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Stationary solutions to the Euler–Poisson equations
in a perturbed half-space

Masahiro Suzuki

Department of Computer Science and Engineering, Nagoya Institute of Technology
masahiro@nitech.ac.jp

The purpose of this talk is to mathematically investigate the formation of a plasma
sheath near the surface of walls immersed in a plasma. The motion of plasma is governed
by the Euler–Poisson equations:

ρt +∇ · (ρu) = 0, ut + (u · ∇)u+K∇(log ρ) = ∇ϕ, ∆ϕ = ρ− e−ϕ, (1a)

where unknown functions ρ, u = (u1, u2, u3), and −ϕ represent the density and velocity
of the positive ions and the electrostatic potential, respectively. Furthermore, K is a
positive constant. We study an initial–boundary value problem of (1a) in a perturbed
half-space Ω := {x = (x1, x2, x3) ∈ R3 |x1 > M(x2, x3)} with M ∈ ∩∞

k=1H
k(R2). The

initial and boundary data are prescribed as

(ρ,u)(0, x) = (ρ0,u0)(x), (1b)

lim
x1→∞

(ρ, u1, u2, u3, ϕ)(t, x1, x2, x3) = (1, u+, 0, 0, 0), (1c)

ϕ(t,M(x2, x3), x2, x3) = ϕb for (x2, x3) ∈ R2, (1d)

where u+ < 0 and ϕb ∈ R are constants. The initial data (ρ0,u0) are supposed to satisfy

inf
x∈Ω

ρ0(x) > 0, inf
x∈∂Ω

u0(x) · ∇(M(x2, x3)− x1)√
1 + |∇M(x2, x3)|2

−
√
K > 0. (2)

For the end state u+, we assume the Bohm criterion and the supersonic outflow condition:

u2+ > K + 1, u+ < 0, (3)

inf
x∈∂Ω

−u+√
1 + |∇M(x2, x3)|2

−
√
K > 0. (4)

The second condition in (2) is necessary for the well-posedness of the problem (1). We
remark that (4) is required if solutions to problem (1) are established in a neighborhood
of the constant state (ρ, u1, u2, u3, ϕ) = (1, u+, 0, 0, 0).
In the case of planar wall M = 0, Bohm proposed a criterion on the velocity of the

positive ion for the formation of sheath [1], and several mathematical results validated
the Bohm criterion (3) and defined the fact that the sheath corresponds to the stationary
solution of (1a). It is of greater interest to analyze the criterion for nonplanar walls. In
this talk, we study the existence and stability of stationary solutions of (1) for M ̸= 0.

To state our main results, let us introduce the existence theorem of stationary solutions
(ρ̃, ũ, ϕ̃)(x1) in a one-dimensional half-space. The stationary solutions solve

(ρ̃ũ)′ = 0, ũũ′ +K(log ρ̃)′ = ϕ̃
′
, ϕ̃

′′
= ρ̃− e−ϕ̃, x1 > 0, (5a)

ϕ̃(0) = ϕb, lim
x1→∞

(ρ̃, ũ, ϕ̃)(x1) = (1, u+, 0), inf
x1∈R+

ρ̃(x1) > 0. (5b)



Theorem 1 ([2]). Let u+ satisfy (3). There exists a constant δ > 0 such that if |ϕb| < δ,
a unique monotone solution (ρ̃, ũ, ϕ̃) ∈ C∞(R+) to (5) exists.

We have constructed stationary solutions (ρs,us, ϕs) in the domain Ω by regarding it
as a perturbation of (ρ̃, ũ, 0, 0, ϕ̃)(M̃(x)), where M̃(x) := x1 −M(x2, x3). Furthermore,
we use the weighted Sobolev space Hk

α(Ω) for k = 1, 2, 3, . . . and α > 0:

Hk
α(Ω) :=

{
f ∈ Hk(Ω)

∣∣ ∥f∥2k,α < ∞
}
, ∥f∥2k,α :=

k∑
j=0

∫
Ω
eαx1 |∇jf |2 dx.

The existence and stability of stationary solutions are summarized in the following
theorems. It is worth pointing out that we do not require any smallness assumptions for
the function M representing the boundary ∂Ω.

Theorem 2 ([3]). Let m ≥ 3, and u+ satisfy (3) and (4). There exists a positive
constant δ such that if β + |ϕb| ≤ δ, the problem (1) has a unique stationary solution
(ρs,us, ϕs) as

(ρs, us1, u
s
2, u

s
3, ϕ

s)− (ρ̃ ◦ M̃, ũ ◦ M̃, 0, 0, ϕ̃ ◦ M̃) ∈ [Hm
β (Ω)]4 ×Hm+1

β (Ω),

∥(ρs − ρ̃ ◦ M̃, us1 − ũ ◦ M̃, us2, u
s
3)∥2m,β + ∥ϕs − ϕ̃ ◦ M̃∥2m+1,β ≤ C|ϕb|,

where C is a positive constant independent of ϕb.

Theorem 3 ([3]). Let u+ satisfy (3) and (4). There exists a positive constant δ such
that if β + ∥(ρ0 − ρs,u0 − us)∥3,β + |ϕb| ≤ δ the problem (1) has a unique time-global
solution (ρ,u, ϕ) in the following space:

(ρ− ρs,u− us, ϕ− ϕs) ∈

[
1⋂

i=0

Ci([0,∞);H3−i
β (Ω))

]4

× C([0,∞);H4
β(Ω)).

Moreover, there holds for certain positive constants C and γ independent of ϕb and t,

sup
x∈Ω

|(ρ− ρs,u− us, ϕ− ϕs)(t, x)| ≤ Ce−γt, t ∈ [0,∞).

We can conclude from Theorems 2 and 3 that (3) and (4) guarantee the sheath for-
mation as long as the shape of walls is drawn by a graph.

Acknowledgments. This talk is based on a joint work with Prof. Masahiro Takayama
(Keio Univ.).
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Refined pointwise estimates for the solutions to the one-dimensional
barotropic compressible Navier–Stokes equations: An application to the

analysis of the long-time behavior of a moving point mass
Kai Koike

Graduate School of Engineering, Kyoto University1
koike.kai.42r@st.kyoto-u.ac.jp

The objective of this study is to understand the long-time behavior of a point mass moving
inside a one-dimensional viscous compressible fluid. In a previous work [2], we showed that the
velocity of the point mass + (C) satisfies a decay estimate + (C) = $ (C−3/2); in this work, we give
a necessary and sufficient condition (under some regularity and smallness assumptions) for the
corresponding lower bound �−1(C + 1)−3/2 ≤ |+ (C) | to hold for large enough � and C.

The system of equations we consider is, in the Lagrangian mass coordinate, the following:

{C − DG = 0, G ∈ R∗, C > 0,

DC + ?({)G = a

(DG
{

)
G
, G ∈ R∗, C > 0,

D(0±, C) = + (C), C > 0,

<+ ′(C) = È−?({) + aDG/{É(C), C > 0,

+ (0) = +0; {(G, 0) = {0(G), D(G, 0) = D0(G), G ∈ R∗.

(1)

Here, { = {(G, C) is the specific volume, D = D(G, C) is the velocity, ?({) is the pressure, and the
constant a > 0 is the viscosity of the fluid. We assume that the fluid is barotropic, so that ? is a
known function; we assume that ? is smooth and satisfies ?′({) < 0 and ?′′({) ≠ 0 for { > 0.
In the Lagrangian mass coordinate, the location of the point mass — whose mass and velocity
are denoted by < and + (C) — is always G = 0, and R∗ B R\{0} is the domain in which the
fluid flows. The double brackets È 5 É(C) denote the jump of a function 5 = 5 (G, C) at G = 0,
that is, È 5 É(C) B 5 (0+, C) − 5 (0−, C), where 5 (0±, C) = limG→±0 5 (G, C). The first two equations
in (1) are the barotropic compressible Navier–Stokes equations written in the Lagrangian mass
coordinate, the so-called ?-system; the third one is the Dirichlet boundary condition for the first
two equations, which just says that the fluid does not penetrate through the point mass; the fourth
equation is Newton’s second law; the final set of equations are initial conditions. In what follows,
we set < = 1 for simplicity.

We consider small solutions around a steady state ({, D,+) = (1, 0, 0). We denote by | | · | |: the
�: (R∗)-norm. The following theorem is obtained as a corollary to a theorem on the pointwise
estimates of the fluid variables [1, Theorem 1.2]; due to the page limitation, we only state a
corollary, which reads as follows [1, Corollary 1.2].2

Theorem 1. Let {0−1, D0 ∈ �6(R∗), and+0 ∈ R. Assume that they satisfy suitable compatibility
conditions. Then there exist X0 > 0 and � > 1 such that if

X B | |{0 − 1| |6 + ||D0 | |6 + sup
G∈R∗

[
( |G | + 1)9/4{|({0 − 1) (G) | + |D0(G) |}

]
≤ X0 (2)

1This work was supported by Grant-in-Aid for JSPS Research Fellow (Grant Number 20J00882).
2The assumption on the spatial decay can be slightly weakened as is stated in [1].



and [∫ ∞

−∞
({0 − 1) (G) 3G

]
·
[∫ ∞

−∞
D0(G) 3G ++0

]
≠ 0, (3)

then the unique global-in-time solution ({, D,+) to (1) exists and satisfies

�−1X2(C + 1)−3/2 ≤ |+ (C) | (C ≥ ) (X)) (4)

for some ) (X) > 0

Remark 1. (i) The upper bound |+ (C) | = $ (C−3/2) was obtained with less stringent assump-
tions [2], but we need to make these stronger to prove the lower bound.

(ii) By (4), we see that + (C) does not change its sign after sufficiently long time has elapsed.
We can also predict the final sign of + (C) in terms of the initial data: it is the opposite sign
of the left-hand side of (3).

(iii) When the left-hand side of (3) is zero, an improved decay estimate + (C) = $ (C−7/4) can
be proved [1, Corollary 1.3]. From some numerical simulations for the corresponding
Cauchy problem, we conjecture that the rate −7/4 is optimal under the condition that the
left-hand side of (3) is zero, but to prove this would require much more work.

(iv) The presence of the point mass does not introduce additional technically difficulties com-
pared to [2]; the main technical advancement lies in the analysis of the corresponding
Cauchy problem.

The idea of the proof is to improve the previously known pointwise estimates for the fluid
variables, see [3, Theorem 2.6] for the Cauchy problem and [2, Theorem 1.2] for our system,
by a refined choice of leading order terms of the solution; we also need to analyze nonlinear
interactions more precisely than in the previous works. We also note that we need to make use of
finer space-time structure of fundamental solution, obtained in [4], compared to those presented
in [3]. These allow us to understand the behavior of the solution around the origin G = 0 more
precisely and lead us to prove lower bound (4) for + (C) = D(0±, C).
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Diffusion wave phenomena and Lp decay estimates
of solutions of compressible viscoelastic system1

Yusuke Ishigaki

Department of Mathematics, Institute of Tokyo Technology

e-mail: ishigaki.y.aa@m.titech.ac.jp

1 Introduction

This talk is concerned with the following compressible viscoelastic system in R3:

(1.1)



∂tρ+ div(ρv) = 0,

ρ(∂tv + v · ∇v)− ν∆v − (ν + ν ′)∇divv +∇P (ρ) = β2div(ρF⊤F ),

∂tF + v · ∇F = ∇vF,
div(ρ⊤F ) = 0,

(ρ, v, F )|t=0 = (ρ0, v0, F0), div(ρ0
⊤F0) = 0.

Here ρ = ρ(x, t), v = ⊤(v1(x, t), v2(x, t), v3(x, t)) and F = (F jk(x, t))1≤j,k≤3 denote the unknown
density, velocity field and deformation tensor, respectivity, at time t ≥ 0 and position x ∈ R3.
P (ρ) is the pressure that is a smooth function of ρ satisfying P ′(1) > 0. ν, ν ′ and β are
constants satisfying ν > 0, 2ν + 3ν ′ ≥ 0, β > 0. Here ν and ν ′ are the viscosity coefficients; β
is the strength of elasticity. If we set β = 0 formally, we obtain the compressible Navier-Stokes
equations. Here and in what follows ⊤· stands for the transposition.

The aim of this talk is to investigate the large time behavior of solutions of the problem
(1.1) around a motionless state (ρ, v, F ) = (1, 0, I). Here I is the 3× 3 identity matrix.

In the case β = 0, Hoff-Zumbrun[1] derived the following Lp (1 ≤ p ≤ ∞) decay estimates
and asymptotic properties:

∥(ϕ(t),m(t))∥Lp ≤

{
C(1 + t)−

3
2(1−

1
p)−

1
2(1−

2
p), 1 ≤ p < 2,

C(1 + t)−
3
2(1−

1
p), 2 ≤ p ≤ ∞.∥∥∥((ϕ(t),m(t))−

(
0,F−1

(
e−ν|ξ|2tP̂(ξ)m̂0

)))∥∥∥
Lp

≤ C(1 + t)−
3
2(1−

1
p)−

1
2(1−

2
p), 2 ≤ p ≤ ∞,

where (ϕ(t),m(t)) = (ρ(t) − 1, ρ(t)v(t)) and P̂(ξ) = I − ξ⊤ξ
|ξ|2 , ξ ∈ R3. The authors of [1]

showed that the hyperbolic aspect of sound wave plays a role of the spreading effect of the
wave equation, and the decay rate of the solution becomes slower than the heat kernel when
1 ≤ p < 2. On the other hand, if 2 < p ≤ ∞, the compressible part of the solution (ϕ(t),m(t))−(
0,F−1

(
e−ν|ξ|2tP̂(ξ)m̂0

))
converges to 0 faster than the heat kernel.

In the case β > 0, Hu-Wu[2] and Li-Wei-Wao[5] established the following Lp (2 ≤ p ≤ ∞)
decay estimates:

∥u(t)∥Lp ≤ C(1 + t)−
3
2(1−

1
p),

where u(t) = (ϕ(t), w(t), G(t)) = (ρ(t), w(t), F (t)) − (1, 0, I). However the hyperbolic aspects
of elastic shear wave and sound wave does not appear. We will clarify the diffusion wave
phenomena caused by interaction of three properties; sound wave, viscous diffusion and elastic
shear wave and improve the results obtained in [2, 5].

1This work was partially supported by JSPS KAKENHI Grant Number 19J10056.
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We consider the nonlinear problem for u(t) = (ϕ(t), w(t), G(t)):

(1.2)



∂tϕ+ divw = g1,

∂tw − ν∆w − ν̃∇divw + γ2∇ϕ− β2divG = g2,

∂tG−∇w = g3,

∇ϕ+ div⊤G = g4,

u|t=0 = u0 = (ϕ0, w0, G0).

Here ν̃ = ν + ν ′; gj, j = 1, 2, 3, 4 are nonlinear terms.

2 Main Result

We have the following result.

Theorem 2.1. ([3]) Let 1 < p ≤ ∞. Assume that ϕ0, G0, and F
−1
0 satisfy ∇ϕ0 − div⊤(I +

G0)
−1 = 0 and F−1

0 = ∇X0 for some vector field X0. If u0 = (ϕ0, w0, G0) satisfies ∥u0∥H3 ≪ 1
and u0 ∈ L1, then there exists a unique solution u(t) ∈ C([0,∞);H3) of the problem (1.2), and
u(t) = (ϕ(t), w(t), G(t)) satisfies

∥u(t)∥Lp ≤ C(1 + t)−
3
2(1−

1
p)−

1
2(1−

2
p)(∥u0∥L1 + ∥u0∥H3), t ≥ 0.

Here C(p) is a positive constant depending only on p.

Outline of the proof. We note that the solenoidal part of the solution of linearized sys-
tem (ws, G̃s) = (F−1(P̂(ξ)ŵ), βF−1(P̂(ξ)Ĝ)) satisfies the following linear symmetric parabolic-
hyperbolic system: {

∂tws − ν∆ws − βdivG̃s = 0,

∂tG̃s − β∇ws = 0.

It follows from [4, 6] that if p > 2, then the Lp norm of the solution of the linearized problem
decays faster than the case β = 0. In the case of the nonlinear problem, we use a nonlinear
transform ψ̃ defined by ψ = ψ̃ − (−∆)−1div⊤(ϕ∇ψ̃ + (1 + ϕ)h(∇ψ̃)) instead of G. Here ψ̃ is
a displacement vector and (−∆)−1 = F−1|ξ|−2F . We then see that the nonlinear constraint
div(ρ⊤F ) = 0 becomes the linear condition ϕ + tr(∇ψ) = ϕ + divψ = 0 and straightforward
application of the semigroup theory works well. Here h(∇ψ̃) is a nonlinear term satisfying
h(∇ψ̃) = O(|∇ψ̃|2), |∇ψ̃| ≪ 1.
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On uniqueness of mild solutions on the whole time axis to the
Boussinessq equations in unbounded domains

Yasushi TANIUCHI

Shinshu University
taniuchi@math.shinshu-u.ac.jp

In this talk, we consider the Boussinesq equations in 3-dimensional unbounded do-
mains Ω. The Boussinesq equations describe the heat convection in a viscous incom-
pressible fluid.

(B)


∂tu−∆u+ u · ∇u+∇p = gθ, t ∈ R, x ∈ Ω,
∂tθ −∆θ + u · ∇θ = S, t ∈ R, x ∈ Ω,

∇ · u = 0, t ∈ R, x ∈ Ω,
u|∂Ω = 0, θ|∂Ω = ξ,

where u = (u1(x, t), u2(x, t), u3(x, t)), θ = θ(x, t) and p = p(x, t) denote the velocity
vector, the temperature and the pressure, respectively, of the fluid at the point (x, t) ∈
Ω×R. Here ξ = ξ(x, t) is a given boundary temperature, S is a given external heat source
and g denotes the acceleration of gravity. When Ω is some unbounded domain (e.g. the
half-space R3

+), we can show the existence theorem of small mild solutions on whole
time axis to (B). Typical examples of solutions on whole time axis are stationary, time-
periodic and almost time-periodic solutions. In this talk, we consider the uniqueness
of such solutions. Very roughly speaking, we will show that if there are two solutions
(u, θ1) and (v, θ2) in some function spaces with the same data and if we assume that
θ1 is small in some sense, then (u, θ1) = (v, θ2). Here, we do not need to assume any
smallness condition on u, v, θ2.



Analysis of non-stationary Navier-Stokes equations approximated
by the pressure stabilization method

Takayuki Kubo

Ochanomizu Univ.
kubo.takayuki@ocha.ac.jp

The results of this talk are joint works with Dr. R. Matsui (Ushiku high school
affiliated with Toyo University) and with Dr. H. Kikuchi (Univ. of Tsukuba).
The mathematical description of fluid flow is given by the Navier-Stokes equations:

∂tu−∆u+ (u · ∇)u+∇π = f t > 0, x ∈ Ω,
∇ · u = 0 t > 0, x ∈ Ω,
u(0, x) = a x ∈ Ω,
u(t, x) = 0 x ∈ ∂Ω,

(NS)

where the fluid vector fields u = u(t, x) and the pressure π = π(t, x) are unknown
function, the external force f = f(t, x) is a given vector function, the initial data a is
a given solenoidal function and Ω is a bounded domain with smooth boundary. It is
well-known that one of the difficulty of analysis for Navier Stokes equations (NS) is the
pressure term ∇π and incompressible condition ∇ · u = 0.

In order to overcome this difficulty, we often use Helmholtz decomposition. The
Helmholtz decomposition means that for 1 < p < ∞, Lp(Ω)n = Lp,σ(Ω)⊕Gp(Ω), where

Lp,σ(Ω) = {u | uj ∈ C∞
0 ,∇ · u = 0}∥·∥Lp and Gp(Ω) = {∇π ∈ Lp(Ω)

n | π ∈ Lp,loc(Ω)}.
On the other hand, in numerical analysis, some penalty methods are employed as the
method to overcome this difficulty. They are methods that eliminate the pressure by
using approximated incompressible condition. For example, setting α > 0 as a pertur-
bation parameter, we use ∇ · u = −π/α in the penalty method,

(u,∇φ)Ω = α−1(∇π,∇φ)Ω (φ ∈ Ŵ 1
q′(Ω)) (wi)

in the pressure stabilization method and ∇ · u = −∂tπ/α in the pseudocompressible
method.

In this talk, we consider (wi) instead of incompressible conditions ∇ · u = 0 in (NS).
Namely we consider the following equations:

∂tuα −∆uα + (uα · ∇)uα +∇πα = f t > 0, x ∈ Ω,
uα(0, x) = aα x ∈ Ω,

uα(t, x) = 0, ∂nπα(t, x) = 0 x ∈ ∂Ω.
(NSa)

under the approximated weak incompressible condition (wi) in Lq-framework (n/2 <
q < ∞). We shall use the maximal regularity theorem for linearized problem for (NSa)
in order to prove the local in time existence theorem and the error estimate in the Lp in
time and the Lq in space framework with n/2 < q < ∞ and max{1, n/q} < p < ∞.

Main result in this talk is concerned with the local in time existence theorem for (NSa)
with approximated weak incompressible condition (wi).



Theorem 1. Let n ≥ 2, n/2 < q < ∞ and max{1, n/q} < p < ∞. Let α > 0

and T0 ∈ (0,∞). For any M > 0, assume that the initial data aα ∈ B
2(1−1/p)
q,p (Ω) =

(Lq(Ω),W
2
q (Ω))1−1/p,p and the external force f ∈ Lp((0, T0), Lq(Ω)

n) satisfy

∥aα∥B2(1−1/p)
q,p (Ω)

+ ∥f∥Lp((0,T0),Lq(Ω)n) ≤ M.

Then, there exists T ∗ depending on only M such that (NSa) under (wi) has a unique
solution (uα, πα) of the following class:

uα ∈ W 1
p ((0, T

∗), Lq(Ω)
n) ∩ Lp((0, T

∗),W 2
q (Ω)

n),

πα ∈ Lp((0, T
∗), Ŵ 1

q (Ω)).

Moreover the following estimate holds:

∥uα∥L∞((0,T ∗),Lq(Ω)) + ∥(∂tuα,∇2uα,∇πα)∥Lp((0,T ∗),Lq(Ω)) + ∥∇uα∥Lr((0,T ∗),Lq(Ω)) ≤ C

for 1/p− 1/r ≤ 1/2, where C is the positive constant depend on n, p, q and T ∗.

Next we consider the error estimate between the solution (u, π) to (NS) under the

weak incompressible condition (u,∇φ)Ω = 0 for φ ∈ Ŵ 1
q′(Ω) and solution (uα, πα) to

(NSa) under (wi). To this end, setting ue = u−uα and πe = π−πα, we see that (ue, πe)
enjoys that


∂tue −∆ue +∇πe +N(ue, uα) = 0, t > 0, x ∈ Ω,

ue(0, x) = ae, x ∈ Ω,
ue(t, x) = 0, x ∈ ∂Ω,

(PE)

where N(ue, uα) = (ue · ∇)ue + (ue · ∇)uα + (uα · ∇)ue and ae = a − aα under the
approximated weak incompressible condition

(ue,∇φ)Ω = α−1(∇πe,∇φ)Ω + α−1(∇π,∇φ)Ω φ ∈ Ŵ 1
q′(Ω) (wie)

for 1 < q < ∞. In a similar way to Theorem 1, we obtain the following theorems:

Theorem 2. Let n ≥ 2, n/2 < q < ∞, max{1, n/q} < p < ∞ and α > 0. Let T ∗ be a
positive constant obtained in Theorem 1 and (uα, πα) be a solution obtained in Theorem

1. For any M > 0, assume that ae ∈ B
2(1−1/p)
q,p (Ω) satisfies

∥ae∥B2(1−1/p)
q,p (Ω)

≤ Mα−1.

Then there exists T ♭ such that (PE) has a unique solution (ue, πe) which satisfies

∥ue∥L∞((0,T ♭),Lq(Ω)) + ∥∇ue∥Lr((0,T ♭),Lq(Ω)) + ∥(∇2ue, ∂tue,∇πe)∥Lp((0,T ♭),Lq(Ω)) ≤ Cα−1

for 1/p− 1/r ≤ 1/2.

Furthermore, in this talk, we will introduce the estimates for error (ue, πe) derived
from the maximal regularity theorem for the linearized problem for (NSa) under the
approximated weak incompressible condition (wi).
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This talk discusses about the decay property of the compressible flow in the exterior
domain in the general Lp framework. Here, we consider the motion of the gases with
some free surface Γt, which can be described by the following (barotropic) compressible
Navier-Stokes system in the exterior domain Ωt ⊂ RN (N ≥ 3) :

∂tρ+ div
(
(ρe + ρ)v

)
= 0 in Ωt,

(ρe + ρ)(∂tv + v · ∇v)−Div
(
S(v)− P (ρe + ρ)I

)
= 0 in Ωt,(

S(v)− P (ρe + ρ)I
)
nΓt = P (ρe)nΓt , VΓt = v · nΓt on Γt,

(ρ,v,Ωt)|t=0 = (ρ0,v0,Ω).

(1)

Given the initial data and the reference density ρe > 0, we seek for the velocity field v,
the mass density ρ+ ρe and the pattern of Ωt. In (1), the Cauchy stress tensor

S(v) = µD(v) + (ν − µ)divvI for constants µ, ν > 0,

and the doubled deformation tensor D(v) = ∇v + (∇v)⊤. Moreover, the (i, j)th entry
of the matrix ∇v is ∂ivj , I is the N × N identity matrix, and M⊤ is the transposed
the matrix M = [Mij ]. In addition, DivM denotes an N -vector of functions whose i-th
component is

∑N
j=1 ∂jMij , divv =

∑N
j=1 ∂jvj , and v · ∇ =

∑N
j=1 vj∂j with ∂j = ∂/∂xj .

On the moving boundary Γt of Ωt, nΓt is the outer unit normal vector to the boundary
Γt of Ωt, and VΓt stands for the normal velocity of the moving surface Γt.

To study (1), we transfer (1) to some system in the fixed (or initial) domain Ω. Assume
that Ω ⊂ RN with the boundary Γ is an exterior domain such that O = RN \ Ω is a
subset of the ball BR, centred at origin with radius R > 1. Let κ be a C∞ functions
which equals to one for x ∈ BR and vanishes outside of B2R. Then we define the partial
Lagrangian coordinates

x = Xw(y, T ) = y +

∫ T

0
κ(y)w(y, s) ds (∀ y ∈ Ω), (2)

for some vector field w = w(·, s) defined in Ω. By using (2), denoting (γ1, γ2) =(
ρe, P

′(ρe)
)

and neglecting the nonlinear forms, we obtain the following linearized equa-
tions ∗ 

∂tρ+ γ1 divv = 0 in Ω× R+,

γ1∂tv −Div
(
S(v)− γ2ρI

)
= 0 in Ω× R+,(

S(v)− γ2ρI
)
nΓ = 0 on Γ× R+,

(ρ,v)|t=0 = (ρ0,v0) in Ω.

(3)

∗In fact, our result can be extended to more general linear equations with variable coefficients.



Now, our main result of (3) reads as follows:

Theorem 1 (Lp-Lq type decay estimate). Let Ω be a C3 exterior domain in RN with
N ≥ 3. Assume that (ρ0,v0) ∈ Lq(Ω)

1+N ∩ H1,0
p (Ω) with H1,0

p (Ω) = H1
p (Ω) × Lp(Ω)

N

for 1 ≤ q ≤ 2 ≤ p < ∞, and {T (t)}t≥0 is the semigroup associated to (3) in H1,0
p (Ω).

For convenience, we set Pv(ρ,v) = v and

|||(ρ0,v0)|||p,q = ∥(ρ0,v0)∥Lq(Ω) + ∥(ρ0,v0)∥H1,0
p (Ω)

.

Then for t ≥ 1, there exists a positive constant C such that

∥T (t)(ρ0,v0)∥Lp(Ω) ≤ Ct−(N/q−N/p)/2|||(ρ0,v0)|||p,q,

∥∇T (t)(ρ0,v0)∥Lp(Ω) ≤ Ct−σ1(p,q,N)|||(ρ0,v0)|||p,q,

∥∇2PvT (t)(ρ0,v0)∥Lp(Ω) ≤ Ct−σ2(p,q,N)|||(ρ0,v0)|||p,q,

where the indices σ1(p, q,N) and σ2(p, q,N) are given by

σ1(p, q,N) =

{
(N/q −N/p)/2 + 1/2 for 2 ≤ p ≤ N,

N/(2q) for N < p < ∞,

σ2(p, q,N) =


3/(2q) for N = 3,

(N/q −N/p)/2 + 1 for N ≥ 4 and 2 ≤ p ≤ N/2,

N/(2q) for N ≥ 4 and N/2 < p < ∞.

The proof of Theorem 1 relies on the spectral analysis and the local energy method.
This is a joint work with Yoshihiro Shibata from Waseda University.
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1 Introduction

The study of the interaction of coaxial vortex rings dates back to the pioneering paper
by Helmholtz [2]. In [2], Helmholtz considered vortex motion in a incompressible and
inviscid fluid based on the Euler equations. His study includes the motion of circular
vortex filaments, and he observed that motion patterns such as head-on collision may
occur. Since then, many researches have been done on head-on collision of coaxial vortex
rings, and interaction of coaxial vortex rings in general. Most of these research are either
experiments conducted in a laboratory or numerical simulations of the Navier–Stokes
equations, and the rigorous mathematical treatment of head-on collision of vortex rings
are very scarce.

In light of this, we consider the head-on collision of two coaxial vortex rings, which
have circulations of opposite sign, described as the motion of two coaxial circular vortex
filaments under the localized induction approximation. A vortex filament is a space curve
on which the vorticity of the fluid is concentrated. In our present work, we approximated
thin vortex structures, such as vortex rings, by vortex filaments, and described the motion
as the motion of a curve in the three-dimensional Euclidean space. In this formulation, a
vortex ring is a space curve in the shape of a circle. We prove the existence of solutions
to a system of nonlinear partial differential equations modelling the interaction of two
vortex filaments proposed by the speaker [1] which exhibit head–on collision. We also
give a necessary and sufficient condition for the initial configuration and parameters of
the filaments for head-on collision to occur. Our results suggest that there exists a critical
value γ∗ > 1 for the ratio γ of the magnitude of the circulations satisfying the following.
When γ ∈ [1, γ∗], two approaching rings will collide, and when γ ∈ (γ∗,∞), the ring
with the larger circulation passes through the other and then separate indefinitely. As far
as the speaker knows, the existence of such threshold γ∗ is only indirectly suggested via
numerical investigations of the head-on collision of coaxial vortex rings, for example by
Inoue, Hattori, and Sasaki [3]. Hence, our result is the first to obtain the threshold in a
way that is possible to numerically calculate γ∗, as well as prove that the threshold exists
in a framework of a mathematical model.

1



2 Problem Setting and Main Results

We consider the motion of two interacting vortex filaments. In [1], under physically
intuitive assumptions, we derived the following system of partial differential equations
which describes the interaction of two vortex filaments.

X t = β
Xξ ×Xξξ

|Xξ|3
− α

Y ξ × (X − Y )

|X − Y |3
,

Y t =
Y ξ × Y ξξ

|Y ξ|3
− αβ

Xξ × (Y −X)

|X − Y |3
,

(1)

where X(ξ, t) = t(X1(ξ, t), X2(ξ, t), X3(ξ, t)) and Y (ξ, t) = t(Y1(ξ, t), Y2(ξ, t), Y3(ξ, t)) are
the position vectors of the vortex filaments parametrized by ξ at time t, × is the exterior
product in the three-dimensional Euclidean space, subscripts denote partial differentiation
with the respective variables, β ∈ R \ {0} is the quotient of the vorticity strengths of the
filaments, and α > 0 is a constant which is introduced in the course of the derivation of
the system. We consider the case β < 0 to describe colliding vortex rings. To make things
more simple, we set γ = −β and consider γ > 0.

In this talk, we introduce recent results on the existence of solutions to system (1)
which correspond to head-on collision. We give necessary and sufficient conditions on the
initial data and parameters for head-on collision to occur. This, in particular, gives the
threshold for γ mentioned in the introduction.
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The motion of incompressible and inviscid fluids in the Euclidean plane is governed
by the Euler equation and its solution is called an Euler flow. For the Euler flow, the
vorticity is a Lagrange invariance. Then, since the fluid velocity and the pressure can be
recovered from the vorticity, an Euler flow is determined by a solution of the vorticity
equation. Namely, if ωt is a solution of the vorticity equation,

∂tωt + (−J grad⟨G,ωt⟩·∇)ωt = 0,

(vt, pt) is an Euler flow, defined by

vt = −J grad⟨G,ωt⟩, pt = ⟨G, div(vt · ∇)vt⟩, (1)

where J is the symplectic matrix and G is the Green function for the Laplacian. On the
other hand, the formulae (1) still make sense in the sense of distributions when we give
a time-dependent distribution Ωt by a linear combination of delta functions centered at
qn(t) for n = 1, . . . , N with the linear coefficient Γn ∈ R. Then, replacing ωt by Ωt in (1),
we formally obtain a fluid velocity Vt and a pressure Pt. However, we can not define
the dynamics of qn(t) from the vorticity equation. Instead, to determine the evolution
of qn(t) by Vt, Helmholtz considered the following regularized equation for qn(t) [6].

q̇n = lim
q→qn

[
Vt(q) + J grad⟨G,Γnδqn(t)⟩(q)

]
= −J grad

N∑
m=1
m ̸=n

ΓmG(qn, qm) ≡ vn(qn). (2)

It is called the point vortex equation, and the solution of (2) is called the point vortex
dynamics. Then, there arises a natural question; How can we interpret (Vt, Pt) as an
Euler flow in an appropriate mathematical sense? In other words, we need to determine
a space of solutions of the Euler equation which contains (Vt, Pt). Since Lp space does
not contain (Vt, Pt), a more sophisticated space is to be considered. This is one of the
central problems in the analysis of 2D Euler equation as discussed in [2, 3, 4]. From the
viewpoint of the application, the point vortex dynamics is sometimes considered in the
presence of a time-dependent vector field Xt ∈ Xr(R2), called the point vortex dynamics
in the background field Xt. Then, the evolution of qn(t) is governed by the following
equation.

q̇n(t) = βXXt(qn(t)) + βωvn(qn(t)), n = 1, . . . N (3)

for a given (βX , βω) ∈ R2. Some experimental studies confirm the importance of back-
ground fields in two-dimensional turbulence [1, 7].



The purpose of this research is justifying the point vortex dynamics in background
fields as an Euler flow mathematically. To this end, we establish a weak formulation of
the Euler equation in the space of currents, which is developed in the theory of geometric
analysis and geometric measure theory. Since the notion of currents is defined not only
for the Euclidean plane but also general curved surface, the formulation established here
can be naturally generalized for surfaces. From the viewpoint of the application, it is of
a great significance to justify the point vortex dynamics in a background field on curved
surfaces as an Euler-Arnold flow, which is a generalization of the Euler equation to the
case of the surfaces, since the point vortex dynamics in the rotational vector field on the
unit sphere is adapted as a mathematical model of a geophysical flow in order to take
effect of the Coriolis force on inviscid flows into consideration [5] for instance.
The main results consist of two theorems. For a current-valued solution of the Euler-

Arnold equation with a regular-singular decomposition, we first prove that, if the singular
part of the vorticity is given by a linear combination of delta functions centered at qn(t)
for n = 1, . . . , N , qn(t) is a solution of (3). Conversely, we next prove that, if qn(t) is a
solution of (3), there exists a current-valued solution of the Euler-Arnold equation with
a regular-singular decomposition such that the singular part of the vorticity is given by a
linear combination of delta functions centered at qn(t). Therefore, we conclude that the
point vortex dynamics in a background field on a surfaces is a current-valued solution
of the Euler-Arnold equation with a regular-singular decomposition.
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This talk is based on a joint work with Kyungkeun Kang (Yonsei university) and Tai-
Peng Tsai (University of British Columbia).We consider the regularity of weak solutions
for the incompressible Navier-Stokes equations

∂tv −∆v + v · ∇v +∇p = 0, div v = 0 (ns)

associated with the initial value v|t=0 = v0 with div v0 = 0. In [2], Caffarelli, Kohn,
and Nirenberg established local regularity theory for suitable weak solutions. As an
application of their ϵ-regularity theorem, they showed the following result:

Theorem 1 ([2]). There exists ϵ0 > 0 such that if v0 ∈ L2(R3) satisfies

∥v0∥2L2,−1 = ϵ < ϵ0, (1)

then there exists a suitable weak solution which is regular in the set Πϵ0−ϵ, where

∥v0∥L2,α := ∥|x|
α
2 v0∥L2(R3),

Πδ :=

{
(x, t) ∈ R3 × (0,∞) : t >

|x|2

δ

}
.

This theorem asserts that smallness of initial data in a weighted space implies regular-
ity of the solution above a paraboloid with vertex at the origin. There are at least two
interesting features in this result: No regularity condition (better than L2) is assumed
away from the origin and the regularity around the origin is propagated globally in time.
We also note that if the size of v0 tends to 0, Πϵ0−ϵ increases and converges to a limit
set Πϵ0 . This observation leads to the following questions: (a) Can the size of regular
set Πδ be enlarged? (b) Can the asssumtions of the initial data be relaxed in terms of
regularity, decay, and smallness? The question (a) is addressed by D’Ancona and Luca
[3], where it is shown that there exists δ0 > 0 such that if v0 ∈ L2(R3) satisfies

∥v0∥L2,−1 < δ0e
−4L2

(2)

for some L > 1, (ns) has a suitable weak solution which is regular in the set ΠLδ0

invading the whole half space R3×(0,∞) when v0 tends to zero, though (2) still assumes
smallness of the data. The aim of this talk is trying to answer questions (a) and (b). To
this end, we recall the notion of the local energy solutions introduced by [4] and later
modified by [1]. The local energy solution is a suitable weak solution of (ns) defined
in R3 which satisfies certain uniformly local energy bounds and pressure representation.



In this context, let us also recall the uniformly local Lq spaces for 1 ≤ q < ∞. We say
f ∈ Lq

uloc if f ∈ Lq
loc(R

3) and

∥f∥Lq
uloc

= sup
x∈R3

∥f∥Lq(B1(x)) < ∞.

The following result shows estimates of the regular set for the local energy solution for
arbitrary initial data in L2,−1(R3) and the data with small scaled energy.

Theorem 2. Let (v, p) be a local energy solution in R3 × (0,∞) for the initial data
v0 ∈ L2

uloc(R3).

(i) For any v0 ∈ L2,−1(R3) there exist positive constants T (v0) and c(v0) such that v
is regular in the set{

(x, t) ∈ R3 × (0,∞) : c(v0)|x|2 ≤ t < T (v0)
}
.

(ii) There exist positive absolute constants ϵ∗ and c such that if v0 satisfies

Ṅ0 := sup
r>0

1

r

∫
Br

|v0(x)|2 dx ≤ ϵ∗

and

sup
x0∈R3

sup
r≥1

1

r

∫
Br(x0)

|v0(x)|2 dx < ∞,

then v is regular in the set{
(x, t) ∈ R3 × (0,∞) : cṄ2

0 |x|
2 ≤ t

}
.

It is not difficult to see that the assumptions of (ii) are slightly weaker than those in
Theorem 1. (ii) also refines the convergence rate of the regular set to R3 × (0,∞) in [3]
as ∥v0∥L2,−1 tends to zero.
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In this talk, we consider the existence of radially symmetric problems in Rn(n ≥ 2) to
the compressible Navier-Stokes equation: (rn−1ρ)t + (rn−1ρu)r = 0,

(ρu)t + (ρu2 + p(ρ))r + (n− 1)
ρu2

r
= µ

((rn−1u)r
rn−1

)
r
, t > 0, r > r0,

(1)

where ρ = ρ(t, r) > 0 is the mass density, u = u(t, r) is the fluid velocity, and p = p(ρ)
is the pressure given by a smooth function of ρ satisfying p′(ρ) > 0 (ρ > 0), and µ is
a positive constant. We consider the initial boundary value problems to (1) under the
initial condition

(ρ, u)(0, r) = (ρ0, u0)(r), r > r0,

the far field condition
lim
r→∞

(ρ, u)(t, r) = (ρ+, u+), t > 0,

and also the following two types of boundary conditions depending on the sign of the
velocity on the boundary (ρ, u)(t, r0) = (ρ−, u−), t > 0, (u− > 0),

u(t, r0) = u−, t > 0, (u− ≤ 0),

where ρ± > 0, u± are given constants. The case u− > 0 is known as “inflow problem”,
the case u− = 0 as “impermeable wall problem”, and the case u− < 0 as “outflow
problem”. The equation (1) is given by letting

ρ(t, x) = ρ(t, r), U(t, x) =
x

r
u(t, r), r = |x|,

for the compressible Navier-Stokes equation which describes a barotropic motion of vis-
cous gas in the exterior domain Ω to a ball in Rn (n ≥ 2):{

ρt + div(ρU) = 0,
(ρU)t + div(ρU ⊗ U) +∇p = ν △ U + (ν + λ)∇(divU), t > 0, x ∈ Ω,

where Ω = {x ∈ Rn (n ≥ 2); |x| > r0} (r0 is a positive constant), U = (u1(t, x), · · · , un(t, x))
is the fluid velocity and ν and λ are constants satisfying ν > 0, 2ν + nλ > 0.



We show the existence of a unique radially stationary solution in a suitably small
neighborhood of the far field state for both inflow and outflow problems for the problem
(1). Furthermore, it is shown that the boundary layer of the density appears as the
velocity data tend to zero in the inflow problem, but not in the outflow problem. The
stationary problem corresponding to the problem (1) is written as

(rn−1ρu)r = 0,

ρuur + p(ρ)r = µ(
(rn−1u)r
rn−1

)r, r > r0,

lim
r→∞

(ρ, u)(r) = (ρ+, u+),

(ρ, u)(r0) = (ρ−, u−) (u− > 0), u(r0) = u− (u− ≤ 0).

(2)

The main theorem of this talk is as follows.

Theorem 1. Let n ≥ 2 and u+ = 0．Then, for any ρ+ > 0, there exist positive constants
ϵ0 and C satisfying the following:

(I) Let u− > 0. If |u−|+ |ρ− − ρ+| ≤ ϵ0, there exists a unique smooth solution (ρ, u) of
the problem (2) satisfying

|ρ(r)− ρ+| ≤ Cr−(n−1)(|u−|2 + |ρ− − ρ+|),

C−1r−(n−1)|u−| ≤ |u(r)| ≤ Cr−(n−1)|u−|, r ≥ r0.

Furthermore, for any positive constant h, there exists a positive constant Ch such that
it holds

sup
r≥r0+h

|ρ(r)− ρ+| ≤ Ch|u−|2.

(II) Let u− ≤ 0. If |u−| ≤ ϵ0, there exists a unique smooth solution (ρ, u) of the problem
(2) satisfying

|ρ(r)− ρ+| ≤ Cr−2(n−1)|u−|2,

C−1r−(n−1)|u−| ≤ |u(r)| ≤ Cr−(n−1)|u−|, r ≥ r0.
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