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1 Introduction

It is known that a certain class of differential equations with delayed negative
feedback may cause instability of an equilibrium and emergence of oscilla-
tions, even chaotic behaviors in some models. In 1970s, various mathematical
approaches to such dynamical behaviors were attempted. Specifically, theo-
ries for the existence of periodic solutions were developed in a large class of
differential equations with time delays by applying fixed point theorems and
the Hopf bifurcation theory. As a result, around 1980, we got a rather clear
scope in this research field. Nonetheless, there still remain fundamental but
hard unsolved problems.

In this article the author will survey some results from those contributions
which seems to be significant, but topics are selected in his own interest. The
results stated in this short article are not updated by the recent achievements.
The author would be glad if the readers could add recent progresses for these
topics.

2 Delay models

In this section we pick up several modes of differential equations with time
delay. The models stated below, except for the last one, come from a survey
paper U. an der Heiden [1], which is certainly old but still useful for learning
backgrounds of the model equations. Since we don’t go to the details of the
models, we would like to suggest that the readers should refer to [1] for the
details.

A) Model of biological control loops: Landahl [32] introduced delays in
an equation of mRNA production model by Goodwin [14] as

S1 = g(Su(t — 7)) — biSi(t),
S; = Gi—1Sic1(t —7121) — 0:Si(t) (1=2,3,...,n),

B K
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g(Sn) (K >0,a>0),



where S stands for the concentration of an mRNA, S; (i =2,--- ;n—1) are
intermediate enzymes and S, is the end product encoded by mRNA (Fig.1)

S 8] s S,

Figure 1: Loop of chain reactions

B) Control of production of red blood cells and hematopoietic disease:
Lasota-Wazewska modeled the growth of blood cells by

N = —uN(t) + pe Nt

where N (t) denotes the number of blood cells, v is the death rate and 7 is
the time to produce a red blood cell. Later existence of periodic solutions
was established by Chow [6].
Mackey-Glass [33] proposed the regulation of hematopoiesis (J&Ifll) by
modifying g as
alN

g(N>:n+NT’ a, k>0, r>1.

In this model a chaotic behavior was numerically shown for appropriate pa-
rameter values and it looks that the behavior corresponds to an irregular
change of blood cell concentration in chronic granulocytic leukemia disease
(M5 M 3 1995

C) Delay in neural interactions: In the theory of the compound eye (#
) of the horseshoe crab (¥24%2), optic nerve fibers leading away from the
single eye (=ommatidia) are interconnected by collaterals. The activity of a
fiber is decreased if activity is present in neighboring fibers. This inhibitory,
however, works with a long delay. Coleman and Renninger [9] proposed
the next model to describe how the rate of nerve impulses vary. Using the
variables and parameters,

R : domain of ommatidia,

r(x,t) : rate of nerve impulses at x € R,

E(x,t) : excitation by light,

Kp(z,y) : lateral inhibition of other fibers at y € R,
Ky : strength of self-inhibition,



they modeled

K o0
r(z,t) =m {E - 5—8/ e~ p(t — s)ds
s Jo

1 [
L / e [ Ky gyt — 7 — s))dyds] |
or, Jo JR\(z}

where m(z) = |Z‘2+ ®. For simplicity of analysis they reduce the equation to

a simple one by assuming r(z,t) = r(t),0 = ds = d, as

r(t) =m [E — 6/000 e (Kyr(t —s) + Kpr(t — 1 — s))ds] .

Then one can write the equation as r(t) = m[z(t)], where x(t) stands for
the generator potential of eccentric cell in the Limulus eye and satisfies a
differential equation with delay,

0t =F —x(t) — Kgm(z(t)) — Kpm(x(t — 7)).

D) Reaction times and behavior: In the theory of balancing Schurer
(1948) gave a model for balancing a stick on the top of a finger. Let x(t)
be the deviation from the vertical equilibrium position. Then the model is
given by

¥ = ax(t) — hi(t), a, h >0,

where az(t) is the acceleration moment. By introducing —bx(t—7r)—ci(t—7)
acting as the balancing moment, he got to the model

¥ =ax(t) —hi(t) —bx(t —r) —ci(t — 7).

The coefficients b and ¢ can be varied by training.

E) Models of optical chaos: Ikeda [23] considered the instability of trans-
mitted light by a ring cavity system, which is observed in the experiment
device in Fig.2. Tkeda-Daido-Akioto [25] examined a reduced model given by

E(t) = A+ BE(t — tg) exp(i[(t) — @o]),
7o = —p(t) +sgn(na) | E(t — tr)|*.

In addition, Ikeda-Kondo-Akimoto [26] examined some global bifurcation
structure for

i = —a(t) + (et —tn)ip),  Floim) = w1 + 2B cos(z — zo)],

where p is proportional to the power of the incident light and B stands for the
dissipation of the electromagnetic field in the cavity. See also Hopf-Kaplan-
Gibbs-Shoemaker [21] and Ikeda [24].



dielectric medium

Figure 2: Optical device

3 Studies for periodic solutions

Henceforth we let C[—r, 0] be the Banach space of continuous functions de-
fined on [—r, 0] with values R or R with supremum norm. We use the no-
tation x; by z4(0) = x(t +6) (—r < 6 < 0) for a solution z(t) of autonomous
delay equation with initial condition in C[—r, 0].

3.1 Hutchinson-Write equation

The following logistic equation with time delay is introduced by an ecologist
Hutchinson [22] to show a mechanism of oscillatory phenomena observed in
the growth process of a single species:

Z_? —u <1 _ @) u. (3.1)

This equation is converted by the new variable

u(rt)
v(t) = e -1,
into
Wt vt —1 3.2
Y e Bl 1), (32

Write [42] examined some qualitative behavior of solutions to (3.2) in his
own interest. The equation is often called the Hutchinson-Write equation.

The equation (3.2) (or (3.1)) exhibits a stable periodic solution for a >
7/2. Jones [27] proved the existence of a periodic solution for a > 7/2 by
using a fixed point theorem. In fact, for any initial data ¢ in

K :={p € C[-r,0]:9(0) >0, ¢(-1) =0},



Figure 3: Map T defined by a solution

the solution wv(t;¢) with v(0;¢) = (0) yields a map 7 : K — K by
[T (©)](0) := v, (0) = v(ty +6;) (—r < 6 < 1), where v(t; — 1;0) = 0
(see Fig.3).

If one can prove that there is non zero fixed point of 7 in K, then it gives
a periodic solution to (3.2). The difficulty is to exclude the trivial solution
x = 0 from the fixed point of 7. He applied Browder’s fix point theorem,
which is introduced below. We let

X : Banach space,
K : infinite-dimensional closed bounded convex subset of X (3.3)

T : K — K completely continuous.
For a fixed point of T, we define

To is ejective if there exists an open neighborhood U of zq s.t.
VeeU\{xo}, In=n(x) st. T"(x) e K\U.

Theorem 3.1 (Browder [5]) Let T be as in (3.3). Then T has at least one
fized point which is not ejective.

By this fixed point theorem, if the trivial solution v = 0 is ejective, then
the map T () = vy, () has non-trivial fixed point in K.

Remark 1 By
r = log(l +v),

(3.2) is transformed to

d
d_:zlf: = —a(e”) — 1),



Nussbaum significantly contributed to the existence of periodic solutions and
period of them in the type of equations

dx
& = —falt— 1)

(see [40] for further results and the references cited in [16]).

3.2 Kaplan-Yorke’s contribution

In this section we introduce a work by Kaplan and Yorke. Consider
dr
dt

The specific function f(u) = a(e* — 1) certainly enjoys the condition. Define

Z(p) =#{z€[-1,0]: ¢(z) =0} for ¢ € C[-1,0],

flz(t—1), f(O)=0, f>0.

and

Coi={p € C[-1,0]: Z(¢) <1, ¢'(20) # 0 (¢(20) = 0)}-

Definition 1 A real-valued function xz(t) is slowly oscillating on [ty, 00) if
z; € O, (Vt>to+ 1) holds.

Definition 2 We call A C R? a periodic Cy-annulus if there are periodic
solutions x(t),y(t) with x,y, € C, (Vt € R) such that A = IntO, N ExtO,),
where

IntO, : closure of the interior of O, := {(z(t), —z(t — 1)) : t € R},
ExtO, : closure of the exterior of O, = {(y(t),—y(t —1)) : t € R}.

Theorem 3.2 (Kaplan-Yorke [28]): Assume f: R — R is of class C* satis-
fying
f(0)=0, f'(z)>0(VzeR) and IB > 0s.t. f(x)>—-B (Vz €R).

If a :=2f(0)/m > 1, then there is a periodic Cy-annulus A C R?* which is
Cy-globally asymptotically stable.

The key property to prove the theorem is “trajectory crossing lemma”
which holds for the trajectory of (z(t), —z(t — 1)) in the plane. They devel-
oped this argument to a little more general equation

(1) = —f(x(t), z(t = 1)),

under some condition for f (]29]).



Figure 4: Periodic Cy-annulus

3.3 Stability of constant solutions

In the study for periodic solutions it is crucial to verify the stability of con-
stant solution. In what follows we state a general result on the stability of
the constant solution.

Let

v(t) = (vi(t), - ua(t)), F: R™ (™) 5 R™ smooth and F(0,---,0) =0,

| - | : norm of R™.
Consider the following differential-difference equation
0= Fv(t), vt —m), - 0t —Tm)). (3.4)

Assume 7 := max{0, 7y, - , 7} > 0.
Form the assumption we see that v = 0 is a constant solution. We let

0= Apv(t) + Ao (t — ) + -+ Apo(t — )
be the linearized equation around the trivial solution v = 0 and let
det(Agv + Are™™™ + -+ Ae ™) =0 (3.5)
be the associated characteristic equation.

Theorem 3.3 (Bellman-Cooke [4]): If all the roots of (3.5) has negative real
part, then the solution v =0 to (3.4) is asymptotically stable, while if one of
the roots has positive real part, then v = 0 is unstable.



3.4 Existence theorem for periodic solutions

It is expected that there exists a periodic solution if the unique constant
solution is unstable as in Theorem 3.3 and all the eigenvalues with positive
real part are complex.

Theorem 3.4 (Hadeler [15]): The differential-difference equation

#(t) = f(a(t), ot — )
has a non-constant periodic solution with a period greater than 27 if

(i) f(x,y) is continuous in (z,y) and uniform Lipschitz continuous with
respect to x;

(ii)) f(0,0) = 0 and there exists M > 0 such that f(0,y) < M (Yy) holds;

)
(iii) f(z,y) <0 (x>0, y>0)and f(z,y) >0 (z <0,y <0) hold;

(iv) v:=—(0f/02)(0,0) < 0 and a := (0f /9y)(0,0) < 0 hold;

) T2(a?—v?) > ~2 holds, where 7 is determined by the condition v coty =
TV, T)2 <7y <.

(v

As an application of Theorem 3.4 consider
N = —uN(t) 4 pe N7, (3.6)
Let N* be the positive equilibrium of (3.6), that is,
—uN* + pe ™V = 0.
Put x = N — N*. Then (3.6) is transformed to
&= flz(t),z(t—1),  flz,y) = —va+pe (e ~1).
In addition to
f:(0,0) = —v <0, f,(0,0)=—vype ™" <0,

we can verify the all the conditions of Theorem 3.4, though we need to cut
off the function f out side a bounded region.

The above equation is nothing but the model equation stated in §2 B).
As stated there, the existence of a periodic solution was first proved in [6],
though Theorem (3.4) slightly generalized the assumptions in [6].
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4 Fundamental theory

For the linear ODE
= Ax, x€R",

its adjoint equation is defined by
jy=—-Aly, yeR"

Then the inner product (x(t),y(t)) in R™ is constant in ¢ since

%(x(t),y(t)) = (@), y(t) + (z(t), y(1))
= (A@®)2(t). y(t) + (x(t), —A@)"y(t))
= (At)z(1),y(t)) — (A()x(t),y(t)) = 0.

The idea to consider the adjoint equation can be extended to retarded func-
tional differential equations.
For a bounded linear functional

L:C[-r0] —R",

there exists a bounded variational n x n matrix function 7(f) such that

Lo = / (dn(0)]6(0)

Consider a retarded linear functional differential equation

(t) = Lay / (dn(6))x(t + 0), (A1)

-r

z(0) = ¢(0) (—r <0 <0), ¢eC[-r0].

Put C* := C[0,r] and consider

g(t) = — L'y = / dn(—0)Ty(t +0) = — [0, 12
y(0) = (6 0<0<r), pec

which is called a formal adjoint equation to (4.1). We define a bilinear form
0.0):= 00,000 - [ [ (noiote.ve-opas 13

10



(wy') = 0.9~ [ [ (an@)e(t+ €.t +€ - 0))ae
= Ol) — [ [ @) (5 — o)

We compute

%@w%:@®w®yuﬂﬁﬂm

0

~ [ lan@)ate+ 0500 + [ (ldn@)a®). ot~ 0)

-r -r

0

— (i (t) - / (dn(6))(t + 0), (1))

-r

0

(). g(t) + / (dn(6)]Ty(t — 6)) = 0.

-r
The next inhomogeneous linear equation plays a crucial role in perturba-
tion problems.

& = La, + h(t), (4.4)

where h(t) is a continuous function. By a simple computation we can verify
the next result.

Lemma 4.1 Let z(t) be a solution to (4.4) for t > o and y(t) be a solution
to (4.2) in (—o0,00). Then
d

Slny) = (h(eLy), 2o

holds, namely,

t
(a0:9) = () + [ (100 9(0))ds
holds.

The next lemma is crucial to verify if the system with a periodic forcing
term could have a periodic solution.

Lemma 4.2 Let h(t) be a continuous periodic function with period T > 0.
Then (4.4) has a T-periodic solution if and only if

T
| o ytenas =0
0
holds for any T -periodic solution y(t) of (4.2).
For the proof see Chapter 6 of [16].

11



5 Hopf bifurcation theory for RFDEs

In this section we formulate the Hopf bifurcation theory for retarded func-
tional differential equations (RFDEs) by using the Lyapunov-Schmidt reduc-
tion method.

We introduce the following Banach spaces:

Py, i={z(") : 2(:) € C(R),z(s + 2m) = x(s),Vs € R},

lz]l == max |a(s)| (z € Par),

Py = {x € Py, : dx/ds € Py},
llly = max{|[x], ||dz/ds]|}.
Define Jy : D(J) :==P)_ — Py, by

[Joz](t) := WQ%(S) — L.

We also define the formal adjoint operator Ji : D(Jg5) := P} — Py, by

[J*y](s) := WQ%(S) + L*y°.

Define the projections
PNZ Pgﬂ— — N(e]*), IT: Pgﬂ— — N(«])

Then we have R(Jy) = (I — Py)Py;. Moreover, we can define the linear
operator

K: (I—Py)Pa — D(Jo) N (I — )Py

by K := (Jjz-mpe.,) ™" ([17]).
We let F : I, x C[—r,0] = R" be class of C* and satisfy F(u;0) = 0.
Consider

d
— = F(ua) = Lo, + N(ux), L= Fo(0:0). (5.1)
Assume

det(iwoI — L[e™*]) = 0,

namely, L has a pair of complex conjugate eigenvalues +iwg. We let (; be
an eigenvector

1lerlgo = ([ e0lan@)a0) G = b

-r

12



Then
2(t) = "Gy, 2(t) =G

are solutions to the linear equation

dz
dt

To fix the period of solutions to (5.1), we change the variables as

(t) = Lz.

s 1= wt, u(s) := x(t).

Define

and we have

We write the equation (5.1) as

d
wd—u(s) = L, + N s ).
s

By the operator Jy : P} — Py, defined by
d 0
[Jou](s) = w()%u(s) — / [dn(0)]u(s + wobh),
we write the equation as
d
Jou(s) = —(w — wo)Eu(s) + N(p, us ) = Ny(p,w,uw).
We are only concerned with 27-periodic solution to (5.2).
We look for a solution in P} by the anzatz
u = eugy + U,

ug(s) := Goe” + (pe’* € (IPyr) NPy,

o= d(p,w,e) € (I — Py NP
Then (5.2) is decomposed as

=K — Py)N(p,w,e,0), N(p,w, e ) = Ni(p,w,eug + @),
PyN(p,w,e,4) =0,
N:I,xRxRxP, — Py.

13
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For fixed w, N is class of C* (k > 2) in (u,e,4) but not C* in w. Hence,
the solution 4(u,w, £) obtained by applying the implicit function theorem is
only C! in w.

In order to prove that @(u,w, <) is C* in (u,w, €), one can utilize a boot-
strap argument as follows: Consider the equation

= K(I — Py)

oo o

ON aN]

The solution w obtained by the implicit function theorem is C* in (p,w, ¢),
so w = 0i/Ow is C* in (u,w,e). Repeat this argument up to C*. In the
sequel we reduced the problem to the finite-dimensional problem

PNN([L,W,E, u(p, w,e)) =0,

namely,

2
H(p,w,e) ::/ (IN(p, w, &, 0, w, €)](s), z*(s))ds = 0,
0

where H(p,w, ) are C* for (u,w, e) and 2* € PyPy, is given by

o = ez‘sCS‘7 (iwof — /T eiwoe[dn(_g)]T> Ca‘ = 0.
0
We expand H in € as
H(p,w,e) = (Ae) + Be*)e + O(| (1, w — wo) [ + %),
where
B = (Fuu(ovo)(COvCQ) CO) ( uu(o O)(COaCQ) CO) ( uuu(o 0)((0)607(0) Cg)a

O %(ino — L) N (Fuu(0,0), (G, G1), G,

(= —L7H(FW(0,0)(¢, G, &),

while
. dA
Ae) == —i(w — wp) + ud—(O)
m

d\
= (—in + [LQ@(O)) g2 + 0(%),

14



where 5 and wy are determined by
Re (ﬂg%(()) + B) =0, wy;=Im (gg%(O) + B) .
Consequently, a bifurcating periodic solution is given by
u(s) = £(Goe™ 4 Coet®) + 2(Goe™™® + (e + () + e%i(s; ),
with
po=p(e) = pee® + 0(e%), w=w(e) =wy+we®+0().

Remark 2 In Chapter 11 of the book [16] the Hopf bifurcation theorem is
provided. However, there is a wrong computation. The correction is given
in [17].

We apply the above result to the Hutchinson-Write equation
P=— (g + ﬂ) (1+ 2(t)x(t — 1). (5.3)

The linear part of the equation is
T
&=Ly :=——x(t—1),
2
and we can compute wy = 7/2,

G=1  G=r=1/(1-ir/2),
=2, G=0,

5
1(1 3y = _w(3m —2) _Z,7r(7T+6)

B = .
10 5(m2+4)  5(m2+44)

Remark 3 We give a remark on the stability of the bifurcation solution. Let
pe(t) be the bifurcating periodic solution to (5.3) with period T, = w(e)/2m.
Consider the linearized equation around v = p. given by

i=— (g + u(e)) 2t —1)
_ (g 0(2)) (ol = 1)2(t) + pe(t)=(t — 1))).

If this linear periodic system has a solution

(5.4)

2z =e"q(t), q(t) : periodic function with period 717,

15



then v is called a Floquet exponent. Since z = p. is a periodic solution with
period T, the system has 0 Floquet exponent. Moreover, it can be shown
that the other Floquet exponents have negative real part near the bifurcation
point. As for the Floquet theory for retarded functional differential equation,
see Chaper 8 of [16].

We next consider the following two compartment model:

1 =a(l —x1(t — 1))z (t) + v(xa(t) — 21(t)),
By = a(l — xo(t — 1))ao(t) + v(z1 () — 22(t)),

that is,
u:—(g+u)ﬂ+MﬂWU—D+V@@—u@%
@:—(g+u)u+uwwu—1y+mmo—@my

Then this system has a periodic solution u(t) = wv(t) = p-(t) (called an
in-phase periodic solution) near the bifurcation point. We examine the lin-
earized system around the in-phase solution (u,v) = (p:(t), p<(t)), which is
given in the decomposed form

b= — (g + u) 2(t—1) — (g + u) (pe(t — 1)2(t) + p(t)z(t — 1))),

w:-ammn—(g+u)w@—n—(g+u)@4pammw+%@mw—¢»y

The first equation is same as (5.4). To investigate the Floquet exponent of
the second equation, we look for a solution with the form w = ¢(t)e", where
q(t) is periodic with the same period as the one of p(t). Making use of

o= e 4 -
pe = £(Goe™™* + Goent) + £2((oe™ 0" + Cpeit) -
we expand
W=t 4o Y =yeet e
0= qo(t) + a(t)e + () + -, qolt) = pe.

Then by the solvability condition we obtain

T\ 2 T 32 T
<1—|—(§) )7§+2(V2—1—0+2—0>72+V22—31/2:0.

This implies that for v, < 7/5 there is a Floquet exponent with positive real
part for sufficiently small € and the in-phase periodic solution is unstable

([38])-

16



Remark 4 We consider the delay-diffusion equation

u = dAu — (g + u) (14 u(z,t)u(z,t —1) in €,
Ju/On=0 on O,

where €2 is bounded domain in R" and d/dn stands for the normal outer
derivative on the smooth boundary 0€). It is clear that u = p.(t) is a spatially
homogeneous periodic solution. Let {o;} and {¢;} be the eigenvalues and the
corresponding eigenfunctions of —A with the Neumann boundary condition

— Ap;=0;0 + (Neumann B.C.), 01 =0<0y< -+,

and decompose the linearized equation around the spatially homogeneous
periodic solution by the Fourier expansion. Then we obtain the linearized
equations

w; = —dojw;(t) — (g + u) w;i(t—1)

— (54 m) (bt = Dy + peDyus(t = 1)), =12,

Thus, we see that for sufficiently small d > 0 there is a Floquet exponent
with positive real part and the spatially homogeneous periodic solution is
unstable ([37]). As for the partial functional differential equations including
the above delay diffusion equation, see Wu [43].

6 Center manifold reduction

In 1970’s the center manifold theory was developed and it made possible to
reduce infinite-dimensional flows of a class of evolution equations into lower-
dimensional ones on invariant manifolds (center manifolds). However, some
of articles or books used a wrong phase space when they handled retarded
functional differential equations. Indeed, the abstract ODE on the standard
phase space C[—r, 0] does not make sense. In order to overcome this difficulty,
we need to take a broader phase space. In this section we explain it by
introducing the argument in the work of Chow-Mallet-Paret [8].
We begin with the linear equation

#(t) = Lx, = /0 [dn())z(t+06), L:C[-r0 —R",

. (6.1)
z(0) = ¢(0) (—r <0 <0), ¢eC[-r0].

17



Define the semiflow {T'(t)}+>o on C[—r,0] by the solution to (6.1) as
[T(#)¢)(0) := x(t +0) (—r <8 <0).

T(h)—1
Then the infinitesimal generator A, A := limy g %, is obtained as
d¢
, — (=r<60<0),
Acle) = as | )
Lo (0=0),

where the domain and the range are given by
D(A) = {6 € C'[~1,0] : (do/d6)(0) = Lo} and R(A) = C[—r.0],

respectively.
Consider the following equation with nonlinear term:

(t) = Lay + F(p, ¢). (6.2)

Then by the variation-of-constant formula ([16]) we have the integral form
t
ot +6) = [P(0))(0) + [ [T(t = 5) Xl (O)F (e.2)ds (-1 <0< 0)
0

)0 (=r<0<0),
Xo(0) := {1 (6 =0).

(6.3)

Although the integral in (6.3) is taken in R" for each 6, we have a formal
expression of the abstract integral equation as

t
xy =T (t)xo + / T(t — s)XoF (1, xs)ds,
0
so the formal abstract ODE on the Banach space C[—r, 0] has the form

d
Ext = .Al’t + XQF(,U, J?t).

However, in general, z; does not belong to the domain of A, though belong
to C'[—r,0] at least for ¢ > r. In addition, X, does not belong to C[—r,0].
In order to make sense of the abstract ODE, we have to extend the domain
of A to C[—r,0].

Solve A¢p = 1) to obtain the formula for A7'. A¢ = ) implies

¢'(0) =¢(0) (-r<0<0), ¢(0)=L¢o= /_ [dn(0)]$(0) = ¥(0).
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Integrating this yields
0
00) =o(0) + | v(s)ds.
Jo

o) = [ i@l = [ fano) (o0 + [ 9 o ).

-

Hence, as long as det [ / [dn(@)]] # 0, ¢(0) is uniquely determined and A

has a bounded inverse. Extend the domain of A~! as follows. For ¢ = X,
define the inverse by A by

0 -1
A Xy = [/ [dn(@)]] (= constant value).
Then any ¢ € C'[—r, 0] is decomposed as
O = ¢1 + @, #1(0) = Loy, ¢ : constant function.
Indeed, set ¢y satisfying Loy = Lo — ¢'(0), i.e.,

o= | [ o) " Lo—d0)).

-r

Then
¢'(0) = ¢1(0) = L(¢ — é2) = Lér.
We define A in C'[—r, 0] as
Ap = ¢ + Xo[Lo — ¢/'(0)] € C ® (Xy),
namely,

¢'(0) = 1(0) (—r <6 <0),
0

[A¢1(6) = {L ) v

where (Xj) = {Xoc: c € R"}.
Eventually, we have

Theorem 6.1 (Chow-Mallet-Paret [8]): Consider the retarded functional
equation

i(t) = Luo + F(ux), Lo = / 1dn(6)]6(6).
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Let the operator A map C'[—r,0] into BC := C[—r,0] & (X,) by
Ag = ¢' + Xo[Lo — ¢'(0)].

Then any solution for t > ty satisfies

d
%xt = Az, + XoF(u, x;) (6.4)

as long ast >ty + 1 (or, as long as x; € C'[—r,0]).

Remark 5 In view of (6.2) we can write

9t +0) = ZLatr0) (0<o<0),

ot 90
d
al(t) = Lay+ F(p,x) (60 =0),

and formally have (6.4). This made the confusion that this allows the abstract
form (6.4). As stated above we cannot directly have the evolution equation
on C'[—r, 0] from this expression.

When we apply the center manifold theory to the Hopf bifurcation, we
decompose

BC=PoQ,

2-dimensional eigenspace P C C*[—r,0] and the complement @,

according to the assumption for the spectrum of A. For ¢ € C[—r, 0] and
e C* .= C0,r], define

(6.0) = (6(0), (0)) — / / (dn(B)6(E). (€ — 0)de.

Let @ be a basis of P and let ¥ be a dual basis in C* satisfying (@, ¥) = I.
Put

¢P=q)<¢7\1j>7 ¢Q:¢_¢P7
and
.Ap = .A|p, .AQ = .A|Q.
Then there is a matrix Ap

d
AD = 0 = DAp.
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By the decomposition
2y =28 4 20 = Oz, U) + 2P,

E(t) == (x4, ¥) and (; := th enjoy the equations

E(t) = Ap&(t) + (F(p, PE(E) + G), ¥(0)),
%Ct = AqG + X(?F(,u, PE(L) + ¢).

respectively. Making use of this decomposition, we can apply the center
manifold theory for the infinite-dimensional evolution equation.

Remark 6 In order to obtain the bifurcating solution depending on some
parameters, we need an appropriate smooth dependence on the parameters
for the center manifold. About this topic the readers refer to Faria-Magalhaes

12].

7 Global structure

7.1 Morse decomposition
We are concerned with

oi(t) = —x(t) + f(a(t = 1)),
where

f0)=0, a=f(0)<-1, 2f(z)<0 (Vz#£0),
|f(x)] < |z (for large |z|), f is of class C*°.

In the paper [34] Mallet-Paret surveyed the progress for
(1) Global continuation of periodic solutions from Hopf bifurcations;
(2) Asymptotic form of such solutions as o | 0;
(3) Existence of a Morse decomposition.

As for (1), there exists a sequence {09, 1(a)},

s1(a) > s3(a) > ss(a) > -+ — 0,
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Figure 5: Bifurcation curves

such that a Hopf bifurcation takes place from the trivial solution x = 0 at
each sg, 1(a) as o decreases. In the range so,i1(a) < 0 < Sy, 1(a), the
trivial solution x = 0 has a 2n-dimensional unstable manifold ([36]).

For the Morse decomposition in (3) we introduce some result in [35].
Consider

i(t) = —f(z(t),x(t— 1), nf0.n) >0 (¥n#0), ‘8fé§6n)<oo>>o'

This equation has the global attractor (the maximal compact attractor), say
U. Define an integer valued Lyapunov function V on W\ {0} as follows: Let
x-t€C(R) by (x-t)(0) =x(t+6) ( €R) for x € ¥. Define

o:=1inf{t > 0: z(t) =0},
and
Viz) = {#{t € (0 —1,0]: x(t) =0 } (counting multiplicity) %f o is bounded,
1 it 0 =—o0.
Then V' (x - t) is nonincreasing in ¢, that is,
V(z-ty) >V(x-tg) (t1 <tq)

holds, and
Ve U\{0} — {1,3,5,...,2M + 1}

(see Fig.6). Define

Sy ={xeU\{0}:V(z-t)=N (VteR) and 0¢ axr)Uw(z)},
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V(x-tl):Q
\ YN

Figure 6: Example of V(z - t)

and Sy« = {0}, where N* is an even integer with the property

reW® = V(x-t)>N* (VteR),
reW" = V(r-t)<N* (VteR)

(N* is nothing but the dimension of the unstable manifold of x = 0). It was
proved that Sy contains a periodic orbit if N < N*.

Then [35] tells that the attractor ¥ consists of {S;}}1, and the family of
connecting orbits

Cr ={re€V:a(z)C Sy, w(x)C Sk},

where a(x) and w(x) are respectively the alpha and omega limit sets through
z. We note CN # () for N < N*.

Figure 7: Morse decomposition
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7.2 Specific example exhibiting a global structure
Chow-Diekmann-Mallet-Paret [7] studied the next integral equation
1 14¢
z(t) = — (x(t — 7))dT. (7.1)
2e 1—e

This is equivalent to the delay difference equation

_1
2

(1) [fz(t =1 —¢) = flz(t —1+2)],

and as ¢ | 0, the integral equation of (7.1) formally converges to the map
z(t) = f(z(t —1)).
Assume

Hy: f(—z)=—f(z) (—o0 <1< 00), Hy: f(1) = —1,
Hs: f'(z) <0 (—o0 <z < ), Hy: f"(z) >0 (0<z < 0).

x

1 N
~
! B\
< T
-1 N |
N
~ 1
~ 1
~
N
S
~
N
N
~

Figure 8: Profile of f(x)

They proved that there exists a periodic solution z.(t) with period 2 in
a range € € (0,e*) satisfying

r(—t) = —x.(t), z(t+1)=—z(t),
2L(t) >0 (—1/2<t<1/2), 2I(t)<0 0<t<1),
ze, (t) <x,(t) (0<t<1l) for =1 > ey,

where * is a Hopf bifurcation point. The convergence

e — sqw(t) :=



was also shown.
They first examined the linearized equation around x = 0

2(t) = J10) /1 6z(t — T)dT.

2e e

Inserting z = e#! implies

2ep

If 0 < ¢ < 1/3, then the characteristic equation has at least two roots in
Tmy| < 7.

Since the Hopf bifurcation theory for a general class of Volterra convolu-
tion integral equations

x(t) = /OOO B(r)f(x(t —7))dr

was established in [10], the theory can apply to the present case by taking

1

— 1-7<7<1
Bry={2 (U-T=sTs1+e)

0 (otherwise).

Hence, the existence of a bifurcating periodic solution near the bifurcation
point can be confirmed.

In order to obtain the periodic solution globally in €, introduce the func-
tion spaces as

Po={x e CR) : z(t+2)=xz(t), VteR},
Poy={z e P:a(t+1)==Fu(t), VteR},
P ={x € Py:x(—t) =x(t), VteR},
P*:={z € Py:z(—t) = —x(t), VteR}

Then the map T : P, — P, defined by
1 [l
[Tx](t) := %/ (x(t —7))dT
leaves P{° invariant. Moreover, T' leaves
C:={xe P 2(t)>0 (te][0,1])},

invariant.
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Theorem 7.1 (Chow-Diekman-Mallet-Paret [7]):

(i) T has no nontrivial fived point in C* if sinwe < we/g'(0), where g(z) :=
—f(x).

(il) Ifsinme > we/g'(0), then T has a unique nontrivial fized point x. € C*.
Moreover,

|z ()| <1 (Vt), zL(t) >0 (te€(=1/2, 1/2)), z2(t) <0 (t € (0,1)).

The existence of the solution in the above theorem is proved by applying
the fixed point theorem in Krasnosel’skii [30]. Indeed, one can prove that
that there is 0 < 1 such that T'(d¢) > 0¢, where ¢ := sinwt, and that
T™(0¢) monotonically increases in m and converges to a limit z. € C*. We
emphasize that in this case the map T generates a monotone discrete flow in
the cone.

On the other hand, in order to prove the uniqueness define

Te (0<t<1),
h(t) = 2(0)

where y(t) is any other nontrivial fixed point. Prove 1 < o := inf{A(t) : 0 <
t < 1} by contradiction. Then a = 1 follows from reversing the roles of z.
and .

In [7] they also prove that if ¢ < 1/3, then the solution z. is asymptotically
stable. This is done by showing that the linearized equation has the simple
zero Floquet exponent and other exponents has negative real part by using
a homotopy method.

8 Other topics

8.1 Effect of small delay

Kurzweil [31] says “Small delays don’t matter” in [31], where the next delay-
difference equation is studied as a specific case,

i(t) = fe(t),2(t—2)),  fiR"xR® - R". (8.1)
Putting ¢ = e7 yields
BT _ < flatr) e - 1))
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It is shown that if e is sufficiently small, then there is a map p : R —
C(]—1,0];R") such that

dx(t)
dt

and [p(z(#))(0)] is C* close [p(x(t))](—1), so (8.1) is close to the equation
& = f(x(t), x(t)), where the latter “close” means that any solution to (8.1) on
R is close to a solution to & = f(xz(t), z(t)) on R and vice versa. Therefore, the
recent result of Eremin-Ishiwata-Ishiwata-Nakata [11] does not contradicts to
the result by Kurzweil since he only cared the time global solution.

It is interesting that the following paragraph in “Part 3. Small Delays
Can Make a Difference”, by Hale [18]:

“It is possible to prove that the limiting dynamics is determined by the
ordinary differential equation obtained by putting all of the delays equal to
zero (see Kruzweil (1970, 1971) and a more complete discussion in Hale-
Magalhaes-Oliva (1984)). In such a situation, it is fair to say that small
delays are unimportant.”

Here the reference of Hale-Magalhaes-Oliva (1984) is the book [19].

It seems that in those days they didn’t care about the small delay in the
usual delay-differential equation. Thus, [11] gave a counter example showing
an importance of small delay. On the other hand, in [18] there is a sentence

“Small change of delay in neutral differential difference equations can be
bad.”

and the following example is given:

d 1 1

SIr(0) + (e — i)+ alt — )] = —(e),
1

Y 2 =2

(see [20] for the details).

8.2 Existence of chaos

Since a chaotic behavior was found in a delay difference equation by Mackey-
Glass [33], some mathematicians have challenged to prove the existence of
chaotic dynamics for delay differential equations of the form

i = —ax(t) + f(z(t —1)). (8.2)
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Since it is extremely difficult to prove it for the original model equation of
[33] or [26], Walther [41] proved it in the case a = 0 by modifying f(u) by a
stepwise constant function. Later, an der Heiden-Walther also proved it by
a slightly different modification of f(u) with o > 0. Those are far from the
model of [33] or [26] but help us to understand a mechanism of emergence of
chaos in the type of (8.2). The readers can refer to Chapter 4 in [39] for the
idea of [2].

8.3 Approximation in delay equation

As the last topic we introduce an approximation to the delay-differential
equation by Banks [3].
Consider

&= Ly + F(xy),
and its abstract ODE

d
— Ty = Axt + XOF(.’L‘t),

dt
or
d 92t+0) (L <g<o
Eaz(t +0) = a0 - ’
Lay + F(x) (0 =0).
Define

7 :=R" x L*(-r,0), (L*(—r,0):= L*([-r,0];R")),
2(t0) = (@(t;0), (), t€[0,4].
For ease in exposition, take
L(¢) = Agp(0) + A1p(—r), Ap, A1 : m X n matrices.

T

Take a partition of the interval [—r, 0] by {t}}[L,, ¢} = — N and let
XY (1 =2,3,...,N) and x7’ be the characteristic functions of
(N ) (7=2,3,...,N) and [t t)] =[-r/N,0],

respectively. Define SV(t) = A", where AN : Z — Z are given by

N _ N > Nonv o nuw
AV (n, ¢) = | Ao+ Ar1dy, Z’[ i1 — 50X

J=1
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WE

A=) wh(t)ey, ey :=(1,0), e :=(0,xY) (j=12,....N).

J
J=0

Then the system of the ordinary differential equations

Wl (1) = Agwl (t) + Ay (t) + F(Z wl (t)el),
Wy (t) = ﬂ[wjv_l —w)(t)] (j=12,...,N)

approximate the delay equation ([3]).
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