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Abstract

We study asymptotic perturbations of graph directed Markov systems (GDMSs) which are firstly
introduced by [Maudlin and Urbnski, 2003]. As main results, we give asymptotic expansions of ther-
modynamic quantities (the Hausdorff dimensions of the limit sets, the Gibbs measures associated with
the dimensions and the measure-theoretic entropies of these measures) of asymptotically perturbed
GDMSs. This is an extended version of the finite graph case in [T. 2016]. As a concrete example, we
apply this result to perturbed infinite linear IFSs.

1 Introduction

Graph directed Markov system (GDMS for short) consists of a family of contraction
maps attached to each edge of a countable directed graph. It is a generalization of usual
iterated function system (IFS) and is firstly introduced by Mauldin and Urbanski [1].
As examples, self-similar sets, continued fraction transformations, Schottky groups, non-
uniform expanding maps with countable Markov partition are included. The figure 1

shows a concrete example of GDMS.
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Fig 1: The limit set of a certain GDMS

Let E be a countable edge set of a directed graph. We introduce an n-order asymptotic
expansion (T,(¢,))ecr of contraction maps (1;)ecr

Te<€7 ') - Te + Te’le + tee + Te7n€n + O(en) (e E E)

as € — 0 and we are interested in the following studies:



(1) Asymptotic behaviours of thermodynamic quantities (the Hausdorff dimensions of the
limit sets, the Gibbs measures associated with these dimensions, and the measure-
theoretic entropies of these measures ) in perturbed GDMSs.

(2) Perturbed GDMS with degeneration.

(3) Dimension estimate in nonconformal mapping via asymptotic perturbation from con-

formal mapping.

One of our motivation of the above (1) is to obtain the effect of maps on the quantities
precisely. For example, by perturbing one of the maps that make up an iterated function
system and by examining the change in the Hausdorff dimension of the limit set, the
degree of influence on the dimension of one map can be studied. In (2), we treat the
case that the directed graph associated with the perturbed GDMS is different from the
directed graph associated with the unperturbed GDMS (e.g. [5, Example 4.3] and 6,
Section 5.2]). In view of dynamical systems, such a situation is sometimes called ‘singular
perturbation of symbolic dynamics’ or ‘perturbed system with holes’ (e.g. [2, 7]). The
study (3) is an another application of our asymptotic analysis. In this report, we treat
the study (1).

In our previous result, we gave asymptotic behaviours of the Hausdorff dimensions of the
limit sets of asymptotically perturbed GDMS in finite graph case [5, Theorem 1.1]. This
result was extended from the finite graph case to the infinite graph case in [8, Theorem 2.2].
Secondly, we obtained an asymptotic expansion of Gibbs measures associated with the
dimension and an asymptotic expansion of the measure-theoretic entropy of this measure
in perturbed GDMS with finite graph [5, Theorem 1.3].

In this present report, we extend these asymptotic expansion results of the Gibbs mea-
sures and of the entropy from the finite graph case to the infinite graph case (Theorem
4.1 and Theorem 4.2).

In the next section 2.1, we recall the notion of thermodynamic formalism and some
results of Ruelle transfer operators. In Section 2.2, we give definitions of conformal graph
directed Markov systems. We formulate an asymptotic perturbation of GDMS in Section
3. Our main results and the outline of the proofs are treated in Section 4. In the final
section 5, we apply our results to a perturbed infinite linear IFS as a concrete example.
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Joint Usage/Research Center located in Kyoto University.



2 Preliminaries
2.1 Thermodynamic formalism and Ruelle operators

In this section, we recall the notion of thermodynamic formalism in symbolic dynamics
and some results of Ruelle operators which are mainly given in [1]. We begin with one-
sided shift space with countable states.

Let G = (V, E,i(-),t(-)) be a directed graph with finite vertices V', countable edges E,
and two maps i(-) and ¢(-) from E to V. For each e € E, i(e) is called the initial vertex
of e and t(e) called the terminal vertex of e. Denoted by E°° the one-sided shift space

E* ={w e[}, F : t(w,) = i(wy41) for any n > 0}.

An element w of £ denotes w = wowiws - -+ with wg,wi,ws, - € E. We endow the set
E*> with the shift transformation ¢ : £~ — FE* defined as (ow),, = w,11 for any n > 0.
A word w = wyws - --w, € E" is admissible if t(w;) = i(w;41) for all 1 < j < n. For
admissible word w € E", the cylinder set of w is defined by [w] = {w € E*® : wy-+-wy_1 =
w}. For @ € (0,1), a metric dy : £ x E* — R is defined by dy(w, v) = gmin{n=0:wnzvn}
if w # v and dy(w,v) = 0 if w = v. Then the metric topology induced by dy coincides
with the product topology on E* induced by the discrete topology on S. Remark that
(E>,dy) is a complete and separable metric space. Note also that if {a € S : [a] # 0}
is an infinite set, then E*° is not compact. The incidence matrix A of E* is defined
by A = (A(ee))pxr with A(ee’) = 1 if t(e) = i(e’) and A(ee’) = 0 if t(e) # i(¢/). The
matrix A is finitely irreducible if there exists a finite subset F' of (J77 , E™ such that for
any e, ¢ € E, ewe is a path on the graph G for some w € F'. A function f : E* — K
is called locally dgy-Lipschitz continuous if the number
_ £() = ()
[f]g o igg w,ves[gl:)w;év da(% ’U)

is finite. Denoted by || - || the supremum norm defined as || f||c := sup,cp~ | f(w)|. Put
I fllo == I flloo + [f]o- Let K =R or K = C. Denoted by C(E>,K) the set of all K-valued
continuous functions on E* and by C,(E>, K) the set of all functions f in C(E>, K) with
| fllo < 400. Let Fy(E>,K) be the set of all K-valued locally dy-Lipschitz functions on
E>, and Fy,(E>~,K) the set of all functions f in Fy(E>~,K) with || f|l« < +o00. For
simplicity, if K = C then we may omit ‘K’ from the notation of those functions.

For function ¢ : E* — R, the topological pressure P(yp) of the potential ¢ is formality

given by
1 n—1
P(p) = nlem " log Z exp( sup Zgo(akw)). (2.1)
weS™ : [w]#D w€w] k=0



If the incidence matrix of G is finitely irreducible and ¢ is in Fy(E>°,R), then P(yp) is
well-defined in (—o0, +00].

A (o-invariant) Borel probability measure o on E* is said to be a Gibbs measure of the
potential ¢ : E* — R if there exist ¢ > 1 and P € R such that for any w € E*> and
n>1

C_l < /.L([(.Uowl Ce wn_l])
~ exp(—nP + 300 p(otw))
In what follows, we assume that Gibbs measures treated as follows are o-invariant. If A
is finitely irreducible and ¢ is in Fy(E*°,R) with P(¢) < 400, then the Gibbs measure of
¢ uniquely exists [1, Corollary 2.7.5]. In particular, P equals P(y).

<ec.

For a continuous function ¢ : E* — R, we call a og-invariant probability measure u
an equilibrium state of the potential ¢ if u(¢) > —oo and

P(p) = /SOCZH + ho (1),

where h, (1) is the measure-theoretic entropy of p with respect to o. In this case, we may
say that the measure-theoretic entropy of p is given by P(¢) — p(p). It is known that if
A is finitely irreducible and ¢ is in Fy(E>,R) with P(¢) < 400 and u(y) > —oo, then
the Gibbs measure p becomes the equilibrium state for ¢ [1, Theorem 2.2.9].

We end this section with the following result for Ruelle transfer operators. For function
¢+ B> — R, the Ruelle operator £, associated to ¢ is defined by

Lf) = Y efle-w)
e€E: A(ewp)=1

if this series converges in C for a complex-valued function f on E* and for w € E>. It is
known that if the incidence matrix is finitely irreducible and ¢ is in Fy(E>°, R) with finite
topological pressure, then £, becomes a bounded linear operator both on the Banach
spaces Cp(E>) and Fy,(E*>). We state a version of Ruelle-Perron-Frobenius Theorem:

Theorem 2.1 ([1]) Let G = (V, E,i(-),t(-)) be a directed graph with finite vertices V
and countable edges E and assume that G has a finitely irreducible transition matrix. Let
p € Fy(E*,R) with finite pressure. Then the Ruelle operator L : Fy,(E®) — Fpu(E>)
of the potential © has the spectral decomposition

L= +R
such that

(1) X\ is the spectral radius of L and is a simple eigenvalue of L.
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(2) P is the eigenprojection of the eigenvalue X of L onto the one-dimensional eigenspace.
In particular, Pf = wa fhdv, where h € Fp(E>®,R) is the corresponding positive
ergenfunction of the eigenvalue \ and v is the corresponding positive eigenvector of
of the dual operator L* : Fy,(E®)* — Fy,(E*)* of L with v(h) = 1. In particular,
there exists a constant ¢ > 1 such that ¢ < h < c.

(3) PR = RP = O and the spectrum of R : Fyu(E®) — Fyu(E™®) is contained in
{z € C : |z— X > p} for some small p > 0.

(4) P(p) equals log A\ and hv becomes the Gibbs measure of the potential .

2.2 Conformal graph directed Markov systems

In this section, we recall the notion of conformal graph directed Markov systems given
by [1, 10]. Let D be a positive integer, 5 € (0,1] and r € (0,1). We introduce a set
(G, (Jy), (0y),(T.)) with gV < oo satisfying the following conditions (i)-(iv):

(i) For each v € V, J, is a nonempty compact and connected subset of R satisfying
J, = intJ,, where int.J, is the interior of .J,.

(ii) For each v € V, O, is a bounded, open and connected subset of R” containing .J,,.

(iii) For each e € E, a function T, : Oyey — Te(Oye)) C Oye is a C'P-conformal
diffeomorphism with T (intJy)) C int.J;.) and SUD,c0,,, |T.(x)|| < r, where ||T.(z)||
means the operator norm of 7.(z). Moreover, for any e, ¢/ € E with e # ¢ and
i(e') = i(e), T.(intJye)) N Te(intJyery) = O, namely the open set condition (OSC) is
satisfied.

(iv) (Bounded distortion) There exists a constant ¢; > 0 such that for any e € E and
2,y € Oey, [ITL(@) | = 1T < eal| Ti(@) [l — |°, where | - | means a norm of any

Euclidean space.

Under these conditions (i)-(iv), we call the set (G, (J,),(O,),(T.)) a conformal graph
directed Markov system (CGDMS for short).

Remark 2.2 A cone condition was part of the definition of a CGDMS in [1]:

(v) (Cone condition) There exist v,l > 0 with v < /2 such that for any v € V, z € J,,,
there is u € RP with |u| = 1 so that the set {y € RP : 0 < |y—z| <l and (y—x,u) >
|y — x| cosv} is in int.J,, where (y — z,u) denotes the inner product of y — x and w.

This condition is not necessary for generalized Bowen’s formula (see [10, Remark 19.3.2(d)]).



The coding map m : E* — RP is defined by mw = (72, Tig * * * Toon, (Ji(wr)) for w € E>.
Put K = w(E£°). This set is called the limit set of the CGDMS. We define a function
p: E* — Rby

p(w) = log [T, (row)|.
Put
s=inf{s >0 : P(sp) < +o0}.

We call the CGDMS regular if P(sp) = 0 for some s > s. The CGDMS is said to be
strongly regular if 0 < P(sp) < +oo for some s > s (see [1, 3] for the terminology). It is
known that the general Bowen’s formula is satisfied:

Theorem 2.3 ([10, Theorem 19.6.4]) Let (G, (J,), (O,), (T%.)) be a graph directed Markov
system. Assume that E> is finitely irreducible. Then dimy K = inf{t € R : P(ty) < 0}.
In addition to the above condition, we also assume that the potential ¢ is reqular. Then

s = dimyg K if and only if P(sp) = 0.

3 Asymptotic perturbations of graph directed Markov systems

Now we formulate an asymptotic perturbation of graph directed Markov systems. Fix
integers n > 0, D > 1 and a number g € (0,1]. Consider the following conditions (G.1),
and (G.2),:

(G.1), A set (G,(J,),(0,),(T.)) is a CGDMS on R” with strongly regular and with finitely
irreducible incidence matrix. The limit set K has positive Hausdorff dimension. More-
over, the function T, is of class C'*"+5(Oy) for each e € E.

(G.2), The set {(G, (Jy), (Oy), (Te(e,-))) : € > 0} is a CGDMS with a small parameter € > 0
satisfying the following (i)-(vi):

(i) For each e € F, the function T,(¢, ) has the n-asymptotic expansion:
To(e,.) =T+ Tone+ - +T.e" + Teyn(e, e on Jye
for some functions T, € C*"#48(0,), RP) (k = 1,2,...,n) and T.,(e,-) €

CH'B(G)(Ot(E),RD) (B(e) > 0) satisfying sup,p SUDe ., |Te7n(e,x)| — 0.

(ii) There exist constants ¢(l,k) € (0,1] ({ =0,1,...,n, k =1,...,n =1+ 1) such
that the function = +— Te(f) (z)/||T.(z)]|*“® is bounded, 3-Holder continuous and
its Holder constant is bounded uniformly in e € E.



iii) cy(€) := Sup.cpsup DT (e, '(z)|[f°) — 0ase — or some
5 eelR xEJt(e) 8(1T7 Te ! 0 0 f
to € (0, 1].
(iv) dimy K/D > p(n), where p(n) is defined by
p/t, (n=0)
p(n) := < max (34— n(l—t),p+n(l—t2)/2,--- ,p+n(l—t,)/n,
]_Q/tla Z_Q/tQa"’aZ_j/th_?_l'l_Ea ]_)/f)> (nZl)
p:=s/D

D
th ::mln{ﬁ g t(ip,jp+1) i =1i1+ - +ipand j:=j + -+ jp satisfy

p=1
i=kand j=0or0<i<kand1<j<k-—i} (3.1)
- -ty D-1 th D-1
t.—mm{tn, to, D+ o) t(1,1),..., D+ D t(n,l)}. (3.2)

Remark 3.1 If the edge set E is finite, then the conditions (ii) and (iv) are always satis-
fied because ||T%(x)]| is uniformly bounded away from zero, and p(n) becomes s/D by tak-

ing t(I,k) =t = 1. Moreover, cy(¢) in (iii) can be taken as sup,.p SUD,c g, ., a%feyn(e, z)||

when F is finite.

Let K(e) be the limit set of the perturbed CGDMS (G, (J,),(O,),(Tc(e,-))). We put
s(e) = dimy K(¢). Under those conditions, we obtained the following:

Theorem 3.2 ([8, Theorem 2.2]) Assume that the conditions (G.1), and (G.2), are
satisfied with fived integer n > 0. Then the perturbed CGDMS (G, (J,), (O,), (Te(e,-)))
18 strongly reqular for any small € > 0, and there exist si,...,s, € R such that the
Hausdorff dimension s(€) of the limit set K (€) of the perturbed system has the form s(e) =
s(0) + s1e+ -+ 56" +0(€") as € — 0 with s(0) = dimy K.

Remark 3.3 Roy and Urbaniski [3] considered continuous perturbation of infinitely con-
formal iterated function systems given as a special CGDMS. They also studied analytic
perturbation of CGDMS with D > 3 in [4]. We investigated an asymptotic perturbation
of CGDMS with finite graph in [5, Theorem 1.1]. Theorem 3.2 is an infinite graph version
of this previous result.

4 Main results

In order to investigate an asymptotic perturbation of the Gibbs measure associated
with the dimension dimy K (€) and of the measure-theoretic entropy of this measure, we
further introduce the following condition:



T 9 7

(G.3), supsup  sup lgeTen(e. ) — g Tenle )l

) |
>0 €€E z,y€0;(c) 1 vy |z — y|P

!/
n

Note that such a condition is firstly given in [5] (see the condition (G)
We denote the physical potential for the perturbed CGDMS by

ple, ) =log || 5 T (6, (e, ow))| (4.1)

for w € E*, where 7(¢,-) means the coding map of K(e) which is defined by m(e,w) =
ﬂ;L.OZO T‘UO (67 ) e Twn<€7 Jt(wn)> fOI“ w E EOO

Now we are in a position to state our main results.

in this paper).

Theorem 4.1 Assume that the conditions (G.1),-(G.3), are satisfied with fixed integer
n > 0. Then there exist bounded functionals i1, . . ., pi, in the dual (Fy,(E>))* of Fy,(E™)
such that the Gibbs measure (e, ) of the potential (dimpy K (€))¢(e, ) satisfies the n-order
asymptotic expansions pu(e, f) = pu(f) + pa(fle + - + pn(f)e" +o(e") ase — 0 for
f € Fyp(E™®), where p is the Gibbs measure of (dimy K(0))ep.

Theorem 4.2 Assume that the conditions (G.1),-(G.3), are satisfied with fized integer
n > 1. Then there exist numbers Hy,..., H,_1 € R such that the measure-theoretic
entropy hy(1u(€, -)) of the Gibbs measure ,u( -) of the potential (dimpy K (€))p(e, ) satisfies
the asymptotic expansions hy(u(e,-)) = ho (@) + Hie+- -+ H,_1€" ' +0(e" ') ase — 0,
where 1 is the Gibbs measure of (dimgy K (0))ep.

Remark 4.3 (1) Those theorems are infinite graph versions of [5, Theorem 1.3] which
considered asymptotic expansions of the Gibbs measure and of this entropy in the
case tF < +00.

(2) We expect the expansion of the entropy in Theorem 4.2 to expand to the length of n,
which is still an open problem.

To show Theorem 4.1 and Theorem 4.2, we need some lemmas as follows. We start with
the asymptotic expansion of the perturbed coding map (e, -).

Lemma 4.4 Assume that the conditions (G.1),, and (G.2),, are satisfied. Choose anyr, €
(r,1). Then there exist functions 7, ma, ..., Tn € Fr (B, RP) and 7(c,-) € Cp(E=,RP)
such that w(e,-) = m+me+- - +m,e" —|—7rn( )€™ and sup e geo |Tn(e,w)| — 0ase — 0.

Proof. See [8, Lemma 3.13] and [5, Lemma 3.1]. O

Lemma 4.5 Assume that the conditions (G.1),-(G.3), are satisfied. Then for any num-
ber ro € (r1,1), limsup, _, o[Tn(€, )] < 00.



Proof. This follows from [5, Lemma 3.3] replacing max.cg by sup..p. O

We define an operator Ly, : Fyy(E>®) — Fpp(E>) by Lif = Ls0)o(Grf) with

k k—v o min(l,q)

k
G — ng,kwuz qu v aljgpq—jl! Z H( 'gju)

q=0 v=1 ¢=0 =0 j5=0 J1s--Jv =20
J1+-t+iv=l
J1+2jo+--+vju=v

where a;; and s,y are given by expanding (¥) = a0 + 22:1 aj(p — s)? with a9 =
(?) of binomial coefficient and (s(e) — s(0))* = >_7 sp:€' + o(e"), respectively. Here
Gy 15> Gn, 9(€, ) satisfy the asymptotic expansion g(e,) = g+ > p_; gk€® + gu(e, )"
with g(e,w) == det (LT, (e, 7(e, ow))) and g(w) := det(T}, (mow)). Observe the equations
(e, -) = (1/D)log |g( ,-)] and ¢ = (1/D)log |g|. We have the following:

Lemma 4.6 Assume that the conditions (G.1),,-(G.3),, are satisfied. Then each Ly is
bounded acting on Fyu(E>) with § = ry and the Ruelle operator L(e,-) of the potential
s(€)p(e,-) has the expansion L(e,) = L+ S r_, Lre* + Lo (e, )€™ with || L,(6,)||loo — 0,
where L 1s the Ruelle operator of sp.

Proof. This expansion is yielded by [8, (3.31)], and convergence of L, (e, ) is guaranteed
by the proof of [8, Theorem 1.1]. O

Lemma 4.7 Assume that the conditions (G.1),-(G.3), are satisfied. Let 0 = r3, where
o 18 given in Lemma 4.5. Then the potential o(e,-) which appears in Lemma 4.6 satisfies
limsup, ., o[@(e, )]s < +00. In particular, limsup, _, o || £ (e, )]s < +o0.

Proof. This is due to [9, Lemma 3.15]. O
(Proof of Theorem 4.1). The convergence of the reminder fi, (¢, f) of the perturbed Gibbs

measure (e, f) of f € Fy,(E>,R) is obtained by [9, Theorem 3.5] together with Lemma
4.6 and Lemma 4.7. a

Lemma 4.8 Assume that the conditions (G.1),,-(G.3), with n > 1 are satisfied. Then
there exists &1,...,&En—1, gn_l(e, ) € Fyp(E>*,R) such that

Lle,h(e,)p(e,)) = Lo+ Ere+ -+ & 4+ (e, )"

and ||€n—1(e,)||e — 0, where h(e,-) is the eigenfunction given in Theorem 2.1 for the
Ruelle operator L(e,-) of the potential s(€)p(e, ).



Proof. Consider the form

Llene)ole D@ = 3 lgle.e @)/ loglg(e.c-w)lhle.e - ),

ecE: A(ewg)=1

We can give an (n — 1)-order asymptotic expansion of |g(e, a - w)|*©/P log |g(c, a - w)|. In
addition to asymptotic expansions of h(e,-) and of s(e), the assertion follows from this

expansion. O

(Proof of Theorem 4.2). Recall h,(u(e,-)) = P(s(€)p(e, ) — u(e, s(e)p(e,+)) and u(e,-) =
h(e, -)v(e,-), where v(e,-) is the eigenvector given in Theorem 2.1 for the Ruelle operator
L(e,-). The pressure P(s(€)p(e,-)) equals 0 by Bowen’s formula. We have

ple; s(e)ple, ) =s(e)v(e, L€, hle, -)p(e, )
hie,)ple, ) =L(hp) +&re -+ &noae™ ™+ &, )"

L(e,
with [|€,_1(€,-)]].« — 0 by Lemma 4.8. Moreover, we see
)

v(e, L(e, h(e, )ole, ) —u(e L(hp)+ e+ +Enr€ + & 1(e, )Y
Y e (b )+ ool ),
k=0 1,7>0:i+j=Fk i=0

Ui(€,&mic1) — 0 and |v(e,&mi(e, )] < l€aie, )]l — 0. Thus p(e, ¢(e, ) has
an (n — 1)-order asymptotic expansion in addition to the expansion of s(¢). Hence the
entropy h,(u(e, -)) behaves asymptotically with order n — 1. O

5 Concrete example: countable linear IFS

Let a > 1 be a number, V := {v} and £ := {1,2,...}. We take an infinite graph
G = (V,E,i(-),t(-)) with i(e) = t(e) = v for e € E, and two intervals J, = [0, 1] and
O, = (—n,1+n) for a small n > 0. For e € F and € > 0, we define a function T, (e, -) by

T.(e,x) = (é + ée)x + b(e).
Here we choose b(e) so that the set (G, (J,), (O,), T.(¢,-)) satisfies the conditions of the
CGDMS for any small € > 0. It is not hard to check that the condition (G.1), is valid
with T,(z) = x/5°+b(e), T.1(x) = x/a® and T, ,, = 0 for n > 2. Therefore, T¢(¢, -) has the
n-order asymptotic expansion with Tm(e, -) = 0 for any n > 1. Moreover, the topological

pressure of sp(e, -) has the equation

P(sy logz<5e — )

ecE

10



for s > 0. Therefore, P(sp) = 0 if and only if > _,(1/5°)° = 1 if and only if s =
log2/log5 =: s(0). Moreover, s = inf{s : P(sp) < +00} is equal to 0.

Let s(e) = dimpy K (€) be the Hausdorff dimension of the limit set K (¢) of the perturbed
CGDMS (G, (Jy), (0,), (Te(e,-))) for ¢ > 0. The Ruelle operator £ of s(0)y is given by

=3 o ew),
eck

The Ruelle operator L(e, -) of s(€)p(e, -) has the form

cen@ =3 (2+5)" o

ecE

Then we summarize results for (7. (¢, -)) as follows.
Proposition 5.1 Assume the above conditions for T,(e,-). Then we have the following:

(1) If (A, h,v) is the Perron spectral triplet of L, i.e. Lh = Mh, L*v = v, v(h) =
v(E*®) =1, then A =1, h =1 and v satisfies v(le]) = 1/2¢ fore € E.

(2) If (A(e),h(e,-),v(e,-)) is the Perron spectral triplet of L(e,-), i.e. L(e h(e,-)) =
Ae)h(e, ), L(e,-)v(e,-) = Me)v(e,-), vie.h(e ) = v(e, E*) = 1, then A(e) = 1,
h(e,-) =1 and v satisfies v(e, [e]) = (1/5° 4+ ¢/a®)* for e € E.

(3) The Ruelle operator L(e,-) of the potential s(€)p(e, ) has n-order asymptotic expan-
sion L(e,-) = L+ Lre+ -+ L™ + L (e, e with

k—v min(v,q)

L@ =YY Y Y et s 9 erogyr () slenw)

e=1 v=0 ¢=0 j=0

S

where sq— and a,; are decided by

k—

(s1€+ -+ sp 1N =5,04 8416+ -+ Sgne” + 0(€")

(f}) = Q0+ Ay 1(t —5(0)) 4+ -+ app(t —5(0))"  (agp :=1).

(4) The Perron eigenvector v(e,-) of L(€,-)* has the form v(e, f) = v(f) +vi(fle+---+
Un(f)e™ + o(€") for each f € Fpu(E™), where

Z Z V(LS Ly, Sf)

] 1 ig,ees
7,1+ +'L

and Sf=L—-12v-I) Y T -1®v).
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Theorem 5.2 Assume the above conditions for T.(¢,-). Then we have the following:

(1) If a > 5 then the Hausdorff dimension s(e) = dimpy K(€) of the limit set of this
CGDMS has n-asymptotic expansion s(€) = s(0) + sj€ + -+ + $,€" + 5, (€)e" with
Sp(€) — 0 for any n > 0. Each coefficient s, (k=1,2,...,n) is decided as

min(v,q) v\ €
Z Z Z Squ v CLU] elog5) (25av> ‘ (51)

Svsu,Usqs

(@) £(0,1)
In particular,
~ log?2 )
1 “(log5)2 da — 10
. ~ 25log?2 ( 1 B alog 2 log(2/5) >
> (log5)® \2(2a —5)2 (20 —5)(4a2 —5)? ' 8a2—100/

(2) If 1 < a < 5 then take the largest integer k > 0 satisfying a < 5/2Y¢+V " In this case,
s(€) has the form
5(0) + s1€ + - - + sp" 4+ 5(e)*  loge, a = 5/2Y* D for some k > 0
lo,
$(0) + s1e+ -+ + spe” + §(e)elog(§/2a> ,  otherwise

s(e) =

with |5(e)] < 1 as e — 0, where each s; is equal to (5.1) and |5(¢)] <1 ase — 0
means ¢=* < |5(€)| < ¢ for any small € > 0 for some constant ¢ > 1.

(3) Fora > 1, the Gibbs measure pi(e, ) of the potential s(€)p(e, -) has the n-order asymp-

totic expansion (e, f) = p(f) +m(fle+-- -+ pn(f)e™ +o(€") for each f € Fyp(E*)
with the coefficient

Z Z p(LiyS - Li,Sf).

7=1 i1,..,
z1+ +1

(4) For a > 1, the measure-theoretic entropy h,(u(e,-)) of u(e,-) has the n-order asymp-
totic expansion hy(u(e,-)) = ho(p) + Hie + - - - + Hyue® + o(€") with

Hk = - Z S iy (ﬁi:ﬁou)

11,000,804 2>0 001 - Fig =k

and p(w) = ((=1)*7'/k) (5/a)”’
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