ON LARGE PRIME FACTORS OF FOURIER COEFFICIENTS OF NEWFORMS

SANOLI GUN

ABSTRACT. This is an expository article showcasing some existing results about large
Fourier coefficients of normalized Hecke eigenforms which are non CM forms. We also
allude to some very recent works in this direction.

1. INTRODUCTION

Throughout the article, let p, ¢, ¢ denote rational primes, m,n be natural numbers
and k£ > 2 an even integer. Also let H be the Poincaré upper half plane defined as

H={ze€C:3(z) >0}
and for any z € H, we have ¢ = ¢*™*. Let I" denote the full modular group given by
a b
C
This group acts on the upper half plane H via fractional linear transformations and the

quotient space H/SLy(Z) is the set of isomorphism classes of elliptic curves over C.

Definition 1. A holomorphic function f : H — C is called a modular form of weight k for
SLo(Z) if f satisfies the transformation property

1) fly2) = (2 +d)" f(2)

or any vy = a b € SLy(Z) and also f is holomorphic at oo which is the only cusp up to
Y e d P y cusp up

SLy(Z) equivalence.

Due to the transformation property satisfied by modular forms, they are periodic
functions with period one and hence have a Fourier expansion

f(z) = Zaf(n)q", zeH.

n>0
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Holomorphicity at co ensured that the above power series has no negative terms. We
say that as(n) is the nth Fourier coefficient of f.

Definition 2. A modular form f is called a cusp form of weight k for SLy(Z) if af(0) = 0.

The set of modular forms of weight k for I" forms a finite dimensional complex vec-
tor space denoted by M. The set of cusp forms, denoted by Sj, forms a co-dimension
one subspace of Mj,.

One can define an inner product, the Petersson inner product, on the space of cusp
forms Sj. This is given by

—— dxd
</fyg >=/ f(2)g(2)y"—5=.
H/SL2(Z) Yy

In fact, existence of the integral is ensured if at least one of f and g, say f is a cusp form

as f(z) = O(e"*™) as y — oo. Further, since the integrand is SLy(Z) invariant, choice
of H/SLy(Z) does not matter.

For integers n > 1, the n-th Hecke operator 7;, on the space of cusp forms (one can
define it for all modular forms, but it preserves the subspace of cusp forms and we will
restrict our attention to cusp forms) is defined as follows: For f € Sy, T,,(f) € Sk is
given by

nE =t S ak (S

a>1,ad=n
0<b<d

The family of Hecke operators 7},,n > 1 are Hermitian with respect to the Petersson
inner product. This implies that each T, is diagonalisable and their eigenvalues are
real. Further these Hecke operators 7,,,n > 1 are commuting and hence the space Sj
has a basis consisting of cusp forms which are simultaneous eigen vectors for all these
Hecke operators.

If f =5 ar(n)g" is a Hecke eigen form, i.e. is an eigen vector for all Hecke
operators T;,, n > 1, then its first Fourier coefficient a f(l) is necessarily non-zero. We
say that f is normalised if a;(1) = 1. For such a normalised eigen form, the nth Fourier
coefficient ay(n) is an eigen value of T,,.

Let f be a normalized Hecke eigen cusp form of weight & for SL;(Z). The first such
non-trivial normalized Hecke eigenform belongs to S;, and is called the Delta function

Az) = q[J =g =D 7(n)g"

n>1
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Fourier coefficients of A are called Ramanujan tau function. Ramanujan predicted (see
[18]) three important properties of 7 function. The first two such properties are

T(mn) = 71(m)r(n) for (m,n)=1
2) and 7(p") = (' )7(p) — PP,
for any prime number p and integer » > 2. These were proved by Mordell (see [13,

8, 9] for further details). The third prediction was about size of |7(p)|. More precisely,
Ramanujan predicted that

3) ()| < 2"
which is equivalent to the property that the polynomial
? = 7(p)x + p"

does not have any real root.
A famous conjecture of Lehmer predicts that

T(n) #0  forall n.

Lehmer himself and later independently Kowalski-Robert-Wu [10] and Murty-Murty
[15] showed that

Tn) #0 < 7(p)#0

for all primes p. Let me a sketch a proof of this which will showcase the importance of
Ramanujan’s conjectures (2) and (3) in this context. Suppose that 7(p) # 0 for all p. Let
« and 3 be the roots of the polynomial 22 — 7(p)z + p*'. Using induction and applying
(2), we can write

n—1 ap — By
4) ) = TR
Expanding then right hand side, we see that

) =7 ] 0=+ +2p"),

- _r+1
lsj<—7~

207
where (41 = er+1 and

5, =

0 when r is even;
1 when ris odd.
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7(p)?
' ' pll
integer. However ¢/, + (,;/, + 2 is an algebraic integer. Thus 7(p") # 0 for all r > 1.

< 4 and is a rational number which is not an

Now applying (3), we can see that

Let us fix few notations before proceeding further. For a subset S of primes, we shall
define the lower and the upper densities of S to be

< qx: <zx:
lim inf #psz:peS} and limsup #p<z:peS}
00 m(z) 500 ()

respectively. Here 7 (x) denotes the number of rational primes less than or equal to x.
If both upper and lower density of a subset S of primes are equal, say to D, we say
that S has density D. We say a property A holds for almost all primes if the set

{p : phas property A}
has density one.
Now coming back to the conjecture of Lehmer, the best known result in this direction

is by Serre [20, 21] who showed that 7(p) # 0 for almost all primes in the sense of
density. It is now natural to ask

Question. When 7(p) # 0, what can we say about the lower bound of |7(p)|?

It seems Atkin and Serre thought about this question and predicted that for any
¢ > 0, there exists a constant ¢(¢) > 0 such that

(@) = c(e)p*

for all primes p. In fact, their conjecture was for newforms of weight £ > 4 for

FO(N):{[Z Z] GF:CEOmodn}.

Let f be a normalized cuspidal Hecke eigenform of even weight k > 4 for I'y(N) with
trivial character lying in the newform space and having Fourier coefficients {as(n)},>1.
It is well known that as(n)’s are real algebraic integers and K; = Q({as(n) : n € N})
is a number field (see [22]). We say that f has complex multiplication (or f is a CM
form) if there exists an imaginary quadratic field K such that a¢(p) = 0 for all primes
p { N which are inert in K. Otherwise f is called a non-CM form. Serre, using Roth’s
theorem, showed that if f is a CM form and a(p) # 0, then a(p) satisfies the desired
lower bound. When f is a non CM form, Atkin-Serre conjectured the following;

Conjecture 1. (Atkin-Serre) [19] For any e > 0,
jag(p)| > pt=227
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From now on, we assume that f is a non CM form and ay(n)’s are rational inte-
gers. In 1987, Murty, Murty and Shorey [16] using Diophantine techniques, proved the
following theorem when f = A.

Theorem 1. (Murty-Murty-Shorey) There exists a constant ¢ > 0 such that
[r(n)] = (logn)®
provided T(n) is odd.
Even though it is a very nice result, it does not provide any information about Atkin-

Serre conjecture. It can be easily seen, either by using Jacobi’s triple product identity
or by non existence of non-trivial Galois representations

p: Gal(Q/Q) — GLy(F,)
which are ramified only at 2, that
(p) =0 (mod 2)
for all primes p. One year later, Murty, Murty and Saradha [16], using effective Cheb-
otarev density theorem, proved the following result;

Theorem 2. (Murty-Murty-Saradha) There exists a constant ¢ > 0 such that

lag(p)| > (log p)°

for a set of primes p of density one.

Applying effective Sato-Tate theorem, this result was improved in 2021 by Gafni-
Thorner-Wong [4].

Theorem 3. (Gafni-Thorner-Wong) We have
opi1/? log log p

lag(p)| > Jozp

for a set of primes p of density one.

It is now natural to ask, what can one say about the largest prime factor of 7(p)?
Before proceeding further, let us fix some notation. For an integer n, let P(n) denote
the largest prime factor of n with the convention that P(0) = P(+1) = 1.

For p { N, let o, 3, be the roots of the polynomial 2% — a;(p)z + p*~! and v, =
ay,/Bp. For any prime ideal 3 of the ring of integers of Q(v,), let vy denote the B-adic
valuation. Also let ¢ denote the Euler-phi function and w(n) denote the number of

5



distinct prime factors of n. From the recurrence formula (2), for any integer r > 2 and
primes p { N, we can see that

() = H(I)d(apvﬂp)a
d

d>1

where

X, Y) = [ X-¢Y)ezX,Y], d>2
=1
is the d-th cyclotomic polynomial and (; = e’d. In 2013, Stewart [23] proved the
following theorem.

Theorem 4. If o, 3 € C are such that (o + )%, a3 are non-zero rational integers and ~, is
not a root of unity, then

log d
P(® d —_—
(@a(0, ) > eXp(MOglogd)

for sufficiently large no depending on discriminant of Q(~,) and w(~,).

Applying Stewart’s theorem, for p { N and r > 2, we see that

- logr
ar(p") > rexp <104loglogr) ’

where 7, is not a root of unity. The lower bound for the largest prime factor of a;(p"*)
in the result of Stewart is a function of » and not of p. One would like to have a lower
bound where both p and r appear. Using a “super Wieferich” criterion, one can derive
such desired lower bound. Let us recall the notion of super Wieferich primes.

Definition 3. Let o be a non-zero element of a number field K which is not a root of unity and
p be a prime ideal in the ring of integers O such that v,(«) = 0. We say that y is a Wieferich
prime for o in K if v, (&N =1 — 1) > 2 and is called a super Wieferich prime for o in K if
vy (VW= — 1) > 3. Here N denotes the absolute norm on K.

Using an effective number field analogue of a result of Murty and Séguin [14], in a
joint work with Bilu and Naik [2], we prove the following theorem.

Theorem 5. Let f be as before with rational integer Fourier coefficients and p be a prime with
pt N. Also let v, is not a root of unity, K = Q(~y,) and there exists a integer n > 2 such that

i (=) <
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for any prime ideal B of the ring of integers of K. Then for primes p > 3, we have

1 (k—1—2vpp)logp ¢(r)’
Plag(p™)) > 52n (1)
for all sufficiently large r (depending on f and p). Here vy, is the p-adic valuation of a¢(p), dy
is the degree of K over Q, hy,, is the class number of K and N is the absolute norm on K.

In 2021, when f = A, Bennett, Gherga, Patel and Siksek [1] unconditionally proved
the following theorem

Theorem 6. There exists a computable constant ¢ > 0 such that for any prime p with 7(p) # 0
and for any integer r > 2, we have
log log p”
P " — .
) > ¢ o (B
In 2023, in a joint work with Bilu and Naik [2], using effective Chebotarev density
theorem, effective Sato-Tate theorem, Brun-Titchmarsh theorem, we proved the follow-

ing theorem.

Theorem 7. Let f be a non-CM normalized cuspidal Hecke eigenform of even weight k > 2
for T'o(N) having integer Fourier coefficients {a¢(n)},>1 and let ¢ > 0 be a real number. Then
we have

P(as(p)) > (logp)"/*(log log p)*/*~*

for a set of primes p of density one.

Remark 1.1. Instead of a;(p), if we consider product of a;(p) and a;(p*), using recurrence
formula and analytic techniques, finding lower bound becomes relatively easy. When f = A,
Luca and Shparlinski [12] showed that for a set of primes p of density one, we have

5) P(r(p)7(1) > (logp)+o.
The exponent in the lower bound (5) was further refined to 13/11 by Garaev, Garcia and Konya-
gin [5], but for infinitely many primes p.

Now suppose that the Generalized Riemann hypothesis (GRH), i.e., the Riemann
hypothesis for all Artin L-series is true. Conditionally on GRH, we prove the following
result.

Theorem 8. Suppose that GRH is true and let f be as in Theorem 7. There exists a positive
constant c depending on f such that the set of primes p for which ay(p) # 0 and

P(as(p)) > cp'™(logp)*"
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has lower density at least 1 — 13725
As a consequence of Theorem 7 and Theorem 8, we have the following results.

Theorem 9. Let f be as in Theorem 7 and € > 0 be a real number. Then for a set of primes p of
density one and for all r > 1, we have

P(as(p™ 1) > (log p* 1) 1/3(log log p* +1)3/8~.

Further, suppose that GRH is true and let f be as in Theorem 7. Then for a set of primes of
lower density at least 1 — 2 y and for all r > 1, we have

30k—1
Plag(p™™) > cp'/M(logp® )7,

where c is a positive constant depending on f.

In a joint work with Naik [6], using symmetric powers of a Galois representation
attached to Ramanujan Delta function and divisibility properties of cyclotomic poly-
nomials, we prove the following theorem.

Theorem 10. Let r > 1 be an integer and € > 0 be a real number. Then for a set of primes p of
density one, we have

P(ag(p™)) > (logp™)"/%(loglog p™)*/* .
Further, if ¢ = P(2r + 1) is sufficiently large, then the set of primes p such that
Pag(p*)) > q “(logp™)"/*(loglog p*)*/*
has positive lower density.
Combining Theorem 7 and Theorem 10, we get
Corollary 11. For any € > 0 and any integer r > 1, we have
P(as(p")) > (logp")!/*(log log p")*/*~*

for a set of primes p of density one.



2. FUTURE DIRECTIONS AND NEW RESULTS

Analogous to the question of finding large prime factors of an integer in a short in-
terval (for instance in intervals of length strictly less than x/log ), one can also ask
the question of finding large prime factors of Fourier coefficients of newforms in short
intervals i.e. Atkin-Serre question in short intervals. In a recent work [7], along with
Sunil Naik, we are able to show existence of large prime factors of Fourier coefficients
of newforms in an interval of length 7%= for any A > 0. It would be nice to show
large prime factors in a shorter intervals. Under GRH, we can prove similar theo-
rems [7] in intervals of length as small as z'/2*< for any ¢ > 0.

Acknowledgement. Author would like to thank Purusottam Rath for going through
an earlier version of the article.
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