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1 Introduction

For a link L in a closed orientable 3-manifold M, we say that (Vi,%1) Ugpy (Va,t2) is
a (g,b)-splitting for the pair (M,L) if F N L = P and F separates (M, L) into two
components (V1,%1) and (Va,t3), where

e V1 and V5 are handlebodies of genus g,
e M =ViUVyand ViNVy =0V, =0V, = F, and

e t; = LNV;is a union of b arcs properly embedded in V; which is parallel to 0V;
(i=1,2).

A (g,b)-splitting (V1. 1) Uppy (Va,12) is said to be reducible if there is a pair of essential
disks D; € Vi \ t; and Dy C Vo \ tg such that 0D; = dD,, and is said to be irreducible
otherwise. A (g, b)-splitting (V1,t1) U(g,p) (Va, 12) is said to be weakly reducible if there is a
pair of essential disks D; C V3 \t; and Dy C V5 \ Lo such that 0D; NI Dy = B, and is said to
be strongly irreducible otherwise. A weakly reducible (g, b)-splitting (Vi,t1) Ugrpy (Va, t2)
is said to be keen if the pair of essential disks Dy C Vi \ t; and Dy C V5 \ L9 such that
0Dy N ODy = () is unique up to isotopy.

In the talk at ILDT (May 26, 2023), the second author presented two theorems (Thm 1
and Thm 2 in [2]) and gave some comments on the proof of a part of the conclusions of
Thm 1, that is, the case when “g = 07 and “n = 1”. In this article, we show a bit of
detailed arguments of the proof, that is, the outline of the proof of Theorem 3.4 of this
article. As mentioned in the talk, the proof of Thm 1 consists of several parts, and each
has different flavor. We hope this article would be helpful for readers who are interested
in this kind of research subject.

2 Preliminaries

Throughout this paper, for a submanifold Y of a manifold X, Nx(Y') denotes a regular
neighborhood of Y in X. When X is clear from the context, we denote Nx(Y) by N(Y)
in brief. We denote clx(Y") (or cl(Y') in brief) the closure of Y in X.



2.1 Curve complexes

Let S be a genus-g orientable surface with e boundary components and p punctures. A
simple closed curve in S'is essential if it does not bound a disk or a once-punctured disk
in S and is not parallel to a component of 95. We say that S is non-simple if there
exists an essential simple closed curve in S, and S is simple otherwise. By an arc properly
embedded in S, we mean an arc intersecting 95 only in its endpoints. An arc properly
embedded in S is essential if it does not co-bound a disk with no puncture in S together
with an arc on dS. Two simple closed curves or two arcs in S are isotopic if there is an
ambient isotopy of S which sends one to the other. We say that S is sporadic if either
“‘g=0ande+p<4or “g=lande+p<1".

For a non-sporadic surface S, the curve complex C(S) is defined as follows: FEach vertex
of C(S) is the isotopy class of an essential simple closed curve in S, and a collection of
k + 1 vertices forms a k-simplex of C(S) if they can be realized by disjoint curves in S.
For sporadic surfaces, we need to modify the definition of the curve complex slightly. We
assume that either g = 1 and e+ p < 1 or ¢ = 0 and e + p = 4 since, otherwise, S
is simple. When ¢ = 1 and e +p < 1 (resp. ¢ = 0 and e + p = 4), a collection of
k 4 1 vertices forms a k-simplex of C(S) if they can be realized by curves in S which
mutually intersect transversely exactly once (resp. twice). The arc-and-curve complex
AC(S) is defined similarly: Each vertex of AC(S) is the isotopy class of an essential
properly embedded arc or an essential simple closed curve in S, and a collection of k + 1
vertices forms a k-simplex of AC(S) if they can be realized by disjoint arcs or simple
closed curves in S. The symbols C°(S) and AC"(S) denote the 0-skeletons of the curve
complexes C(S) and AC(S), respectively. Throughout this paper, for a vertex z € C°(S)
or z € AC°(S) we often abuse notation and use z to represent (the isotopy class of) a
geometric representative of x.

We can define the distance between two vertices in the curve complex C(S) to be the
minimal number of 1-simplices of a simplicial path in C(S) joining the two vertices. We
denote by ds(a,b) the distance in C(S) between the vertices a and b. For subsets A and B
of the vertices of C(S), we define diamg(A, B) = diamg(A U B). Similarly, we can define
the distance dac(g)(a,b) and diam 4¢(s5)(A, B).

2.2 Subsurface projections

Throughout this paper, P(Y') denotes the power set of a set Y. Let S be a genus-g
orientable surface with e boundary components and p punctures. We say that a subsurface
X(C 9) is essential if each component of X is an essential simple closed curve in S.
Suppose that X is a non-simple essential subsurface of .S. We call the composition 7y :=
To o Tac of maps mac : C°(S) — P(AC’(X)) and mp : P(AC’(X)) — P(C’X)) a
subsurface projection, where mac and 7wy are defined as follows: For a vertex «, take
a representative « so that | N X| is minimal, where |- | is the number of connected
components. Then

e Tac(a) is the set of all isotopy classes of the components of a N X,

o mo({a1,...,a}) is the union for all ¢ = 1,...,n of the set of all isotopy classes of



the components of Ny (a; U9X) which are essential in X .

Let Y, Z be non-simple surfaces. Suppose that there exists an embedding ¢ : Y — Z
such that ¢(Y) is an essential subsurface of Z. Note that ¢ naturally induces maps
Co(Y) — C°Z) and P(C°(Y)) — P(C°(Z)). Throughout this paper, under this setting,
we abuse notation and use ¢ to denote these maps.

3 Results

First we give a description for the pair of essential disks Dy C Vi \ ¢ and Dy C Vo \ 1o
such that 0Dy NODy = O for a keen weakly reducible (g, b)-splitting (Vi,t1) Up,py (Va, t2).
The following proposition is due to [5, Theorems 2.2 and 2.3].

Proposition 3.1 (cf. [5, Theorems 2.2 and 2.3]). Let (Vi,11) Uppy (Va,t2) be a (1,1)-
splitting for (M, L). Then the following hold.

(1) (Vi,t1) Us,py (Va, ta) is reducible if and only if L is a trivial knot in M.

(2) (Vi,t1) Ugmpy (Va, ta) is weakly reducible and irreducible if and only if M is S* x S*
and L is the core knot in M.

Moreover, by the proofs of [5, Theorems 2.2 and 2.3|, we can see the following for a
weakly reducible (1, 1)-splitting (Vi.%1) Uy (Va,t2) for (M, L).

o (Vi,11) Urpy (Va,t2) is keen reducible if and only if L is a trivial knot in M and M
is not homeomorphic to S? x S*. In this case, the disks D; C Vi \ ¢, and Dy C Vo \ 1y
with 0D, = 0D, must be inessential in V; and V5, respectively, and hence, each of
dD; and 0D, cuts off a twice-punctured disk from F'\ P. (See [5, Lemma 4.1 and
its proof, and Lemma 4.2].)

o If (V1,t1) Urpy (Va,t2) is weakly reducible and irreducible, then it is keen. In this
case, for the disks Dy C Vi \ {1 and Dy C Vi \ ¢y with 9Dy N 9Dy = B, each of 9D,
and 0Dy is non-separating on F' and 0D, U 0D, is separating on F. (See the proof
of [5, Theorem 2.3] and also [1, Proposition 10.1].)

Proposition 3.2. Let (Vi,11) Uppy (Va, 1) be a (g,b)-splitting which is keen weakly re-
ducible and irreducible, and let Dy C Vi \ t1 and Dy C V5 \ ty be essential disks such that
0Dy NODy = 0. Then either of the following holds.

(1) Each of 0Dy and 0Dy is non-separating on F', and 0Dy U 0Dy is separating on F,
(2) each of 9Dy and 0Dy cuts off a twice-punctured disk from '\ P.

Proof. Case 1. Each of 0D, and 0D, is non-separating on F.

If 0D, U 0D, is non-separating on F', then there is an essential simple closed curve ~
on '\ P intersecting dD; transversely in one point and v N 9Dy = (). We may assume
that Np\ p(0D;) Ny consists of a single arc ;. Let 72 be the closure of v\ 71, and let D]
be the disk in Vi \ ¢; obtained from two copies of D; (whose boundary is ONp\ p(0D1))
by performing a band operation along 2. Then D] is an essential disk in V; \ ¢; which is



not isotopic to D; and is disjoint from s, which is a contradiction to the uniqueness of
the pair (Dy, D). Thus, 0Dy U 9Dy must be separating on F in this case.

Case 2. Either one of 0D and 0Ds, say 0Dy, is separating on F'.

Assume that 0D, is non-separating on F. Then it is easy to see that the arguments
for Case 1 above work in this case to lead to a contradiction (together with the fact that
(Vi, t1) Uppy (Va, L2) is irreducible). Hence, each of 0D, and dD, is separating on .

Assume that 9D; does not cut off a twice-punctured disk from 7\ P. Let (V{!,#]) and
(V2,12) be the closures of the two components obtained by cutting (Vy,#;) along D;. If
0Ds is contained in dV} for i = 1 or 2, then we can find an essential disk D} in V; \ ¢; such
that 0D} C VY where j(# i) € {1,2} (and hence, dD;NIDy = 0), and D] is not isotopic
to Dp. This is a contradiction to the uniqueness of the pair (Dq, D). Thus, 9Dy must
cut off a twice-punctured disk from F'\ P. Similarly, 9Dy must cut off a twice-punctured
disk from I\ P as well. O

We also have the following for reducible (g, b)-splittings.

Proposition 3.3 (cf. [1, Theorem 13.1]). A (g, b)-splitting (Vi,11)Upp)(Va, ta) for (M, L)
15 reducible if and only if one of the following holds.

(1) E(L) =cl(M \ N(L)) is reducible.

(2) (Vi,t1) Urpy (Va, ta) is stabilized, that is, there are essential disks Dy C Vi \ t1 and
Dy C Vo \ ty such that 0Dy and D4 intersect transversely in one point.

For the existence of (g,b)-splittings which are keen weakly reducible and irreducible,
we have the following.

Theorem 3.4 ([1, Theorems 1.1 and 1.3]). For any integers g and b with g > 0 and b > 1
except for (g,b) = (0, 1), (0,3), there exists a (g, b)-splitting which is keen weakly reducible
and wrreducible.

Theorem 3.5 ([1, Theorem 1.4]). There does not exist a (0,3)-splitting which is keen
weakly reducible and irreducible.

By Proposition 3.2, we see that, to prove Theorem 3.4, it may be reasonable to use
pair of disks Dy C Vi \ t; and Dy C V5 \ ts satisfying the following (, and this intuition is
shown to be correct in our paper [1]):

e cach of 0D; and 0D, is non-separating on F' and 0D U 0D, is separating on F, if
g > 2 (see the arguments in [1, Section 9]), and

e cach of 0D; and 0D, cuts off a twice-punctured disk from F\ P, if b > 2 and
(g9,b) # (0,2),(0,3) (see the arguments in [1, Sections 10 and 11]).

The case when (g,b) = (1,1) is done by Proposition 3.1, and the case when (g,b) = (0, 2)
can be treated easily since each V; \ ¢; (i = 1,2) admits a unique essential disk up to
isotopy and the curve complex of the 4-punctured sphere is well-known (see, for example,
[1, Appendix B]).

In the remainder, we give an outline of the proof of Theorem 3.4 for the case where
g =0 (and b > 4).



Figure 1: (W;,s;) and D;.

Let F' be a 2-sphere and let P be the union of 2b points on F. Let ag and «; be simple
closed curves on F'\ P such that apNay = () and that ayUa; cuts off two twice-punctured
disks from F'\ P which are disjoint to each other. For i = 1, 2 let V:* be a 3-ball and t* .
be the union of b arcs t},12, ..., 12 properly embedded in V Wthh is parallel to 8V

1771

Let V; (C V;*°) be a 3-ball such that
e t; := 7" NV is the union of (b — 1) arcs which is parallel to dV;,
o Wi :=cl(V;"°\ V;) =¥ x I, where ¥ is a 2-sphere and I = [0,1], and
e s;:= 170N W, is the union of 2(b — 1) I-fibers (C ¥ x I) and t’.

Let D; be the disk properly embedded in W; as in Figure 1. Then W; \ D; consists of
two components W} and W2 such that cl(W}') = ¥ x I, where s!(:= t° N cl(W}')) is the
union of 2(b — 1) I-fibers, cl(W?) is a 3-ball and s?(:= t?) is an arc parallel to OW?. Let
0_W; be the component of W, disjoint from D;, and let 0, W; := oW, \ d_W,. Note that
s; N O_W; consists of (2b — 2) points, and s; N J.W; consists of 2b points. Let F; be the
subsurface 04 W; N cl(W}') of 4 W;. Let mpy,, : CO(0:W; \ s;) = P(C°(F; \ s;)) be the
subsurface projection, and let P; : F; \ s; — (F; \ s;) UD; — 0_W; \ s; be the natural
projection. Let @, : CO(0+W; \ s;) — P(C°(O_W; \ s;)) be the composition P; o mg,\s,.

Identify (0. W1, s1 N 0L Wy) and (04 Wa, so N 04 W3) with (F, P) so that 9D; = « and
0Dy = ay. Let h; : OV; \ t; — 0_W; \ s; be homeomorphisms such that

do_wvs, (P1(1), b (D (Vi \ 1)) > 3, (1)

do_wy\ss (Pa(0), ha(D(Va \ £2))) > 3. (2)

(The existence of such homeomorphisms is guaranteed by [3, Claim2].) Let h; : (OV;, 9t;) —
(0_W;, s; N 0_W;) be the homeomorphism of the pairs induced from h;. Let (V;*,tf) :=
(Wi, s:) U, (Vi, ;). Then (Vi*,17) Urpy (V5 15) is a (0,b)-splitting of a link. Note that
(V17 1) Upy (V5 t5) is weakly reducible since 0D, N 0D, = (). Let D; be the set of
essential disks in V;* \ ¢f for i = 1,2. To show that (V*,t]) U py (V5 t5) is keen and
irreducible, we prove the following.

Assertion 3.6. 0y NOFy # 0 for any I7y € Dy and Iy € Dy with (I, Fy) # (Dq, Da).

To prove the above assertion, we divide D; (i = 1,2) into three sets D}, D?, D}, where
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Figure 2: ¢}, ¢?, G} and G?.
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e D! consists of the single disk D;,

e D? consists of disks which are disjoint from D;, and not isotopic to D;,

e D? consists of disks which cannot be isotoped to be disjoint from D;.
Without loss of generality, we may assume that either one of the following holds.

e [/, € D} and F; € D3,

e [/, € D} and E, € D3,

e I}, € D? and I, € D3,

e ) € D? and E, € D3,

e [, € D} and E, € Ds.

The proof of Assertion 3.6 is carried out by deriving a contradiction for each of the
above cases. The following is an outline of the proof for the last case. Suppose that
|E; 0 D;| (i = 1,2) is minimal. Let A; be the closure of E;\ D; that is outermost in F;
(i = 1,2). Then by using the inequalities (1) and (2), we can see that Ay N dDy # B and
Ay NID; # (. Let A be the subsurface of '\ PP bounded by dD; U 9D,. Then we can
see that, for i = 1,2, A; N A contains exactly two arcs 1}, ¥? joining oy and ay, and the
other components are disjoint from «;_; (see Figure 2). This shows that there are exactly
two components of A\ A; that are adjacent to ;1. Let G} and G? be the closures of the
components. Then we can prove that GY contains at most one puncture (7,5 € {1,2}), by
using the inequality (1) or (2) again (see [1, Claim 11.3]). We can show that this implies
that b = 4, and each G contains exactly one puncture. Then there exists a simple closed
curve 7 in A (and hence in Fy) that bounds a twice-punctured disk, say D, in A(C F}),
that intersects 0A; twice, and is disjoint from «; (see Figure 3). Note that I} contains
6 punctures, and hence Fy \ D, contains 4 punctures. Since Fi \ (A; U D,) consists of
two components, either of the components must contain at least 2 punctures. Then there
exists a simple closed curve § that bounds a twice-punctured disk in (the interior of) the
component. Since § N A; = @), we can find a disk A; in V; \ ¢; disjoint from ®,(8) (# 0)
and show that

do_wivs, (P1(8), by (D° (Vi \ 1)) < do_wys, (P1(8), ha(0Ay)) < 1.
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Figure 3: ~ and §.

Note also that ay Ny =0, yNd =0, and ®y(ay) # 0, P1(7y) # (. By using these, we can
see that

da_wy\s, (Pr(1), i (D°(Vi\ 1)) < do_wi\e, (Pr(1) ‘1’1((7))

IA
—_
+
—_
+
—_

I

w

a contradiction to the inequality (1).
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