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Abstract

Genetic algorithms are metaheuristics first presented in their mod-
ern form by Holland in 1992. There are many variations, but all
involve an evolving population of candidate solutions to some prob-
lem. While most implementations involve asexual reproduction, some
attempts have been made to harness advantages of sexual reproduc-
tion in genetic algorithms - such approaches are called gender genetic
algorithms. In particular, the male mutation bias, which has been well
documented in mammals, depends on gender differentiation in param-
eters relevant to genetic algorithms. We implement gender and per-
form meta-optimization on the onemax benchmark and statistically
analyze whether gender differences in mutation rate and tournament
size naturally emerge.

1 Introduction

Metaheuristic algorithms attempt to find good solutions to optimization
problems. Metaheuristic algorithms may be divided into solution-based and
population-based methods. Solution-based methods, such as simulated an-
nealing and tabu search, operate on a single candidate solution. These meth-
ods may be susceptible to fixing near local optima. Population-based meth-
ods offer an alternative approach: multiple candidate solutions develop in
tandem. Some examples of population-based methods are particle swarm,
ant colony, and genetic algorithms (GA) [8]. Metaheuristics, GA included,
offer practical ways to find good solutions in reasonable time to problems
with intractably large brute-force search spaces, for example the 0—1 knap-
sack problem [11].

The idea of applying evolutionary principles in a computing environment
was arguably first conceived by Alan Turing in 1950. He wrote of an edu-
cation process for programs and noted the connection with the evolutionary
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process [13]. In 1954 at Princeton’s Institute for Advanced Study, Barricelli
first used a computer to simulate evolution, including genetic code [1]. Ge-
netic algorithms in their modern form - as metaheuristics - were introduced
by Holland in 1992 [6]. There are many variations on GA, but the essential
core is: a population of candidate solutions, represented by genomes and
judged by a “fitness” function, evolve and reproduce according to Darwinian
and Mendelian principles respectively.

In addition to a function which evaluates the fitness of a genome, GA
standardly include the following components: initialization, in which the
population is initialized; selection, in which population members are selected
for reproduction; crossover, in which population members reproduce by com-
bining genetic information; mutation, by which randomness is injected to the
genome; and termination, or rules for conclusion of the process. There are
many variations on the specifics of implementation, such as how population
members are chosen for reproduction, how genomes are combined in repro-
duction, what types of mutations occur, and how the population is culled as
new members are created. Of particular interest to the present study are the
selection and mutation components.

In 1996, Lis and Eiben introduced gender as a feature in genetic algo-
rithms, an approach which has come to be called gender genetic algorithms
(GGA). Their approach was created a gender for each criterion in a multi-
criteria optimization problem [9]. In the early 2000s, advances in genomic
sequences allowed estimation of male and female contribution to genome
mutation across species; generally the male contribution is higher than the
female contribution [10]. In 2003, Sdnchez-Velazco and Bullinaria incorpo-
rated this insight into a GGA model by differentiating population member
mutation rates by gender. They tried several values of hyperparameters (e.g.
controlling sexual selection), realizing improvements in convergence speed
over genderless implementations [2]. There soon followed other examples
of GGA implementations realizing performance gains over genderless imple-
mentations against various benchmarks [2, 5].

2 Methodology

Similar to Sanchez-Velazco and Bullinaria, the present study explores GGA
with population members potentially differentiated by gender in selection and
mutation. Rather than sampling several values for the involved hyperparame-
ters, we use GA for meta-optimization of the GGA hyperparameters. Rather
than measure efficiency and robustness of resulting GGA models versus gen-
derless implementations, we statistically analyze evidence for emergence of



differentiated genders in the GGA model during meta-optimization.

3 Component functions

3.1 Gender genetic algorithm

For GGA, the population is initialized with 100 members of each of two
genders (labeled “male” and “female”). The chromosome length is 100, and
the benchmark is onemax. The tournament function randomly selects a
fixed number (determined by gender) of females and a (possibly different)
fixed number of males from the population, then selects the fittest of each
of these two subsets. These two fittest chromosomes are recombined in the
crossover function. The number of females and males selected are referred to
as tournament sizes.

The crossover function propagates each parent unchanged to the next
generation with probability 0.1. Otherwise, a position of the chromosome is
randomly selected, and two offspring are created by appending the first part
of each parent’s chromosome to the second part of the other parent’s chro-
mosome. One of the offspring is designated female and the other male, and
they are added to the next generation. Mutation is executed independently
allele-by-allele following crossover. Each gender has a per-allele mutation
probability between 0 and 0.025.

The selection, crossover, and mutation functions iterate until the next
generation reaches the size of the initial population.

Termination conditions should generally depend on the benchmark. In
the case of onemax, termination occurs when there has been no improvement
for 100 generations or when 5000 total generations have elapsed.

3.2 Genetic algorithm meta-optimization

The purpose of the GA meta-optimization is to tune hyperparemeters of the
GGA population. Specifically, the male and female tournament sizes and
mutation rates are modulated. A genderless meta-population is initialized
with 20 members. The chromosome length is 24. The chromosome encodes
values for the tournament sizes and mutation rates hyperparameters of an
execution of GGA. The first four bits of the meta-population chromosome
encode the female tournament size (between 10 and 25), the next four bits
encode the male tournament size (also between 10 and 25), the next eight
bits encode the female mutation rate (between 0 and 0.025), and the final
eight bits encode the male mutation rate (also between 0 and 0.025). The



GA tournament size is 8, with the fittest of each of two random population
selections reproducing. Parents propagate unchanged to the next generation
with probability 0.1. Otherwise, a position of the chromosome is randomly
selected, and two offspring are created by appending the first part of each
parent’s chromosome to the second part of the other parent’s chromosome.
The offspring are mutated before being added to the next generation. Mu-
tation is carried out independently allele-by-allele with mutation probability
ﬁ per allele.

The fitness function for the GA meta-optimization uses a number of ex-
ecutions to termination of the underlying GGA. Each execution is scored
by how many generations it takes for an optimal solution to be acquired
(subject to termination conditions described above). The fitness of the GA
meta-population member is the average of these scores.

Take, for example, the GA population member

ao, a1, - .., a2 = 001011011000001100100100.

This chromosome determines the following GGA hyperparameters:
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The fitness of this meta-population member is found by averaging the scores
of many executions of the underlying GGA using these hyperparameters.

4 Results

4.1 Onemax

Onemax is a simple optimization problem in which the optimum (in this
implementation, highest) sum of a bit string is sought. Clearly, for a bit
string of n bits, the optimum is n. We used n = 100. The fitness of a
GA population member is the average number of generations required to
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reach the optimal solution over 50 executions of the corresponding GGA,
with 150 returned should the GGA terminate after no improvement for 100
generations. It does occur in practice that some executions of the GGA
require more than 150 generations to terminate, but this does not matter
as within several generations the GA selection pressure improves typical GA
population member fitness to numbers well below 150.

The GA meta-optimization was run for 5000 generations, with the fittest
chromosome of each generation recorded along with its measured fitness. We
observe that the genders were quickly differentiated and remained differen-
tiated for the duration of the experiment. The female and male mutation
probabilities encoded by the fittest member of each GA generation are shown
in Figure 1. The female and male mutation probabilities are dependent,
x*(4752, N = 10000) = 9288.09, p < .001. The median female mutation
probability is 0.0125, while the median male mutation probability is 0.0160.
The female and male tournament sizes encoded by the fittest member of
each GA generation are shown in Figure 2. The median female tournament
size is 20, while the median male tournament size is 25. While the distribu-
tions of male and female tournament sizes are distinct, unlike the mutation
probabilities they are independent, x?(169, N = 10000) = 107.72, p > .1.
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Figure 1: Mutation probabilities of each gender encoded by the fittest pop-
ulation member of each of 5000 GA generations. Red is female and blue is
male.

While this experiment shows the male subpopulation developing higher
mutation rates in agreement with biological observation, the labels of “fe-
male” and “male” are arbitrary as the population members begin undiffer-
entiated. The gender differences emerges through selection pressure, and it
would be equally likely for the “female” subpopulation to develop the higher
mutation rate.
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Figure 2: Tournament sizes for each gender encoded by the fittest population
member of each of 5000 GA generations. Red is female and blue is male.

4.2 Lookup table failure

The validity of the above results are in question due to a probable error in
the code which generated these results. Because the meta population fitness
function is computationally expensive, and it must be computed very many
times for a given population member, a fitness once computed was stored in
a lookup table. This way, the fitness for a given population member would
be computed only once. This was necessary to run the algorithm in practical
time on available equipment. However, the computed fitness scores of a few
population members were anomalously low; once stored in the lookup table,
these genomes dominated future generations. Evidence for this phenomenon
can be seen in the horizontal lines of 1 and 2.

4.3 Future work

The problem identified above will first be addressed. Once it is resolved,
statistical analysis will evaluate the hypothesis that spontaneous gender dif-
ferentiation occurs under GA selection pressure. Greater computing power
may be utilized to extend the replicate the study in the context of other
benchmark functions the location of whose optima is more computationally
intensive, for example Rosenbrock’s function, called F2 by De Jong [4].

5 Limitation

After collecting results, if there is evidence for the spontaneous gender dif-
ferentiation, it would be tempting to speculate that the evidence offers a
partial explanation for the emergence of sex among organisms. We do not so
speculate, referring instead to research pointing to well-established theoret-



ical considerations of the origin, including by parasitic genetic elements [3],
cannibalism [7], or vaccination [12].
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