Mutually Orthogonal Quasigroup System and MOLS #### Tomoko Adachi Shizuoka Institute of Science and Technology E-mail: adachi.tomoko@sist.ac.jp **Abstract** Restricted to a binary operator, quasigroups and Latin squares are equivalent. MOLS stands for mutually orthogonal Latin squares. In this paper, we describe about mutually orthogonal quasigroup system and MOLS. #### 1 Introduction A quasigroup with a binary operator is equivalent to a Latin square. That is, there exists a bijection between the set of all quasigroups of order q with binary operators and the set of all Latin squares with a size of $q \times q$. Mutually orthogonal Latin squares are written abbreviated as MOLS. For quasigroups with binary operators, a mutually orthogonal quasigroup system is equivalent to MOLS. Much research has been done on Latin squares and MOLS. But few research has been done on quasigroups with n-ary operators. Especially, in the case of $n \geq 3$, very few research has been done. In this paper, we research for the definitions and property related to quasigroups with n-ary operators, and we describe about mutually orthogonal quasigroup system. ### 2 Definitons and property for Latin squares We suggest that readers who wish to learn more about the definitions and property related to Latin squares discussed in this section refer to [3] and [2]. Let $q(\geq 2)$ to be an integer and fixed. **Definition 2.1** (Latin square). A Latin square of order q is an $q \times q$ array in which q distinct symbols are arranged so that each symbol occurs in each row and column. **Definition 2.2** (Quasigroup). A set Q is called a quasigroup if there is a binary operation * defined in Q and if, when any two elements a, b of Q are given, the equations a*x = b and y*a = b each have exactly one solution. **Theorem 2.3.** Evey multiplication table of a quasigroup is a Latin square and conversely, any bordered latin square is the multiplication table of a quasigroup. We denote $L = ||a_{ij}||$, when an (i, j)-element of a Latin square L is written by a_{ij} as follows, $$L = ||a_{ij}|| = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1q} \\ a_{21} & a_{22} & \cdots & a_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{q1} & a_{q2} & \cdots & a_{qq} \end{bmatrix}$$ **Definition 2.4** (Orthogonal). Let L_1 and L_2 be Latin squares of the same order, sau $q \geq 2$. We say that L_1 and L_2 are orthogonal if, when superimposed, each of the possible q^2 ordered pairs occurs exactly once. In the other word, two Latin squares $L_1 = ||a_{ij}||$ and $L_2 = ||b_{ij}||$ on q symbols are said to be orthogonal if evry ordered pair of symbols occurs exactly once among the q^2 pairs (a_{ij}, b_{ij}) , $i, j = 1, 2, \dots, q$. The descriptive term orthogonal mate for a Latin square L_2 which is orthogonal to a given Latin square L_1 was first by [6]. For example, the following two Latin squares L_1 and L_2 are orthogonal. For given a Latin square L_1 , L_2 is the orthogonal mate of L_1 . $$L_1 = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}, L_2 = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$ **Definition 2.5** (MOLS). We say that a set $\{L_1, L_2, \dots, L_t\}$ of $t \geq 2$ Latin squares of order q is orthogonal if any two distinct squares are orthogonal, that is if L_i is orthogonal to L_j whenver $i \neq j$. Such a set of orthogonal squares is said to be a set of mutually orthogonal Latin squares (MOLS). For example, the following set $\{L_1, L_2, L_3\}$ is MOLS. $$L_1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}, L_2 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0 \\ 1 & 0 & 3 & 2 \end{bmatrix}, L_3 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 \end{bmatrix}$$ **Definition 2.6** (N(q)). We denote the maximum possible number of MOLS of order q by N(q). **Theorem 2.7.** For each $q \geq 2$, $N(q) \leq q - 1$ **Definition 2.8** (Complete). If we have a set of q-1 MOLS of order q, then the set is said to be complete. Utilizing the property of orthogonal Latin squares and MOLS, several constructions of Sudoku solutions are obtain [1, 4, 5]. **Theorem 2.9** (Prime powers). For q a prime power the set of polynomials of the form $f_a(x,y) = ax + y$ with $a \neq 0 \in GF(q)$ represents a complete set of q-1 MOLS of order q. **Theorem 2.10** (Nonprime powers). If there is a pair of MOLS of order q_1 and a pair of MOLS of order q_2 , then there is a pair of MOLS of order q_1q_2 **Theorem 2.11** (Nonprime powers). If $q \equiv 0, 1, 3 \pmod{4}$, then $N(q) \geq 2$. **Theorem 2.12** (Nonprime powers). For all q except 2 and 6, there is a pair of MOLS of order q; that is, for all q except 2 and 6, $N(q) \ge 2$. **Theorem 2.13** (Nonprime powers). Let $q_1 \times q_2 \times \cdots \times q_r$ be the factorization of q into distinct prime powers with $q_1 < q_2 < \cdots < q_r$. Then $N(q) \ge q_1 - 1$ **Theorem 2.14** (Nonprime powers). For $q_1, q_2 \geq 2$, it holds that $N(q_1q_2) \geq min\{N(q_1), N(q_2)\}$. # 3 Definitons and property for quasigroups with n-ary operators We suggest that readers who wish to learn more about the definitions and property related to quasigroups discussed in this section refer to [7]. Let $n(\geq 2)$ to be an integer and fixed. Generally, when A is an n-ary operation on a non-empty set G, we write $A(x_1, x_2, \dots, x_n)$, for any elements $x_1, x_2, \dots, x_n \in G$. Especially, when A is a binary operation on a non-empty set G, we often write x * y instead of A(x, y), for any elements $x, y \in G$. **Definition 3.1** (n-aray Groupoid). An n-ary groupoid (G, A) is a non-empty set G together with an n-ary operation A. **Definition 3.2** (order). The order of an n-ary groupoid (G, A) is cardinarity |G| of the carrier set G. An n-ary groupoid (G, A) is said to be finite if its order is finite. **Definition 3.3** (Binary Quasigroup). A binary groupoid (Q, \circ) is called a *quasigroup* if for any ordered pair $(a, b) \in Q^2$ there exist unique solutions $x, y \in Q$ to the equations $x \circ a = b$ and $a \circ y = b$. **Definition 3.4** (*n*-ary Quasigroup). An *n*-ary groupoid (Q, A) with *n*-ary operation *A* such that in the equality $A(x_1, x_2, \dots, x_n) = x_{n+1}$ the fact of knowing any *n* elements of the set $\{x_1, x_2, \dots, x_n, x_{n+1}\}$ uniquely specifies the remaining one element is called an *n*-ary quasigroup. **Definition 3.5** (Isotopism of isotopy). An n-ary groupoid (G, f) is an isotope of an n-ary groupoid (G, g) (in other words (G, f) is an isotopic image of (G, g)), if there exsit permutations $\mu_1, \mu_2, \dots, \mu_n, \mu$ of the set G such that $$f(x_1, x_2, \dots, x_n) = \mu^{-1} g(\mu_1 x_1, \mu_2 x_2, \dots, \mu_n x_n)$$ for all $x_1, x_2, \dots, x_n \in G$. We can also write this fact in the form (G, f) = (G, g)T where $T = (\mu_1, \mu_2, \dots, \mu_n, \mu)$. The ordered (n + 1)-tuple T is called isotopy of n-ary groupoids. **Example 3.6.** We give an example of a ternary quasigroup (Q, A) of order 4 using four binary operators A_0, A_1, A_2, A_3 on the set $Q = \{0, 1, 2, 3\}$. At first, we give the following four binary operators A_0 , A_1 , A_2 , A_3 on the set $Q = \{0, 1, 2, 3\}$. These multiplication tables are all Latin squares of order 4. Hence, the set $Q = \{0, 1, 2, 3\}$ is a quasigroup with each binary operator A_i (i = 0, 1, 2, 3). That is, (Q, A_0) , (Q, A_1) , (Q, A_2) , (Q, A_3) are four quasigroups of order 4, | A_0 | 0 | 1 | 2 | 3 | A_1 | | | | | |-------|---|---|---|---|------------------|---|---|---|---| | 0 | 0 | 1 | 2 | 3 | 0
1
2
3 | 1 | 0 | 3 | 2 | | | | 2 | | | 1 | 0 | 1 | 2 | 3 | | 2 | 2 | 3 | 0 | 1 | 2 | 3 | 2 | 1 | 0 | | 3 | 3 | 0 | 1 | 2 | 3 | 2 | 3 | 0 | 1 | | | ' | | | | | ' | | | | | | | | | | | | | | | | A_2 | 0 | 1 | 2 | 3 | A_3 | l | | | | |-------|---|---|---|---|-------|---|---|---|---| | 0 | 2 | 3 | 0 | 1 | 0 | 3 | 2 | 1 | 0 | | 1 | 3 | 0 | 1 | 2 | | 2 | | | | | 2 | 0 | 1 | 2 | 3 | 2 | 1 | 0 | 3 | 2 | | 3 | 1 | 2 | 3 | 0 | 3 | 0 | 1 | 2 | 3 | Next, the ternary operator A of the set $Q = \{0, 1, 2, 3\}$ is given by $A(i, j, k) = A_i(j, k)$. For example, we have $A(1, 2, 3) = A_1(2, 3) = 0$. Therefore, (Q, A) is a ternary quasigroup of order 4. # 4 Orthogonallity of quasigroups with binary operations We suggest that readers who wish to learn more about orthogonallity of quasigroups with binary operations discussed in this section refer to [3] and [7]. In this section, we let G is a groupoid, Q is a quasigroup, $A, B, A_1, A_2, \dots, A_t$ are binary operators on G or Q. In this section, we rewrite the definitions and property for Latin squares in section 2, in the terms of quasigroups with binary operations. **Definition 4.1** (Binary Orthogorality). Two binary groupoids (G, A) and (G, B) are called orthogonal, if the system of equations $$\begin{cases} A(x,y) = a \\ B(x,y) = b \end{cases}$$ has a unique solution (x_0, y_0) for any fixed pair of elements $a, b \in G$. When two binary quasigroups (Q, A) and (Q, B) are orthogonal, and L_A, L_B are the multiplication tables of quasigroups (Q, A), (Q, B), respectively, two Latin squares L_A and L_B are orthogonal. **Definition 4.2** (Basis square). A Latin square for which an orthogonal Latin square exsists is called a basis square. **Definition 4.3** (Mutual Orthogonarity). A set of quasigroups $\{(Q, A_1), (Q, A_2), \dots, (Q, A_t)\}$ over Q is called to be a mutually orthogonal quasigroup system when A_i and A_j are orthogonal for any i, j where $i \neq j$. When a set $\{(Q, A_1), (Q, A_2), \dots, (Q, A_t)\}$ over Q is a mutually orthogonal quasigroup system, and each L_i is the multiplication table of each quasigroup (Q, A_i) for $i = 1, 2, \dots, t$, a set $\{L_1, L_2, \dots, L_t\}$ is MOLS. **Definition 4.4** (N(q)). We denote by N(q) the largest number N such that there exists a mutually orthogonal quasigroup system $\{(Q, A_1), (Q, A_2), \dots, (Q, A_t)\}$ where q = |Q|. The above definition is equivalent to Definition 2.6 in Section 2. **Theorem 4.5.** The followings hold. - $N(q) \le (q-1);$ - If q is prime, then N(q) = (q-1); - $N(q_1q_2) \ge min\{N(q_1), N(q_2)\}$, in particular, if $q = q_1 \cdots q_t$ is the canonical decomposition of q, then $N(q) \ge min\{q_1 1, \cdots, q_t 1\}$; - $N(q) \ge q^{10/143} 2;$ - $N(q) \ge 3$, if $q \notin \{2, 3, 6, 10\}$; - $N(q) \ge 6$ whenever q > 90; - $N(q) \ge q^{10/148}$ for sufficiently large q. # 5 Orthogonallity of quasigroups with *n*-ary operations Finally, we describe about mutually orthogonal quasigroups with n-ary operations. In this section, we let G is a groupoid, Q is a quasigroup, $f_1, f_2, \dots, f_n, A, B, C$ are n-ary operators on G or Q. **Definition 5.1** (*n*-aray Orthogorality). *n*-aray groupoids $(G, f_1), (G, f_2), cdots, (G, f_n)$ are called orthogonal, if for any fixed *n*-tuple a_1, a_2, \dots, a_n the following system of equations $$\begin{cases} f_1(x_1, x_2, \dots, x_n) = a_1 \\ f_2(x_1, x_2, \dots, x_n) = a_2 \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) = a_n \end{cases}$$ has a unique solution. The above definition is can use in the both cases whenever the set G is finite or infinite. When the set G is finite, that is |G| = q, there exist $(q^n)!$ systems. **Definition 5.2.** For fixed k ($2 \le k \le n$), n-aray groupoids (G, f_1) , (G, f_2) , cdots, (G, f_k) given on a set G of order m are called orthogonal if the system of equations $$\begin{cases} f_1(x_1, x_2, \dots, x_n) = a_1 \\ f_2(x_1, x_2, \dots, x_n) = a_2 \\ \vdots \\ f_k(x_1, x_2, \dots, x_n) = a_k \end{cases}$$ has exactly m^{n-k} solutions for any k-tuple a_1, a_2, \dots, a_k , where $a_1, a_2, \dots, a_k \in G$. **Example 5.3.** We give an example of mutually orthogonal ternary groupoids (G, A), (G, B), (G, C) of order 4. At first, we give four binary operators A_0, A_1, A_2, A_3 on the set $G = \{0, 1, 2, 3\}$, such as Example 3.6. The ternary operator A of the set $G = \{0, 1, 2, 3\}$ is given by $A(i, j, k) = A_i(j, k)$. Then, (G, A) is a ternary groupoid of order 4. Moreover, we note that each multiplication table of each binary operation A_i (i = 0, 1, 2, 3) is Latin square of order 4. and (G, A) is also a ternary quasigroup of order 4. Secondly, we give the following four binary operators B_0, B_1, B_2, B_3 on the set $G = \{0, 1, 2, 3\}$, as follows. These multiplication tables of binary operations B_i (i = 0, 1, 2, 3) are no Latin squares, but are all closed in $G = \{0, 1, 2, 3\}$. Hence, (G, B_0) , (G, B_1) , (G, B_2) , (G, B_3) are binary groupoids, not quasigroups. The ternary operator B of the set $G = \{0, 1, 2, 3\}$ is given by $B(i, j, k) = B_i(j, k)$. Then, (G, B) is a ternary groupoid of order 4. | B_0 | 0 | 1 | 2 | 3 | | 0 | | | | |-------|---|---|---|---|------------------|---|---|---|---| | 0 | 3 | 0 | 1 | 3 | 0 | 2 | 1 | 1 | 0 | | 1 | 0 | 2 | 3 | 0 | 1 | 2 | 3 | 3 | 0 | | 2 | 1 | 2 | 1 | 3 | 2 | 0 | 2 | 1 | 3 | | 3 | 1 | 1 | 2 | 2 | 0
1
2
3 | 0 | 0 | 3 | 1 | | B_2 | 0 | 1 | 2 | 3 | B | 3 | 0 | 1 | 2 | 3 | |-------|---|---|---|---|---|----|---|---|---|---| | 0 | 1 | 2 | 0 | 0 | 0 |) | 3 | 3 | 2 | 2 | | | | 0 | | | | | | | 2 | | | 2 | 0 | 2 | 3 | 2 | 2 |), | 0 | 2 | 0 | 3 | | 3 | 3 | 2 | 1 | 1 | 3 | ; | 3 | 1 | 0 | 3 | Thirdly, we give the following four binary operators C_0, C_1, C_2, C_3 on the set $G = \{0, 1, 2, 3\}$, as follows. These multiplication tables of binary operations C_i (i = 0, 1, 2, 3) are no Latin squares, but are all closed in $G = \{0, 1, 2, 3\}$. Hence, (G, C_0) , (G, C_1) , (G, C_2) , (G, C_3) are binary groupoids, not quasigroups. The ternary operator C of the set $G = \{0, 1, 2, 3\}$ is given by $C(i, j, k) = C_i(j, k)$. Then, (G, C) is a ternary groupoid of order 4. | C_0 | 0 | 1 | 2 | 3 | | C_1 | | | | | | |-------|---|---|---|---|--|-------|---|---|---|---|--| | 0 | | | | | | 0 | 1 | 2 | 1 | 3 | | | | | 1 | | | | | 1 | | | | | | 2 | 0 | 1 | 0 | 1 | | 2 | | | | | | | 3 | 3 | 1 | 2 | 3 | | 3 | 1 | 3 | 1 | 1 | | | | ' | | | | | | ' | | | | | | | ı | | | | | | ı | | | | | | C_2 | l | | | | | C_3 | 0 | 1 | 2 | 3 | | | 0 | 3 | 3 | 0 | 0 | | 0 | 2 | 1 | 0 | 0 | | | Therefore, the three ternaray groupoids (G, A) , (G, B) , (G, C) are | |--| | mutually orthogonal, since the following system of equations | $\begin{array}{cc} 2 & 0 \end{array}$ 3 $$\begin{cases} A(x_1, x_2, x_3) = a_1 \\ B(x_1, x_2, x_3) = a_2 \\ C(x_1, x_2, x_3) = a_3 \end{cases}$$ has a unique solution for any 3-tuple $(a_1, a_2, a_3) \in G^3$. #### References 2 3 3 0 2 $1 \quad 0 \quad 1$ $3 \ 2 \ 0$ 1 2 - [1] D. Keedwell (2010); Constructions of complete sets of orthogonal diagonal Sudoku squares, Australasian Journal of Combinatorics, Vol. 47, pp. 227–238. - [2] D. Keedwell and J. Dénes (2015); Latin Squares and their applications, (second edition), North-Holland publications. - [3] C. F. Laywine and G. L. Mullen (1998); Discrete Mathematics Using Latin Squares, John Weiley & Sons, INC. - [4] J. Lorch (2009); Mutually orthogonal families of linear sudoku solutions, *Journal of the Australian Mathematical Society*, Vol. 87, pp. 409–420. - [5] J. Lorch (2010); Orthogonal combings of linear sudoku solutions, Australasian Journal of Combinatorics, Vol. 47, pp. 247–264. - [6] E. T. Parker (1963); Computer investigation of orthogonal Latin squares of order ten. *Proc. Sympos. Appl. Math.*, Vol. 15, pp. 73-81. - [7] V. Shcherbacov (2017); Elements of Quasigroup Theory and Applications, Chapman and Hall/CRC.