THE WEAK DIAMOND

TETSUYA ISHIU

1. INTRODUCTION

D. Jensen proposed the diamond principle < in [2]. It asserts the existence
of a sequence that guesses every subset of wy, which is called a {-sequence.
He showed that V' = L implies ) and also <) implies the existence of a
Suslin tree. Since then, numerous variations have been proposed, studied,
and applied.

The weak diamond principle is one of such variations, proposed by K. De-
vlin and S. Shelah in [1]. They showed that this principle is equivalent to
280 < 981 In particular, CH implies the weak diamond principle, which is
very rare among variations of the diamond principle. Moreover, the argu-
ment used to prove this fact is unique and interesting.

The purpose of this paper is to present the proof that 280 < 2%t implies
the weak diamond principle in a more intuitive way to help understand
the idea behind it. Please keep in mind that the proof is essentially the
same, although the presentation was modified, and more explanations are
provided.

2. DEFINITION AND INTERPRETATION

The weak diamond is defined as follows by K. Devlin and S. Shelah in
[1]: for every function F : 251 — 2, there exists a function g : w1 — 2 such
that for every function f : w; — 2, there are stationarily many o < w; such
that F'(f | «) = g(«).

The following equivalent formulation may be more intuitive. for every
sequence (F, : a < wi) of functions with F, : P(a) — 2, there exists a
function g : w; — 2 such that for every subset X of wy, there are stationarily
many « < w; such that F,(X Na) = g().

Devlin and Shelah proved the following theorem in [1].

Theorem 2.1. The weak diamond is equivalent to 280 < 281,

In particular, CH implies the weak diamond. The rest of this paper is
devoted to the proof of one direction of this theorem, namely 28 < 2N
implies the weak diamond.

Suppose not, i.e. 28 < 281 but the weak diamond does not hold. It means
that there exists a function F' : 2<“! — 2 such that for every function g :
w1 — 2, there exists a function f :w; — 2 such that for club many a < wy,
F(f | @) # g(«). By considering ¢’ : w1 — 2 defined by ¢'(a) = 1—g(a), we
can see that for every function g : w; — 2, there exists a function f : w; — 2
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such that for club many o < wy, F(f | o) = g(«). It is why this 2-color
weak diamond is so distinct from the weak diamond of 3-color or more.

Before going into the details, we will explain our strategy. Let X be the
set of all sequences (s, : @ < w?) such that there exists a § < w; such that
for every a < w?, s, is a function from ¢ into 2. Note |X| = 2%°. We shall
define an injection function ¢ : 2“1 — X. Of course, this is a contradiction.
To show that ¢ is injective, we shall define a function o : X — 2“* such that
for every f € 2“1 gop(f) = f.

The definition of ¢ goes as follows. Let f:w; — 2. Inductively, we shall
define a sequence (f, : a < w?) in 2! with f, = f for all n < w. This
sequence is designed so that the lower part (f, | § : @ < w?) reflect the
information about the higher part. ¢ is defined to be (f, | § : a < w?)
for some nice § < wy. It will be shown that we can reconstruct (f, : a <
w?) from this sequence of short functions. In a sense, we “slide down”
the information about one tall function f into a wide sequence of shorter
functions.

Let 7 be a bijection from 2“ onto the set of all countable sequences (s, :
a < n) such that there exists a 6 < w; such that for every o < 1, s, is a
function from ¢ into 2.

We begin with the definition of . Let f : w3 — 2. We shall define
functions f, and g, for For every n < w, let f,, = f. For every a < w; and
n < w, let gy(a) = F(f | a). Define Dy = D; = w;. Now suppose that
for some n € (0,w), we have defined D,, and f, and g, for all & < wn. For
every 0 < wi, we shall define g,(0) as follows. If § ¢ D,,, then let g, () =0
(this is an ignorable case). Suppose 6 € D,,. Set v, = min(D,, \ (6 + 1)).
Let z,, 5 € 2* be so that 7(x,5) = (fo | 7 : @ < wn). Define gunim(d) =
Tn,s (m)

By assumption, for every m < w, there exist a funtm : w1 — 2 such that
for club many & < wi, F(funtm | €) = guntm(&). Let Dy11 be a club subset
of wy such that for every £ € Dy,11 and m < w, F(funtm | &) = guntm(§).
It completes the definition of f, and g, for & < w? and D,, for n < w. Let
§ =min(), ., Dy and o(f) = (fa | 6 : @ < w?).

The point of this construction is:

(i) Let n € (0,w). For every m < w and 0 € Dy,11, we have F(fontm |
0) = gunt+m(9). So, if we know f,nim [ 0, then we can compute
Juont+m(6)-

(ii) Recall that for every m < w, n5(m) = guntm(6). If we know
Guwn+m(0), we can compute x, 5.

(iii) Let v, = min(Dy, \ (0 + 1)) for each n < w. Recall 7(zy,5) = (fa |
Yn t o < wn). So, from z, 5, we can compute (fy [ 7 1 @ < wn).

(iv) By doing this for every n € (0,w), we can compute (fq [ 0 : @ < wn)
where ¢’ = min((,, ., Dn \ (0 +1)).

The following figure visualizes how this argument works.

From (fon+m | 0 @ m < w) (shown as (la), (2a), ...), we can find
(Gunt+m(0) : m < w) and hence z, s (shown as (1b), (2b), ...). Each z,
codes the box (fy [ v @ @ < wn) where 7, = min(D,,\(d+1)) (shown as (1c),
(2¢), ...). By doing this for all n € (0,w), we can find all {f, [ & : @ < w?)
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where ¢/ = min(D \ (§ 4+ 1)). It is a little surprising that since we only need
the values of f, below § to find f, | ', we can pass the limit stages.

Let us do it more formally. We shall define 6 : X — X as follows. Let
(54 1 @ < w?) € X and dom(sg) = & (note that by the definition of X,
dom(s,) = 4 for every a < w?). For every n € (0,w), define y, s : w — 2 by
for every m < w, yns(m) = F(Swn+m). Let (tna:a < np) = T(yns). If for
every n € (0,w), n, = wn and for every a < wn, tp11, is an extension of
tna. then for every i < w and « € [wn,w(n + 1)), let to = Upcneyn tna- It
is easy to see that (t,:a <w?) € X. Let ({50 : a < w?)) = {tn : a < w?).
Otherwise, let 5((sy : @ < w?)) = @ (this is ignorable).

We shall define o as follows. Let (so : @ < w?) € X. For each a < w?,

set s = s,. We shall inductively define (s§ 1o < w?) € X for all £ < wy.

Suppose that (s : @ < w?) has been defined. Let (tq : o < w?) = 5((s5, :
a < w?)). If for every a < w?, t, extends sg, then we let ng = t,, for every

a < w?. Otherwise, stop the induction and let o({(s, : @ < w?)) be just any
function from wy into 2. If ¢ is limit, for every a < w?, let sg = U<<€ sg.

Let 0((sa : o < w?)) = Ueey, So-

Now, it suffices to show that for every f:w; — 2, 0o p(f) = f. Let fq,
Jas Tn,5, Dpn be as in the definition of ¢(f). Define D = N, Dy and let
(0¢ = & < wq) be the increasing enumeration of D. Then, ¢(f) = (fo | do :
a < w?).

Claim 1. Let 6 € D. Then, 6((fo | 0 :a < w?)) = (fo | & : a < w?) where
& =min(D \ (6 +1)).

 For every n € (0,w), define y,s5 € 2% by yns(m) = F(fontm |
). Since 6 € D C Dyy1, we have guntm(0) = F(fun+m | 9) for every
m < w. Since 6 € D C Dy, we have z,, 5(m) = guntm(0). Therefore,
we have Z,5 = Yns. S0, T(Yn,s) = T(Zns) = (fa | 7 @ @ < wn) where
Yn = min(Dy, \ (0 + 1)). Note that sup,, ., 7n = ¢’. By the definition of 7,
we have 7((fo [ 0:a < w?)) = (fo [ &' a <w?). — (Claim 1)

Let sq = fao | 00 for every a < w? and define (sg :¢ <wpand a < w?) as
in the definition of o({s, : @ < w?)).

Claim 2. For every ¢ < w; and o < w?, s§ = fa | O¢.

- Go by induction on ¢ < wy. The case £ = 0 is just by definition.

Suppose that & = fa I 0¢ for all o < w?. Then, by Claim 1, s&t = fal
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d¢41. Suppose that ¢ is a limit ordinal and sg = fa | d¢ for every ¢ < £ and
a < w?. Then,

ss=UsS=Jfaldc=falde
(<€ (<€
— (Claim 2)

Therefore, we have

aop(f) =o({faldo:a<w?)

~ U

E<wt

= fold

E<wy

= fO = f
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