DISTRIBUTIONS OF SUMS OF THE DIVISOR FUNCTION OVER
FUNCTION FIELDS
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ABSTRACT. We discuss some recent results due to Keating, Rodgers, Roditty-Gershon,
and Rudnick [KRRGR18] and Kuperberg and Lalin [KL22b, KL22a] on the distribution
of certain sums of the divisor function dj(f) over the function field Fy[T'| when ¢ goes to
infinity. The results show that the main-squares of such sums are related to integrals over
the ensembles of unitary, unitary symplectic, and orthogonal matrices. We also discuss
some conjectures over the number field case that can be derived from the function field
statements.

1. INTRODUCTION

Let F, be the finite field of ¢ elements, where ¢ is a prime power. In F,[T], one can
define the divisor function dj(f) analogously to the construction over number fields. More
precisely, for a monic polynomial f,

dk(f) = #{(flaafk) : f:flfk> fj monic},

while di(cf) := di(f) for ¢ € F; and f monic. As in the number field case, this function
arises by considering the coefficients of powers of the zeta function. The zeta function for
F,[T7] is given by

1 1\ 1
Wo=2, =1l (1-7r)
where the sum is taken over the set M of monic polynomials in F,[T] and the product
is taken over the subset P of monic irreducible polynomials. The norm of a nonzero
element f € F,[T] is given by |f| := #(F,[T]/(f)) = ¢¢). The initial sum and Euler
product converge for Re(s) > 1, however, the right-hand side equality gives a meromorphic

continuation with single poles at s = 1 + ig’; for k integer. Then we have

— di(f)
Cq(s)k = Z |kf|5 :
fem
In [KRRGRI18]|, Keating, Rodgers, Roditty-Gershon, and Rudnick study the distribu-

tion of
Siini(A) = Z di(f),
feEMy
f=A (mod Q)
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where M, denotes the set of monic polynomials in F,[T] with degree n, and prove the
following result.

Theorem 1.1. [KRRGRI18, Theorem 3.1] If Q is square free and n < k(deg(Q) — 1),
then the variance of Sg,.n.q 15 given by

2
1) lim Y Sume) _ / Y Se ) Se )|
U(deg(Q)—1)

q—00 qn/|Q| J1ttje=n
0<51,.,jx <deg(Q)—1
where the integral takes place over the unitary matrices, and the Sc;(U) are the secular
coefficients, defined for a N x N matriz U by

det(I +2U) = Zscj

A key ingredient to obtain such result is given by an equidistribution theorem of Katz
[Kat13a].

The work of Keating et al. also includes a similar theorem involving the same integral
in the case of the short interval regime Let

Nahn(A) : Z di(f

feMy
|f—Al<q"

Theorem 1.2. [KRRGRI18, Theorem 1.2] For 0 < h < min{n — 5,(1 — %)n — 2}, as
q — o9,
2

(2)  Var(Winn) = ¢" / S Sen(U)--Se, (U)] dU + 0@ ).

U=h=2) | it
0< 1, i Zn—h—2

An ingredient in the proof of the above theorem is an equidistribution result of Katz
[Kat13b].
The authors further study the integrals in (1) and (2) and obtain the following result.

Theorem 1.3. [KRRGR18, Theorem 1.5] Let ¢ = %&. Then for ¢ € [0, k],

N
2 2 2
/ Y Seu(U) S (U)] AU = mle) N O(N2),
(N) " gy 4tjp=m
0<j1,e- kSN
where
_ 1 2 1k
(3) f}/k(C) = m /071]k (50(11)1 + -+ U)k) g(w, — wj) d"w.

Here 6.(w) = 6(w — ¢) is the delta distribution translated by ¢, and G is the Barnes
G-function, given for positive integers k by G(1 + k) =1!-2l.-- (k — 1)l

Keating, Rodgers, Roditty-Gershon, and Rudnick study various properties of ~x(c).
They prove that it is a continuous piecewise polynomial function of ¢ supported in the
interval [0, k]. More specifically, it is a fixed polynomial for r < ¢ < r + 1 (with r an
integer), and each time the value of ¢ passes through an integer, it becomes a different
polynomial, of degree k% — 1 if [r,r + 1] C [0, k.

2



Based on their result over function fields and their study of the integral in (1), Keating
et al. are able to conjecture the following.

Conjecture 1.4. [KRRGR18, Conjecture 3.3] Let Q be prime and define
Suexa(A) = > di(n).

n<X

n=A (mod Q)
Then, if Q' < X < Q¥ ¢, as X — oo,

X log X 2
Var(Sa,.x.Q) ~ QM <IZ§Q> (log Q)" 1,

where ay, is given by

(R

and Y 18 given by (3).

An analogous conjecture is formulated in the short interval regime.

2. RESULTS IN THE SYMPLECTIC AND ORTHOGONAL WORLDS

In [KL22b], we consider the distribution of dy(f) when restricted to quadratic residues
modulo an irreducible polynomial P. In other words, we define

SiaP)i=" > dlf),
feMn
f=0(mod P)
Ptf
where P is a monic irreducible polynomial of degree 2g + 1. Let P, denote the set of
monic irreducible polynomials of degree n. We prove

Theorem 2.1. [KL22b, Theorem 1.1] Let n < 2gk. As ¢ — o0

1 "k —1
SialP~g ¥ an~ ST,

FeMn
Fif
and
Var'(85,) = — >0 [S5a(P) 5 3 )|
#P2g+1 PcPagia 2 feMn,
Pif
q" ?
(4) ~- > Seu(U)-++Se, (U)] U
Sp(29) © ji+tjp=n

0<g1,--Jk<2g

We remark that this result, while analogous to Theorems 1.1 and 1.3, involves an
integral over the set of unitary symplectic matrices.
We also consider the sum

Niten) = D dulf),
fEMn
f(0)#0
U(f)€eSect(v,k)
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where the sum is taken over monic polynomials of fixed degree with a condition over
function fields that models an analogue of having the argument of a complex number lying
in certain specific sector of the unit circle. This follows a construction of Gaussian integers
in the function field context that was initially developed by Bary-Soroker, Smilansky, and
Wolf in [BSSW16] to study Landau’s counting of integers that are sum of two squares,
and it was later considered by Rudnick and Waxman in [RW19] to model the distribution
of Gaussian primes in circle sectors. The idea is as follows. For a P(T) € P, there exist
A(T),B(T) € F,[T] such that

(5) P(T) = A(T)* + TB(T)?

if and only if P(0) is a square in F,. Set S := /=T so that F,[T] C F,[S]. Now equation
(5) becomes

P(T)=(A+ BS)(A— BS) =pp
in F,[S]. There are two automorphisms of F,[S] fixing F,[T]: the identity and S — —S,

which can be thought of as the analogue of complex conjugation. It can be extended to
the ring of formal power series:

o F[[S]] = F,[[5]] o(S)=-5.
The norm map is then defined by
Norm : Fo[[S]]" — F,[[T]]*,  Norm(f) = fo(f) = f(S)f(=5).
The group of formal power series with constant term 1 and unit norm is
St = {g € F[[S]]* : 9(0) = 1, Norm(g) = 1},

and can be thought of as an analogue of the unit circle in this setting.

For f € F,[[S]], let ord(f) = max{j : S7 | f} and |f|s := ¢ 4, the absolute value
associated with the place at infinity. This finally leads to the definition of a sector in the
unit circle:

Sect(v; k) == {w € S : |w—v| < ¢}
We have the following result.

Theorem 2.2. [KL22b, Theorem 1.2] Let n < {(2x — 2) with k = |5|. As ¢ — oo, the
average ofj\/'j;yk,n s given by

(+n—1
<Ndekn>N H( 621 )a

and the variance Var(NG , ) is given by

2 n 2
_Z\Nfem — (N o) N%/Sp(%_%‘ | > Se(U)--Se;,(U)] dU.

u€eSk

Once again, the integral involved in the above statement is over the set of unitary
symplectic matrices.
Let x2 be the character on [, defined by

0 x =0,
X2(z) =41  xis a nonzero square in F,

—1 otherwise.
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The character y» can be extended to M by defining x»(f) := x2(f(0)). Then equation
(5) is solvable if and only if x2(P) = 1.
In [KL22a], we study the following sum:

Nowl)i= 3 aln) (F).

feMy
f(0)70
U(f)€Sect(v,k)

We have the following result.
Theorem 2.3. Let n < ((2k — 1) with k = |5]. As ¢ — oo, the average of N, . is

eykvn
given by
0 ¢ (l+n—1
<ng,k,n> ~ 2 ( g _ 1 Y

and the variance Var(Ny) . ..) is given by

1
(6) o D N kal) = V)

uESi

2 q” 2
~ = Sc;, (U)---Sc;, (U)| dU.
i ooy | 2 S @) Su(O)

OSJ}::;;]SZ;:—l

We remark that now the integral takes place over the set of orthogonal matrices.

The three Theorems 2.1, 2.2, and 2.3 rest on equidistribution results due to Katz
[KL22b, Kat17].

Naturally, the first step in understanding results in the style of Theorems 2.1, 2.2, and
2.3 consists of studying the integrals involved in (4) and (6). To this end, set

I o(n; N) := > Sc;(U)---Scy, (U)
L]

Sp(2N) J1+tie=n
0<j15--Jk <2N

2

dUu

and
2
19 ,(n; N) = / Y se ) se, )| au
OCNHD © jittjp=n
0% )1, d<2N

The simplest case of k =1 for [ 5;’2(71; N) follows from work by Corey, Farmer, Keating,
Rubinstein, and Snaith [CFK*03].

Proposition 2.4. [KL22b, Corollary 5.12] * If k = 1, then I[flz(n, N) is given by

2 |22 0<n<N
Sea(U)| dU =< 1,3 =nz A,
/Sp(2N)‘ (0) {L—M_Z”HJ N+1<n<2N.

As N — oo, Iglghz(n, N) is asymptotic to
151,2(”7 N) ~ 751,2(0)2]\[,

7512(0) = {

LA different normalization was used for ¢ in the statement of [KL22b, Corollary 5.12].
5
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It can be also seen that I ,(n; N) = 0.
In [KL22a] we do a systematic study of I§ ,(n; N) and I ,(n; N). Before stating the
next result, we recall that a quasi-polynomial P(m) of period r is a function on integer

numbers for which there exist polynomials Py(m), ..., P,_1(m) such that
Py(m)  m =0(modr),
Pi(m) m =1 (modr),
Pim) =1,

P._i(m) m=r—1(modr).

Proposition 2.5. [KL22a, Propositions 4.2 and 8.2]
(1) Forn < N+ 2% we have

oy X (TEGT ()

=0
{=n (mod 2)

Moreover, Iiz(n; N) is a quasi-polynomial in n of period 2 and degree 2k* +k — 2
(provided that n < N + 1),
(2) Forn < N+%,

19 ,(n: N) = ﬁ 3 (”T’Z(g) (_’5)1— 1>2 (e Zf: 1>‘

/=0
{=n (mod 2)

Moreover, ICIOMQ(n; N) is a quasi-polynomial in n of period 2 and degree 2k* — k — 2
(provided that n < N + % ).
The above result shows that
I3 5(n; N) ~ 75, o(€) (2N
for ¢ = 5% and
IdOk,Q(n; N) ~ ’Ydok,2<c)(2N + 1)2k2_k_2

for ¢ = 55, and where 'ygm(c) is a polynomial of degree 2k? +k — 2 (respectively 7%2(0)
is a polynomial of degree 2k* — k — 2) in the interval 0 < ¢ < % However, this does not
completely describe the functions since 75 ,(c) and 7¢ ,(c) are non-trivial in the interval

0 < ¢ < k. We provide evidence that 77 ,(c) (resp. 77 ,(c)) is given by polynomials of

degree 2k? + k — 2 (resp. 2k* — k — 2) in each of the intervals [2, =] C [0, ].

Theorem 2.6. [KL22a, Theorems 1.2 and 1.5] Let ¢ = § be a fived rational number and
k be a fized integer.
(1) If 2N is a multiple of b, then Ifm(cQN; N) is a polynomial of degree 2k* + k — 2
i N.
(2) If 2N + 1 is a multiple of b, then I%Q(C(QN + 1); N) is a polynomial of degree
2k> —k —2in N.

This result is achieved by expressing a generating function involving [ dSk 2(n; N) (resp.
1§ 5(n; N)) in terms of a sum of Schur functions over certain even partitions (resp. even

conjugate partitions). This allows us to interpret I7 ,(n; N) (resp. 17 5(n;N)) as a
6



function counting points inside a polytope, and combining this with Ehrhart theory we can
deduce the degree of 77 ,(c) (resp. 7§ ,(c)) for certain rational values of n. The techniques
from [KL22a] are inspired by those from [KRRGR18], but they are more involved. The
symmetric function theory in the unitary case of [KRRGR18] requires the consideration
of semi-standard Young tableaux arising from a single rectangular Ferrer diagram, while
in [KL22a] we must consider a sum including more general shapes.

We also study the generating functions of I3 ,(n; N) and I¢ ,(n;N) with complex
analysis techniques, allowing us to describe 75k72(c) and 72“2(0) as piecewise polynomial
functions of degree at most 2k* + k — 2 and 2k* — k — 2 respectively for any real number.
More precisely, we have the following result.

Theorem 2.7. [KL22a, Theorems 1.3 and 1.6]
(1) The function ~j ,(c) is given by

75]‘.72(6) _ Z (26 _ k)2k2+k—a(k—a)—b(k—b)—2gib(26 _ k),

0<b<c
0<a<2c—b
and each g3 ,(t) is a polynomial of degree a(k — a) + b(k —b).
(2) The function g ,(c) is given by

Wal) = Y (2e— Pkl atD2g0 (00 g
0<b<c
0<a<2c—b

and each gQ,(t) is a polynomial of degree a(k — a) + b(k — D).

As in the case of the previous results, the techniques for proving the above statements
are similar to techniques employed in [KRRGR18|. However, considerable new challenges
arise when considering the square of the absolute value inside the integrals for [ fm(n; N)
and I9 ,(¢(2N 4 1); N). This square is natural in the unitary case, where the eigenvalues
are complex and the absolute value is necessary. In the symplectic and orthogonal cases,
the square comes from considering the variance, but it is less natural in the random matrix
theory context and poses many technical difficulties.

3. SOME CONJECTURES IN THE NUMBER FIELD CASE

The understanding of v} ,(c) and 7 ,(c) can be applied to formulate conjectures in
the number field setting that are analogous to the statements of Theorems 2.1, 2.2, and
2.3.

Conjecture 3.1. [KL22a, Conjecture 1.1] Let p be a prime and define

Siap) = > di(n)

n<x

n=0 (mod p)
pin

Let 2% <. Fory <p <2y,

x log 2l
(7) Varpely 2] (Sgi) ~ agZﬁm <10gy——1) (logy — 1)*+7%,
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where ay is certain arithmetic constant and 75}672(0) 1s a piecewise polynomial function of

degree 2k* + k — 2 given by
s 22+t (k) (k)y5 (0 (2H) )
fydk,Z( ) _G(l + ]{3) 0. k +3 3, 5C<ul + -4 Uy, )526(U1 +---+ Uy )
0,12

ugk) < ... < ugzk)-
(8) x1|u® < o< P AW Wl u)da ey,
(2K)
gy,

where 1x denotes the characteristic function of the set X and A denotes the Vandermonde
determinant.

Here the variance is defined by

Var,e(y 2] Sdk:l‘ = Z ( Z dk(n>_<8d5;c§x>)27

y<p<2y n<zx
n=0(mod p)
ptn

where () denotes the average given by

dk, = Z Z di(n) de Z 1.

y<p<2y n<x n<x y<p<2y
n=0 (mod p) n=0 (mod p)
pin pin

To reach Conjecture 3.1, one can rewrite (4) as

%/ oS " s n 22 +k—2
Var' (S5, ~ %ot (51 ) 20)
and compare the sums

SiaP)= Y dlf) and  Si.)= Y,  d(m).

feEMy m<x
f=0(mod P) n=0 (mod p)
Pif ptm

We see that ¢ represents the size of f on the left side. Hence, it corresponds to the size
of m given by x on the right side. Similarly ¢29*! represents the size of P on the left side.
To control the size of p, it is natural to consider a condition of type y < p < 2y. Replacing
q" by z, n by logz and 2¢ by logy, we reach formula (7), except for the arithmetic factor
ag. Formula (8) comes from the interpretation of I3 ,(n; N) as a function counting points
inside a polytope ([KL22a, Proposition 3.5]).

Following Rudnick and Waxman [RW19], each ideal a = (a) C Z[i] can be associated

« 140,

to a direction vector u(a) = u(a) = (5)2 in the unit circle, and we can write u(a) = e
For a given 0 let Ix(0) = [0 — .0 + &] be a neighborhood of . We consider

d@K :L‘ Z dé

aideal
N(a)<z
Oa€ly (9)

and obtain the following conjecture by replacing ¢" by x and ¢ by K in Theorem 2.2.
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Conjecture 3.2. [KL22a, Conjecture 10.2] Let v < K*. Then, there is a constant a7 € Q

depending on € such that
z log e
Var (V) ~ o 8 (g =3 ) (Blon K — 2%+

Here the variance is given by

Var (/\/'C}S;Kz) == / ( Z de(a dZKI>)2d9,

aideal

N(a)<z
eaEIK(G)
where
S m/? 1
Nis rew) == / Z de(a Z de(a / ]leaeIK(e)d(g:? Z de(a).
aideal aideal aideal
N(a)<z N(a)<z N(a)<z

QGEIK(Q)
Now consider the character defined for 7 € Z[i] prime as

() 1 7 =a*+b* for a,b € Z]i],
T) =
X2 —1 otherwise,

and extended multiplicatively to Z[i]. Define the sum

M@= S dia (1+>§2( ))_

a=(a) ideal
N(a)<z
0.1k (0)
The following conjecture is obtained by replacing ¢" by x and ¢ by K in Theorem 2.3.
Conjecture 3.3. [KL22a, Conjecture 10.3]Let x < K*. Then there is a constant af € Q
depending on ¢ such that

log x
Var (Ndog,K;x) ae 4K7dg 2 <

e 21 K_12Z2—Z—2

where

2 _
6) _ k) (k) (2k—1) (2k—1)
'de,z(c) _G—(1+k) /071 gu2 Oc(uy’ + + 1wy, )0 (uy ot Uy )

g
ugk) < ... < ugzk)-
9) x 1 u,(f) < < u,(fk) A(ugk), uék), . u,ik))d =5,
ok
_uék ) J
Here the variance is given by
o 2 /2 o 9
Var (N i) = = / (X ) (M) @6
0 .
N(a) sumacl)?igéo squares
N(a)<z
eaEIK(e)
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where

o _g /2
<ng,K;:c> ‘_7T A Z dg(a)dQ

aideal
N (a) sum of two squares
N(a)<z
QGEIK(Q)
2 [T/ 1
= > df(“)—/ Loserio)dd = 2 > de(a).
ideal T /o ideal
aidea aideal
N (a) sum of two squares N (a) sum of two squares
N(a)<z N(@)<e

Formula (9) comes from the interpretation of I ,(n; N) as a function counting points
inside a polytope ([KL22a, Proposition 7.4]).

To have a whole understanding of the above conjectures, it remains to formulate precise

descriptions for the arithmetic factors ay, a7, and a9. We hope to deduce these arithmetic

factors in the near future by following the work of Conrey, Farmer, Keating, Rubinstein,
and Snaith [CFK*05, CFK*03] giving a heuristic by comparing the number field setting
with the random matrix theory arising from the function field setting.
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