Construction of a Latin Hexahedron

Akihiro Yamamura
Akita University
1-1 Tegata-gakuen, Akita, 010-8502, Japan
yamamura@ie.akita-u.ac.jp

Abstract

We consider Latin hexahedra satisfying a certain property similar to Latin squares. We review basic properties of Latin hexahedra and study constructions of such objects. In particular, constructions of separable Latin hexahedron are discussed.

1 Latin Hexahedra and related combinatorial designs

The concept of a Latin hexahedron is introduced by Yamamura [5] in which Latin hexahedra is shown to have close connection to combinatorial designs that are related to one-factorization of the complete tripartite graph $K(2 k, 2 k, 2 k)$ and the complete quadripartite graph $K(n, n, n, n)$. We discuss properties of such combinatorial objects and various constructions. A reader is referred to [5] for terminologies and results on Latin hexahedra.

Let us recall the definitions and basic properties of a Latin hexahedron and related concepts. Let A be an $n \times m$ matrix filled with integers in $\{1,2,3, \ldots, k\}$, where $k=$ $\max (n, m)$. If no integer appears more than once in any row or column, then A is called a Latin rectangle. A Latin square of order n is an $n \times n$ Latin rectangle. A reader is referred to [1]] for Latin squares.

A regular hexahedron of order n is a polyhedron consisting of six faces, each of which forms an $n \times n$ matrix filled with integers in $\{1,2,3, \ldots, 4 n\}$. A net of a hexahedron is an arrangement of a non-overlapping edge-joined polygon which can be folded along edges to become faces of the hexahedron. A circuit of a regular hexahedron of order n is a $1 \times 4 n$ subarray in one of its nets. A circuit of a regular hexahedron of order 2 is shown in Figure [D. We note that there exist precisely $3 n$ circuits on a regular hexahedron of order n. A regular hexahedron of order n is called Latin if every integer in $\{1,2,3, \ldots, 4 n\}$ appears exactly once in every circuit. A Latin regular hexahedron of order 2 and its net are shown in Figure [】.

A Sudoku Latin square is a 9×9 matrix filled with integers in $\{1,2,3,4,5,6,7,8,9\}$ such that each column, each row, and each of the nine 3×3 sub-matrices contain all of the integers from 1 to 9 . It appears in the number-placement puzzle. We introduce a similar property into Latin regular hexahedra. Let L be a Latin regular hexahedron of order n. We say L is a Latin sudoku regular hexahedron if every integer

Figure 1: Circuit of a regular hexahedron of order 2

1	2							
4	3							
2	4	1	3	8	6	5	7	
3	1	2	4	5	7	6	8	
5	6							
8	7							

Figure 2: Latin regular hexahedron of order 2 and its net
in $\{1,2,3, \ldots, 4 n\}$ appears exactly once on each face. For example, a net in Figure $3]$ gives a Latin sudoku regular hexahedron of order 4 . We also say that L is a Latin quasi-sudoku regular hexahedron with multiplicity m if every integer in $\{1,2,3, \ldots, 4 n\}$ appears exactly m times on each face. Existence of a Latin regular hexahedron and a Latin quasi-sudoku regular hexahedron is proved in [5].

Figure 3: Net of a Latin sudoku regular hexahedron of order 4

Theorem 1.1 ([5]) Let n be a positive integer.
(1) A Latin regular hexahedron of order n exists if and only if n is even.
(2) There exists a Latin quasi-sudoku regular hexahedron of order $4 n$ with multiplicity n. In particular, there exists a Latin sudoku regular hexahedron of order 4.

Two proofs are given in [5]. The first one depends on Hall's marriage theorem, on the other hand, the second one is given by using related combinatorial structures called a Latin three-axis design, which are described next. This proof provides a concrete construction of such combinatorial designs.

We consider a combinatorial structure related to Latin hexahedra. It can be applied to construct a Latin hexahedron as we see next. Suppose A, C, D are $n \times n$ squares. We consider a combination obtained by pasting these squares along edges in three dimensional space. Then the triple (A, C, D) is considered as a complex with three axes $o p, o q$ and or shown in Figure 7 . The triple (A, C, D) is called a Latin three-axis design of order n. Each face is coordinated by two of its axes. This implies that any subarray of any net of the complex in Figure $\# 4$ is a Latin rectangle where \cap represents the array obtained from D by rotating $\frac{\pi}{2}$ counterclockwise. Figure $[$ shows a Latin three-axis design of order 2.

Figure 4: Latin three-axis design and its net

x_{1}	1	2		
	4	3		
z_{1}	2	4	1	3
z_{2}	3	1	2	4
		y_{2}	x_{2}	x_{1}

Figure 5: Latin three-axis design of order 2
Next we introduce another combinatorial design. Suppose A, B, C, D, E, F are $n \times n$ squares. The sextuple (A, B, C, D, E, F) is considered as a complex with four axes $o p$, $o q$, or and os shown in Figure 6. Each face is coordinated by two of its axes. If every array in (ILI) is a Latin rectangle, we say that (A, B, C, D, E, F) is a Latin four-axis design of order n.

$$
\begin{array}{|l|l|l|l|l|l|}
\hline A & B & C \tag{1.1}\\
\hline \cup & \amalg & E \\
\hline \infty & D & F \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline \varangle & \amalg & \cap \\
\hline
\end{array}
$$

Existence of a Latin three-axis design and a Latin four-axis design are proved in [5]. We summarize results on existence of such combinatorial designs as Theorem LL.2.

Figure 6: Latin four-axis design
Theorem 1.2 ([5]) Let n be a positive integer.
(1) There exists no Latin three-axis design of order $2 n-1$.
(2) There exists a Latin three-axis design of order $2 n$.
(3) There exists a Latin four-axis design of order n.

Latin three-axis design and a Latin four-axis design are closely related to ponefactorization of the complete tripartite graph $K(2 n, 2 n, 2 n)$ and the complete quadripartite graph $K(n, n, n, n)$. Let us recall terminologies in graph theory. A subgraph of a graph G is called a factor if it includes all of the vertices of G. (see [$[2,3,4]$). If every vertex of a factor has degree h, then it is called a h-factor. Therefore, a 1-factor of a graph $G=(V, E)$ is a subgraph such that the set of vertices is V and every vertex has exactly one edge incident on it. If E can be partitioned into disjoint subsets so that G decomposes into 1 -factors, then G is called one-factorizable. It is known that every complete bipartite graph $K(n, n)$ is one-factorizable. Likewise, a Latin three-axis design and a Latin four-axis design have close connection with one-factorization of the complete tripartite graph and the complete quadripartite graph.

Theorem 1.3 ([5]) Let n be a positive integer.
(1) The complete tripartite graph $K(2 n, 2 n, 2 n)$ is one-factorizable if and only if there exists a Latin three-axis design of side $2 n$.
(2) The complete quadripartite graph $K(n, n, n, n)$ is one-factorizable if and only if there exists a Latin four-axis design of side n.

Aa a direct consequence of Theorem $\boxed{\boxed{2}]}$ and $\boxed{\boxed{3} 3}$, we can conclude the existence of one-factorization of the complete tripartite graph and the complete quadripartite graph as follows.

Corollary 1.4 ([5]) Let n be a positive integer.
(1) The complete tripartite graph $K(2 n, 2 n, 2 n)$ is one-factorizable.
(2) The complete quadripartite graph $K(n, n, n, n)$ is one-factorizable.

2 Construction of a Latin regular hexahedron using Latin three-axis designs

The existence of a Latin regular hexahedron of order $2 n$ has been already proved in Theorem [2] in which Hall's marriage theorem is used. We have another proof that
concretely construct a Latin regular hexahedron of order $2 n$ using Latin three-axis designs. We review such a construction.

Suppose L_{1} and L_{2} are Latin three-axis designs such that $\left|L_{1}\right|=\{1,2,3, \ldots, 4 n\}$ and $\left|L_{2}\right|=\{4 n+1,4 n+2,4 n+3, \ldots, 8 n\}$, nets of which are given in (2.ل1), where A, B, C, D, E and F are $2 n \times 2 n$ arrays, respectively.

$$
L_{1}: \begin{array}{|l|l|}
\hline A & \tag{2.1}\\
\hline C & D
\end{array} \quad L_{2}: \begin{array}{|l|l|}
\hline E & \\
\hline g & \text { خ1 } \\
\hline
\end{array}
$$

We can obtain a Latin regular hexahedron pasting L_{1} and L_{2} along edges. Two of its nets are shown in Figure \square. As a matter of fact, the Latin regular hexahedron given in Figure \rrbracket is constructed in this fashion.

Figure 7: Nets of Latin regular hexahedron obtained by pasting L_{1} and L_{2}
Let us call a Latin box separable if it can be constructed by pasting two threeaxis designs D_{1} and D_{2} as above, and inseparable otherwise. We shall show every Latin hexahedron is not necessarily separable, that is, there exists an inseparable Latin hexahedron.

On the other hand, we have verified that all Latin boxes of side 2 are separable by a computer experiment, that is, every Latin regular hexahedron of order 2 can be constructed by pasting two disjoint three-axis designs and transposing integers on cells in contrapositions.

Let L be a Latin sudoku box assembled by a development given in Figure [8. Suppose L is obtained from a Latin box L^{\prime} of side 4 that is obtained from three-axis designs D_{1} and D_{2} with $\left|D_{1}\right| \cap\left|D_{2}\right|=\emptyset$ by the method given above and transposing integers at contrapositions. We set $P_{i}=\left|D_{i}\right|$ for $i=1,2$, respectively. Then each $P_{i}(i=1,2)$ contains exactly 8 integers, respectively, and $P_{1} \cap P_{2}=\emptyset$. Let $L(i)$ be the set of integers placed at the contrapositions of the cells on which an integer i is placed on L. Similarly, let $L^{\prime}(i)$ be the set of integers placed at the contrapositions of the cells on which an integer i is placed on L^{\prime}. Since L is obtained from L^{\prime} by transposing integers placed on transpositions, we have $L(i)=L^{\prime}(i)$ for every i. We may assume that 1 is located on D_{1}, that is, 1 belongs to P_{1}. Checking Figure we can verify the integers $2,4,8,12$ and 16 are placed at the contrapositions of the cells where 1 is placed on L. Therefore we have $\{2,4,8,12,16\}=L(1)=L^{\prime}(1) \subset P_{2}$ because $1 \in P_{1}$ and the contrapositions of the cells where 1 is placed are located on D_{2}. Similarly we have $\{1,3,5,7,9,10,11,13,14,15\}=L(2) \cup L(4) \cup L(8) \cup L(12) \cup L(16)=$ $L^{\prime}(2) \cup L^{\prime}(4) \cup L^{\prime}(8) \cup L^{\prime}(12) \cup L^{\prime}(16) \subset P_{1}$. We continue the process and obtain Table II. It follows that $P_{1}=P_{2}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$, which contradicts to that P_{1} and P_{2} are disjoint. See Table Il. Consequently, L cannot be constructed from two three-axis designs by transposing integers at contrapositions. It follows that not every Latin regular hexahedron can be constructed in the method above.

Figure 8: Inseparable Latin box

P_{1}	1															
P_{2}	2	4	8	12	16											
P_{1}	1	3	5	7	9	10	11	13	14	15						
P_{2}	2	4	6	7	8	9	10	11	12	13	14	15	16			
P_{1}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
P_{2}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Table 1: Partition

References

[1] J. Dénes and A.D. Keedwell, Latin Squares and their Applications New Developments in the Theory and Applications, 2nd Edition, Elsevier, (2015).
[2] J.L. Gross and J.Yellen and P. Zhang, Handbook of Graph Theory, Second Edition, Chapman \& Hall/CRC, (2014).
[3] M.D. Plummer, Graph factors and factorization: 1985-2003: A survey, Discrete Mathematics, 307, (2007), 791-821.
[4] W. Wallis, One-Factorizations, Kluwer Academic Publishers, (1997).
[5] A. Yamamura, Latin hexahedra and related combinatorial structures, CALDAM 2023, Lecture Notes in Computer Science, Springer-Verlag, 13947, (2023), 351362.

