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Abstract

For odd integers n greater than or equal to 15, it is known how to construct an
Eulerian circuit of the complete graph of order n whose shortest subcycle length is
n — 4. Furthermore, the author and others have proved that there is no Eulerian
circuit of the complete graph of order n whose shortest subcycle length is greater
than n — 2. The author and others conjecture that, for every odd integer n greater
than or equal to 15, there is no Eulerian circuit of the complete graph of order n
whose shortest subcycle length is n — 3. As part of the proof of the conjecture, the
author and others aim to prove that there is no Eulerian circuit of a complete graph
of order 15 whose shortest subcycle length is 12. Currently, we expect that the con-
jecture above for n = 15 can be proved through large-scale distributed processing.
For distributed processing to be effective, the size of each divided subproblem must
be small enough to fit into the main memory. In this report, we describe the meth-
ods used to achieve this goal and discuss the possibility of applying these methods
to complete the proof.

KEYWORDS. Eulerian circuit, computer experiment, search space, distributed pro-
cessing.

1 Introduction

Some of the terms used in this paper are described in Section 2. For other terms related
to graph theory, please refer to Wilson’s graph theory textbook[3].
The shortest subcycle length s(C') for an Eulerian circuit C' of an Eulerian graph is
defined as
s(C) = min{(j — ¢) mod m | v; = v;}.

Let G be an Eulerian graph. The maximum length of the shortest subcycle of G is called
the Eulerian recurrence length of G and is denoted by e(G). Expression K,, denotes the
complete graph of order n, that is the complete graph consisting of n vertices. For odd
integers n greater than or equal to 15, it is known how to construct an FEulerian circuit of
K,,, whose shortest subcycle length is n — 4[1]. Furthermore, the author and others have



proved that there is no Eulerian circuit of K, whose shortest subcycle length is greater
than n — 2[1].

The authors conjecture that, for every odd integer n greater than or equal to 15, there
is no Eulerian circuit of K, whose shortest subcycle length is n — 3. If this conjecture
holds, then e(K,), the Eulerian recurrence length of K, is n — 4 for every odd integer n
greater than or equal to 15. As part of the proof of the conjecture, the authors aim to
prove that there is no Eulerian circuit of Ki5 whose shortest subcycle length is 12. To
this end, at last year’s workshop, we proposed a method to reduce the search space by
adding constraints on trails of complete graphs. However, no usefulness of such a method
has been found at this time|[2].

Currently, we expect that the above proofs can be achieved through large-scale dis-
tributed processing. For distributed processing to be effective, the size of each divided
subproblem must be small enough to fit into main memory. In this report, we describe the
methods used to achieve this goal and discuss the possibility of applying these methods
to complete the proof.

2 Preliminaries

Let W be a walk of Ki5. We say that W satisfies condition P, if for any sub-walk
vg — V1 — Uy — -+ — vy of W of length 11, vg, vy, ..., and vy; are distinct. A walk
that satisfies condition Pjs is called a P walk.

Hereafter, the vertex set of K5 is described as V' = {0,1,2,...,14}. If there is an
Eulerian circuit of K75 whose shortest subcycle length is 12, then the following trail must
occur by applying some permutation on the vertex set of Kis:

I(15) =183 —=-0—-1—-2— .-+ =511 - 0— 12.

The trail I(15) above is referred to as the initial trail. In the trail obtained by extending
the initial trail, the position of the last vertex 12 on the initial trail is defined as 0, and,
for any positive integer k, the position of the vertex reached from the vertex at position
0 forward through £ edges is defined as k.

For each vertex v € V, x(v) denotes the set consisting of all vertices w in V' such
that w is not adjacent to v in the initial trail. For example, x(14) = V — {14}, x(0) =
V —{1,11,12,14} holds.

3 Division of the search space

Consider dividing the entire search space consisting of Pj5 trails into a large number of
mutually disjoint sets of trails to process the search in a distributed manner. Hereafter,
each set of divided Pj5 trails is referred to as a segmented set. Determine the set S of
invariant vertices by the mapping ¢ for the definition of a segmented set. Sets {0, 6, 14},
{0,2,4,6,8,10,14}, etc. can be considered as the set S above. The vertices belonging
to the set S are hereinafter referred to as pivot vertices. The set consisting of all pivot
vertices is denoted by Sp. Set Sp must be chosen so that the maximum size of a set in
the segmented sets is sufficiently small. Initially, the computer experiment proceeds as
Sp =1{0,2,6,10,14}, and when the need arises to reduce the maximum size of a set in
the segmented sets to a smaller size, Sp = {0,2,4,6,8,10,14}.



A segmented set is defined as the set of trails divided by the combination of whether
each vertex adjacent to pivot vertices appears in the first half or the second half of an
FEulerian circuit. In the definition of a segmented set, the combination of the set of vertices
adjacent to each pivot vertex that appears in the first half of the Eulerian circuit is called
the segmentation parameter of the segmented set. A combination parameter is described
as follows:

P = {(’l}o,S()),(Ul,Sl),...,(Uk,Sk)}. (1)

In the above expression, the set consisting of all pivot vertices is S = {vy, va, ..., vt }, and
each S; is the set consisting of all vertices adjacent to the pivot vertex v; that appear in
the first half, where the size of S; is even. Let p(P,v;) denote the S; in the expression
above. In the expression above, a pivot vertex may belong to an S;. The segmented set
consisting of all Pj5 trails of length m subject to segmentation parameter P is denoted
by W (P,m).

Let P be a segmentation parameter. For two pivot vertices a and b, we say that the
mutual inclusion relations of a and b are different when the truth-values of the propositions
a € p(P,b) and b € p(P,a) are different. A segmentation parameter for which there is
exactly one pair of pivot vertices with different mutual inclusion relations is called a
singular parameter. The vertices at positions 45 and 46 on the Py, trail W subject to the
singular parameter P must both be specific pivot vertices. For example, if pivot vertex b
is adjacent to pivot vertex a and pivot vertex b is not adjacent to pivot vertex a in the
first half of the Eulerian circuit, then vertex a must appear at position 45 and vertex b
must appear at position 46.

Let P be a segmentation parameter. Assume that there is an Eulerian circuit that
satisfies the condition Pjp. Let W € W(P,59) denote the first half of C, and W’ the
sub-trail of length 60 in C' whose initial vertex is the final vertex of W, namely the second
half of C'. Then the segmentation parameter of the segmented set to which p(W’) belongs
must be

p(P) = {(¢(vo), x((v0))—¢(S0)), (p(v1), x(0(v1))=(S1)), - - -, (p(vr), x(w(vk))—w(Skzg-
Note that p(p(P)) = P holds. Also, if either 0 or 14 is a pivot vertex, then p(P) = P
does not hold for any segmentation parameter P, since, for both vertices v € {0, 14}, the
numbers of vertices adjacent to vertex v in the first half and second half of the Eulerian
circuit are different.

Let Y be E(Ki5) — E(I(15)). Set Y consists of all the edges of K5 that are not
included in the initial trail 7(15), and |Y| = 91. Assign a random number r(e) to each
edge e belonging to Y in advance, and define a hash value Z(X) for a subset X of YV
as the exclusive OR of the random numbers corresponding to the edges belonging to X.
Precisely, Z(X) is defined by the following expression:

eeX

The hash value of a trail W obtained by extending the initial trail /(15) is computed as
Z(E(W) — E(I(15))).

A method is proposed below to determine whether or not an Eulerian circuit satisfying
the condition P53 can be obtained by extending a trail belonging to the segmented set



W (P, 60) for a given segmentation parameter P. In this method, both the segmentation
parameters P and p(P) are processed in pairs.

Perform a depth-first search for the segmentation parameters p(P) and P consecu-
tively. First, register the hash value Z(Y — @(E(W))) of each trail W € W(p(P),60)
obtained in the first depth-first search in the hash table H. Then, search from H the
hash value Z = Z(E(W) —Y) of each trail W € W(P,59) obtained in the second depth-
first search. If the hash value z = Z(E(W) —Y) of the trail W € W (P, 59) is contained
in H, we say that W is a false positive for the existence of an Eulerian circuit satisfying
condition Pj5. Hereafter, the statement "W is a false positive for the existence of an
Eulerian circuit satisfying condition Pj5.” is simply written as "W is a false positive.”
Once W is found as evidence for the existence of an Eulerian circuit satisfying condition
Pys, a regular depth-first search is performed using W as the initial trail to determine
whether it is possible to construct an Eulerian circuit that satisfies condition Pjs. Since
finding a false positive trail W € W(P,59) is expected to be very rare for any segmen-
tation parameter P, we expect that processing by the proposed method will not cause a
significant increase in overall computation time.

During the depth-first search, it is desirable to detect as soon as possible that the
current trail W cannot be extended to a trail belonging to the segmented set W (P, 60).
If such a situation is detected, the depth-first search is immediately forced to backtrack
to make the search more efficient. For this purpose, the depth-first search immediately
backtracks as soon as it is determined that the edge specified as having to be chosen by
the segmentation parameter P can no longer be chosen. In detail, do the following. One
occurrence of a pivot vertex on a trail results in the appearance of two edges incident with
the pivot vertex. Let n, be the number of times v can appear on the remaining trails at
time point ¢ when the next vertex is reached after passing the pivot vertex v during the
depth-first search. Furthermore, let n. be the number of edges incident with v, which has
not yet appeared at time point ¢ but whose appearance is specified by P. If 2n, < n,
holds, then it is impossible to extend the current trail to a trail belonging to W (P, 60).
The depth-first search therefore immediately backtracks at time point ¢.

When the segmented set to be searched is specified by the singular parameter P, the
following modifications are made to the depth-first search behavior. In the following,
assume that there exist vertices a and b satisfying a € p(P,b) and b ¢ p(P,a) without
loss of generality. In this case, there must appear vertex a at position 45 and vertex b
at position 46 on any trail W € W(P,60). Register edge ab as passed before the search,
set the maximum depth of depth-first search to 58, i.e., to position 44, and then perform
depth-first search. When the search reaches its maximum depth, if a trail of length 60,
obtained by further adding vertex a at position 45 and vertex b at position 46, belongs
to W(P,60), it has successfully generated a trail belonging to W (P, 60). Otherwise, the
depth-first search is forced to backtrack because it fails to generate a trail belonging to
W(P,60).

4 Concluding remarks

Let e(n) denote the Eulerian recurrence length of K,,. It is known as a previous result
that n —4 < e(n) < n — 3 for all odd integers n = 15. The author and others conjecture
that e(n) = n — 4 for all odd integers n = 15. Especially, e¢(15) = 11 should be proved by



brute force search. However, the search space seems to be too huge to determine e(15)
by single DFS on an ordinary PC.

In this paper, a method to divide the search problem into a large number of subprob-
lems has been proposed. The set of all the subproblems might be solved by large-scale
distributed processing. A parameter P to divide the problem is a set of pairs of a pivot
vertex v and a set S of vertices adjacent to the pivot vertex. All the edges that join v
and a vertex in S must appear on the first half of an Eulerian circuit.

Let W (P, 60) denote the set of all trails subject to parameter P obtained by extending
the initial trail /(15) =13 =0 —1—2 — .-+ — 11 — 0 — 12. Mapping ¢ : V(K15) —
V(Ki5), is defined as ¢(13) = 12, p(12) = 13, ¢(0) = 0, ¢(14) = 14, and ¢(i) = 12— for
i€{1,2,...,11}. By searching W (P, 60) and W (¢(P),60), we can determine whether or
not there is an Eulerian circuit C' of K5 that satisfies condition Pjs.

The computational complexity to solve all the divided subproblems is expected to be
considerably larger than the one to solve the original problem with a single depth-first
search. Preliminary experiments should provide an accurate estimate of the computational
complexity required to solve all the divided subproblems and find an effective dividing
method.
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