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Abstract
We show the consistency of GCH + w3 —/~+ (wg + w)?2.
Introduction

In [HL] (4.5 Question on p. 142) Hajnal and Larson ask if w3 — (wa +2)2 is provable in ZFC + GCH.
We show ws —/+ (w2 + w1)? assuming a family of simplified morasses. The members include a simplified
(w2, 1)-morass F C [w3]<“2, a kind of (wq,1)-morass N, and an (w,1)-morass A C [w1]<“. To prepare a
universe where such a family exists, we start with a ground model V' where, by [V1], GCH holds and F
exists. By a mild modification to [M], construct a poset P C H,, that is o-closed, has the ws-cc, and forces
the kind N C ([Hy,]*)V preserving GCH. By [V2], A is provable in ZFC. More precisely, we are in the
generic extension V[G] of V s.t. there exists (F, N, A) that satisfies the following.

(0) The cofinalities and so the cardinalities are preserved in V[G]. Also GCH is preserved in V[G].
(1) The simplified (wa, 1)-morass F C ([w3]<<2)V belongs to V with the representation in V

(e | € Swa), (Fye | <& <wa)).

However, F is upwardly absolute. In particular, 7 = {g[@¢] | £ < w2, g € Feu, }, rank(g[pe|) = &, and
F satisfies the following. For each X, Y € F and < ws, if rank(X) = rank(Y) w.r.t. Fandz € XNY,
then

XNnE+)=Yn(z+1).

(2) In V, let Cy := {N € [H,,]* | N is an elementary substructure of H,,}, where H,, represents any of
your favorite structure (H,,, € N(Hy, X H,,),--+) in V. Now, the kind A" C (Cy)" is forced over V. It
relies on the two binary relations on Cy defined in V' by

Nl —w NQ, if w1 ﬁNl = w1 n NQ,

Ny <y Na, if wi NNy < wy N Na.
The following holds in V[G].
* (elementary) For each N € N, we have N < (H,,,, € N(Hy, X Hy,), --)V.

# (isomorphic) For each N1, No € N with Ny =,, Na, there exists (in V) the unique isomorphism
¢N1N2 : (Nl,e ﬁ(Nl X Nl); .. ) — (N2, S ﬂ(Ng X Ng), .. ) s.t. (]5N1N2($) =g forall z € N1 QNQ.

 (up) For each N3, Ny € N with N3 <,,, Na, there exists Ny € N s.t. N3 € Ny and Ny =, N.
% (down) For each Ny, Ny, N3 € N/, if N3 € Ny and Ny =,,, No, then ¢y, n,(N3) € N.
* (partition) N = zero(N') U suc(N) U lim(N'), where

zero(N) ={N e N | N NN = 0},
suc(N) = sucy (N) Usuca(N),
sucy (N) = {N € N | there exists Ny s.t. NN N = (N N No)U{No}},
sucy(N) = {N € N | there exsist Ny, Ny s.t. the following 3 items hold},
Ny =y, N,
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NAN=(NNN)UWNNNy)U{Ny, No},
A= (wgﬂNl)ﬂ(wgﬂN2)<(WgﬂNl)\A<(u}2ﬂNg)\A7é®,
lim(N) = {N e N | N = JWNnN)}.

% (cofinal) (JN = (Hy,)Y.

In particular, NV satisfies the following. For each N1, No € N and z < wa, if Ny =, Ny and x € N; NNy,
then

To see this, assume 0 < z and let e € N; N Ny be a common onto map e : w; — . Then

Nlﬂx:e[wlﬁNl]:e[wlﬁNQ]:Ngﬂx.

(3) The simplified (w,1)-morass A C [w1]<“ provable to exist in ZFC. Hence, A satisfies the following. For
each a,b € A and = < wy, if rank(a) = rank(b) w.r.t. A and = € a N b, then

anN(z+1)=bn(xz+1).

Question. (1) Does a gap two simplified (wy,2)-morass together with GCH, or, V' = L suffice for
w3 7L> (wg +w1)i + GCH?

(2) Is w3 —> (w2 + w1)? ever consistent by a large cardinal ? ([HL])
The (w2, 1)-Simplified Morass

There are several formulations in [V1], [I], and others. Here is the (ws, 1)-simplified morass in this note.
Definition. ((¢e | £ <ws), (Fye | 7 < & < ws)) is the (wo, 1)-simplified morass, if
® vy =1, p,, = ws, and for any { < ws, we have p¢ < wo.

e For any 1 < & < wy, F¢ is a set of order preserving maps from (¢, <) into (¢¢, <) s.t. if £ < wo, then
|FTI5 | < ws.

e For any 1 < § < ( < wg, we have Fy¢ = Fg¢c o Fe.

e For any £ < wo, there exists ¢ s.t. 0 < 0¢ < g, Yer1 = @e + (pe — 0¢), Feep1 = {be,id¢}, where
be(x) = x (for any @ < 0¢), be(x) = e + (x — 0¢) (for any o¢ < < @¢), and id¢(x) = x for all x < @¢.

e For any limit ordinal ¢ < ws, if n1,7m2 < ¢, fi € Fy,¢, and fo € Fy,¢, then there exists (£, h, g1, 92) s.t.
N, << heFe, g1 € Fye,and go € Fiye sit. fi =hogy and fo = hogo.

e For any limit ordinal ¢ < wo, we have o = U{fly¥n] | 1 <( f € Fycl
Now collect all of the images F = {f[¢e] | £ < wa, f € Few,}. Then F C [w3]<“? satisfies, among
others,

e (crutial for simplified morasses) Let 7 < £ < wo, f,g € Fye, and 1,22 € @, If f(z1) = g(x2), then
x1 = x2 and f(y) = g(y) for any y < 21 = x»2. In particular, let f,g € F,,,, and denote X = f[,] and
Y =g[¢,]. Then

«IfxreXNY,then XN(z+1)=YN(z+1).
x*If X CY, then X =Y.

o (well founded) There exists no (X, | n < w) s.t. for any n <w, X,, € F, Xp41 € X,, and X1 # X,
Recursively define the rank(X) = sup{rank(Y)+1|Y € F,Y C X,Y # X} < ws for any X € F. Then
for any X € F and £ < ws, we have rank(X) = & iff there exists f € Fg,, with X = f[p¢].
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e (up and commom head) Let X3 € F and rank(X3) < £ < wa. Then there exists X; € F s.t. X3 C X,
and rank(X;) =& Let (Y, Z,z) st. Y, Z € Fand x € Y NZ. Then

x If rank(Y) = rank(Z), then YN (z+1) =ZnN(x +1).
* If rank(Y) <rank(Z), then YN (z+1) C ZN(x+1).

The Coloring

Definition. Let r < y < ws. Then f : [w3]? — w x w assigns f({z,y}) as follows.

Step 1. Let £ < wy be the least s.t. there exists X € F that satisfies rank(X) = ¢ and {z,y} C X.
IfY € F, rank(Y) = € and {z,y} C Y, then XN (y+1) =Y N(y+1). Hence, there exists the unique
Te < Ye < e s.t. there exists g € Fp,, that satisfies g(z¢) = = and g(y¢) = y. Focus on the two elements
set {ye, pe} C ws.

Step 2. Let a < wy be the least s.t. there exists N € N that satisfies w; N N = a and {ye, pe} C N.
IEN eN,wi NN =a, and {ye, e} € N, then N N (g + 1) = N N (¢e + 1). Hence, the set of collapses
{en(ye), en(pe), en(w2)} is independent of the actual choices of N, where ¢y is the transitive collapse of N
and cy(w2) := {cn (@) | i € wo N N}. Focus on the two elements set {cn(pe), en(w2)} € wy.

Step 3. Let n < w be the least s.t. there exists a € A that satisfies rank(a) = n and {cn(p¢), en(w2)} €
a. If b € A, rank(b) = n, and {cn(p¢), en(w2)} € b, then a N (ey(w2) +1) = b N (en(w2) + 1). Hence, the
set of collases {c.(cn(p¢)), ca(cn(w2))} is independent of the actual choices of a, where ¢, is the transitive
collapse of a.

Let us focus on n and ¢, (cn(p¢)). Assign f({z,y}) = (n,ca(cn(pe))) €w X w=w.
Lemma. Let A and B be subsets of w3 s.t. A < B, A ~ wy, and B ~ w;. Then there exist u < u’

in Aand s € Bs.t. f({u,s}) # f({v,s}). Hence, there exists no f-homogeneous subset of ws with the
order-type ws + wy.

Proof. Let t = sup(B). We have 3 stages.

Stage 1. Let us fix a sequence (X; | i < wa) st. X; € F, rank(X;) = ¢, and ¢t € X;. Then
(tNX; | i< wsy) is continuously C-increasing and [J{t N X; | i < wa} =t < ws. Let n < wy be sufficiently
large s.t. w1 ~ B C |J{X; Nt |i<n}. Hence, BU{t} C X,. Let us pick

s ucA~wyst. ugX,.
Let & be the least £ < wg s.t. u € X¢. Then < & and it is routine to deduce
e For any s € B, & is the least £ < wy s.t. there exists Y € F that satisfies rank(Y) = ¢ and {u,s} C Y.
Since pg, < wp < sup(A), we can fix i < ws s.t. & < i and g U{pe,,ut UBU{t} C X;. Let
o u' € A~ wyst. max{pe,,u} <u' and v’ ¢ X;.
Let & < wo be the least £ < w, that satisfies v’ € X¢. Then i < &. Hence,
o & <& <wa.
It is routine to deduce
e For any s € B, & is the least £ < wy s.t. there exists Y € F that satisfies rank(Y) = € and {u/,s} C Y.

Let us transitve collase cx, : (Xg, <;t,u) ~ (g, < te,ug ). Take Xi € F st. rank(Xg) =
rank(Xe,) and X¢, C© X{ . Since t € Xg, N Xg , we have Xe, N (¢ +1) = X, N (¢ +1). Hence g, U
{pe,u,u'} UBU{t} € X¢,. Let us transitive collase exy, (XE, < t,u') ~ (g, <stey,ug,). Let f € Fepe,

be the composition f = Cxy © c)_(i . Then
2 1
o ug <t < g <ug, <t < g, <wsand f(tg) = e,
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Stage 2. Fix No € NV s.t. {ug,, te,, 9y gy teos Pens 1 S No.
Remember B C X, ~ @¢,. Let s € B ~ wy s.t.
® s¢, 1= cx,, (s) & No.
Let s¢, := CXé2(S)~ Then f(s¢,) = exy, (c;(l1 (se,)) = cXé2(s) = s¢,. Since v’ € A, A < B, and
s € B Ct, we have
o up, < fsg,) = 8g, <tey < e,

Claim. Let o < wq be the least s.t. there exists N € A that satisfies w; "N = o and {s¢,, ¢, } € N.
Then there is one with Ny € N.

Proof. We argue in 3 cases.

Case. N =, Ny: Then ¢¢, € NN NygNws and so s¢; € N Npg, = Nog Ng,. Hence, s¢; € Ng. This is
absurd.

Case. N <, Ny: Then fix Nj € N st. N € N} and Nj =,, No. Then ¢¢, € NjN Ny and so
se;, € NN, € NyNe, = No N g, . Hence, s¢; € Ny. This is absurd.

Case. Ny <., N: Let N" € N's.t. Ny € N and N =, N'. Then ¢¢, € NNN’" and so s¢; € NNe, =
N’ N g, . Hence, Ny € N =, N and {s¢,, ¢, } € N'. We may work with this N'.

Fix any N € N s.t. a =wi NN, {sg,, 06, } €N, and Ny € N.
Claim. The same o = w; NN < wy is the least s.t. there exists N/ € A that satisfies w; N N’ = o and
{502, pe} N
Proof. Since {f,¢¢,} € No € N and s¢, € N, we have s¢, = f(s¢,) € N. Hence,
o {s¢,,pe,F CN.
Since wi N N is the least with {s¢,, pe, } € N and Ny € N, we must have N € suc(N).

Case. N € sucy(N): Let Ny, Ny € A as in the definition of suca(N). Since Ng e NN N = (NN Ny)U
(N N Ny)U{Ny, N2}, we have k € {1,2} s.t. Ng € (NN Ni)U{N}. Hence,

e Ny C N,

Since wi N N is the least with {s¢,, ¢, } € N and ¢¢, € No € N, € N. We have
® 5, & Ny.

Subclaim. {s¢,, ¢, } € N1 and {s¢,, pe,} € No.

Proof. If {se,, pe, } € Ni, then sg, = f~(s¢,) € Ny, as f € Ng € Nj. Thisis absurd. If {se,, pe,} € Ng,
where k € {1,2} and k # k, then ¢g, € No N Nz € N N N and so sg, € NN e, = N N @g,. Hence,
se; = [71(sg,) € Ny, as f € Ng C Nj,. This is absurd.

0

Subclaim. The same oo = wy; N N is the least s.t. there exists N € N that satisfies w; N N = o and
{8527 9052} c Ma
Proof. Let N € N s.t, wi NN < wy NN and {sg,,pe,} € N. Then take N € N st. N € N”

and N” =, N. Then {sg,,pe,} € N”" N N. Hence, {s¢,,0e,} € dnvn(N) € N. Since ¢nn(N) €
(N N Ny) U (W NN2)U{Ny, Not, we have {s¢,, e, } C Ny or {sg,, e, } € No. This is absurd.

Case. N € sucy(N): Let N3 € N s.t. NN N = (N N N3)U{N3}. Then Ny € (N N N3)U{N3}. Since
No € N3 € N and ¢, € Ny, we have s¢; € N3.



Subclaim. s¢, ¢ N3 and so {s¢,, p¢, } € Na.

Proof. 1f s¢, € N3, then s¢, = f~'(s¢,) € N3, as f € N3. This is absurd.
o

Subclaim. The same o = w; N N < w; is the least s.t. there exists N € A that satisfies wi NN = «
and {3527(»052} CN.

Proof. Let N € N s.t, wi NN < wy NN and {s¢,,pe,} € N. Then take N € N st. N € N”
and N” =, N. Then {sg,,pe,} € N” N N. Hence, {s¢,,0e,} € ¢onvn(N) € N. Since ¢pnn(N) €
(N N N3)U{N3}, we have {sg,, pe, } € N3. This is absurd.

Stage 3. Since s¢, < @g, < sg, < @g, in N, we have cy(se,) < en(pe,) < en(se,) < en(pe,) <
en(w2) < wi. Let ny < w be the least s.t. there exists a; € A that satisfies rank(a1) = n; and
{en(pe, ), en(w2)} € a1. Let ng < w be the least s.t. there exists a; € A that satisfies rank(az) = no

and {ex (ge,). en(ws)} € as.
Claim. Either ny # no or ¢, (en(¢,)) # Cas (cn(e,)). Hence, f({u,s}) # f({v, s}).

Proof. Suppose n1 = na. Then cy(we) € a1 Nag and so a1 N (ey(w2) + 1) = as N (en(ws2) + 1). Hence,
cn(pe,) < en(pe,) in a; and so cq, (CN((,DEI)) < Coy (CN((,DEQ)). But a1 Nen(pe,) = az Nen(pe,) and so
Ca, (CN (9052)) = Cqy (CN((P@))- Hence, Cay (CN((IDEI)) < Cay (CN (9052))'

Forcing N

For the sake of convenience, prepared is a part of [M] adjusting to this note.

Notation. Let k = ws. Let N be a countable subset of H,. Denote N < H, to express the substructure
(N,e N(N x N),---) is an elementary substructure of your favorite structure (H,, € N(H, x H,),---). It
was written N € Cy in the previous section. For any two countable N, N’ < H,, considered was the binary

relations
N:wl N/ iffwl ﬁN:wlﬁN/,

N<w1 N’iﬁwlﬁN<w1ﬁN/.

If two substructures (N, € N(N x N),---) and (N’, € N(N’ x N’),--) are isomorphic, then there is a unique
isomorphism. Denote ¢nn/ : N — N’ to express (N,€ N(N x N),---) and (N',€ N(N' x N'),--+)
are isomorphic with the isomorphism ¢ypys. Note that if X,V € [Hi]¥, Y < Hy, and X € Y, then
X ={ex(n) | n<w}CY and X #Y, where ex : w — X onto with ex € Y.
We force N in such a way that TP € N and (N NTP) U{T?} = NP for every p € G.
Definition. Let p = N? € P, if
e (countable with the top) NP C [H]¥, | NP | < wy, and there exists TP € NP s.t. NP = (NPNTP)U{T?}.
e (elementary) For any N € NP, we have N < H,.
e (isomorphic) For any Ny, No € NP with N7 =, Na, there exists the isomorphism ¢, n, : N1 —> Na
that also satisfies ¢y, n, () = x for all x € Ny N No.
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e (up) For any N3, No € NP with N3 <,,, Ny, there exists Ny € NP s.t. N3 € Ny and N1 =,, Na.
e (down) For any Ny, Ny, N3 € NP with N3 € Ny =,,, Ny, we have ¢y, n,(N3) € NP.
e (partition) N7 = zero(N?) U suc(N?) U lim(NP), where

zero(NP) = {N e NP | NP N = 0},

suc(NP) = sucy (NP) U suce (NP),
sucy (NP) = {N € N? | there exists Ny s.t. N* N N = (N? N No) U {No}},
suca(N?) = {N € N? | there exists N1, Ny s.t. the following 3 items hold},
N1 =y, N,
NPAN = (NPNN)UWNPNNy)U{Ny, No},
A= (wa NNy ) N (w2 M Na) < (w2 NN\ A < (wa N N2) \ A #0,
lim(N?) = {N € N* | [ JWP N N) = N}.
For p,qe P,let ¢ <pin P, if N9 D NP and N9NTP = NP NTP.

Lemma. (1) (abusive) T? is unique to p.
(2) g<pin Piff TP € N9 and (N9 NTP) U {TP} = NP.
(3) P is a poset with P C H,.

Proof. (1): Suppose NP = (NP NT)U{T} = NPNT")U{T'}. Suppose T # T’. Then T € NP NT’
and TV € NP NT. Hence, T € T' and T’ € T. This is absurd.

(2): Let ¢ <pin P. Then T? € N? and N9 NTP = NP NT?. Hence, (NTNTP)U{TP} = (NP NTP)U
{T?} = N'P. Conversely, let T? € N9 and (N9NTP)U{TP} = NP. Then N9 D NP and (NINTP)U{TP})N
TP = NPNTP. Hence, N9NTP = NP NTP.

(3): (reflexive): Let p € P. Then TP € NP and (NP NTP) U {T?} = N'P. Hence, p < p in P.

(transitive): Let r < ¢ <pin P. Then N" D NI DODNP? N"NTI=N1NT9 and NTNTP = NP NTP.
Hence, N D NP and T9 D TP. Hence, N"NT? = (N"NTY)NTP = (NINTH)NTP = NINTP = NPNTP.

O

Lemma. (Dense) For any p € P and = € H,,, there exists ¢ <pin P s.t. z € T9.

Proof. Let N € [Hy]* with {z,p} C N < H,.. Let N2 = NP U{N}. Then N? C N and TP C N.
Hence, N9N N = N? = (NPNTP)U{TP} = (N?NTP)U{TP}. Hence,

e NiNN = (N1NTP)U{Tr}.
(localized) For any X € NP, we have N9NX = (NINN)NX =NPNX.
(countable with the top) N4 = (NN N)U{N}.

(elementary) For any X € N?, we have X < H,.

(isomorphism) Let X, Xs € N9 with X; =, X3. We want the isomorphism ¢x, x, : X3 — X5 that
satisfies ¢x, x,(z) = x for all z € X; N X3. But we may assume that X; # Xo. Then {X;, X5} C NP.
Hence, ¢x, x, exists.

o (up) Let X3, Xo € N with X3 <o, Xo. If Xo = N, then X3 € N =,
{X3, X2} C NP. Hence, there exists X; € NP C N7 with X3 € X; =, Xa.

1 X2. If X2 }é N, then
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(down) Let X1, X5, X5 € N7 and X3 € X1 =,, X3. We may assume X; # X5. Then {X1, X5} C NP.
Hence, X3 € NN X; = NP N X;. Hence, X3 € N? and so ¢x, x,(X3) € NP C N9,

(partition) We observe N7 = zero(N?) U suc(N?) U lim(N?) as follows.
* zero(NP) C zero(N9): Let X € zero(N?). Then N9NX =NPNX =0.

x sucy (NP) C sucy (M?): Let X € sucy (NP). Then there exists Xy s.t. NPNX = (NPNXy)U{Xo}. Since
X, Xy € NP, we have NINX = NPNX and NINXy = NPNXy. We conclude NINX = (NINXo)U{Xo}.

% sucg(NP) C suca(N?): Similar. Let X € suca(NP). Then there exist Xp, Xz st. NP NX =
(NP N X)) U(NPNXy)U{Xy, X} among others. Since X, X1, Xy € NP, we have N9N X = NP N X,
NI X, =NPN Xy, and N9N Xy = NP N Xy, Hence, N9NX = (NN X)) U (NN Xo) U{Xy, Xo}
among others.

% lim(N?) C lim(N9): Let X € lim(N?). Then X = UWN? N X) =UJWN?NX).
* N € sucy (N?): We have N9NN = (N1NTP)U{T?}.
Hence, q € P with z € T = N. Since N? C N4 and N9NTP = NP NTP, we have ¢ < p in P.

Lemma. P is o-closed.

Proof. Let ppy1 < pn and p,, # ppy1 for all n < w. First observe TP~ # TPn+1. Suppose not. Since

NPt TPn = NPrO\TPn we have NPr+t = (NPrtr NTPrtt)U{TPr+1} = (NPrOTPr)U{TP"} = N'Pn. This is
absurd. Let T = [J{T?" | n < w}. Since TPn+1 # TPn and TP~ € NPr+t = (NPrt1TPr+1)U{TPn+1}, we have
TPn € TPnt1 and so TP € T. Since T is the union of the €-increasing countable elementary substructures
of H,, T itself is also a countable elementary substructure of H,. Let p = NP = [J{N?" | n <w}U{T}. We
claim p € P and for all n < w, p < p, in P. We check these item by item. Let n < w and X € AP, Then
for all k¥ < w with k > n, since p;, < p,, in P, we have NP* NTP» = N'P» NTP» and so NP* N X = NP» N X.
In turn, we have N? N X = A/P» N X. Hence,

(localized) For any X € NP, we have N? N X = NP N X.

(countable with the top) p C [H,]* and |p| < wi;. We observe N? = (NP NT) U {T}. But we have
NPOT = J{NP" | n <w}.
(elementary) N? = J{N?P" | n <w} U{T}. Hence, for any X € NP, we have X < H,.

(isomorphism) Let N1, Ny € NP with Ny =, No. We may assume N; # Ny. Then {Ny, No} C NP» for
some n < w. Hence there is the isomorphism ¢, n, : N1 —> Na s.t. ¢y, n, () = z for all x € N3 N No.

(up) Let N3, Ny € NP with N3 <., No. We may assume Ny = T. Then N3 € T =,,, Na.

(down) Let Ny, No, N3 € NP s.t. N3 € N1 =, Na. We may assume Ny # Ny. Then Ny, No, N3 € NPr
for some n < w. Hence, ¢y, n, (N3) € NP C NP.

(partition) Need to observe N? = zero(N?) U suc(N?) U lim(NP).

« zero(NPn) C zero(N?): Let X € zero(NP~). Since X € NP, we have N? N X = NP» N X. Hence,
NPAX =NPrN X = 0.

% sucy (MPn) C sucy (NP): Let X € sucy (NP»). Then there exists Xg s.t. NP»NX = (NP NXy)N{Xo}.
Since X, Xy € NP», we have NP N X = AP» N X and NP N Xy = NP» N Xy. Hence, NP N X =
(NP1 Xo) N {Xo}.

* sucy (NPn) C sucy(NP): Let X € sucy(NP~). Then there exists X7, Xz s.t. X =4, Xo, NPrNX =
(/\/7’"ﬂXl)U(Np"ﬂXg)U{Xl,Xg}, and A := (wgﬁXl)ﬁ(WQﬂXg) < (WgﬂXl)\A < (WQQXQ)\A #* 0.
Since NP NX = NP N X, N?PNX; = NP N Xy, and NP N Xy = NP2 N Xs, conclude NP N X =
NP N X)) UWNPNXy)U{Xq, Xo}.



* Im(NPn) C lim(NP): Let X € im(NP~). Then X = NP N X) = JWNP N X).
x T € lim(NP): Since TP» e NP» NT CNPNT and T = | J{TP" | n < w}, conclude T = JWNP NT).
Hence, p € P. Since N? D NP» and NP NTP» = N'P» NTP~, conclude p < p,, in P for all n < w.

Lemma. (CH) P has the wy-cc.

Proof. Let us denote S7 = {i < | cf(i) = w1 }. Let (p; | i € S?) be an indexed family of conditions of P.
Let N; be a countable elementary substructure of H, with {é,p;} C N;. By CH, we may assume that the N;
form a A-system, furthermore for i < j, A := (wa N N;) N (w2 NN;) < (w2 N N;) \A < (w2 N N;)\ A # 0, the
N; are isomorphic s.t. for i < j, the isomorphism ¢y, n, : N; — Nj satisfies ¢y, n, (1) = j, dn,N, (i) = Djs
and ¢n, N, (z) = = for all z € N; N N;. Fix any ¢ < j and let T be any countable elementary substructure
of Hy st. {N;,N;} CT. Let p=NP = NP UNPi U{N;,N;,T}. We claim p € P and p < p;,p; in P.
We check these item by item. Since NPi is countable and NP € N;, we have NP C N;. Similarly, we have
NP5 C N

e NP N N; = NPi and NP N N; = NPi. To see NPNN; = NPi let X € NP N N;. Then X ¢ {N;,N;,T}.
If X € NP7, then X € N; N N;. Hence, X = ¢n,n,(X) € on,n,(NP7) = NPi.

(localized) For X € NPi, NP N X = NP N X. Similarly for X € NPi, NPNX = NPiNX.
(countable with the top) NP C [H.]¥, |[N?| < wy, and NP = (NP NT)U{T}.

(elementary) For any X € NP, we have X < H,.

e (isomorphic) Let X1, Xy € NP with X; =,, Xo. Let X; € NP and X, € NPi. Tt suffices to show
that there exists an isomorphism ¢ : X; — X, that satisfies ¢(z) = « for all z € X; N X5. Let
Y = ¢n,n;(X1). Then Y € NPi and Y =,, X; =,, Xo. Hence, there exists the isomorphism
dyvx, 1 Y — Xy that satisfies ¢y x,(x) = z for all x € Y N X5. Let ¢ = {(a:,y) | z € X1,y =
Py X, (¢N¢Nj (33))} Then ¢ : X; — X3 is an isomorphism. Let € X; N X5. Then x € N; N N; and so
on,N, (x) =z €Y N Xy. Hence, ¢(x) = dyx, (dn,n,(x)) = dyx,(z) = .

[ (up) Let X3, X5 € NP with X3 <uwn Xs5. We want X; € NP with X3 e X, =w; Xo. If {X3,X2} - NPi
or {X3, X2} C NPi  then there is nothing to prove. It suffices to deal with the following incomplete but
essential list of cases.

Case. X3 € N7 and X5 € N?i: Let Y = ¢, n,(X2). Then Y € NP7 and X3 <, X2 =4, Y. Hence,
there exists X; € NPi with X3 € X; =, Y =, Xo.

Case. X3 € NPi and Xy = N;: Then X5 € N; =, N; =, Xo.
Case. X5 € NP and Xy = N;: Then X5 € N; =, Xo.

Case. X3 € NP and Xy =T: Then X3 € T =, Xo.

Case. X3 = N;: Then Xo =T and so X3 € T =,,, Xo.

e (down) Let X7, X5, X3 € NP with X3 € X; =, Xo. We want to show ¢y, x,(X3) € NP. We may
assume X; # Xo. It suffices to deal with the following incomplete but essential list of cases.

Case. {X1, X2} C NPi: Then X3 € NP N N; = NPi. Hence, ¢x, x,(X3) € NPi.

Case. X; € NP and X, € NPi: Let Y = ¢n,n,(X1). Since X3 € NP N X, = NP N X1, we have
X3 S Npi le. Hence, Y = ¢N.;Nj(X1) S QSNiNj(Npi) = ij and ¢NiN]-(X3) S CZSNiNj(Npi ﬁXl) =
¢NiNj(Npi) ﬁ¢NiNj(Xl) =NPiNY. Since Y, Xo Eij, Y =u X1 =u, Xo, and d)NiN]-(XB) € NPi nY, we
have ¢x, x,(X3) = ¢y x, (dnn, (X3)) € NP5

Case. X; = N; and Xy = N;: Then X3 € NP N N; = NP and so ¢, n,(X3) € NP,

e (partition) Need to observe N? = zero(N?) U suc(N?) U im(NP).
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 zero(NP1) C zero(NP): Let X € zero(N?i). Then NP NX = NPin X = ().

% sucy (NP) C sucy (MP): Let X € sucy(NP). Then there exists Xo s.t. NPPNX = (NPinNXo)U{Xo}.
But N? N X = NP N X and NP N Xy = NP N X,. Hence, NP NX = (NP N Xy) U{Xo}.

% sucg(NPi) C sucy(NP): Similar with X7, Xo € NP N X.
% lim(N?7) C im(NP): Let X € lim(N?%). Then X = JWNP' N X)=UJNPNX).

% N;, N; € sucy(NP): To show N; € sucy(N?), just calculate NP N N; = NPi = (NPi 0NTP ) U{TPi} =
(NPNTP)U{TPi}.

* T € suca(NP): Remember that N;, N; € NP NT, N; =, Nj, and A := (wo N N;) N (w2 N N;) <
(we N N;) VA < (we NN;) \A # 0. Just calculate NP N T = (NP U {N,}) U (NP7 U {N,})
(NP N) U{N}) U (NP NN;) U{N;}) = (NP N N;) U (NP N N;) U {N;, N}

Lemma. P C H, preserves the cofinalities, cardinalities, and GCH.

Proof. Since P is o-closed, P preserves CH. For A > wy, we have (| P|“1)} = ((2¥1)*1)A = 2% = A+,
Hence, 2 = A1 in the generic extensions.

Definition. Let G be P-generic over the ground model V. In the generic extension V[G], let

NZU{N”|p€G}.

Lemma. N satisfies (elementary), (isomorphic), (up), (down), (partition), and (cofinal).
Proof. We check item by item.

e (elementary) Let N € N. Then there exists p € G with N € N'?. Hence, N is a countable elementary
substructure of (H,)Y.

e (isomorphic) Let Ny, Ny € N with Ny =,,, No. Then there exists p € G with {N1, N} C NP. Hence,
there exists the unique isomorphism ¢y, n, : N1 — No that satisfies ¢y, n, (z) = « for all z € N3 N Na.

e (up) Let N3, Ny € N with N3 <,, No. Then there exists p € G with {N3, No} C NP. Hence, there
exists N; € NP with N3 € N7 =, No.

e (down) Let Ny, Na, N3 € N with N3 € N; =,,, Na. Then there exists p € G with { Ny, No, N3} C NP.
Hence ¢y, n,(N3) € NP.

e (partition) N = zero(N) Usuc(N) Ulim(N'). To show this observe

e (localized) If p € G and N € NP, then N NN = NP N N. To show this, let X € NN N. Then
XeNCTP. Takeqe Gs.t. ¢q<pin P and X € N9. Since N9NT? = NP NTP, we have X € N?P.

« For p € G, zero(NP) C zero(N): Let N € zero(N?). Then NN N =NP NN = .

« For p € G, sucy(NP) C sucy(N): Let N € sucy (NP). Then there exists Np s.t. NP NN = (NP N Ny) U
{No}. Since NN N =NP NN and N NNy = NP N Ny, conclude NNN = (NN Ny)U{No}.

* For p € G, suca(NP) C sucy(N): Similarly with Ny, No € NP,
x For p € G, lim(N?) C lim(N): Let N € lim(A?). Then N = JWN?NN) =N NN).
e (cofinal) N = (H,)V. For any z € (H,,)V, there exists p € G with = € T?.
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