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1. MODULAR FORMS, THEIR L-FUNCTIONS AND CONVERSE THEOREMS

Let H= {z € C: (2) > 0} be the usual Poincaré upper half plane. For an integer k, we
define an action of v = (2%) € GL] (R) to functions i : H — C as

k _
(hle)(2) = (dety)2 (cz +d) *h(v2).
For positive integers N and k, a Dirichlet character y modulo N, let f be a modular form

for To(N) of weight k with nebentypus y. We further assume that f is cuspidal and it has the
following Fourier expansion
Z ar(n)n e (nz)

where e(z) = 2™, Let Sk(N,x) be the space of cuspidal modular forms of level N, weight k
and nebentypus character x. It is well-known that the dimension of the space S (N, x) is finite.

Each modular form has the associated L-function. For a given cusp form f € Si(V, x), we
consider the completed L-function:

M) =T (s+ 5 2,

where

s f):Zaf(n)n y
n=1

and I'c(s) = 2(2m) °T'(s). The series converges absolutely for £(s) > 1.
wy = ( O VN and let
Leth—<\/N 0 )an e
f(2) = (flrwn)(2)-
Then f € Si(N, ) since wyTo(N) = ['o(N)wy. The L-functions for f and f have the following
properties:
e A(s, f) and A(s, f) continue to entire functions of finite order;
e the L-functions satisfy the functional equation

(1.1) A(s, f) = "Nz —*A(1 — s, f).

It is well-known that one can show these properties by using the integral representation of
the L-function. The completed L-function A(s, f) can be written as the Mellin transform of

fliy):

] o0 o0
/ f(i’y)’ys’L%@ = fan' 7 / eIy ay =A(s, f).
0 [ — 0 Y
The analytic continuation and functional equation follow by the relation f = flrwn.

By reverting the above argument, we can prove Hecke’s converse theorem (1936) : for N < 4,
the modular forms of level N are characterised by the L-functions, i.e., the analytic properties of
them and the functional equation (1.1). Here is a sketch of proof. For given sequences of complex
numbers {f,}%%, and {f,}%%,, we construct the completed L-functions A(s, f) and A(s, f).
Assume that the completed L-functions continue to entire functions of finite order and satisfy
the functional equation (1.1) with the given positive integers k and N < 4. By applying the
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inverse Mellin transform to the completed L-function A(s, f) and using the functional equation

(1.1), one can prove that the function f(z) = >, fnn% e(nz), which is constructed by the
Fourier expansion with the coefficients of the given L-function, is invariant under the action
of T = (}1) and Wy = wyTwy' € T'o(N). When N < 4, the set {T, Wy, —Wy, —I>} can
generate the group I'g(IN). Therefore, we can show that the function f(z) is a modular form of
weight & for T'o(N).

When N > 4, this method does not hold. In fact, the vector space of sequences {f,}32,
{fn}oo | satisfying the above conditions is infinite dimensional [15].

To extend the converse theorem in the line of Hecke’s arguments, one needs more relations
associating the given sequences (or L-functions) and the elements in T'o(N). Weil (1967) [17]
and Razar (1977) [14] proved converse theorems for arbitrary level by assuming the functional
equations of the L-function twisted by Dirichlet characters.

Let us define L-functions of cusp forms twisted by characters: for a cuspidal modular form
f and a Dirichlet character v,

Ao £ =Te (s 251 266 10)

where

o0
ar(n)p(n
Lis, f.0) =Y %
n=1
Here af(n)n% is the Fourier coefficient of f at n. Then A(s, f,1) continues to an entire
function of finite order and satisfies the functional equation similar to (1.1).

For given sequences {f,}°2, and {f,}22,, for Weil’s converse theorem we assume analytic
continuation and functional equation for all L-functions twisted by primitive Dirichlet characters
of conductor ¢, where ¢ is a prime which does not divide N. We need to consider infinite set
of such primes. See, for example, [13, Theorem 4.3.15]. Razar’s converse theorem uses different
types of Dirichlet characters: Dirichlet characters modulo ¢ where ¢ is divisible by N and
N < ¢ < N2. Razar’s converse theorem requires finitely many twisted L-functions.

Afterwards, the converse theorems for modular forms and generally converse theorems for
automorphic representations and their applications have been studied actively. One can find
more about converse theorems for GL,, automorphic forms in [12], [9], [6], [2], [4], [5] and others.

1.1. Main theorem. In 2002, in his thesis, Venkatesh [16] proved a converse theorem for
modular forms of weight k for SLy(Z) allowing a finite set of poles for L-functions, satisfying
infinitely many functional equations (twisted by additive characters), with a completely new
method - using the Petersson trace formula.

In [1], with Booker and Farmer, we follow Venkatesh’s idea in the context of Langlands’
Beyond Endoscopy, and prove converse theorems for modular forms of arbitrary level N with
gamma factors of Selberg type. Kaczorowski and Perelli [11] recently classified the elements
of the Selberg class of degree 2 of conductor 1 without the need of any twists. But very little
is known for higher conductor. Since our converse theorem admits a generalization to gamma
factors of Selberg type, it can be viewed as a converse theorem for degree 2 elements of the
Selberg class, albeit with infinitely many functional equations. Our result is the first that we
are aware of to consider both arbitrary level and degree 2 gamma factor with infinitely many
functional equations. ~

Assume that the sequences of complex numbers {f,}2°; and {f,}32; and ~(s) satisfies the
following properties:

(1) The series
Ly(s) = Z fan™® and  Lg(s) = Z fan™®
n=1 n=1

converges absolutely for £(s) > 1;



(2) Qa)‘j € R and i € C with Q,Aj > 0,

= [IT s +my).-
j=1
Here R(p;) > —3\; and PPYESS
Given a € Q, we define the twisted L-functions:

(o)

«) ziéfne(noz)n_S and L g( Z -F
n=1

=1
and the completed L-functions with ~(s):

Ag(s,0) :=~(s)Ly(s,) and  Az(s,a) :=(s)Ls(s, ).
With these notations and conditions we state our converse theorems.
Theorem 1.1. Let N be a positive integer, x be a Dirichlet character modulo N and w be a
non-zero complex number. For every q € NZ>1 and every pair w,v € Z with vv = 1 mod g,
assume that Ay (s ) and A ; ( —g) continue to entire functions of finite order and satisfy

the functional equation

(1.2) Ay (s, %) = wx(v)ql_QsAf (1 — s, —g) .

Then there exists a positive integer k such that f(z) => o2, fnn% e(nz) is a modular form of

weight k, level N and nebentypus character x.

Theorem 1.2. Let N be a positive integer, x be a Dirichlet character modulo N and w be a
non-zero complex number. For every q € Z>1 with gcd(q, N) = 1, and every pair u,v € Z

with uNv = 1 mod q, assume that Ay (s, %) and Af <1 — s, —g) continue to entire functions

of finite order and satisfy the functional equation
Ay (8, %) = wx(g)(Ng?)2 A ( ,—3)-

Then there exists a positive integer k such that f(z) => o7, fnn% e(nz) is a modular form of
weight k, level N and nebentypus character x.

Theorem 1.1 appears in [1, Theorem 1.1]. Theorem 1.2 and converse theorems with twisted
L-functions associated with the cusps for I'g(N) will appear in a follow-up paper.

Remark 1.3. e Theorem 1.2 can be considered analogous to Weil’s converse theorem. In
a follow-up paper we will use functional equation of additively twisted L-functions with
o= %, where ¢ € MZ>; for M | N with ged(M, N/M) = 1 and u € Z with ged(u, q) = 1.
Theorem 1.2 is the case when M = 1.

e Using the Bruggeman-Kuznetsov trace formula and the method of [7], one can prove a
similar converse theorem for Maass forms. This is a work in preparation.

o If we suppose L(s) (without twist) lies in the Selberg class (so it has Euler product)
then we can combine methods used in [10] and [3] to constrain the possible poles of
the completed twisted L-functions. Then it would be possible to relax the analyticity
conditions for the completed twisted L-functions and allow them to have arbitrary poles
inside the critical strip.

2. IDEA OF PROOF

2.1. Petersson formula. Let Hy(N,x) be the orthonormal basis for Si(N,x). Each ¢ €
Hi(N, x) has a Fourier expansion of the form:

Zpg nn'T e (nz) for some py(n) € C.
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The Petersson formula [8, Corollary 14.23] gives, for k > 2,

Ty Z Pg(”)m = Open + 27 " Z 'Sx(mq’—n; ? Jr—1 (4%%) ;

4 k—1
@Wm) ™ e 4ENZ3, q

where

Smma) = 3 vlae (")

a,a mod g,
aa=1 mod ¢

is the twisted Kloosterman sum and Ji_1(y) is the classical J-Bessel function.

Our goal is to isolate g € Hy (N, x) which is associated with the given sequences {f,}°° ; and
{ fn}?zl based on the given functional equations. We insert the Rankin-Selberg convolution of
the given {f,}5°, and g € Hi (NN, x) on the spectral side of the Petersson trace formula:

(2.1) % Z pg(N)L(s, f X §) = 0nemC ™) (28) frun™*

gEHK(N,X)
_ fm Sy(n,m;q) 4dm/mn
+ 27 k¢ 20 Y T .
SN ol oE CRACL PN L

ENZ>1 m= 1

Here
L(s, f x g) 23 Z fm
ms

To study (2.1), we use the analytic properties and functional equations of L-functions twisted
by additive characters.

2.2. Sketch of proof of Theorem 1.1. We continue from (2.1). We will show that the left-
hand side of (2.1) continues analytically to R(s) > % except a possible simple pole at s =1 by
applying the analytic properties of the twisted L-functions. Then the right-hand side of (2.1)

also continues analytically to R(s) > % except a possible simple pole at s = 1 and we can isolate

g € Hi(N, x) which is associated with {f,}22,
We open up the Kloosterman sums S, (n,m;q) and the J-Bessel function with the Mellin-
Barnes integral representation,

1 Te(u+55%)
B =5 e o

with o9 € (45%,0). The series and integrals converge absolutely when R(s) > 2 and we are
allowed to change the order of the sums and integrals. Then infinitely many additively twisted

L-functions associated with f appear in the geometric side:

F(if;f;_ll) Y pe)L(s. [ X §) = 60 (28) fan ™

ger:(N7X)
+%1)
ti 23 Z 27”/8% k+1)

< ()2 g2 Z e ("2) Ly(s-+ wafa) du
a,a mod g, q

aa=1 mod ¢



We apply the functional equations (1.2) for the additively twisted L-functions Lf(s + u,a/q)
and get

(2.2) % S pe(m)L(s f % 9)

QGHK(N7X)

— () (26) fun~* + Z-—kfnn—HSNz—ZSTC(QS —1)F(k) + Ps(s)

where Pf(s) is a function which is analytic for R(s) > £ (see [1, (3.4)]). Here

Fk) = — Fe (5™)(=%)
2mi Jrw=-3 Te (H574) v(1+ %)

Note that the right-hand side of (2.2) continues analytically to R(s) > %, except a simple at
s =1 for {(2s — 1). Since Si(N,x) is a finite dimensional space, Hi(N, x) is a finite set. By
considering different positive integers n, we can solve a system of linear equations and prove
that each Rankin-Selberg convolution L(s, f x ) for g € Hy(N, x) on the left-hand side of (2.2)
also has analytic continuation to R(s) > % except a possible pole at s = 1.

The right-hand side of (2.2) has a pole at s = 1 with a non-zero residue if F(k) # 0. So if
F(k) # 0 for some k > 4, then at least one of the Rankin-Selberg convolutions in the spectral
side (left-hand side) of (2.2) should have a pole at s = 1 with a non-zero residue. This implies

that, after taking the residue at s = 1 for both sides, we have

1 2FNT(k—1)
F(k) o(N) (4m)k=t 2

(V)
4

fn = pg(n)ReSs:lL(Sv f X g),

gEHL(N,X)

for any n € Z>y. Since Sk(N,x) is a vector space, we have f(z) = > 7, fnn%e(nz) €
If F(k) = 0 for all k > 4, then we can show that y(s) = cH*I'c (s + Z_Tl) for ¢ € {1,2,3}
and y(—1) = (—1)!, for some ¢, H € R+ [1, Proposition 3.2]. The next step is proving that H
should be less than or equal 1 for these cases. Then, we use the methods of the proof of the
classical converse theorem to prove the results in Theorem 1.1. With H < 1, this requires more
work, but we will not explain further here. See [1] for the details.
We can prove Theorem 1.2 similarly going through the Petersson trace formula at the cusp
0.
O
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