On numerical semigroups whose quotients by two are generated by two or three elements ¹

神奈川工科大学 · 基礎 · 教養教育センター 米田 二良 Jiryo Komeda Center for Basic Education and Integrated Learning Kanagawa Institute of Technology

Abstract

Let \tilde{H} be a numerical semigroup generated by five elements whose quotient H by two is generated by three elements. We prove that the numerical semigroup \tilde{H} satisfying a general condition is Weierstrass. Moreover, we give examples of \tilde{H} whose quotient H by two is symmetric such that \tilde{H} is Weierstrass.

1 Terminologies and introduction

Let \mathbb{N}_0 be the additive monoid of non-negative integers. A submonoid H of \mathbb{N}_0 is called a numerical semigroup if its complement $\mathbb{N}_0 \backslash H$ is finite. The cardinality of $\mathbb{N}_0 \backslash H$ is called the genus of H, denoted by g(H). In this paper H always stands for a numerical semigroup. We set

$$c(H) = \min\{c \in \mathbb{N}_0 \mid c + \mathbb{N}_0 \subseteq H\},\$$

which is called the *conductor* of H. It is well-known that $c(H) \leq 2g(H)$. H is said to be *symmetric* if c(H) = 2g(H). H is said to be *quasi-symmetric* if c(H) = 2g(H) - 1. We have $(c(H) - 1) + h \in H$ for any $h \in H$ with h > 0. The number c(H) - 1 is called the *Frobenius number* of H. An element $f \in \mathbb{N}_0 \backslash H$ is called a *pseudo-Frobenius number* of H if $f + h \in H$ for any $h \in H$ with h > 0. We denote by PF(H) the set of pseudo-Frobenius numbers.

We explain numerical semigroups in connection with algebraic curves. A *curve* means a projective non-singular irreducible algebraic curve over an algebraically closed field k of characteristic 0. For a pointed curve (C, P) we set

$$H(P) = \{ \alpha \in \mathbb{N}_0 \mid \exists f \in k(C) \text{ such that } (f)_{\infty} = \alpha P \},$$

where k(C) is the field of rational functions on C. Then H(P) is a numerical semigroup of genus g(C) where g(C) is the genus of C. A numerical semigroup H is said to be *Weierstrass* if there exists a pointed curve (C,P) with H(P)=H. A numerical semigroup H is said to be of *double covering type*, which is abbreviated to DC, if there exists a double covering of curves with a ramification point P with H(P)=H. Hence, if a numerical

¹This paper is an extended abstract and the details will be published (see [10])

semigroup is DC, then it is Weierstrass. To find Weierstrass numerical semigroups we use the above property in this paper. To describe DC numerical semigroups we need the following notation: For a numerical semigroup H we set

$$d_2(H) = \{h' \in \mathbb{N}_0 \mid 2h' \in H\},\$$

which is a numerical semigroup. Let $\pi: C \longrightarrow C'$ be a double covering of curves with a ramification point P. Then we have $d_2(H(P)) = H(\pi(P))$.

2 Numerical semigroups generated by four or five elements

There are the following known facts on Weierstrass or non-Weierstrass numerical semigroups:

Known Fact 1 (Classical). Any numerical semigroup generated by two elements is Weierstrass.

Known Fact 2 (Waldi [12]). Any numerical semigroup generated by three elements is Weierstrass.

Known Fact 3 (Buchweitz [2]). There exists a non-Weierstrass numerical semigroup generated by nine elements.

Known Fact 4 ([7]). There exists a non-Weierstrass numerical semigroup generated by six elements.

Combining Known Fact 4 with Torres [11] we get the following:

Known Fact 5. For any $l \ge 6$ there exists a non-Weierstrass numerical semigroup generated by l elements.

Thus, we pose the following problem:

Problem. Is every numerical semigroup generated by four or five elements Weierstrass?

We have the following results on numerical semigroups generated by four elements:

Known Fact 6 (Buchweitz [2], Waldi [12]). Any symmetric numerical semigroup generated by four elements is Weierstrass.

Known Fact 7 ([5]). Any quasi-symmetric numerical semigroup generated by four elements is Weierstrass.

So, we are interested in the following two cases

(i) Is every neither symmetric nor quasi-symmetric numerical semigroup generated by four elements Weirstrass?

(ii) Is every numerical semigroup generated by five elements Weirstrass?

Here, we introduce the terminologies and the notations as follows: For a numerical semigroup H we denote by M(H) the minimal set of generators for H. For any nonnegative integers a_1, a_2, \cdots, a_n we denote by $\langle a_1, a_2, \cdots, a_n \rangle$ the additive monoid generated by a_1, a_2, \cdots, a_n . The minimum positive integer in H is denoted by m(H), which is called the *multiplicity* of H. We set

$$s_i = \min\{h \in H \mid h \equiv i \mod m(H)\}\$$

for i = 1, ..., m(H) - 1. The set $S(H) = \{m(H), s_1, ..., s_{m(H)-1}\}$ is called the *standard basis* for H. To explain our aim we give the following remarks:

Remark 1 ([6]). Let H be a Weierstrass numerical semigroup. We set $\tilde{H} = 2H + n\mathbb{N}_0$ with an odd integer $n \ge c(H) + m(H) - 1$. Then we have the following:

(i)
$$\sharp M(\tilde{H}) = \sharp M(H) + 1$$
 and $g(\tilde{H}) = 2g(H) + \frac{n-1}{2}$.

- (ii) If c(H) = 2g(H) r, then $c(\tilde{H}) = 2g(\tilde{H}) 2r$, because we have $c(\tilde{H}) = 2c(H) + n 1$.
- (iii) If H is Weierstrass and $n \ge 2g(H) + 1$, then \tilde{H} is DC, hence Weierstrass. Hence, if H is generated by three elements, then \tilde{H} is Weierstrass. In this case, \tilde{H} is generated by four elements. Moreover, if H is not symmetric, then \tilde{H} is neither symmetric nor quasisymmetric.

Remark 2. Let H be a numerical semigroup distinct from \mathbb{N}_0 . We set $\tilde{H} = 2H + \langle n, n+2\gamma \rangle$ with an odd integer $n \geq c(H) + m(H) - 1$ and $\gamma \notin H$. Then it is hard to determine the genus $g(\tilde{H})$ of \tilde{H} ([7]). Moreover, there exists a Weierstrass numerical semigroup H such that \tilde{H} is non-Weierstrass.

In this case, we have M(H)=4, hence $M(\tilde{H})=6$. So, we are interested in the case $\sharp M(\tilde{H})=4$ or 5 with $d_2(\tilde{H})=H$ as follows:

- (1) $\sharp M(\tilde{H}) = 5$ and $\sharp M(H) = 3$.
- (2) $\sharp M(\tilde{H}) = 4$ and $\sharp M(H) = 2$.

3 Numerical semigroups whose quotients by two are nonsymmetric and generated by three elements

We generalize the concept of the set $PF^*(H)$ of pseudo-Frobenius numbers which are not Frobenius. We set

$$\overline{PF^*(H)} = \{ \gamma \in \mathbb{N}_o \backslash H \mid c(H) - 1 - \gamma \in \mathbb{N}_o \backslash H \}.$$

Lemma 1 ([8, Lemma 1.1 ii), iii)]). We have $PF^*(H) \subseteq \overline{PF^*(H)}$. Moreover, the cardinality of $\overline{PF^*(H)}$ is equal to 2g(H) - c(H).

Example 1. Let H be a numerical semigroup with $M(H) = \{4, 6, 9, 11\}$. Then $S(H) = \{4, 6, 9, 11\}$. We have g(H) = 5 and c(H) = 11 - 4 + 1 = 8 = 2g(H) - 2. Moreover, we obtain $PF^*(H) = \{6 - 4, 9 - 4\} = \{2, 5\}$. In this case, we have $PF^*(H) = \overline{PF^*(H)}$

Example 2. Let $M(H) = \{4, 5, 11\}$. Then we have $S(H) = \{4, 5, 10, 11\}$. We obtain g(H) = 5 and c(H) = 11 - 4 + 1 = 8 = 2g(H) - 2. Moreover, we get $PF^*(H) = \{10 - 4\} = \{6\}$ and $\overline{PF^*(H)} = \{1, 6\}$. In this case, we have $PF^*(H) \subset \overline{PF^*(H)}$.

The following is the Key Lemma for investigating a certain numerical semigroup \tilde{H} with $\sharp M(d_2(\tilde{H}))=3$:

Lemma 2 ([10]). Let H be a numerical semigroup which is not symmetric. Assume that $PF^*(H)$ consists of only one element t. We set c(H) = 2g(H) - r. Let n be an odd integer larger than c(H) + m(H) - 1. We set

$$\tilde{H} = 2H + \langle n, n + 2(c(H) - 1 - t) \rangle$$

Then we have $g(\tilde{H}) = 2g(H) + \frac{n-1}{2} - r$.

We get the following theorem for the above numerical semigroup \tilde{H} :

Theorem 1 ([10]). Let H be a Weierstrass numerical semigroup which is not symmetric. Assume that $PF^*(H)$ consists of only one element t. We set c(H) = 2g(H) - r. Let n be an odd integer larger than $\max\{c(H) + m(H) - 1, 2g(H) + 2r\}$. We set

$$\tilde{H} = 2H + \langle n, n + 2(c(H) - 1 - t) \rangle$$

Then the numerical semigroup \tilde{H} is DC, hence it is Weierstrass.

On the other hand, we have the following:

Proposition 1 ([10]). Let the notation be as in the above theorem. We note that $\tilde{H}^* = 2H + \langle n, n+2t \rangle$ is also DC, but $g(\tilde{H}^*) = 2g(H) + \frac{n-1}{2} - 1$.

We have the following known fact:

Remark 3 (Fröberg-Gottlieb-Häggkvist [3, Theorem 11]). Let H be a numerical semigroup which is not symmetric. If $\sharp M(H) = 3$, then the set $PF^*(H)$ consists of only one element.

Hence, combining Theorem 1 with Remark 3 we get the main result in this section.

Corollary 1. Let H be a numerical semigroup generated by three elements which is not symmetric. We set $PF^*(H) = \{t\}$ and c(H) = 2g(H) - r. Let n be an odd integer larger than $\max\{c(H) + m(H) - 1, 2g(H) + 2r\}$. We set

$$\tilde{H} = 2H + \langle n, n + 2(c(H) - 1 - t) \rangle.$$

Then \tilde{H} is DC, hence it is Weierstrass. In this case we have $g(\tilde{H}) = 2g(H) + \frac{n-1}{2} - r$.

Example 3 ([7, Theorem 5.2]). Let H be a numerical semigroup with $M(H) = \{4, 6, 9, 11\}$. Then $S(H) = \{4, 6, 9, 11\}$. We have g(H) = 5 and c(H) = 11 - 4 + 1 = 8 = 2g(H) - 2. Moreover, we have $PF^*(H) = \{6 - 4, 9 - 4\} = \{2, 5\} = \overline{PF^*(H)}$. Let n be an odd integer larger than 10 + 4 = 14. We set $\tilde{H} = 2H + \langle n, n + 2(7 - 5) \rangle$. Then \tilde{H} is not DC.

Example 4. Let H be a numerical semigroup with $M(H) = \{4,5,11\}$. Then $S(H) = \{4,5,11\}$. $\{4, 5, 10, 11\}$. We have g(H) = 5 and c(H) = 11 - 4 + 1 = 8 = 2g(H) - 2. Moreover, $PF^*(H) = \{10 - 4\} = \{6\}$ and $PF^*(H) = \{1, 6\}$. Let *n* be an odd integer larger than 10+4=14. We set $\tilde{H}=2H+\langle n,n+2\rangle$ and $\tilde{H}^*=2H+\langle n,n+12\rangle$. Then \tilde{H} and \tilde{H}^* are DC by Corollary 1 and Proposition 1, respectively.

Numerical semigroups whose quotients by two are sym-4 metric

In this section we consider the case $\sharp M(\tilde{H})=4$ and 5 with $\sharp M(d_2(\tilde{H}))=2$ and 3, respectively, and $d_2(\tilde{H})$ is symmetric.

Theorem 2 ([9, Theorem 3.3]). Let a and b be positive integers with $2 \le a < b$ satisfying (a,b) = 1. Let n be an odd integer with $n \ge (a-1)(b-1) + a - 1$. We set

$$H = 2\langle a, b \rangle + \langle n, n + 2(b - ar) \rangle$$
,

where r is a positive integer with b - ar > 0. Then we have the following:

(1)
$$d_2(H) = \langle a, b \rangle$$
, $g(H) = 2g(\langle a, b \rangle) + \frac{n-1}{2} - (a-1)r$ and $c(H) = 2g(H) - 2r$.
(2) If $n \ge (a-1)(b-1) + 2r(a-1) + 1$, then H is DC, hence it is Weierstrass.

(2) If
$$n \ge (a-1)(b-1) + 2r(a-1) + 1$$
, then H is DC, hence it is Weierstrass

In the above theorem if we replace $H = 2\langle a, b \rangle + \langle n, n + 2(b - ar) \rangle$, where r is a positive integer with b - ar > 0, by $H = 2\langle a, b \rangle + \langle n, n + 2(lb - ar) \rangle$, where $l \ge 2$ and r is a positive integer with lb - ar > 0, it is hard to show that H is DC. We can show that the following numerical semigroups H are DC.

Theorem 3 ([4, Theorem 2.5]). Let $d \ge 4$. Let n be an odd integer with $n \ge 2(d-1-l)r + 1$ (d-1)(d-2) + 1. We set

$$H = 2\langle d - 1, d \rangle + \langle n, n + 2(ld - (d - 1)r) \rangle,$$

where $2 \le l \le d-2$ and r is a positive integer with ld-(d-1)r>0. Then we have the following:

- (1) If l = d 2, then *H* is DC.
- (2) If r = 1 or 2, then H is DC.

From now on we consider a numerical semigroup H with $\sharp M(H) = 5$ such that $d_2(H)$ is a symmetric numerical semigroup with $\sharp M(d_2(H))=3$. Using [3, Corollary after Theorem 14] we can prove the following whose detailed proof will be given in [10]:

Proposition 2. Let H be a numerical semigroup with $\sharp M(H) = 3$. Then the following are equivalent:

- (i) H is symmetric.
- (ii) We have $H = u\langle a, b \rangle + c\mathbb{N}_0$ where $u \ge 2$, 1 < a < b with (a, b) = 1 and $c \in \langle a, b \rangle$.

Theorem 4 ([10]). Let $d \ge 3$ and n be an odd integer with $n \ge 2(d-1)(d-2)+1$. We set

$$H = 2\langle d-1, d \rangle + n\mathbb{N}_0$$

which is a symmetric numerical semigroup by Proposition 2 whose genus g(H) is $(d-1)(d-2)+\frac{n-1}{2}$. We set

$$\tilde{H} = 2H + \langle \tilde{n}, \tilde{n} + 4 \rangle$$

where \tilde{n} is an odd integer with $\tilde{n} \ge n + 2d^2 - 2d - 6$. Then \tilde{H} is DC. In this case we have $g(\tilde{H}) = 2g(H) + \frac{\tilde{n}-1}{2} - 2(d-2)$.

Example 5. Let d = 3, n = 5 and $\tilde{n} = 23$ in the above theorem. Then $H = \langle 4, 6, 5 \rangle$, hence g(H) = 4 and c(H) = 8. Moreover, we set

$$\tilde{H} = 2\langle 4, 5, 6 \rangle + \langle 23, 23 + 4 \rangle = \langle 8, 10, 12, 23, 27 \rangle.$$

Then we have

$$g(\tilde{H}) = 17 = 2 \times 4 + \frac{23-1}{2} - 2(3-2) = 2g(H) + \frac{\tilde{n}-1}{2} - 2(d-2).$$

We obtain that $\tilde{H} = \langle 8, 10, 12, 23, 27 \rangle$ is DC.

References

- [1] H. Bresinsky, Symmetric semigroups of integers generated by 4 elements, Manuscripta Math. 17 (1975), 205–219.
- [2] R. O. Buchweitz, On Zariski's criterion for equisingularity and non-smoothable monomial curves, Preprint 113, University of Hannover, 1980.
- [3] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum **35** (1987), 63–83.
- [4] S. J. Kim and J. Komeda, Weierstrass semigroups on double covers of plane curves of degree 5, Kodai Math. J. **28** (2015), 270–288.
- [5] J. Komeda, On the existence of Weierstrass points with a certain semigroup generated by 4 elements, Tsukuba J. Math. 6 (1982), 237–270.
- [6] J. Komeda and A. Ohbuchi, On double coverings of a pointed non-singular curve with any Weierstrass semigroup, Tsukuba J. Math. **31** (2007), 205–215.
- [7] J. Komeda, Double coverings of curves and non-Weierstrass semigroups, Comm. Alg. 41 (2013), 312–324.

- [8] J. Komeda, Pseudo-Frobenius numbers of numerical semigroups with high conductor, Research Reports of Kanagawa Institute of Technology **B-42** (2018), 41–46.
- [9] J. Komeda, On Weierstrass numerical semigroups generated by four elements, RIMS Kôkyûroku **2229** (2022), 30-35.
- [10] J. Komeda, On numerical semigroups generated by five elements and their quotients by two are generated by three elements, In preparation.
- [11] F. Torres, Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994), 39-58.
- [12] R. Waldi, Deformation von Gorenstein-Singularitäten der Kodimension 3, Math. Ann. **242** (1979), 201–208.