Maximality Principle
under a Laver-generic supercompact cardinal
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Abstract

We give a survey on the set-theoretic axioms formulated in terms of
existence of a Laver-generic large cardinal.

We show that the Maximality Principle without parameters is indepen-
dent over ZFC with the axiom asserting the existence of a P-Laver generically
supercompact cardinal for an iterable class of posets P as far as the exis-
tence of such a cardinal can be forced naturally starting from a genuine

supercompact cardinal.

1 Introduction

In sections 2, 3 of the present note, we give a survey on the axioms formulated in
terms of existence of a Laver-generic large cardinal. Most of the results are from
[15] and [16] but there are also small improvements and a couple of new results.

The extended version of the paper is going to include detailed proofs.
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In Section 5, we prove that the Maximality Principle without parameters is in-
dependent over ZFC with the axiom asserting the existence of a P-Laver generically

supercompact cardinal for some iterable class P of posets.

2 Generic large cardinals

Let us begin with recalling the definition of supercompact cardinal: A cardinal & is
supercompact if, for any A\ > &, there are classes j, M such that @ j:V Ny M,
@ j(k) >Aand @ *M C M.

Here, “j : N 2. M” denotes the set of conditions that N and M are transitive
(sets or classes); j is a non-trivial elementary embedding of the structure (IV, €)
into the structure (M, €); k € N, and crit(j) = k.

Note that a supercompact cardinal is a large large cardinal which is a normal
measure one limit of measurable cardinals, and more. This is not the case with the
generic large cardinal version of the notion of supercompactness (e.g. see Examples
2.1, 2.2 below).

For a class P of posets, a cardinal x is P-generically supercompact (P-gen.
supercompact, for short) if, for every A > &, there is P € P such that, for (V,P)-
generic filter G, there are j, M C V[G] such that @ j:V 5, M, @ j(k) > A,
and @ ;"\ e M.

Example 2.1 Suppose k is a supercompact cardinal and P = Col(Xy, k) (the stan-
dard collapsing of all cardinals strictly between Wy and r by countable conditions).
Then for a (V,P)-generic G, we have k = (Ro)VI® and V[G] |& “& is o-closed-gen.

supercompact” . a

Example 2.2 If MA is forced starting from an supercompact cardinal xk with an
ccc-iteration of length k in finite support along with a supercompact Laver-function,
then we obtain a model in which k is the continuum (though still quite large, e.g.
hyper-hyper etc. weakly Mahlo, and more) and it is ccc-gen. supercompact in the
generic extension. a

These examples are going to be revisited in Theorem 3.3 below. The situation

created in Example 2.1 can be also seen as a strong reflection property.

Theorem 2.3 (B.Konig [27]) The following are equivalent:
(a) Game Reflection Principle (GRP) holds.

(b) Ny is o-closed-gen. supercompact. O

As in [15], what we call the Game Reflection Principle (GRP) is the principle
called GRP™ in [27]. As its name suggests, GRP is actually a reflection statement



about the non-existence of winning strategy of certain games of length w; down to
subgames of size < Ns.

We will not go into the details of the definition of GRP but just note that GRP
implies the Continuum Hypothesis (CH) and it implies practically all reflection
principles with reflection down to <N, available under CH:

(2.1)  GRP implies Rado’s Conjecture (RC) (Konig, [27]).

(2.2)  GRP implies strong downward Lowenheim-Skolem Theorem of £501 down
to <Ny (SDLS(LE' < Ry) in the notation of [15]).

(2.3)  RC and SDLS(LY%}, < Xy) imply Fodor-type Reflection Principle (FRP),
see [6].

(2.4)  FRP is known to be equivalent to many “mathematical” reflection princi-
ples with reflection down to < Ro, see [4], [5], [8], [14], [22].

(2.5)  GRP implies a "generic” solution to the Hamburger’s problem (see Corol-
lary 2.5 below, for the original Hamburger’s Problem see [17] and reference
given there).

These and some other implications are put together in the following diagram:

Game Reflection Principle (GRP<*'(< Ry))
< wy is generically supercompact
[27] .
by o-closed forcing

MMt

N /N

Ro, [T
SDLS (L <o) MA*i(g-closed) MM
[27] < DRP (ICy,) + CH

MA™ (o-closed)

SDLS™ (£, <Ry) < DRP (ICy,)
Rado Con]ecture (RC(<Ry)) //

RP|CN0

Axiom R & RPIUN

/\ /

Semi-stationary Reflection (SSR) Fodor-type Reflection Principle (FRP)

2
many “mathematical” reflection theorems with reflection down to <Ns
(4], [5], [8], [14], [22], etc.

Figure 1.

Proposition 2.4 Suppose that k is P-gen. supercompact. Then, for any topological
space X of character < k, if |Fp“X is not metrizable” for any P € P then there
is a non metrizable subspace Y of X of cardinality < k. a



Corollary 2.5 Suppose that GRP holds. Then, for any topological space X of char-
acter <Ry such that |p “ X is not metrizable” for any o-closed poset P, there is a

non-metrizable subspace of X of cardinality < N.

Proof. By Theorem 2.3 and Proposition 2.4. [ (Coroltary 2.5)

3 Laver-generic large cardinals

The axioms claiming the existence of Laver-generic large cardinals defined below
for respective classes of posets complete the picture of reflection and absoluteness
in terms of double plused versions of forcing axioms.

A (definable) class P of posets is said to be iterable if (a) P is closed with
respect to forcing equivalence (i.e. if P € P and P ~ P’ then P’ € P), (b) closed
with respect to restriction (i.e. if P € P then P | p € P for any p € P), and
(c) for any P € P and P-name Q, [Fp“Q € P” implies P+ Q € P.

For an iterable class P of posets, a cardinal « is said to be P-Laver-gen. super-
compact V) if, for any A > k and P € P, there is a P-name Q with |Fp“Q € P”
such that, for (V, P * Q)-generic H, there are j, M C V[H] with Dj:VS, M,
@ j(k) > A, and @ PxQ, H, j"x e M.

Recall that a cardinal  is superhuge (super-almost-huge resp.) if, for any A > k,
there are classes j, M such that @ j:V 5, M, @j(k) > Aand ®IWM C M
(> M C M resp.).

These notions of large cardinals can be straightforwardly translated into their
Laver-generic versions: For an iterable class P of posets, k is P-Laver-gen. super-
huge (P-Laver-gen. super-almost-huge, resp.) if, for any A > k, P € P, there is
a P-name Q with H‘[P“@ € P7” such that, for (V,P x @)—generic H, there are 7,
M C V[H] with ®j:VS, M, @ j(k) > X\, and 3 P, P+Q, He M, and
7"j(k) € M (3" € M for all u < j(k), resp.).

Sometimes it is more convenient to consider the following additional property
which we called the tightness of Laver-genericity: For an iterable P, a P-Laver-gen.
supercompact cardinal (P-Laver-gen. huge cardinal, etc., resp.) is tightly P-Laver-

gen. supercompact (tightly P-Laver-gen. huge, etc., resp.) if the condition

@ P =xQ is forcing equivalent to a poset of cardinality < j(k).

D) The definition of Laver-generic large cardinals given here is slightly stronger than the one
given in [16]. The Laver-generic large cardinals in the sense of present subsection is called strongly
Laver-generic large cardinals in [16].



additionally holds for the elementary embedding j in the definition.

The strongest notion of large cardinal we are studying in connection with its
Laver-generic version at the moment is that of ultrahuge cardinal introduced by
Tsaprounis [30]. A cardinal « is ultrahuge if for any A > x there is j : V 2. M such
that j(x) > A and /™M, Vj,y € M. In terms of consistency strength ultrahuge
cardinal is placed between super huge and 2-almost-huge (Theorem 3.4 in [30]).

For an iterable class P of posets, a cardinal x is (tightly) P-Laver gen. ultrahuge,

if, for any A > x and P € P there is P-name Q with [Fp“Q € P” and, for
(V,P x @)—generic H, there are j, M C V[H] such that j : V . M, Jj(k) > A,

P,H, (V;o)"™ € M (and P * Q is forcing equivalent to a poset of size j(k)).
By definition it is obvious that we have the following implications:

tightly P-Laver-gen. tightly P-Laver-gen. tightly P-Laver-gen. tightly P-Laver-gen. tightly P-Laver-gen.
ultrahuge = superhuge = super-almost-huge = supercompact = measurable
U 4 4 4 4
P-Laver-gen. ultrahuge = P-Laver-gen. superhuge = P-Laver-gen. super-almost-huge = P-Laver-gen. supercompact = P-Laver-gen. measurable
U U U U U
P-gen. ultrahuge = ‘P-gen. superhuge = ‘P-gen. super-almost-huge = P-gen. supercompact = P-gen. measurable
Figure 2.

Some of the horizontal implications should be irreversible. At the moment
however we can only prove the reversibility of the implication from (tightly) P-
(Laver)-gen. ultrahugeness to (tightly) P-(Laver)-gen. supercompactness.

Proposition 3.1 Suppose that P is a class of posets such that there is a construc-
tion of a model with a tightly P-Laver gen. supercompact cardinal starting from an
arbitrary model with an supercompact cardinal £ by a poset of cardinality k.2 Then
tightly P-Laver gen. supercompactness of k does not necessarily imply the P-gen.

super-almost-hugeness.

For the proof of Proposition 3.1 we use the following observation:

Lemma 3.2 Suppose that k is P-gen. ultrahuge for an arbitrary class P of posets.
If there is an inaccessible \g > Kk then there are cofinally many inaccessible in V.

Proof. Let A > )y be an arbitrary cardinal. Then there is P € P such that, for
(V. P)-generic G, there are j, M C V[C] such that

(31) j:VS3. M, (32): j(k) >\, and
(33) (Vi)™ € M.

2) By the following Theorem 3.3, the class of all o-closed posets and the class of all ccc posets
satisfy this condition.



By (3.2) and elementarity (3.1), we have j(\g) > A. By elementarity (3.1),
M = “j(Xo) is inaccessible”. By (3.3), V[G] = “j(\o) is inaccessible”, and hence
V = “j(Ao) is inaccessible”. 0 (Lemma 3.2)

Proof of Proposition 3.1: Suppose that k is a supercompact cardinal and \g > k
is an inaccessible cardinal.

We may assume that )\ is the largest inaccessible cardinal: If there is inacces-
sible cardinal larger than Ay, then let A; be the least such inaccessible cardinal.
Then, in V), )¢ is the largest inaccessible cardinal and k is supercompact (see e.g.
Exercise 22.8, (a) in [26]).

Let P poset of size k such that, for (V, P)-generic G, we have V[0] |= “k is tightly
P-Laver gen. supercompact”. Note that V]G] = “\¢ is the largest inaccessible
cardinal”. Thus, by Lemma 3.2, it follows that V[G] = “k is not P-gen. ultrahuge”.

D (Proposition 3.1)

Actually (tightly) Laver-generic large cardinal is first-order definable (i.e. it has
a characterization formalizable in the language of ZFC), cf. [20]. Thus “Forcing
Theorems” are available for arguments with Laver-genericity. Because of this and
because an iterable P is closed under restriction to a condition, by definition, we
may be lazy about the quantification on generic filters like in the context of “for
a/any (V,P x Q)-generic H ...”

The Examples 2.1, 2.2 are actually examples of the construction of models with

a Laver-generic large cardinal.

Theorem 3.3 (Theorem 5.2, [16]) (1) Suppose k is supercompact ( superhuge,
etc., resp.) and P = Col(Ny, k). Then, in V[C]|, for any (V,P)-generic G, N\Q/[G]
(= k) is tightly o-closed-Laver-gen. supercompact ( superhuge, etc., resp.) and CH
holds.

(2) Suppose k is super-almost-huge (superhuge, resp.) with a Laver-function
f Kk = Vi for super-almost-hugeness (superhugeness, resp.), and P is the CS-
iteration for forcing PFA along with f. Then, in V[C] for any (V,P)-generic G,
N;/[G] (= k) is tightly proper-Laver-gen. super-almost-huge (superhuge, resp.) and
R0 = Ny, holds.?

(2') Suppose k is super-almost-huge (superhuge, resp.) with a Laver-function
[k = Vi for super-almost-hugeness (superhugeness, resp.), and P is the RCS-
iteration for forcing MM along with f. Then, in V|G| for any (V,P)-generic G,
N;/[G] (= k) is tightly semi-proper-Laver-gen. super-almost-huge (superhuge, resp.)
and 2% = Ry holds.?)

(3) Suppose that k is supercompact ( superhuge, etc. resp.) with a Laver-function



f k= V. for supercompactness ( superhugeness, etc. resp.), and P is a FS-
iteration for forcing MA along with f. Then, in V|G| for any (V,P)-generic G, 2%
(= k) is tightly ccc-Laver-gen. supercompact ( superhuge, etc. resp.). r = 2% and

K 15 very large. 0

That three possibility of the cardinality of the continuum namely Ny, Ny, or
very large are highlighted in Theorem 3.3, have an explanation in terms of Laver-

genericity:

Theorem 3.4 (The Trichotomy Theorem [16], see also [10]) (A) If k is P-Laver-
gen. supercompact for an iterable class P of posets such that (a) all P € P are
wy preserving, (b) all P € P do not add reals, and (c) there is a Py € P which
collapses woy, then kK = Ny and CH holds.

(B) If k is P-Laver-gen. supercompact for an iterable class P of posets such that
(a) all P € P are w;y-preserving, (b') there is a Py € P which add a real, and (c)
there is a Py which collapses wsy, then Kk = Ny < 2% If P contains enough many

proper posets then k = Ny = 2% (For the last assertion see Theorem 3.5 below).

(I') If k is P-Laver-gen. supercompact for an iterable class P of posets such that
(a') all P € P preserve cardinals, and (b") there is a Py € P which adds a real,
then k is “very large” and r < 2%, If K is tightly P-Laver-gen. superhuge then
K= 2%, 0

Laver-generic supercompactness also implies double plused versions of forc-
ing axioms. For a class P of posets and cardinals k, u, let MA™ (P, < k) and

MAT+<#(P, < k) denote the following versions of Martin’s Axiom:

MA™#(P, < k): For any P € P, any family D of dense subsets of P with |D| < x
and any family S of P-names such that | S| < pand |Fp “S is a stationary
subset of wy ” for all § € S, there is a D-generic filter G over P such that
S[C] is a stationary subset of w; for all § € S.

MATt<#(P <k): For any P € P, any family D of dense subsets of P with
|D| < k and any family S of P-names such that |S| < g and |Fp“9
is a stationary subset of P, (fs)” for some w < ng < fs < p with 7g
regular, for all § € S, there is a D-generic filter G over P such that S[C]
is stationary in P, (fs) for all S € S.

Clearly MATT<%2(P < k) is equivalent to MAT“ (P, < k).

3) It seems that the construction does not work with supercompact  here.



Theorem 3.5 Theorem 5.7 in [16] (1) For an iterable class P whose elements are

all ccc, if k is P-Laver-generically supercompact, then MAYT<F(P < k) holds.

(2) If Ny is Laver-generically supercompact for an iterable class P of posets, then
MA*(P)  holds. 0

Proposition 3.6 If ZFC + “there are two supercompact cardinals” is consistent,
then ZFC + FRP + “there is a tightly ccc-Laver-gen. supercompact” is consistent as
well.

Proof. Let ko and k1 with kg < k1 be two supercompact cardinals. We can use
ko to force MA™ (o-closed) by a poset of size ko. In the generic extension we have
FRP and ks is still supercompact. Now we use x; to force that x; is tightly ccc-
Laver-gen. supercompact in the generic extension as described in Theorem 3.3, (3).
FRP still holds in the second generic extension since FRP is preserved by ccc forcing
(Theorem 3.4 in [14]). 0 (Proposition 3.6)

These results together with some other implications proved [16] as well as some
results that are going to be discussed in [13] are integrated in the diagram of Figure
1 to obtain the following:

(tightly) o-closed-Laver gen. (tightly) semi-proper-Laver gen. tightly cce-Laver generically
ultrahuge cardinal exists ultrahuge cardinal exists ultrahuge cardinal exists

T A

tightly ccc-Laver generically
o-closed-Laver generically semi-proper-Laver generically superhuge cardinal exists
supercompact cardinal exists  supercompact cardinal exists . FRP

(131 Game Reflection Principle (GRP<“!(< Ry))

& wsy is generically supercompact
[27]

[16]

by o-closed forcing MMt

The Unbouded Resurrection

Axiom for P \N‘lsl / \ (16]
A local version of Maximality, Ro 1T

Principle for P SDLS (L, <Ny) MAT!(g-closed)

& DRP( ICNO) +CH / \
15]

MA* (o- closed)

SDLS™ (c?pa, <X,) < DRP (ICy,)
Rado Conjecture (RC(<Ry)) // 280 carries an Ny-saturated
normal ideal,
RPic,. :
v MATT<"%(cce, < k),
Axiom R & RP t; AR
</\\ / o / SDLS”L (‘C’s)?uh )

int PKL .
Semi-stationary Reflection (SSR) Fodor-type Reflection Principle (FRP) SDLSY™(£ <) + FRP
17

stat >

many “mathematical” reflection theorems with reflection down to <Ny
[4], (5], [8], [14], [22], etc.

Figure 3.



4 Maximality Principle

Mazximality Principle (MP) in its non parameterized form as introduced by Joel
Hambkins in [24] is formulated in an infinite set of formulas asserting that all buttons

are already pushed. l.e., for any Lc-sentence ¢, if, for a poset P,

(4.1)  |Fq“¢” for all Q with P < @,

then ¢ holds.
If (4.1) holds, then we shall say that o is a button with the push P. One of the

easy consequence of MP is the following:

Proposition 4.1 MP implies V # L. ]

For an Lc-sentence ¢ let mp, be the Lc-sentence:
(42) dJP(Pisaposet AVQ(P<Q — |Fo“¢”)) — .

Formally we define MP to be the collection of all Lc-sentence of the form mp,,

for Lc-sentence .

Lemma 4.2 Suppose that ¢ is an Lc-sentence. If ZFC is consistent, then so is
ZFC + mp,.

Proof. Suppose otherwise. Then we have
(4.3)  ZFCF —mp,.

Note that
(4.4)  —mp, < P (Pisaposet AVQ(P <Q — |Fo“p”)) N .

In ZFC, let P be a poset as above. Then |Fp“¢”. On the other hand, since
IFp“9” for all v € ZFC and by (4.3) and (4.4), we have |Fp“—p” which is
equivalent to = |Fp “ 7.

Thus we obtained a proof of contradiction from ZFC. This is a contradiction to

our aSSU.mpthIl D (Lemma 4.2)

Lemma 4.3 For any Lc-sentences py,..., on—1, we have

ZFCF (mppy A== APy, ) > MPponnpn_: -

Proof. If Py,...,[P,,_; are pushes of the buttons ¢y,..., ©,_1 resp., then Py X - -+ X
P,_1 is a push for g A -+ A @,_1. 0 (Lemma 4.3)

Theorem 4.4 (Hamkins, [24]) If ZFC is consistent then so is ZFC + MP.



Proof. Assume toward a contradiction that ZFC + MP is inconsistent. Then there
are Le-sentences o, ..., ¢,—1 such that ZFC + mp,, +-- -+ mp,, _, is inconsistent.
By Lemma 4.3, it follows that ZFC + mpgga...ap,_, is inconsistent. But this is a

contradiction to Lemma 4.2. [ (Theorem 4.4)

Practically the same proof as above, we can prove also the following:

Theorem 4.5 Suppose that “x-large cardinal” is a notion of a large cardinal such
that, if k is an z-large cardinal then this is preserved by any set-forcing of size < k.
If ZFC+ “there are class many z-large cardinals” is consistent, then so is ZFC +

MP + “there are class many x-large cardinals”.

Proof. Working in the theory ZFC + “there are class many x-large cardinals” we
have that |Fp “there are class many x-large cardinals” holds for any poset P. Thus
Lemma 4.2 with ZFC replaced by ZFC + “there are class many x-large cardinals”
holds. [ (Theorem 4.5)

Theorem 4.6 (Hamkins, [24]) MP is preserved by any set-generic extension.

Proof. The theorem follows immediately from the following Lemma. QO (theorem 4.6)

For an Lc-sentence ¢ let mp;f be the Lc-sentence:

(4.5) dJP(Pisaposet AVQ(P <€Q — |Fo“¢”))
— VR(Ris a poset — |Fr“¢”).

Let MP™ be the collection of Lc-sentences of the form mp:g for all Lc-sentences .
Lemma 4.7 MP and MP" are equivalent over ZFC.

Proof. It is clear that MP™ implies MP.

To see that MP implies MP™, let ¢ be an arbitrary Le-sentence. We write o
for VR(R is a poset — |Fr“¢”).

It is easy to see that we have Ly <> [UUy. Thus mp; is equivalent to mpp.

The latter sentence is a member of MP. [ (Lemma 4.7)

A sort of inverse of Theorem 4.5 also holds:
Theorem 4.8 Suppose that MP holds. If “x-large cardinal” is a notion of large
cardinal such that @ “k is an z-large cardinal” implies that K is inaccessible;
@ “k is an z-large cardinal” can not be destroyed by forcing of size < k;
® no new z-large cardinal is created by set-forcing.

If there is an z-large cardinal, then there are cofinally many x-large cardinals in V.

Proof. Suppose otherwise. Let kg be a x-large cardinal, and k; > k¢ be a cardinal

above which there are no x-large cardinals.

10



Let P be a poset which collapses x; to, say cardinality wy, and let G be a (V, P)-
generic filter. Then by @ and @), there is no x-large cardinal in V[G]. Also there
is no x-large cardinal in any further generic extension by 3.

By MP it follows that there is no x-large cardinal in V but this is a contradiction

to the assumption of the theorem. [ (Theorem 4.8)

5 Independence

Following Theorem 4.5 and Theorem 4.8, we introduce the meta-definition of nor-
mality and suspicious normality of a notion of large cardinal.

Let us say a notion of large cardinal (call this notion “x-large cardinal”) normal
if
“k is an x-large cardinal” implies that k is inaccessible;
“k is an x-large cardinal” cannot be destroyed by a forcing of size < k;

No new x-large cardinal can be created by small set-forcing; and

® e 6

ZFC + “there are unboundedly many x-large cardinals” is consistent.

Note that most of the known notions of large cardinal are normal in the sense
above under the assumption of the consistency of the existence of a sufficiently
large cardinal.

Example 5.1 The notion of super almost-huge cardinal is normal under the con-

sistency of ZFC + “there is a huge cardinal”.
The example above follows from the next theorem which should be a folklore:

Theorem 5.2 Suppose that k is huge. Then, {a < k : V,, | “« is super almost-

huge”} is a normal measure 1 subset of k. 0

A normal notion of large cardinal “x-large cardinal” is suspiciously normal if
“small” in @ of the definition of normality is dropped and the whole condition @
is dropped. The notion of “x-large cardinal” in Theorem 4.8 is rather suspiciously
normal.

Example 5.3 The notion of inaccessible cardinal is suspiciously normal. a

Theorem 5.4 Suppose that P is an iterable class of posets, and “z-large cardinal”
is a normal notion of large cardinal such that its (tightly) Laver-generic version is
well-defined and an x-large cardinal k can be forced to be a (tightly) P-Laver generic
x-large cardinal by a set forcing of size k, then MP is consistent with ZFC + “there

exists a (tightly) P-gen. Laver-gen. z-large cardinal”.

11



If, in addition, “there exist y-large cardinals above an z-large cardinal but only
boundedly many” is consistent for a suspiciously normal notion of large cardinal
“y-large cardinal”, then MP is independent over ZFC + “there exists a (tightly)

P-gen. Laver-gen. z-large cardinal”.

Proof. The theory ZFC + MP + “there are class many x-large cardinals” is con-
sistent by Theorem 4.5.

Starting from a model of this theory, we can force the existence of (tightly)
P-Laver-gen. x-large cardinal by a set-forcing (of size k) then MP survives in the
generic extension by Theorem 4.6. This shows the consistence of ZFC + MP +
“there is a (tightly) P-Laver gen. x-large cardinal”.

For the second assertion of the theorem, we start from a model with an x-large
cardinal kg and with at least one but only set many y-large cardinals above k.

Working in such a model V, force the existence of (tightly) P-Laver gen. x-large
cardinal using k.

Let V[C] be the generic extension. By the properties @ and @ of suspicious
normality, there are y-large cardinals above ko in V[C] but they are are only set
many.

By Theorem 4.8, it follows that V[G] = —-MP. Q (Theorem 5.4)

Corollary 5.5 Suppose that “z-large cardinal” is one of supercompact, super-
almost-huge, superhuge, or ultrahuge. Then the theory ZFC + MP + there is a/the
P-Laver-ge. z-large cardinal” is consistent for an iterable class P of posets in The-
orem 8.3 assuming the consistency of the existence of a sufficiently large cardinal.
a

Corollary 5.6 Suppose that P is an iterable class of posets for which a forcing
construction of (tightly) P-Laver gen. supercompact cardinal starting from a super-
compact r and forcing with a poset of size k is available (Note that this is the case
for P being either the class of all o-closed posets or any reasonable subclass of ccc
posets).

Then MP is independent over ZFC + “there is a (tightly) P-Laver gen. supercompact
cardinal”

Proof. Use “inaccessible” as the notion of y-large cardinal in Theorem 5.4 (cf.
Exercise 22.8, (a) in [26]). 0 (Corollary 5.6)

Problem 5.7 Is MP independent over ZFC + “there is a (tightly) P-Laver gen.

huge cardinal”? How about with P-Laver gen. superhuge?

12
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