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ABSTRACT. We revisit the Kahan-Hirota-Kimura discretization of
a quadratic vector field. The corresponding discrete system is gen-
erated by successive iterations of a birational map. We include a
proof of a formula for the Jacobian of this map. We essentially
focus on the case of the Lotka-Volterra system. We show that in
this case, the formula is equivalent to the preservation of a singular
volume form as shown before by Sanz-Serna. It is not clear for the
moment if the discretization of the Lotka-Volterra is an integrable
system for all values of h. We show that the KHK-map for h = 1
preserves a pencil of conics (generic hyperbolas). We then propose
numerical simulations for several values of h.

1. INTRODUCTION

The Kahan discretization was introduced in the unpublished lecture
notes of a AMS congress organized at the Fields Institute in 1993 (|13]).
The next appearance of this discretization was in two articles of Hi-
rota and Kimura in 2000 (|15, 16]) where it was shown that in several
cases the method preserves integrability. According to a proposal of T.
Ratiu, discretizations of KHK type should be considered for numerous
integrable systems ([19]). We mainly focus in our article to Quadratic
Planar Vector Fields.

2= f(2)=Q(2) + B(z) + ¢
z = (z,y) € R%

(1)

Each component of @ : R? — R? is a quadratic form, while B €
GI1(2,R) and ¢ € R%
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The Kahan-Hirota-Kimura (KHK) discretization of the Quadratic
Planar Vector Fields is the mapping z — 2’ defined as:

2 —z N1 ,
(2) ; :Q(z,z)+§B(2+z)+c,

where Q(z, 2') = 3[Q(z+2')—Q(z) — Q(2)] is the symmetric bilinear
form corresponding to the quadratic form Q.

In the case of quadratic vector field, this mapping can be identified
with the (implicit) Runge-Kutta discretization:

= I+ 25 - 51,

<z = (x,y),z’ = (Ilvy/)-
Expanding the Taylor series about z shows that:

Z -z

(3) I

/

) S )+ 3D -

This yields an explicit KHK rational map:

) S = Fe) = = + (T = 5DIE) (),

where D f(z) is the Jacobi matrix of f(z).
Another remarkable point is that:

Fy ' (2) = Fou(2),
and thus, in particular, the KHK-map is birational. Further refer-
ences on the subject include ([5, 6, 7, 8, 9, 12, 14, 17, 18, 22]).

2. A KEY FORMULA FOR THE JACOBIAN

Theorem 1. Consider a KHK-map of a quadratic vector field in any
dimension n :

Fy:z= (21, ..k,) = 2" = (27, ...2})

Set A = A(z,h) = Det(l — %Df(z)) and denote A" := A(2',—h);

the following formula can be shown:

(6) day A Nn dar’l/\.../\:c;.
A A
Be careful that this relation cannot be interpreted as the conservation
of a volume.
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Proof. Denote A = %—’i the Jacobian matrix of the coordinates 2’ rela-
tively to z.
From the formula (3), we deduce

h h z+ 2 h ,
A-1T= —§Df(z)+§2Df( 5 I+ A) — §Df(z )A.

Using the fact that Df() is linear, this yields

A=1-2DJ(=)+ 2(DI) + DI+ A) ~ 2DJ()A,

which displays:

(1= 2Dspa = 1+ SD7(),

this implies:

ADetA = A.

3. THE DISCRETE LOTKA-VOLTERRA AND THE THEOREM OF
SANZ-SERNA

After some scaling, the famous Lotka-Volterra system modeling the
interaction of predator with prey can be written as

& =u(l-y)
" y=ylr—1).

This system is not Hamiltonian for the usual symplectic form but it
is "generalized Darboux" integrable with H = zye™(**¥).

In order to avoid the appearance of various powers of 2, we change
h/2 into h (cf. [21]). The KKS discretization yields to:

¥ —x=h[(x' +x)— (2'y + zy)]
y =y =0y +xy) — (' +y)l,
and this displays:

(8)

9) A= A(z,y,h) =1—h*—h(l —h)x + h(1+ h)y,
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¥ = %[(1 + )% — h(1+ h)z — h(1 — h)y]
(10) ! Y 2
y :Z[(l—h) + h(1+ h)x+ h(1 = h)y|.

Denote the mapping defined above by:

(mlvy/) = Fh($7y) = (Ah($7y)7 Bh($>y)'
It should be noted that this KHK map leaves invariant both z = 0
and y = 0 (for h # 1).
We denote the three lines:

D:A=0
(11) Dy:(14+h)?=h(l+h)xz—h(1l—h)y=0
Dy: (1 =h)>+h(1+h)x+h(l —h)y=0.

The straight lines D, D; and D, respectively correspond to the can-
cellation of the denominator and the numerators of 2’ and ¢’ in (10).
Let define the points B(1+ +,0) and C(0,1 — ), then

B=DnD
and
They are called focal points in the sense of Bischi-Gardini-Mira [1, 2,
3, 10, 11]. Such points can play a specific role in the dynamics of the
maps with denominator.

We include some results on the fixed points of this mapping.

Proposition 2. The fized points of Fj, are (0,0), (1,1). The point
(0,0) is a saddle, the point (1,1) is a center.

Proof. The list of fixed points can be easily found by direct analysis
of the equations Fj(z,y) = (z,y). To study the nature of the fixed
points, it is quite convenient to use the equation (after changing h into
2h) :

(I —hDf(2))A=(I+hDf(2")).
In case of a fixed point 2/ = z = zq, this yields:

det(A — M) = det([I — hDf(z)] '[I +hDf(2)] — M),
so that the eigenvalues A of the jacobian matrix of F}, at a fixed point
are solutions of
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det[(1 — ) + (1+ \hDf(z)] =0,

and the result follows from this formula.

We can now consider the theorem of Sanz-Serna

Theorem 3. The KHK map of the Lotka-Volterra system preserves
the (singular) volume form:

(12) Q:alflz/\dy
ry

Proof. Consider

(13)  A:=A(x,y,h) =1—h*—=h(1 — h)x + k(1 + h)y,
and change in A, both (z,y) into (2/,7') and h into —h. This yields

(14) A" =A@y, —h)=1—=h*+h(1+h)z’ —h(1l - h)y.
Next compute directly from (18) the differentials and obtain:
de Ndy  dx' Ndy

A A
Now from (20), it follows:

(15)

(16) (%+%)A: (1+h)*+ (1 —h)*> =2(1 + h?).

By the same transformation, we obtain:

(17) =+ LA =
x
and this yields:

de Ndy  dx' Ndy

18
(18) =y
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The set of birational transformations of the plane which preserves
the volume form % is more shortly called "symplectic birational
transformations of the plane" in the litterature. For instance, this
is the terminology used in the article [4]. In this article the author
proves the following remarkable result which looks in particular useful
for further studies of discretized Lotka-Volterra of the plane:

Proposition 4. The group of symplectic birational transformations of
the plane is generated by SL(2,Z), the torus Cx* and a special map of
order 5: P (xz,y) — — > (y, (y + 1)/x).

The mapping P is a special case of the so-called Lyness map (|8, 12,
11]).
4. INTEGRABILITY OF THE DISCRETIZED LOTKA-VOLTERRA IN

THE CASE h =1

In this section we focus in the special case where the parameter
h = 1. Replacing h = 1 in the formula 10 yields to the map:

(19) A =2y,
— E(2 — )
(20) )
Yy = ;(z) =z

We consider then

/ o _(l‘—y)(Q—l’)
(21) Uy —2s
o /_$(2_‘T—y)

(23) (' +y -2)@' —y)  (e+y—2)(=—y)
'y’ Ty
so that we have checked that the mapping preserves the pencil of
conics:

’

(24) [(z +y—2)(z —y))* = play)*.
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FIGURE 1. The pencil of conics

Figure 1 shows the pencil of conics for p varying from -2 to 2 with
step 0.05.
Existence of cycles of order 4 can be shown in the case h = 1:

Proposition 5. For all x real, the points (z,x),(2 —x,z),(2 — 2,2 —
x),(z,2 — x) form a cycle of order 4.

This can be easily checked by direct computation. There are numer-
ical evidences that the map is not periodic of period 4. Indeed, some
orbits turn successively around the fixed point A(1,1) and go towards
infinity.
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FIGURE 2. Three orbits obtained numerically for h = 1,
initial conditions are (0.58,1.4), (0.58,1.41), (0.58,1.417).

5. NUMERICAL SIMULATIONS IN THE CASE 0 < h <1

Numerical simulations in the case 0 < h < 1 are proposed in Fig-
ures 3-10. They have been plotted using Matlab. In Figure 4, h is small
and the plotted ovals (or invariant curves) around the center fixed point
A(1,1) look very similar to the trajectories of the Lotka-Volterra sys-
tem. When h increases between 0 and 1 (see Figures 4-10), the ovals
change their shape and some of them become cyclic. In Figure 5, an
order 20 cyclic oval is obtained and in Figure 6, an order 55 cyclic oval
and an order 9 cyclic one are obtained from different initial conditions.



DISCRETIZATION OF THE LOTKA-VOLTERRA SYSTEM

e

h=0.01

FIGURE 3. h=0.01, ovals obtained with 4 different initial
conditions (1,0.01), (1,0.1), (1,0.25), (1,0.5)
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FIGURE 4. h=0.2, invariant curves or ovals obtained

with 6 different initial conditions (1,2), (1,3), (1,3.7),
(1,4.1), (1, 4.3), (1,4.4)
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FIGURE 5. h=0.2, focus on the order 20 cyclic oval ob-
tained with the initial condition (1,4.1). The Figure on
the right shows a magnification in the square [0, 0.5]?.

Figure 8 shows the basin of initial conditions giving rise to ovals.
Its shape looks "like a bat", as the oval obtained in Figure 7 with
the initial condition (1,0.328). The initial conditions taken outside
this basin give rise to unbounded trajectories in the plane (x,y). This
basin corresponds to the domain of stability of the map (10) in the
sense of Lagrange.
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FIGURE 6. h=0.38, ovals obtained with 4 different ini-
tial conditions (0.55,0.5), (0.5,0.5), (0.5,0.35), (0.5,0.3).
(0.5,0.3) gives rise to an order 55 cyclic oval and (0.5,0.5)
gives rise to an order 9 cyclic oval.

The straight lines D and D; given in (11) and some of their preimages
are plotted in Figures 8-9 as well as the point B (intersection of D and
D). Let us remark that Ds is not involved in the evolution of the basin.
Indeed, the point C (intersection of D and D,) is located outside the
first quadrant for h € [0,1]. Numerical simulations show that the ovals
are located inside the first quadrant and cannot cross D, D; and their
preimages of any order. Moreover, we can remark that the size of the
basin of ovals decreases when h increases from 0 to 1.
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25

0571

FIGURE 7. h=0.5234, ovals obtained with 4 different ini-
tial conditions (1,0.5), (1,0.4), (1,0.35), (1,0.328). The
oval obtained with the initial condition (1,0.328) seems
to be very close to the boundary of the basin (cf. Fig-
ure 8).

Figures 9-10 show the largest oval obtained numerically respectively
when A = 0.7 and h = 0.9. This oval is surrounded by the points of a
saddle cycle and we can conjecture that the boundary of the basin is
connected with the invariant manifolds of this saddle cycle. Moreover,
when h = 0.9, a cycle of order 4 appears. We note that this is the same
order than those of the cycles described in the case h = 1.
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FIGURE 8. h=0.5234, the basin of ovals has "the shape
of a bat". The lines D and D; and the point B are
plotted as well as some of their preimages. The basin is
located inside the area limited by these curves.
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FIGURE 9. h=0.7, an oval obtained with the initial con-
dition (1,0.62) close to the boundary of the basin of ovals.
An order 5 saddle cycle (points in black) is located close
to this boundary. The lines D and D; and the point B
are plotted as well as some of their preimages. The basin
is located inside the area limited by these curves. We
can conjecture that the invariant manifolds of the saddle
also play a role in the structure of the boundary of the

basin.
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FIGURE 10. h=0.9, an oval obtained with the initial con-
dition (0.755,0.755) close to the boundary of the basin of
ovals. An order 4 saddle cycle (points in black) is lo-
cated close to this boundary. We can conjecture that the
invariant manifolds of the saddle also play a role in the
structure of the boundary of the basin.

6. CONCLUSION AND PERSPECTIVES

This article revisits a discretization of quadratic vector fields called
the Kahan-Hirota-Kimura discrete dynamical systems (KHK map).
The study of this map relates with integrable systems and soliton the-
ory, in particular with QRT-maps ([5, 6, 7, 8, 9, 12, 14, 17, 18, 22]).
The proof of the Jacobian identity is included in the article. We fo-
cus on the discretization of the classical Lotka-Volterra prey-predator
system and we derive a direct proof of the Sanz-Serna theorem from
the Jacobian identity. Several numerical simulations are further dis-
cussed. They give evidences that for some values of the parameter, the
boundary of the domain of Lagrange stability displays an interesting
geometric structure and the "shape of a bat".

There are several perspectives to push further this study. In partic-
ular, the study of the boundary of the domain of stability in the sense
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of Lagrange and its relation with saddle cycles and preimages of D and
D; will be the subject of further work.
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