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§0 Introduction

Let G be a reductive linear algebraic group defined over k, and X be an affine algebraic
variety defined over k which is G-homogeneous, where and henceforth k stands for a
non-archimedian local field of characteristic 0. The Hecke algebra H(G, K) of G with
respect to K acts by convolution product on the space of C*°(K\X) of K-invariant C-
valued functions on X, where K is a maximal compact open subgroup of G = G(k) and
X = X(k). A nonzero function in C*(K\X) is called a spherical function on X if it is a
common H(G, K)-eigen function.

Spherical functions on homogeneous spaces are an interesting object to investigate and a
basic tool to study harmonic analysis on G-space X. The cases of sesquiliear forms are
particular interesting, since spherical functions can be regarded as generating functions
of local densities, and the latter have a close connection to global theory of automorphic
forms. We will explain this relation in §1. If one has good explicit formulas of spherical
functions, one may have a good formulas for local densities, and vica versa.

Although one has most interest in the case of symmetric forms, good explicit formulas of
spherical functions nor local densities are not known. On the other hand, one may study
some general theory of local densities without their explicit formulas (cf. [BS], [BHS], [H2],
[H5], [Ki]). In this note, we summarize such results on local densities on hermitian forms
(unramified or ramified hermitian forms over a field and quaternion hermitian forms). In
§1, we define spherical functions and local densities and introduce their relations. Then
we consider linear independence of local densities in §2, and we give denominators of
certain formal power series (Kitaoka series) attached to local densities in §3.



§1 Spherical functions and local densities

Let k a p-adic field, and set 0 = Ok, m = 7, p = 70, g = |0/p|, as usual. We assume ¢
is odd.

We introduce the notations of unramified hermitian case (U), ramified hermitian case (R),
and quaternion hermitian case (D). We set

unramified quadratic extension &’ of £ for (U)
L = < ramified quadratic extension &’ of & for (R) (1.1)
division quaternion D over k for (D),

and O = Oy, and 7, to be the prime element of L such that

T for (U)
L= { I (II?=7) for (R) and (D). (1.2)

For matrix A € M,,,(L), we denote its complex conjugate by A* € M,,,(L), where
(A*);; = Aj;" by nontrivial k-automorphism on £’ for (U) and (R), or by the canonical
involution on D. One may refer [H7, §1] for basic notions and properties of case (D).

Set G =G, = GL,(L) and K = K,, = (GL,,(O). Then the spaces of hermitian forms are
defined as follows (by the corresponding 1)

Vi={zeM,(L)|x*=z}D>X,={xeqG,| 2" =1},
VE=V,NM,(0)D> X =X,nM,(0O), (1.3)
where GG, acts on V,, and X,, by g -z = gxg*, and K,, acts on V,* and X, . Set B = B,
the set of lower triangular matrices in G. For a matrix z of size n, we denote by 2 its
upper left (i x i)-block. We define relative B-invariants d;(z)(€ k), 1 <i <n on X, as
follows:
d;(z) = det(z®) for (U) and (R),
d;(r)? = Nyg(z@)  for (D), (1.4)

where N,q(z®) is the reduced norm on V;(D). The action of b € B is given by

Ny (det(b)) d;(z) for (U) and (R
0 ) = k/k:(' (0')) di(x) (U) and (R) (1.5)
Na (b@) d; () for (D)
For z € X,, and s € C", we consider the integral
s s T di(y) ify e XoP
slais) = [ latkea)d jagr = { e BT BT g

where dFk is the normalized Haar measure on K,, and | | is the absolute value on &k and
XP={xe X,| d(x)#0, 1 <i<n}.
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The integral (1.6) is absolutely convergent if Re(s;) > 0, 1 <i <mn — 1, and continued to
a rational function on ¢°', ..., ¢**. Then it becomes an element of

CO(K\X)={U: X —C| U(k-2)=U(z), k€ K}, (1.7)

and we use the notation w(z;s) in such sense. Let H(G, K) be the Hecke algebra of G
with respect to K and recall the action of H(G, K) on C*°(K\X)

[ 0(a) = /Gf(g)‘lf(gl 2)dg, (f € H(G,K), ¥ € C(K\X), € X), (18

where dg is the normalized Haar measure on GG. We call w(x; s) is a spherical function on
X, since it is a common eigenfunction with respect to the above H(G, K )-action. (This
is a general theory for spherical functions on homogeneous spaces, see [H6], for example.)

For A € X,/ and B € X;I with m > n, we define local density of B by A as follows:
i 8 {v € Myn(O/7°0) | Alv] — B € M, (x‘O)}
im

p(B,A) = lim e 7
v e MP(O/7'0) | Alv] — B € M, (7*O
p(B.A) = lim t{v € Mp (O )ZL(**EU] (T )}, (1.9)
—00 q
where we identify M, (O/7O) with M,(O) /My (7¢0), Alv] = v* Av € V,,(0),
, 1, 2m —n for (U) and (R)
pr — —
MP(O) = GL,,(O) (0) , and (xx) = { 4m—2n+1 for (D). (1.10)

It is known that the above ratios in (1.9) are stable if ¢ is big enough, and for that it is
enough to assume that

The K,-orbit containing B(€ X;) decomposes into cosets modulo V,,(7‘OQ). (1.11)
For A € X\, B € X, and e € N, we have the following

w(meB, weA) = ¢ - u(B, A), pt"(7°B,mA) = ¢ - 4’7 (B, A), (1.12)
where
(+) = n? for (U) and (R)
| n(2n—=1) for (D).

Hence we may define local densities for any A € X, and B € X,,.

The following relations are known (cf. [H1], [H7]), and by these relations we may regard
spherical functions as generating functions of local densities.

Theorem 1.1 (Induction Theorem) Assume that m > n and Re(s;) >0, 1 <i <n and
take anyA € X,t.

w(A;s1,...,5,,0,...,0)
(B, A
= Cn,m(*)' Z MW(B,LLM,:L”)

B, B
BeK\ X n(B. B)
- s (B, A)
= Cn,m(*)'H(l—q ha(s)y . Z BB cw(Bimy, .. 1),
=1 BeK\X; ’
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where

Cnm(l) =

[, - ES" (- 1) _ _ [ a7 for (R)
To0-0 “*“O/W—{ 4% Jor (U) and (D),

2s;i+--+2s,+m—i+1  for (R)

hi(s) =< 2s;+---4+2s,+2m —2i+2 for (U)

Sit- +sp+2m—2i+2  for (D).

The values of w(z; s) and p(z,y) are determined by the K, orbit of z € X, and K,,-orbit
of y € X,,. Set
Ip={yeZ|m= 2w} oTf={vel|w=0}, E={1,0} (1.13)

where 6 € 0°\o. Then the orbit space K,\X,(resp. K,\X;) corresponds bijectively to
A, (resp. A}), where, for each case of (U), (R) or (D), it is given as

A(U) =T,

B m - Aelp, > >N, n >0(1<i<t)
An(R) _{()\’E)_()\l A (e ) c €& ny;is even if ); is odd
A(D) ={XeT, | 8{j| Aj=X,1<j<n} isevenif ) is odd} (1.14)

The set A}( ) is defined by using I') instead of I',, for each case. Here, for (U), the
representatives are diagonal consisting of shape (7") or (7"¢), while for (R) and (Q),

they are orthogonal sums of shape (7") or (7"¢) if A\; = 2r and shape( ](;WT H(;T if

Ai = 2r + 1. Because of the shape A, (R), we should consider spherical functions with
characters for (R) (cf. [H1]).

We define the pairing (, ):V, x V,, — k by

trace(ADB) for (U) and (R)
(4, B) = { > AiBii + 225 Tea(AiyByi) - for (Q),

where T,q4 is the reduced trace on D.

(1.15)

We take and fix an additive character 1 on k of conductor p. For any ¢ > 0, we define
the character v, of conductor p’ by w,(x) = (7 ~*x), and denote by x, the induced
character on o/p*, which is nontrivial on p*~!/p*. (1.16)

By the orthogonal relation of characters, we have the following:

Lemma 1.2 For A € X,, and B € X,, with m > n, on has
u(B A =a- [ dy [ (Al - By
n M"YL'I’L(O)

where dy and dv are normalized Haar measures on M,,,(L) and V, (L), respectively, and
the integral over V,, is understood as

= lim co = L for (U)
v 0y o) 0 ¢ """ for (R) and (D) ~
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For the calculation of local densities for (R) and (D), it is convenient to use the following
Ni(B, A) and V,,(7, £):

. NZ(B7 A)
}L(B, A) - éliglo qén(4m—2n—1)—n(n+1)’
Ne(B,A) = {0 € My, (O/7°O) | Alv] = B € Vyo(m, )}
Vn<7r7€) = {1/ S Vn ‘ Yii S pz7 UZ_] S PQZ?l (VZ77)} . (117>

§2 Linear independence of local densities

We consider local densities (B, A) as functions of B € X, and study their linear inde-
pendence when A € Xt varies by scaling hyperbolic plains. We have studied in [BHS]
the similar problem on local densities of symmetric forms and applied it on global study
of Siegel modular forms. Here we concentrate local theory.

In order to state the results, we need some more notation.

TFo AL, ={rxeTf| (>N}, (2.1)
for A € Ty,
H* =pMLIpM 1o LW € X5,

e ) )

h" =
0o I
(—I1y 0 ) for (R) and (D)
Hy=H%e X, if \=0¢€T}. (2.2)

For \ € kaé, we define \ € FZ,C by N o= $1{j \; >}, Y. For \,pu € I}, we set
<>\7 /’L> = Z?:l Aiﬂi-

Theorem 2.1 Assume that k,¢,n € N, r € Z,r > 0 satisfy the condition k > n and

2n for (U)
2k+r > dn—1 for (R) (2.3)
8 —1 for (D).

Take an S € X, if r > 0. Then one has the following.
(1) For € Af,, T € XY, it satisfies

S, ara™ for (R)

(T, H*LS) = 27
1( ) { ZTan,e a7q2<’\’T> for (U) and (D)
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where, a, = a.(k,S,T) is a constant independent of .
(2) As functions of T € X,}, the set { (T, H*LS) | A € I}, } spans a <n ;— g) -dimensional
Q-space, and the set {,u(T, HF1Hy ., L95) | W E F;’Z} forms a basis.

Recall the character 1) defined in (1.16). For a function f on V,, we define its Fourier
transform if the following integral is well-defined:

F(Nly) = y [(@)(=(x, y))de. (2.4)

For A € V,, and C € V,,, we define the Gauss sum by

G(A,C) = / P((Av], C))dv. (2.5)

mn(O)

It is easy to see that the value of G(A, () is determined by GL,,(O)-orbit containing A
and G L, (O)-orbit containing B. By Lemma 1.2, we see

F<g<’47 ))(B) :COM(BvA)y
if / G(A,x) (- (z, B))dzr is well-defined. (2.6)
V(D)

For z € V,, = V,,(L), we define a constant v[x] as follows. If z € V,,(O), we set v[z] = 1;

if x has eigenvalues of negative m-exponents and 7, ™, ... 7, are the all, we set
T
vz =4, 7= 7 (>0). (2.7)
i=1

It is clear that G(A, C) decomposes into products if A or C' decomposes into orthogonal
sums, i.e.

GAL, A, L5, ¢y =TT 9. C)). (2.8)

i=1j=1

Hence the calculation of Gauss sums is reduced to that within size 1 or 2, which is possible
to calculate (for details, see [H4], [H7]). We note here the following for convenience.

Lemma 2.2 G(A,C) is a product of the following quantities for each case.

For (U), I(a) = /o (7 Ny j(z))dr = (—q)mint0al (g € 7).



For (R), I(a;e) = /o Y(I1%€ N (x))dz  (a € 2Z, € € 0¥)

1 ifa >0,

__1)a/2+1 —
gtD/2¢, (%) , (€0, &= <?1>) if a <0,

J(b) = / (T e (Pxy))dady = g™ (b e 7).
Ox0O
For (D), I(a)= / (I Nyg())do = gm0t (g € 27),
@

J(b) = O(Tra(lxy))dedy = ™00 (b e z2).
Ox0O
Proposition 2.3 For A € X,, and C €V, it holds

G(A, O] < c(A){ ” g:zm jﬁg; % wnd (D) } (2.9)

where, ¢(A) is a constant adjusted for each case.

It is known that the integral (singular series) / v[x]*dx is absolutely convergent if

n

Re(s) >2n —1 for (U) and (R) (cf. [Shi, Th.13.6]. (2.10)

For case (D), we embed M, (D) into Ma, (k") by ., where {1, ¢, I1, ell'} is the standard basis

of D over k and k" = k(e) is unramified, and consider a similar integral v (y)~*dy.
Moy (')
Here for y € My, (k'), if y has eigenvalues of negative m-exponents and those sum is c(y),

we set v (y) = ¢?°Wl: while we set v (y) = 1 if y is integral. Then v[z]? = vy (¢n(z)) for
x € M, (D). This integral is absolutely convergent if Re(s) > 4n — 1 (cf. [Shi, 3.14]).

Hence, together with (2.6) and Proposition 2.3, we obtain the following Proposition.

Proposition 2.4 For A € X,, and T € V,, the Fourier transform F(G(A, ))(T) is
absolutely convergent if m,n satisfy the condition

m > 2n for (U), m >4n—1 for (R), m >8n—1 for (D).
Then, for B € X,,, one has
F(G(A, ))(B) = con(B. A),
where co = 1 for (U), while co = ¢~V for (R) and (D) (cf. Lemma 1.2).

Proposition 2.5 Assume m and n satisfy the condition in Proposition 2.4, and let A; €
Xm(0),1 <i < N. Then the following are equivalent:

(1) As functions of T on X7, u(T, A;), 1 <i < N are linearly independent over Q.

(ii) As functions of X on V,(k'), G(A;, X), 1 <i < N are linearly independent over C.
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Proof of Theorem 2.1:

We prepare some more notation. For each X € V,\V,(O), let 7;™,..., 7, be those
elementary divisors of X which are of negative powers of 7, and 7 > --- 7. > 1, where
71, is the prime element of I, =k’ or D given in (1.2). Set

0e A} if X € V,(0)

T=7(X)= { (11, m) € AH(C AY) if X ¢ Vi(0), (2.11)
and
0e A} if X € V,,(0)
o=0(X)= { (=1, 1 —1) € AH(C AY) i X ¢ V,(O), (2.12)

We note that v[X] = ¢/ (cf. (2.7)).
Assume A € T} and X € V,\V,(O) with 7(X) and o(X) (cf. (2.11), (2.12)). Then

Q(HA,X) — qc(/\,X)7
where

(2% omalt) Y (t—m) for (U)

1<j<n
T >t

Yo malt) Y (t—o) for (R)

1<i<n,
o; >t

23 150 ma(t) Z (t —oy) for (D),

1<i<n,
o; >t

e\, X) =

\

and my(t) = £{i| Ay =t}. When X € V(0O), ¢(\, X) = 0 by definition of 7(X) and
o(X), which is consistent with G(H*, X) = 1. On the other hand, by a combinatorial
calculation of the right hand of ¢(\, X'), which is the same as in [BHS, p.58], we obtain

2 <X, %> —2%k|r| for (U)
GHN, X) = ¢O%) | ¢\, X) = <X, 5> —klo|  for (R) (2.13)

2<X, a'> _2k|o| for (D)
In order to prove Theorem 2.1 (1), we tale A € I'yy and 7" € X, . Under the given
condition on k,n and r, the assumption of Proposition 2.4 is satisfied as m = 2k + r,
hence local densities u(T, H* LS) are expressed as the Fourier transform of Gauss sums

(cf. (2.6)). Here, we write down only for the quaternion hermitian case (D), since the
other case will be done quite similarly.

cop(T, HLS) = / 0 0) -0l G5 Xy~ (T, X))dX,
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o~

where <X, (;(\/X)> is determined by o(X),, 1 <7 < with ¢ coming from A € I'y ;. Hence

we have

w(T, H* LS)
S SRl A 0 HOIG(S, X ) (— (T, X))dX .
reTn, {Xeva |o(X),=ri, 1<i<e}

-~

(*)

The value (*) is independent of A and only dependent on k, 7, S,T. Putting ¢y ' - (%) as
a, we have the required formulation.

Now we prove Theorem 2.1 (2). Denote by W the Q-space spanned by functions
{ (T, H*LS) ‘ A €Ty} on T € X,. Then, by Proposition 2.5, W @ C is isomorphic to
the C-space spanned by functions {G(H*LS,X) | A € Ty} on X € V,. The space W

is isomorphic to the Q-space Wy spanned by functions {q<’\‘?> ‘ S Fk,g} ont e,

by (1). The space W, coincides with that considered in [BHS, p.59], where ¢ should be
replaced by ¢, and it is proved there that dim(Wy) = #(Ly0) = n1eCh. 1

§3 Kitaoka series

3.1. Let us consider the following formal power series (B3, A; X ) for A € X,,, and B € X,
with m > n.

P(B,A;X) =) pu(x"B.A)X". (3.1)

r>0

Kitaoka introduce the similar power series for symmetric forms ([Ki]), and conjectured it
is rational and proved for some special case, hence we call P(B, A; X) as Kitaoka series.
Then Bocherer and Sato proved the rationality by using Denif’s theory and calculated its
denominator for certain case ([BS]). And the author determined the denominators in [H2]
and [H5] by an elementary method, where the rationality is also assured. Following the
same method, we prove the rationality and determine the denominators for hertmitian
cases. We note here all the results for convenience.

Theorem 3.1 Assume that A € X,,, and B € X,, with m > n. Then the Kitaoka series
P(B, A; X) becomes a polynomial of X if it is multiplied by the following polynomial
corresponding to each case.

For case (S) and even m, H(l — (eaq2 ™M HNTIX) where €4 = +1 is given
i=0
explicitly by A, (for details, see [H5] ).



—_

n—

For case (S) in general, (1 —X) H (1 — gn=0ntizmtl) x2)

1=0
For case (U), H (1 — (= 1)mign=i)rtimm) x)
i=0
For case (R) and —1 is square modulo p or m is even, H (1 — gn=dmri=m=1) xy

=0

n—1

For case (R) in general, (1— X) ][] (1 = gn=Dmtizm=1) x2),

i
o

For case (D), H (1 — gn=D@nt2i-2m=1) x),
i=0

3.2. Because of (1.12), it suffices to consider integral forms. From now on, we concentrate
the case (D), and give the outline of its proof (for details see [H7, §4, §5]).

When we consider Kitaoka series P(B, A; X), A € X\ and B € X[ are fixed, so we take
and fix ¢ to be big enough for B to satisfy the condition (1.11), and recall the character
xe on o/p®in (1.16).

For a locally constant compactly supported function f on V,, (i.e. for f € S(V,,)), we
define its Fourier transform with respect to 1, by

()2 (2) = ; JW)e(=(y, 2))dy, (3-2)

where dy is the Haar measure on V,, normalized by vol(V,,(0)) = 1. For A € X and
C € V,(0), we define (finite Gauss sum)

SA,C) = Y x({Al) O)). (3.3)

TEMynn (O/P2)
Since ¥ ((Afv], O)) = (w4 {A[v], C)), we see for A € X}, C € V,(0)
Si(A,C) = ¢"" G(n A, O). (3.4)

We write here the correspondence of A" and G L, (O)\ X, explicitly. Any v = (71,...,7) €
A (cf. (1.14)) is writen as

y=riterft €Z" > > >0, e, >0, e is even if 7; is odd,

and we associtate the element 77 € X" such as

=i Lt e X 55
(my L. (m") € X if 7 = 2u,
re — 0 ufy 0 ugr .
s <(_7TUH 7TO >>J_J_<<_7TUH ﬂ-o >>€Xe+ 1fr:2u+1

By Lemma 2.2, we obtain
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Proposition 3.2 For a € A} and 5 € A}, it holds
S[(?T 7TB) 2€mn . c H qmln{% al+BJ+1}
=1 j=1

c=:{(i,j) | ci and B; are even, and 2 > co; + B; + 1} .
In particular, if 20 > aq + p1 + 1, then
Sg(ﬂ'a.ﬂ'ﬁ) — q22mn . (_1)an|a|+m|ﬁ|+mn.

The group GL,(O/P*) acts on V,,(O/P*), and the coset space bijectively corresponds
to the set

A yy={ver|n <2}, (3.6)
We recall Ny(B, A) defined in (1.17). Further we define for y € A},
NI"(n7,77) = 4{ g € GL,(O/P*) | m[g] — 77 € Vyi(m, ()} . (3.7)

We note here that N} (77, 77) = Ny(n7, 77) if 9 < L.
By Lemma 1.2 and (1.17), we have the following expression of local densities.

Proposition 3.3 Assume that A € X\ and B € X7 with m > n and that { satisfies the
condition (1.11). Then one has
SE<A7 7T’Y)

N (w1, 77)

,U(B,A) _ q—€n(4m—2n+1)—n(n—l)]\/'Z(B7 B) Z

+
76An,2£

(chg)y (77),

where chg is the characteristic function of K,, - B.

Lemma 3.4 Assume2( > a+2, where « is the maximal I1-exponent of all the elementary
divisors of A € X} Then

SZ(A’ 1”) = qfn(Qm—Qn—l) Sg(A, Hn/2) = qfn(2m—2n—1)
Ne(1,,1,) 7 Ne(Hy 2, Hy o) 7

where cq and ¢y are constants determined by A and n, and independent of £.

Proposition 3.5 Assume that ¢ satisfies the condition (1.11). Then

P(B,A;X) = ¢ Um0 N (B BY ST (chp)p (n7) Py(A; X),

761\:24
where
C n(n—m Sé T A
Pi(A; X) = Z = Xy % (3.8)

A(Q[?j 7’) = { e n 2(2—0—7‘)



Fix a7y € Afy, and set i = ms(20) (= §{j| 1 <j <mn, 3; =2(}). Then we may write
¥ = (20)'v with some v € A} _;,,_;, and

B {7} = {v} ife=0
Ay, r) = { {«%) + o e A s | PE A:Qr} ifi>1, (3.9)

We calculate the main quotient term of Py(A; X)((3.8)) as follows.

Lemma 3.6 Assume?y € A}, andi=mz(2(). Take any v € A(F,r) written as in (3.9).
Then, for sufficiently large r with respect to A, one has

St (A, 77) do g S.(A. 7P =0
NZT (7, 77) T ) aigremeem2iey) oA, ) fl<i<mn

N7 (mP,7P)
where a; is a constant determined by ¢, A and v, and independent of r.
For formal power series R;(X) and Ry(X) of X, we write Ry(X) ~ Ro(X) if R1(X) —
Ry(X) is a polynomial of X.
Proposition 3.7 Assume 5 € A ,, and set i = mz(2(). Then it holds
ap - 2;0’0:0 (qn(Qn—Qm—l)X)T ’Lf’L =0
P~(A-X) ~ oo n(2n—2m—1)+i(2i—2m+1) yv\" Sr(AﬂTp) oo
Y ) ;- Zr:O ((] X) Z ZfZ 2 17

NF" (e, )
peA

1,27

where a; is the same constant as in Lemma 5.6.
Especially, if i = 0, then Py(A; X) - (1 — ¢"®=2m=YX) is a polynomial of X .

3.3. Now we consider for 7 € A,, 50 with i = mz(2¢) > 1. By Proposition 3.7, we have to
calculate the sum for p € Af,,. When r = 0, we have

AO) = {A}, Al = {0},

which gives the constant term of P5(A; X). Hence it suffices to consider the sum for r > 1
n (3.8). Hereafter we assume r > 1 and we decompose A}, as follows.

LJAU AW = AUD AU AU =@ unlessi =5 (mod 2),

7,2r

A<0+>—{<zb> lo<b<r},
={(@2+1)|0<b<r—1}ifi=0 (mod 2),
j+) = {(2 ) (ﬂ70l j) eAi,?r‘ Oébgr_la 56A22(7‘—b)7 ﬁ] Z 1} lsz 17
(

AU- )_{ (2b)7 + B)(2b — 1) € A,
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1<b<r, BeAij(r_b)} ifj>1,i=j (mod?2),



We set for 1 <7 < n, according to the summation range

i—1
Qi(X) = D X" ) Npr - W,, => Q7).
j=0

r>1 pGAZQT
%) . . G (x
QV(x) = ZX > Npr = ﬂp Z Qi

Ql(jk)<X) — ZXT Z Npr 71-9 7 (Ogjgi—l, k:ﬂ:). (3.11)

r>1 peA(jk)

Then, the assertion for the case i = m5(2¢) > 1 in Proposition 3.7 can be written as
follows.

PW(A,X) ~ aic‘?i<qn(2n—2m—1)-‘,-1’(21'—2771—0—1))()7 (312)

where a; is the same constant as in Proposition 3.7. The assertion (3.12) is valid also for
i = 0 by putting Qo(X) = >_,-; X" (cf. Proposition 3.7).

Hereafter we calculate ng ) according to the decomposition of A, (for details, see [HS,
§5]).

For 7 = 0, one has

(1 q4z(m Z)X) Q(O ) ~ C Z 7,(2m 2i— 1)X

r>1

(1 . q4i(m—i)X) . QZ(O+) ~ Z i(2m—2i— 1)X

r>1

where ¢ and ¢ are constants independent of r, actually ¢ = ¢;, ¢ = ¢ in Lemma 3.4.
Since Q\”(X) = Q" (X) + Q"7 (X), we have

(1= g x)(1 = ¢®m=2-D x). Q!”(X) is a polynomial in X . (3.13)
Recalling the definition of @;(X) and adjusting the variable (cf. (3.12)), we have

Proposition 3.8 Assume ¥ € A, 9 and mz(2¢) = 1. Then

(1 —g*™VX)1—¢®3X) - Qi(X) is a polynomial in X
(1 — gn@n-2m-Dt2m=lxy(q — gnCr=2m=D Xy . Po(A, X) is a polynomial in X.

Next we consider the case 5 > 1. We have, with a suitable constant c,

(1= X)- QP (X) ~ e X - Qg I BB IX) (G2 (3.14)

13



3.4. In order to calculate Q¥ (X) for j > 1, we need to decompose AUH)(C Ay, as
follows (r > 1 is assumed):

[7/2]
AUH) — |_| AU+kK)
k=0
for 0 <k <[j/2] and j — 2k > 0,
AGHE) { ((20+ 2)7 2% + 4)(2b + 1)2(20)" 7 € Ay
for even j and k = j/2,
AU = (20 +1)7(2b)7 € Ao, | 0 <D< 7 — 1}, (3.15)

0<b<r—-1,7¢€ A]‘+—2k,2(r—b—1)} ’

and define Q§j+’k) (X) as before.

Then, for 0 < k < [%]7 j — 2k > 0, together with a suitable constant ay, which is new and
independent of r, we obtain, ,

(1= " X) - QU (X) ~ X - Qyan(g DY) (3.16)

1

Finally, for even j, we obtain, with a suitable constant ay,

(1= "I X)(1 = gm0 X) - QPP (X) s a polynomial, (3.17)

which is the same type as the case Q,EO) (X) (cf. (3.13)).

3.5. We recall that

i—1 i—1 [7/2]
QiX) =Y QVX)=Q"(x)+ > [ @V x)+ > VP (x)
j=1 k=0

J

Il
o

Then, by (3.13), (3.14), (3.16), and (3.17), we obtain
(1 _ q4i(m—i)X)(1 _ qi(2m—2i—1)X) . Qz(X)

~ (1 _ q4i(m—i)X)(1 . qi(2m—2i—1)X) Z QEJ—)(X) + Z Q§j+,k) (X)

1<j<i-1 0<k<[5/2)
j—2k>0
~ (1- qi(2m—2i—1)X) Z Z i X - Qj_%(q(i—j+2k)(2m—2i—2j+4k—1)X)
1<G<i=1 0 <k < [j/2]
j—2k>0
~ (1- qi(2m—2i—1)X) Z ¢ X - Qj(q(i—j)(Qm—Qi—2j—l)X)> 7 (3.18)
1<j<i-1

14



where c;;, and ¢; are constants. We adjust the variable by (3.12), i.e. we substitute
gr@n=2m=DFiRi=2mt) X for X in (3.18). Then we obtain, with suitable constants ¢,

(1 . q(n—i)(2n+2i—2m—1)X)(1 _ qn(2n—2m—1)X) . Qi(qn(Qn—2m—1)+i(2i—2m+1)X)

1—1
~ (1 _ qn(2n—2m—1)X) <Z (,;X . Qj(qn(2n—2m—1)+j(2j—2m+1)X)) )

=1

(3.19)

Thus, by induction, we obtain for 1 <1 < n,

H (1 _ q(n—j)(2n+2j—2m—1)X) % Qi(qn(Qn—Qm—1)+i(2i—2m+1)X) is a polynomial.
j=0

Hence, by (3.12), we obtain for any 7 € Azzz (even if i = mz(2¢) = 0, cf. Proposition 3.7).

n

H (1 — gn=2)Cnt2i=2m=1) x) 5 P-(A, X) is a polynomial.
=0

Since A:’% is a finite set in Proposition 3.5, we complete the proof of Theorem 3.1, i.e.
we have proved that

H (1 — ¢n=9@n+2i=2m=1) ¥y » P(B, A; X) is a polynomial. 1
i=0

Remark 3.9 [t is easy to see that the polynomials of X appearing in Theorem 3.1 have
rational coefficients.

It is difficult to calculate local densities in general. By a direct calculation, we give a small
example consistent with the assertion of Theorem 3.1.

1 -1 X 1 -2 —4X
P<1,12;X>=<1—q-2>(1+ i o )

1—¢3 1-X 1-—¢3 1-¢3X

15
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