a, b, a+ b+2r, 4r(r+a)(r+ b)},
where {a, b} is an arbitrary Diophantine pair with r =

√
ab+ 1. Thus, any

Diophantine pair can be extended to a Diophantine quadruple. Note that the
second largest element a + b + 2r in the quadruple is known to be the smallest
among all the possible elements c > max{a, b} extending a fixed Diophantine pair
{a, b} into a Diophantine triple (cf. [16, Lemma 4]).

While there exist infinitely many Diophantine quadruples, a folklore conjecture
states that there exists no Diophantine quintuple. Very recently, He, Togbé and
Ziegler announced that they settled this conjecture (cf. [15]).

There is a stronger conjecture than the folklore one, which is still open. Arkin,
Hoggatt and Strauss (cf. [1]), and independently Gibbs (cf. [12]), found that for
any Diophantine triple {a, b, c} with r =

√
ab+ 1, s =

√
ac+ 1 and t =

√
bc+ 1,

the set {a, b, c, d+} is always a Diophantine quadruple, where d+ = a + b + c +
2(abc + rst). Such a quadruple is called regular, and it is conjectured that any
Diophantine quadruple is regular (cf. [1], [12]). Note that the largest element
d+ in the quadruple is known to be the smallest among all the possible elements
d > max{a, b, c} extending a fixed Diophantine triple {a, b, c} into a Diophantine
quadruple (cf. [7, Proposition 1]).

In 1969, Baker and Davenport showed that if {1, 3, 8, d} is a Diophantine
quadruple, then d = 120, which is d+ in the above notation. Thus, their re-
sult supports the validity of the stronger conjecture. There are various kinds of
generalizations of this result. For example, it is shown by He and Togbé that if
{K,A2K+2A, (A+1)2K+2(A+1), d} is a Diophantine quadruple with positive
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integers K and A satisfying either A ≤ 10 or A ≥ 52330, then d = d+ (cf. [13],
[14]).

The case where n = 4 can be discussed analogously to the case where n = 1.
There are conjectures saying that there exists no D(4)-quintuple and that if
{a, b, c, d} is a D(4)-quadruple with r =

√
ab+ 4, s =

√
ac+ 4 and t =

√
bc+ 4,

then d = d+, where d+ = a + b + c + (abc + rst)/2. Such a quadruple is called
also regular. Moreover, it is shown by Filipin, He and Togbé in [10] that if
{K,A2K +4A, (A+1)2 +4(A+1), d} is a D(4)-quadruple with positive integers
K and A satisfying A ≤ 22 and A ≥ 51767, then d = d+.

Other generalizations and exhaustive references can be seen on Dujella’s web-
page ([8]).

Our main theorem below generalizes the above results on the extensibilities of
both families of D(1)- and D(4)-triples.

Main Theorem. (cf. [5, Theoren 1]) Let A, K be positive integers. If {K,A2K+
2εA, (A+1)2K+2ε(A+1), d} is a D(ε2)-quadruple with ε ∈ {−2,−1, 1, 2}, then
it is regular, in other words, we have

d = d+ = ε−2(2A2 + 2A)2K3 + ε−1(16A3 + 24A2 + 8A)K2(1.1)

+ (20A2 + 20A+ 4)K + ε(8A+ 4).

Note that it suffices to show the theorem for ε ∈ {±2}, since for anyD(1)-triple
{k,A2k±2A, (A+1)2k±2(A+1)}, the set {K,A2K±4A, (A+1)2K±4(A+1)} is
a D(4)-triple with K = 2k, which is obtained from our triple {K,A2K+2εA, (A+
1)2K + 2ε(A+ 1)} by substituting ε = ±2.

The key to proving Main Theorem is to optimize Rickert’s theorem (cf. [19])
on simultaneous rational approximations to irrationals with consideration for the
peculiarities of the two parametric families.

Main Theorem has the following immediate corollary.

Corollary 1. (cf. [5, Corollary 2]) Let τ ∈ {1, 2}. Let {a, b, c, d} be a D(τ2)-

quadruple with a < b < c and c = a + b + 2r, where r =
√
ab+ τ2. If r ≡ ± τ

(mod a), then d = d+. In particular, if a has either of the forms 4τ , pe and 2pe

with p an odd prime and e a non-negative integer, then d = d+.

The proof of Corollary 1 will be given at the end of this note. The remaining
part of this note will be devoted to proving Main Theorem on the assumption
that ε = −2 , since the case ε = 2 can be treated similarly.

2. Application of Laurent’s theorem

Let a = K, b = A2K − 4A and c = (A+ 1)2K − 4(A+ 1). Then, r = AK − 2,
s = (A + 1)K − 2 and t = A(A + 1)K − 2(2A + 1). Assume that {a, b, c, d} is
a D(4)-quadruple with d > d+. Let x, y and z be positive integers satisfying
ad + 4 = x2, bd + 4 = y2 and cd + 4 = z2. Eliminating d from these equalities
leads us to the following system of Pellian equations:

ay2 − bx2 = 4(a− b),(2.1)

az2 − cx2 = 4(a− c),(2.2)

bz2 − cy2 = 4(b− c).(2.3)
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As is well-known, any positive solution to each of Pellian equations (2.1) to (2.3)
can be expressed as a linear recurrence sequence whose initial term has only
finitely may possibilities. More precisely, e.g., all positive solutions to (2.2) and
(2.3) are respectively described as z = vm and z = wn, where

v0 = z0, v1 =
1

2
(sz0 + cx0), vm+2 = svm+1 − vm,

w0 = z1, w1 =
1

2
(tz1 + cy1), wn+2 = twn+1 − wn,

for some integers m, n and some solutions (z0, x0), (z1, y1) (called fundamental
solutions) to (2.2), (2.3), respectively, with

|z0| < a−1/4c3/4, |z1| < b−1/4c3/4(2.4)

(cf. [6, Lemma 1]). Considering the congruence vm ≡ wn (mod 2c) together with
inequalities (2.4), we see that m ≡ n ≡ 0 (mod 2), x0 = y1 = 2 and z0 = z1 = ±2
(cf. [5, Lemma 9]). Then, a similar argument gives the fundamental solutions to
(2.1), (2.3) and the attached sequences {u′n}, {u′′l } with y = u′n = u′′l explicitly
(cf. [5, Lemma 10]). Finally, we deduce that any positive solutions to (2.1), (2.2)
can be expressed as x = V2l = W2m for some integers l, m (note that we replaced
l, m by 2l, 2m since l ≡ m ≡ 0 (mod 2) can be proved), where

V0 = 2, V1 = r + a, Vl+2 = rVl+1 − Vl,

W0 = 2, W1 = s± a, Wm+2 = sWm+1 −Wm.

The standard technique (see, e.g., [2]) allows us to transform the equation
V2l = W2m into the estimates

0 < Λ := 2l log β − 2m logα+ logχ < α1−4m,(2.5)

where

α =
s+

√
ac

2
, β =

r +
√
ab

2
, χ =

√
bc+

√
ac√

bc±
√
ab

.

Putting ν := l −m, which can be shown to be positive, we may rewrite Λ as

Λ = log(β2νχ)− 2m log(α/β).(2.6)

Since α and β are similar in size, we obtain the following strong lower bound for
m.

Lemma 2. (cf. [5, Lemma 17]) m > (A− 1)ν log β.

Proof. By (2.5) and (2.6), we have m log(α/β) > ν log β. Since the mean value
theorem tells us that log(α/β) = f ′(ξ)(s − r) for some ξ ∈ R with r < ξ < s

(where f(u) := log((u+
√
u2 − 4)/2)), s− r = a and

f ′(ξ) =
1√

ξ2 − 4
<

1√
r2 − 4

=
1√
ab

,

we obtain log(α/β) <
√

a/b < 1/(A− 1). □

Now we appeal to Laurent’s theorem on linear forms in two logarithms of
algebraic numbers.
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Lemma 3. (cf. [17, Theorem 2]) Let γ1 and γ2 be multiplicatively independent
algebraic numbers with |γ1| ≥ 1 and |γ2| ≥ 1. Let b1 and b2 be positive integers.
Consider the linear form in two logarithms:

Λ = b2 log γ2 − b1 log γ1,

where log γ1, log γ2 are any determinations of the logarithms of γ1, γ2 respectively.
Let ρ and µ be real numbers with ρ > 1 and 1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log ρ.

Let a1, a2 be real numbers such that

ai ≥ max{ 1, ρ | log γi| − log |γi|+ 2D h(γi) } (i = 1, 2),

a1a2 ≥ λ2,

where D = [Q(γ1, γ2) : Q] / [R(γ1, γ2) : R]. Let h be a real number such that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
.

Then we have

log |Λ| ≥ C

(
h+

λ

σ

)2

a1a2 +
√
ωθ

(
h+

λ

σ

)
+ log

(
C ′
(
h+

λ

σ

)2

a1a2

)
,

where

σ =
1 + 2µ− µ2

2
, λ = σ log ρ,

ω = 2

(
1 +

√
1 +

1

4H2

)
, θ =

√
1 +

1

4H2
+

1

2H
,

H =
h

λ
+

1

σ
,

C =
µ

λ3σ

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

,

C ′ =

√
Cσωθ

λ3µ
.

Proposition 4. (cf. [5, Proposition 28]) Let a = K, b = A2K − 4A, c = (A +
1)2K − 4(A+ 1) with positive integers A, K. Suppose that {a, b, c, d} is a D(4)-
quadruple with d > 2 not given by (1.1). Then, we have A ≤ 2800.

Proof. Applying Lemma 3 to Λ with b1 = 2m, b2 = 1, γ1 = α/β and γ2 = β2νχ,
we obtain

m

(40ν + 0.058) log β
< 69.88,(2.7)

which together with Lemma 2 yields A ≤ 2800. □
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3. Application of Rickert’s theorem

Consider equations (2.2) and (2.3). Put N = (A2 + A)K/2 − 2A, θ1 =√
1 + 2A/N and θ2 =

√
1− 2/N .

Lemma 5. (cf. [5, Lemma 26])

max

{∣∣∣∣θ1 − (A+ 1)x

z

∣∣∣∣ , ∣∣∣∣θ2 − (A+ 1)y

Az

∣∣∣∣} < 2(A+ 1)

(
A+ 1 +

2

K

)
z−2.

Proof. Use the equalities

θ1 = (A+ 1)

√
a

c
, θ2 =

A+ 1

A

√
b

c
,

and the fact that
√

a/c,
√

b/c are similar in size to x/z, y/z, respectively, in view
of equations (2.2), (2.3). □

The following is a version of Rickert’s theorem (cf. [19]).

Theorem 6. (cf. [5, Theorem 5]) Let A, K be integers satisfying A ≥ 2 and K ≥
240.24(A+1). Put N = (A2+A)K/2−2A. Then the numbers θ1 =

√
1 + 2A/N

and θ2 =
√

1− 2/N satisfy

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ , ∣∣∣∣θ2 − p2
q

∣∣∣∣} >
(
2.838 · 1028(A+ 1)N

)−1
q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(20(A+ 1)N)

log
(

0.669N2

4A(A+1)

) < 2.

Note that in [10], where the family with ε = 2 is considered, in order to apply
a version of Rickert’s theorem ([10, Theorem 3]) with λ < 2 it is necessary to
assumeK > 0.64A(A+1)3, which is in general much stronger than the assumption
K ≥ 240.24(A+1) in Theorem 6. Such an improvement comes from the following
facts:

• N ≡ 0 (mod A);
• N + 2A ≡ N − 2 ≡ 0 (mod (A+ 1)).

These divisibility properties largely reduce the denominators of coefficients of
a Padé approximation to θ1(x) and θ2(x) valued at x = 1/N , where θ1(x) =√
1 + 2Ax and θ2(x) =

√
1− 2x.

Proposition 7. (cf. [5, Proposition 27]) On the assumptions in Proposition 4, if
A ≥ A0, then K < 240.24(A+ 1) +K0, where

(A0,K0) ∈ {(1326, 0), (454, 1000), (3, 23000), (2, 210000)}.
Proof. Suppose that K ≥ 240.24(A+1). Applying Lemma 5 and Theorem 6 with
p1 = A(A+ 1)x, p2 = (A+ 1)y, q = Az, we have

z2−λ < 2C−1Aλ(A+ 1)(A+ 1 + 2K−1),(3.1)

where C−1 = 2.838 · 1028(A + 1)N . Since λ < 2, the assertion follows from
inequality (3.1) with the inequality

log z > 2m log((A+ 1)K − 4),(3.2)

which is obtained from z = v2m in the same way as [10, Lemma 5]. □
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4. Proofs of Main Theorem and Corollary 1

Since Propositions 4 and 7 give absolute upper bounds for K and A, it remains
to apply the reduction lemma ([9, Lemma 5 a)]) due to Dujella and Pethő based
on [2, Lemma]. However, since the reduction method is expensive, we will apply
it after making the bounds smaller.

Lemma 8. (cf. [5, Lemma 29]) Suppose that V2l = W2m for some integers l and
m with m ≥ 2. If ν = l −m, then ν ≥ 11.

Proof. Note that m can be expressed as

m =

⌊
µ log β + 0.5 logχ

log(α/β)

⌋
.

It can be checked by a computer that inequalities (2.5) do not hold for each ν
with 1 ≤ ν ≤ 10 and for each (K,A) in the ranges obtained from Propositions 4
and 7. □

Proposition 9. (cf. [5, Proposition 30]) On the assumptions in Proposition 4,
we have A ≤ 2796 and K < 240.24(A+ 1) + 740.

Proof. Inequality (2.7) with ν ≥ 11 implies A ≤ 2796. The other inequality
K < 240.24(A+1)+740 follows from (3.1), (3.2) and Lemma 2 with ν ≥ 11. □

Proof of Main Theorem (in the case where ε = −2). Applying Matveev’s theorem
(cf. [18]) to the linear form Λ in three logarithms, one can obtain m < 3.4 · 1016.
Starting with this upper bound, we can reduce m by applying the reduction
method for each K and A in the ranges obtained in Proposition 9 to get a con-
tradiction. □

Proof of Corollary 1. Note that it always holds r2 ≡ τ2 (mod a), which proves
the last assertion. Assume that r ≡ ± τ (mod a) and put r = ka ± τ . Then,
b = k2a ± 2τk and c = (k + 1)2a ± 2τ(k + 1). Substituting K = a, A = k and
ε = ±τ , we see that the assertion follows from Main Theorem. □
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