# On Galois polynomials with a cyclic Galois group in skew polynomial rings II

#### Satoshi YAMANAKA

Department of Integrated Science and Technology National Institute of Technology, Tsuyama College

#### Abstract

K. Kishimoto gave the sufficient conditions for a polynomial of the form  $X^m - a$  in skew polynomial rings of automorphism type to be a Galois polynomial with a cyclic Galois group. In this paper, we shall generalize Kishimoto's results for the general skew polynomial rings.

### 1 Introduction and Preliminaries

My talk at the conference was based on the paper [1]. The contents of this paper therefore overlaps with the publication.

Let A/B be a ring extension with common identity,  $\operatorname{Aut}(A)$  a ring automorphism group of A, and G a finite subgroup of  $\operatorname{Aut}(A)$ . We call then A/B a G-Galois extension if  $B = A^G$  and, there exist positive integer n and a finite set  $\{u_i; v_i\}_{i=1}^n$   $(u_i, v_i \in A)$  of A such that  $\sum_{i=1}^n u_i \varphi(v_i) = \delta_{1,\varphi}$  (the Kronecker's delta) for any  $\varphi \in G$ . In this case, we say that G is a Galois group of A/B, and  $\{u_i; v_i\}_{i=1}^n$  is a G-Galois coordinate system of A/B. It is well known that a Galois extension of fields with a finite Galois group G is a G-Galois extension.

Throughout this paper, let B be an associative ring with identity 1,  $\rho$  an automorphism of B, and D a  $\rho$ -derivation. By  $B[X; \rho, D]$  we denote the skew polynomial ring in which the multiplication is given by  $\alpha X = X\rho(\alpha) + D(\alpha)$  for any  $\alpha \in B$ . Moreover, by  $B[X; \rho, D]_{(0)}$ , we denote the set of all monic polynomials f in  $B[X; \rho, D]$  such that  $fB[X; \rho, D] = B[X; \rho, D]f$ . We say that a polynomial f in  $B[X; \rho, D]_{(0)}$  is a Galois polynomial in  $B[X; \rho, D]$  if  $B[X; \rho, D]/fB[X; \rho, D]$  is a G-Galois extension of B for some finite subgroup G of  $Aut(B[X; \rho, D]/fB[X; \rho, D])$ . We put here  $B[X; \rho] = B[X; \rho, 0]$ . In [4], K. Kishimoto showed the following.

**Lemma 1.1.** Let  $m \geq 2$  be a positive integer,  $R = B[X; \rho]$ ,  $R_{(0)} = B[X; \rho]_{(0)}$ ,  $f = X^m - a \in R_{(0)}$   $(a \in B)$  A = R/fR,  $x = X + fR \in A$ ,  $C^\rho = \{b \in B \mid \rho(b) = b, \alpha b = b\alpha \ (\forall \alpha \in B)\}$ , and assume that  $C^\rho$  contains a m-th root  $\omega$  of unity. If m and a are invertible in B and  $1 - \omega^i$   $(1 \leq i \leq m-1)$  is a non-zero divisor in B, then  $f = X^m - a$  is a Galois polynomial in R. More precisely, if we let  $\sigma$  be a B-ring automorphism of A defined by  $\sigma(x) = x\omega$  and  $G = \{1, \sigma, \sigma^2, \cdots, \sigma^{m-1}\}$ , then A/B is a G-Galois extension whose G-Galois coordinate system is given by

$$\left\{m^{-1}x^i; x^{m-i}a^{-1}\right\}_{i=0}^{m-1}.$$
 (1.1)

The purpose of this article is to generalize Lemma 1.1 for the general skew polynomial ring  $B[X; \rho, D]$ . In section 2, we shall give the sufficient conditions for a polynomial  $f = X^m - a \in B[X; \rho, D]_{(0)}$   $(m \ge 2, a \in B)$  to be a Galois polynomial in  $B[X; \rho, D]$  with a cyclic Galois group, that is a generalization of Lemma 1.1.

## 2 Main result

Throughout this section, let  $R = B[X; \rho, D]$  and  $R_{(0)} = B[X; \rho, D]_{(0)}$ . As in [8, pp.48], we inductively define additive endomorphisms  $\Phi_{[i,j]}$   $(0 \le j \le i)$  of B as follows:

$$\Phi_{[i,j]} = \begin{cases} 1_B & (i=j=0) \\ D^i & (j=0, i \ge 1) \\ \rho^i & (i=j \ge 1) \\ \rho \Phi_{[i-1,j-1]} + D\Phi_{[i-1,j]} & (i \ge 2, 1 \le j \le i-1) \end{cases}.$$

By Lemma [8, Lemma 2.2],  $f = X^m - a \in R \ (m \ge 2, a \in B)$  is in  $R_{(0)}$  if and only if

$$\begin{cases} D^{m}(\alpha) = \alpha a - a\rho^{m}(\alpha) & (\forall \alpha \in B) \\ \Phi_{[m,j]} = 0 & (1 \le j \le m - 1) \\ \rho(a) = a \\ D(a) = 0 \end{cases}.$$

From now on in this section, we shall use the following conventions:

- $C^{\rho,D} = \{ b \in B \mid \rho(b) = b, D(b) = 0, \alpha b = b\alpha \ (\forall \alpha \in B) \}$
- $N_{\rho} = \{b \in B \mid \rho^{i}(b)b = b\rho^{i}(b) = 0 \ (\forall i \ge 0)\}$

Moreover, for some non-negative integer k, we define an additive endomorphism  $\tau_{\rho}^{k}$  of B by

$$\tau_{\rho}^{k}(\alpha) = \sum_{i=0}^{k} \rho^{i}(\alpha) \quad (\alpha \in B).$$

Now we shall state the following theorem which is a generalization of Lemma 1.1.

**Theorem 2.1.** Let  $m \geq 2$  be a positive integer,  $f = X^m - a \in R_{(0)}$   $(m \geq 2, a \in B)$ , A = R/fR, and  $x = X + fR \in A$ . Assume that  $C^{\rho,D}$  contains a m-th root  $\omega$  of unity, there exists  $b \in N_{\rho}$  such that  $\tau_{\rho}^{m-1}(b) = 0$ , and  $\omega$  and b satisfy

$$D(\alpha)\omega + \alpha b(\omega - 1) = b(\omega - 1)\rho(\alpha) + D(\alpha) \quad (\forall \alpha \in B).$$

If m and a are invertible in B and  $1-\omega^i$   $(1 \le i \le m-1)$  is a non-zero divisor in B, then  $f = X^m - a$  is a Galois polynomial in R. More precisely, if we let  $\sigma$  be a B-ring

automorphism of A defined by  $\sigma(x) = x\omega + b(\omega - 1)$  and  $G = \{1, \sigma, \sigma^2, \cdots, \sigma^{m-1}\}$ , then A/B is a G-Galois extension whose G-Galois coordinate system is given by

$$\left\{m^{-1}(x+b)^i; (x+b)^{m-i}a^{-1}\right\}_{i=0}^{m-1}$$

**Remark 1.** In Theorem 2.1, assume that b = 0. Then, it is easy to see that Theorem 2.1 is equal to Lemma 1.1.

**Example 2.2.** We shall show an example of a Galois polynomial of degree 2 in skew polynomial rings. Let  $B = \begin{bmatrix} \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} \end{bmatrix}$  (the  $2 \times 2$  matrix ring over the real umber filed  $\mathbb{R}$ ),  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in B$ , and  $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in B$ . We define two maps  $\rho: B \to B$ ,  $D: B \to B$  by

$$\rho\left(\begin{bmatrix}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{bmatrix}\right) = \begin{bmatrix}\alpha_{11} & -\alpha_{12} \\ -\alpha_{21} & \alpha_{22}\end{bmatrix}$$

$$D\left(\begin{bmatrix}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{bmatrix}\right) = \begin{bmatrix}-\alpha_{21} & \alpha_{22} - \alpha_{11} \\ 0 & -\alpha_{21}\end{bmatrix} \quad (\alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22} \in \mathbb{R}).$$

It is easy to see that  $\rho$  is an automorphism of B such that  $\rho^2 = 1$ , and D is a  $\rho$ -derivation of B. Let  $R = B[X; \rho, D]$ ,  $R_{(0)} = B[X; \rho, D]_{(0)}$ ,  $a = I \in B$ , and  $f = X^2 - a \in R$ . It is obvious that  $\rho(a) = a$  and D(a) = O. In addition, for any  $\alpha \in B$ , one easily see that

$$D^{2}(\alpha) = O = \alpha a - a\rho^{2}(\alpha), \quad \Phi_{[2,1]}(\alpha) = O.$$

Therefore  $f = X^2 - a$  is in  $R_{(0)}$  by Lemma [8, Lemma 2.2]. Let A = R/fR,  $x = X + fR \in A$ ,  $\omega = -I$ , and  $b = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ . It is obvious that  $\omega$  is a (primitive) square root of unity in  $C^{\rho,D}$ , b is in  $N_{\rho}$  such that  $\tau_{\rho}^{1}(b) = b + \rho(b) = O$ . Moreover, for any  $\alpha \in B$ , we can see that

$$D(\alpha)\omega + \alpha b(\omega - I) = b(\omega - I)\rho(\alpha) + D(\alpha).$$

Noting that 2I and a=I are invertible in B and  $I-\omega=2I$  is a non-zero divisor in B, f is a Galois polynomial in R by Theorem 2.1. More precisely, if we let  $\sigma$  be a B-ring automorphism of A defined by  $\sigma(x)=x\omega+b(\omega-I)$  and  $G=\{1,\sigma\}$ , then A/B is a G-Galois extension whose G-Galois coordinate system is given by

$$\left\{2^{-1}(x+b)^i; (x+b)^{2-i}a^{-1}\right\}_{i=0}^1 = \left\{\frac{1}{2}I, \frac{1}{2}(x+b); (x+b)^2, x+b\right\}.$$

**ACKNOWLEDGEMENTS.** This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

## References

- [1] K. Ikegami and S. Yamanaka, Note on Galois polynomials with a cyclic Galois group in skew polynomial rings, submitted to Southeast Asian Bull. Math., submitted.
- [2] S. Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ., 22 (1980), 115–129.
- [3] K. Kishimoto, On abelian extensions of rings. I, Math. J. Okayama Univ., 14 1970, 159–174.
- [4] K. Kishimoto, On abelian extensions of rings. II, Math. J. Okayama Univ., 15 (1971), 57–70.
- [5] Y. Miyashita, On a skew polynomial ring, J. Math. Soc. Japan, **31** (1979), no.2, 317–330.
- [6] K. Sugano, Note on cyclic Galois extensions, Proc. Japan Acad., 57, Ser. A 1981, 60–63.
- [7] S. Yamanaka and S. Ikehata, On Galois polynomials of degree p in skew polynomial rings of derivation type, Southeast Asian Bull. Math., 37 2013, 625–634.
- [8] S. Yamanaka, On weakly separable polynomials in skew polynomial rings, Math.J. Okayama Univ., **64** (2022), 47–61.

Department of Integrated Science and Technology National Institute of Technology, Tsuyama College 624-1 Numa, Tsuyama city, Okayama, 708-8509, Japan E-mail address: yamanaka@tsuyama.kosen-ac.jp