Cardinal Collapsing and Product Forcing

Mohammad Golshani

School of Mathematics,
Institute for Research in Fundamental Sciences (IPM),
P.O. Box:19395-5746, Tehran-Iran
golshani.m@gmail.com

&

Rahman Mohammadpour

Institut für Diskrete Mathematik und Geometrie,
Technische Universität Wien,
1040 Vienna, Austria
rahmanmohammadpour@gmail.com

Abstract

Suppose κ is a singular strong limit cardinal of countable cofinality, and let $\langle \kappa_n : n < \omega \rangle$ be an increasing sequence of regular cardinals cofinal in κ . In this short note, we show that if $\text{cof}(2^{\kappa}) = \kappa^+$, then forcing with the full product $\prod_{n < \omega} \mathsf{Add}(\kappa_n, 1)$ collapses 2^{κ} onto κ^+ . This result gives a consistent positive answer to a question asked by Sy Friedman. We also provide a new proof of a result due to Shelah by showing that if, moreover, the sequence carries a scale of length κ^+ , then forcing with $\prod_{n < \omega} \mathsf{Add}(\kappa_n, 1)$ adds a generic filter for $\mathsf{Add}(\kappa^+, 1)$, and thus

$$\prod_{n<\omega}\operatorname{\mathsf{Add}}(\kappa_n,1)/\mathsf{fin}\simeq\operatorname{\mathsf{Add}}(\kappa^+,1).$$

Suppose $\langle \kappa_n : n < \omega \rangle$ is an increasing sequence of regular cardinals cofinal in κ . In [3], Sy Friedman and Radek Honzik observed that if $\prod_{n<\omega} \kappa_n$ carries a scale of length κ^+ , then $\prod_{n<\omega} \mathsf{Add}(\kappa_n,1)$ collapses 2^{κ} onto κ^+ . On the other hand, answering a question of Friedman and Rene David, Saharon Shelah [5] showed that if $\prod_{n<\omega} \kappa_n$ carries a scale of length κ^+ , then forcing with $\prod_{n<\omega} \mathsf{Add}(\kappa_n,1)$ adds a generic for $\mathsf{Add}(\kappa^+,1)$ over V. As the latter forcing collapses 2^{κ} onto κ^+ , Friedman-Honzik's result follows from Shelah's theorem. In proofs of both results, the assumption that $\prod_{n<\omega} \kappa_n$ carries a scale of length κ^+ seems to be essential. In a personal communication, Sy Friedman asked the first author if one can remove the assumption of the existence of a scale from his result with Honzik. More precisely, he asked if the following is true.

Question 1. Suppose $\langle \kappa_n : n < \omega \rangle$ is an increasing sequence of inaccessible cardinals cofinal in κ . Does forcing with $\prod_{n<\omega} \mathsf{Add}(\kappa_n,1)$ collapse 2^{κ} onto κ^+ ?

We provide a consistent positive answer to Friedman's question:

Theorem 0.1. Assume κ is a singular strong limit cardinal of countable cofinality and that $\operatorname{cof}(2^{\kappa}) = \kappa^+$. Let $\langle \kappa_n : n < \omega \rangle$ be any increasing sequence of regular cardinals cofinal in κ and let $\langle \mathbb{P}_n : n < \omega \rangle$ be a sequence of non-trivial separative forcing notions, such that each \mathbb{P}_n is κ_n -closed and of size $<\kappa$. Suppose that every decreasing sequence of \mathbb{P}_n -conditions of length $<\kappa_n$ has a greatest lower bound in \mathbb{P}_n . Then $\prod_{n<\omega} \mathbb{P}_n$ collapses 2^{κ} onto κ^+ .

We also give a new proof of Shelah's theorem mentioned earlier, indeed we prove the following.

Theorem 0.2. Let κ be a singular strong limit cardinal of countable cofinality. Let $\langle \kappa_n : n < \omega \rangle$ be any increasing sequence of regular cardinals cofinal in κ which carries a scale of length κ^+ . Then $\prod_{n<\omega} \mathsf{Add}(\kappa_n,1)/\mathsf{fin} \simeq \mathsf{Add}(\kappa^+,1)$. In particular, forcing with $\prod_{n<\omega} \mathsf{Add}(\kappa_n,1)$ adds a generic filter for $\mathsf{Add}(\kappa^+,1)$.

Proof of Theorem 0.1

We need two lemmas.

Lemma 0.3 ([2]). Assume $cof(2^{\kappa}) = \kappa^+$ and that \mathbb{Q} is a $(\kappa + 1)$ -strategically closed forcing notion of size 2^{κ} such that Player II has a winning strategy where at limit stages he chooses the greatest lower bound of the previously chosen sequence. Then forcing with \mathbb{Q} adds a new sequence of ordinals of length κ^+ .

Lemma 0.4 ([1]). Let \mathbb{Q} be a $(\kappa + 1)$ -strategically closed forcing notion of size 2^{κ} . Let $o(\mathbb{Q})$ be the least cardinal μ , such that forcing with \mathbb{Q} adds a new μ -sequence of ordinals (or equivalently of elements of V). Then forcing with \mathbb{Q} collapses 2^{κ} onto $o(\mathbb{Q})$.

Remark 0.5. In [1], the lemma is not stated as above, but the proof and remarks after it shows that the above stronger result holds.

Now let
$$\mathbb{P} := \prod_{n < \omega} \mathbb{P}_n$$
 and $\mathbb{Q} := \prod_{n < \omega} \mathbb{P}_n / \text{fin. Define } \pi : \mathbb{P} \to \mathbb{Q}$ by
$$\pi(\langle p_n : n < \omega \rangle) = [\langle p_n : n < \omega \rangle] / \text{fin,}$$

where $[\langle p_n : n < \omega \rangle]$ /fin denotes the equivalence class of $\langle p_n : n < \omega \rangle$ in \mathbb{Q} .

Lemma 0.6. π is a projection, i.e.,

- 1. π is order-preserving and $\pi(1_{\mathbb{P}}) = 1_{\mathbb{Q}}$.
- 2. If $[p]/\text{fin} \leq_{\mathbb{Q}} [q]/\text{fin}$, then there exists $r \leq_{\mathbb{P}} q$ such that $[r]/\text{fin} \leq_{\mathbb{Q}} [p]/\text{fin}$.

Observe that our forcing \mathbb{Q} is $(\kappa + 1)$ -strategically closed and there exists a winning strategy for Player II where at limit stages, he chooses the greatest lower bound of the previously chosen sequence. It follows from Lemma 0.3 that forcing with \mathbb{Q} adds a new κ^+ -sequence of ordinals. Now Lemma 0.4 implies that \mathbb{Q} collapses 2^{κ} to κ^+ , and by Lemma 0.6, forcing with \mathbb{P} collapses 2^{κ} to κ^+ as well.

Proof of Theorem 0.2

The proof is given in two stages. At the first stage we show that forcing with $\prod_{n<\omega} \mathsf{Add}(\kappa_n, 1)$ collapses 2^{κ} onto κ^+ . In the next stage, we analyse the forcing notion $\prod_{n<\omega} \mathsf{Add}(\kappa_n, 1)/\mathsf{fin}$ and use our results to conclude the theorem.

Stage 1: We show that forcing with $\prod_{n<\omega} \mathsf{Add}(\kappa_n,1)$ collapses 2^{κ} onto κ^+ . Fix a scale $\vec{f} = \langle f_{\alpha} : \alpha < \kappa^+ \rangle$ in $\prod_{n<\omega} \kappa_n$. Let

$$\mathcal{F} = \{ f \in \prod_{n < \omega} \kappa_n : f = f_{\alpha}, \text{ for some } \alpha < \kappa^+ \}.$$

Then $|\mathcal{F}| = \kappa^+$, and it is cofinal in $(\prod_{n < \omega} \kappa_n, \leq)$. Let $G_n : \kappa_n \to 2$ be the Cohen generic function, added by $\mathsf{Add}(\kappa_n, 1)$. For each $f \in \mathcal{F}$, define $g_f : \kappa \to 2$, so that for each $n < \omega$,

$$g_f(\kappa_{n-1} + \xi) = G_{n+1}(f(n+1) + \xi),$$

where $\kappa_{n-1} \leq \xi < \kappa_n$ and $\kappa_{-1} = 0$. We demonstrate that for each $g : \kappa \to 2$ in V, there is $f \in \mathcal{F}$ with $g = g_f$. But it is enough to show that the following set is dense in $\prod_{n < \omega} \mathsf{Add}(\kappa_n, 1)$.

$$D_g = \{ p \in \prod_{n < \omega} \mathsf{Add}(\kappa_n, 1) : \exists f \in \mathcal{F}, \forall n, \forall \xi < \kappa_n [g(\xi) = p(n+1)(f(n+1) + \xi)] \}.$$

Then D_g is dense in $\prod_{n<\omega} \mathsf{Add}(\kappa_n, 1)$. To see this, let $p \in \prod_{n<\omega} \mathsf{Add}(\kappa_n, 1)$. By extending p, we may assume that for each $n < \omega, p(n) : \zeta_n \to 2$, for some $\zeta_n < \kappa_n$. It then follows that

$$\langle \zeta_n : n < \omega \rangle \in \prod_{n < \omega} \kappa_n.$$

Pick $\alpha < \kappa^+$ such that $g <^* f_\alpha$. It follows that g < f for some $f \in \mathcal{F}$. Define the condition $q \in \prod_{n < \omega} \mathsf{Add}(\kappa_n, 1)$ by $q(n) : f(n) \to 2$, $q(n) \supseteq p(n)$ and for all $\xi < \kappa_n$,

$$q(n+1)(f(n+1)+\xi) = g(\xi).$$

Then q is well-defined, extends p, and belongs to D_g . It follows that for some $f \in \mathcal{F}$, $g = g_f$.

Stage 2: We complete the proof of Theorem 0.2. For each $n < \omega$, set $\mathbb{P}_n = \mathsf{Add}(\kappa_n, 1)$. Let $\mathbb{P} = \prod_{n < \omega} \mathbb{P}_n$ and $\mathbb{Q} = \prod_{n < \omega} \mathbb{P}_n$ /fin. Let also $\pi : \mathbb{P} \to \mathbb{Q}$ be defined as before. The next claim can be proved easily.

Claim 0.7. (a) \mathbb{Q} is $<\kappa^+$ -strategically closed.

(b) The quotient forcing $\mathbb{P}/\dot{G}_{\mathbb{O}}$ is κ^+ -c.c.

As forcing with \mathbb{P} preserves cardinals $\leq \kappa^+$ and that by Stage 1, it collapses 2^{κ} onto κ^+ . It follows from Claim 0.7(b) that it is the forcing \mathbb{Q} that collapse 2^{κ} onto κ^+ . Now we need the following well-known fact:

Fact 0.8 (see [4]). Suppose $\kappa < \lambda$ are infinite cardinals and $\lambda^{\kappa} = \lambda$. Suppose \mathbb{Q} is a $<\kappa^+$ -strategically closed forcing notion of size λ and suppose that forcing with \mathbb{Q} collapses λ onto κ^+ . Then $\mathbb{Q} \simeq \mathsf{Col}(\kappa^+, \lambda)$.

By Claim 0.7(a) and Fact 0.8, we have $\mathbb{Q} \simeq \mathsf{Add}(\kappa^+, 1)$, and that by Lemma 0.6, forcing with \mathbb{P} adds a generic for \mathbb{Q} , which completes the proof of Theorem 0.2.

Acknowledgements. The first author's research has been supported by a grant from IPM (No. 1400030417). The second author was partially supported by Austrian Science Fund (FWF): M 3024. The authors thank Radek Honzik for some useful comments and corrections in an earlier version of the paper.

References

- M. Golshani and Y. Hayut. "On Foreman's maximality principle". In: J. Symb. Log. 81.4 (2016),
 pp. 1344-1356. ISSN: 0022-4812. DOI: 10.1017/jsl.2016.21.
- [2] M. Golshani and S. Shelah. "Specializing trees and answer to a question of Williams". In: *J. Math. Log.* 21.1 (2021), Paper No. 2050023, 20. ISSN: 0219-0613. DOI: 10.1142/S0219061320500233.
- [3] R. Honzik. "Global singularization and the failure of SCH". In: Ann. Pure Appl. Logic 161.7 (2010), pp. 895–915. ISSN: 0168-0072. DOI: 10.1016/j.apal.2009.11.002.
- [4] T. Jech. Set theory. Pure and Applied Mathematics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978, pp. xi+621. ISBN: 0-12-381950-4.
- [5] S. Shelah. "Embedding Cohen algebras using pcf theory". In: vol. 166. 1-2. Saharon Shelah's anniversary issue. 2000, pp. 83–86. DOI: 10.4064/fm-166-1-2-83-86.