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1. INTRODUCTION

The space of marked Riemann (or hyperbolic) surfaces modulo natural equivalence relation is
called the Teichmiiller space. In this article we consider a topological surface S of finite type (i.c.
S has finite genus and finite number of punctures). The main focus is more particularly on Sp 4,
4-punctured sphere. However let us begin with a quick review of the basic facts of Teichmiiller
space (we denote it by 7(5)). Given two marked Riemann surfaces or two points X, Y € T(S),
Teichmiiller showed that there is a unique “best” deformation of complex structures connecting
X,Y. The locus of the deformation on 7(.9) is called a Teichmiiller geodesic because it is actually
a geodesic with respect to so-called the Teichmiiller distance. Moreover, Teichmiiller observed
that the “best” deformation can be described in terms of horizontal, and vertical directions,
which can be seen as a generalization of Grotzsch’s theorem: Given two rectangles with the
same area, the best deformation of complex structure is uniquely attained by an affine map
(Figure 1). Teichmuller geodesics are also interpreted similarly. That is, for any Teichmuller

FIGURE 1. Grotzsch’s theorem (depicted by ChatGPT).

geodesic ~y, there are horizontal and vertical directions such that the deformation is locally
depicted as in Figure 1. Thus we know the existence of such “best” deformations, however how
do they actually look like? The goal of this article is to explain the pictures listed Figure 2,
Figure 3, and Figure 4.

2. TEICHMULLER SPACE AND MAPPING CLASS GROUP

Let S be a surface of finite type. A marked Riemann surface is a Riemann surface X (i.e. S
with a complex structure) together with a marking, i.e. a homeomorphism f : S — X. Two
marked Riemann surfaces f : S — X and g : S — Y are said to be Teichmuller equivalent if
there exists a conformal map p : X — Y such that p is homotopic to g o f~'. Then the space
of marked Riemann surfaces modulo Teichmuller equivalence is called the Teichmuller space,
which is denoted by T(S). Given X,Y € T(S), the Teichmuller distance is defined as

1
dr(X,Y) = 3 irﬁf log K (h)

where h runs over all quasi-conformal mappings compatible with the markings and K (h) is the

dilatation of h. Any geodesic with respect to d is called a Teichmuller geodesic. To understand

Teichmuller geodesics, let us discuss so-called Beltrami differentials and quadratic differentials.
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FIGURE 4. o}oy,".

Let X € T(S) be amarked Riemann surface, and 719X and T%! X denote the subspaces of the
cotangent bundle which corresponds to holomorphic and anti-holomorphic part respectively. A
Beltrami differential is a section of T*' X @ (T19X)* which is locally expressed by 3(z)dz/dz. A
quadratic differential is a section of 719X @T19X whose local expression is ¢(z)dz2. If moreover,
q(2) is holomorphic on each local chart, it is called a holomorphic quadratic differential. The
space of holomorphic quadratic differentials on X is denoted by QD(X). By the Riemann-Roch
theorem, QD(X) is isomorphic to the vector space C3973. Hence the space of all holomorphic
quadratic differentials on S defines a vector bundle over 7 (S), that we denote by QD(SS).

A Teichmiiller geodesic is determined by a Beltrami differential or a quadratic differential. In
this article, we use quadratic differentials. Given a quadratic differential g locally expressed as
q(2)dz* on a Riemann surface X, its horizontal directions is the set of directions v € T, X defined
by ¢(2)v? € R-g. The horizontal direction equipped with the transversal measure defined for
any transversal arc « by
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determines a measured foliation which is called the horizontal foliation of q. Similarly directions
v € T, X defined by ¢(2)v? € Ry equipped with transverse measure

/ Re q(2)!/?dz]

give the wertical foliation of ¢q. Now, the deformation of complex structure on X along a
Teichmiiller geodesic given by a quadratic differential q(z)al,z2 is understood similarly as the
Grotzsch’s theorem. In Figure 2, Figure 3, and Figure 4, we draw horizontal (left) and vertical
directions (middle) of quadratic differentials. In the right most figures, we have drawn horizontal
and vertical directions on the same figure. One observes that horizontal and vertical directions
form right angles everywhere.

We consider the action of the mapping class group

MCG(S) := Homeo™ (S)/homotopy
on the Teichmiiller space by the change of markings. Let us recall Nielsen-Thurston classification:

Theorem 2.1 ([7]). Let Sy be a surface of finite type with 3g—3+mn > 0. Then every mapping
class ¢ € MCG(S) is homotopic to one of the following:

e Periodic: there exists k # 0 such that ©* is homotopic to the identidy map.

e Reducible: there are simple closed curves aq,...,qm, and k # 0 such that @k(ai) 18
isotopic to ay; for each 1 < i < m.

o Pseudo-Anosov: there are two measured foliations (Fy, py) and (Fs, i) and X > 1 such
that ©(Fu, piu) = (Fu, M) and o(Fs, ps) = (Fs, ps/ ).

Now let us consider a pseudo-Anosov mapping class ¢. By the work of Bers [2], ¢ has a unique
Teichmiiller geodesic axis. By the work of Gardiner-Masur, given measured foliations (F, ()
and (F;, us) of o, there is a quadratic differential whose horizontal and vertical foliations are
(Fu, i) and (Fs, ps). Such a quadratic differential determine the unique axis of ¢. In Figure
2, Figure 3, and Figure 4, we depicted (Fy, py) and (Fs, ps) for certain pseud-Anosov mapping
classes.

To draw Figure 2, Figure 3, and Figure 4, we need to compute corresponding quadratic
differentials. Fortunately, for four punctured spheres and once punctured tori, Teichmiiller
space is known to be identified with hyperbolic plane and Teichmiiller geodesics are exactly
hyperbolic geodesics. Let

H:= {z € C|Im(z) > 0}
denote the upper half space model of the hyperbolic plane.

Given a matrix A = ( Z Z ) € SL(2,Z), A acts on H as a Mdbius transform:
az+b
A(z) = .
(2) cz+d

If the trace of A is greater than 2, then A has a geodesic axis which is a half circle with center

(a — d)/(2b) and radius \/(a — d)? + 4bc/(20).
It is known (see e.g. [3]) that the mapping class group of Sy 4 contains SL(2,7Z). Recall that
the braid group B3 with three strands has a representation

Bs = (01,02 | 010201 = 020102) .
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Fixing one puncture of Sy 4, we may regard each 3-braid as a mapping class of S 4. The group
Bs has a representation in SL(2,7Z) given by

NEE (10
a1 01 )% 11

and hence for a given braid, we may consider corresponding matrix in SL(2,7Z). The geodesic
axis is exactly the Teichmiiller geodesic axis regarding a braid as a mapping class acting on the
Teichmiiller space.

Using this data, one obtains corresponding Beltrami differentials (see e.g. [6, Chapter V,
Section 6]) which relates points on the axis of A. Given a Beltrami differential u, on the once
punctured torus corresponding quadratic differential is given as ¢(z) = Cdz? where p(z) =
||q|||—g| Hence we may determine C' € C for a given pu.

Now one uses so called Weierstrass’ pe-function to relate Cdz? and a quadratic differential on
So,a (c.f. [5]).

3. DEFINITION AND PROPERTIES OF (@)

We recall some properties of Weierstrass’ pe-function. See [1, Section 7] for more discussion.
We fix 7 € H. Let
L;:={n+m7|nmel}
denote the lattice group generated by 1 and 7.

Definition 3.1. The Weierstrass pe-function o : C — C with period lattice L, is defined as
1 1 1
=5+ % (Gmap )
O#UJGLT
Proposition 3.2. Let p := p,. We define
o e; =ei(7) = p(1/2)
o ey =ex(7) = p(7/2)
e e3=e3(T):=p (HTT)
Then
(1) p is an even function, i.e. p(z) = p(—=z).
(2) p is doubly periodic, i.e. p(z+1) = p(z) = p(z+ 7).
(3) The deferential o' (2) has the following expression:
9'(2)7 = 4(p(2) — e1)(p(2) — e2)(p(2) — e3)
(equation (20) in [1, Section 7])
(4) Let Z := (C\$L;)/L- be a 4-punctured torus. Then p: Z — C defines a double covering
0:7Z—C\ {0, €e1,e9,e3} = C\ {e1,e2,e3}
which corresponds to the quotient with respect to z — —z on Z (c.f. [5, Section 3] ).

As is well known, every holomorphic quadratic differential on a once-punctured torus
X:=(C\L;)/Lr
is represented by Cdz? for some C € C. We consider the lift of Cdz? to Z, which is again
represented as Cdz2. By Proposition 3.2 (3), the push-forward of Cdz? to C\ {e1,e2,e3} is
Cdz?
4(z —e1)(z —e2)(z —e3)’




where by abuse of notations, we again use z as a parameter on C \ {ej,es,e3}. Then by the
Moébius transformation

ps 222
e — e
C\ {e1,e2,e3} is mapped to C\ {0,1, \(7)}, where
es3 — e
A1) = ——
(1) p—
is called the modular function. The push-forward of the quadratic differential above is then
1 C - dz?

1 .
(1) d(e; —e2) z(z — 1)(z = A(7))
Remark 3.3. By definition, each e; (¢ = 1,2,3) depends on 7.

4. SUMMARY

Once the quadratic differential (1) is obtained one may compute horizontal and vertical di-
rection using the definition q(z)v? € Rsg and ¢(2)v? € R-g. One need to be careful when one
draws flow lines because quadratic differentials.

Also one may generate a movie of Teichmiiller geodesic as we indeed have computed geo-
desic axises of pseudo-Anosov mapping classes. Some movies by the author are available at
https://www.youtube.com/playlist?1list=PLQLzkZ9xZDXiVz-fS7EqQU6RYh6L2h1wVB. Those
movies take the Teichmiiller distance d7 into account, and hence movies are “unit-speed” with
respect to dr.
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