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Notations

Let p be a prime number.
Let k be an algebraically closed field of characteristic p.
Let X/k be a smooth, projective curve over k .
Let g = g(X ) be the genus of X .
We will always assume g ≥ 2.
Let σ : k → k be the Frobenius map x 7→ xp,
Let S = Spec(k)

Let Ω1
X be the canonical bundle of X .

Let TX be the tangent bundle of X .
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The Frobenius Morphism

Let F : X → X be the absolute Frobenius morphism of X .
This is the following morphism of schemes: it is identity on
the topological space underlying X
and on the sheaf of functions OX → OX it is the map f 7→ f p

(for local sections of OX ).
If we work over a base scheme S, we can also define a
relative Frobenius morphism FX/S : X → S.
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Semistability and stability

For any vector bundle V on X let

µ(V ) =
deg(V )

rk (V )
,

where deg(V ) is the degree of V and rk (V ) is the rank of V .
A vector bundle V on X is stable (resp. semi-stable) if for any
non-zero sub-bundle W ⊂ V , we have

µ(W ) < µ(V ) (resp. µ(W ) ≤ µ(V )).

A non-zero sub-bundle (W ⊂ V ) with (µ(W ) ≥ µ(V )) will be
called a destabilizing sub-bundle.
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The Harder-Narasimhan filtration

Recall that there exists, on every vector bundle V , a unique
filtration 0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V` = V with the following
properties:

every quotient Vi+1/Vi is semistable, and
if µi = µ(Vi/Vi−1) then µ1 > µ2 > · · · > µ`.

This is called the Harder-Narasimhan filtration of V .
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Harder-Narasimhan polygons

The numerical data of Harder-Narasimhan filtration is
conveniently encoded in a convex polygon with break-points at
(0,0) and the points (rk (Vi),deg(Vi)) and the line segment
joining (rk (Vi),deg(Vi)), (rk (Vi−1),deg(Vi−1)) has slope µi .
This is called the Harder-Narasimhan polygon of V .
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The p-curvature

Given a local system (V ,∇) over X , i.e. a pair (V ,∇) consisting
of a vector bundle V over X and a connection ∇ on V , we have
the p-curvature

ψ(V ,∇) : TX → End(V), D 7→ ∇(D)p −∇(Dp).

Here D denotes a local vector field, Dp its p-th power (which
again a vector field) and End(V) denotes the sheaf of OX -linear
endomorphisms of V .
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Cartier’s Theorem

Theorem

1 Let E be a vector bundle over X. The pull-back F ∗(E)
under the Frobenius morphism carries a canonical
connection ∇can, which satisfies the equality
ψ(F ∗(E),∇can) = 0.

2 Given a local system (V ,∇) over X, there exists a vector
bundle E such that (V ,∇) = (F ∗(E),∇can) if and only if
ψ(V ,∇) = 0.
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Nilpotence

A connection (V ,∇) is nilpotent if there is a filtration W• on V
which is preserved by ∇ and the induced connection on the
associated graded has p-curvature zero.
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Opers I

Opers were introduced by A. Beilinson and V. Drinfeld in
their study of Geometric Langlands correspondence.
The local avatar goes back to Drinfel’d-Sokolov (study of
Poisson reduction).
Indigenous bundles on Riemann surfaces (rank two opers)
appeared in works of Gunning, Mandelstam.
In the seventies Ihara studied the Schwarzian differential
equation in arithmetic.
In 1993-96 S. Mochizuki studied indigenous bundles
(always of rank two) (now called PGL2-opers) in positive
characteristic.
General opers in characteristic p > 0 also appeared
naturally in JRXY.
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Definition

An oper over a smooth algebraic curve X defined over an
algebraically closed field k of characteristic p > 0 is a triple
(V ,∇,V•), where

1 V is a vector bundle over X ,
2 ∇ is a connection on V ,
3 V• : 0 = Vl ⊂ Vl−1 ⊂ · · · ⊂ V1 ⊂ V0 = V is a filtration by

subbundles of V , called the oper flag.
These data have to satisfy the following conditions

1 ∇(Vi) ⊂ Vi−1 ⊗ Ω1
X for 1 ≤ i ≤ l − 1,

2 the induced maps (Vi/Vi+1)
∇−→ (Vi−1/Vi)⊗ Ω1

X are
isomorphisms for 1 ≤ i ≤ l − 1.
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Opers II: Nilpotent and Dormant opers

Definition
We say that an oper (V ,∇,V•) is nilpotent if (V ,∇) is nilpotent.
We say an oper (V ,∇,V•) is dormant if (V ,∇) has p-curvature
zero.

The term dormant is due to S. Mochizuki.
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Indigenous bundles

An indigenous bundle (V ,∇) is an oper (V ,∇,V•) with
rk (V ) = 2 and ∧2(V ,∇) = (OX ,∇ = d).
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Fundamental Example

Let θ be a line bundle with θ⊗2 ' Ω1
X .

Let V ∈ Ext 1(θ−1, θ) be the unique (up to isom.) non-split
extension.
Then any connection ∇ on V makes (V ,∇,V•) into an
oper (of rank two).
By Weil’s Theorem there are connections on V (this is true
even in characteristic p > rk (V )).
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Finiteness/Properness

Let LocGL(r) (resp. LocSL(r)) be stacks parameterizing rank-r
local systems over X (resp. rank-r local systems with trivial
determinant).We have a Hitchin morphism

LocGL(r) −→ ⊕r
i=1H0(X ,F ∗(Ω1

X )⊗i),

(V ,∇) 7→ Char(ψ(V ,∇)),

where Char(ψ(V ,∇)) is the characteristic polynomial of the
p-curvature ψ(V ,∇) : V → V ⊗ F ∗(Ω1

X ). Let OpPGL(r)(X ) be the
stack of PGL(r)-opers on X .
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Finiteness/Properness

A beautiful observation of Mochizuki, rediscovered a few years
later by Laszlo-Pauly, is that the components of Char(ψ(V ,∇))
descend under the Frobenius morphism.
That is the morphism (V ,∇) 7→ Char(ψ(V ,∇)) factorizes as

LocGL(r)
Φ−→ ⊕r

i=1 H0(X , (Ω1
X )⊗i)

F∗
−→ ⊕r

i=1 H0(X ,F ∗(Ω1
X )⊗i).

Frobenius, opers and Hitchin-Mochizuki morphism



Introduction
Opers

The Hitchin-Mochizuki morphism
Frobenius destabilized bundles

Early results
Inside the Instability Locus

Finiteness/Properness

The Hitchin-Mochizuki morphism

The Hitchin-Mochizuki morphism is the morphism

HM : OpPGL(r)(X ) → ⊕r
i=2H0(X , (Ω1

X )⊗i)

which assigns to an oper (V ,∇,V•) the pth-root ψ(V ,∇)1/p.
This makes sense because of the factorization property stated
earlier. The stack OpPGL(r)(X ) is in fact an affine scheme,
non-canonically isomorphic to the target of HM.
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Finiteness/Properness

Finiteness of nilpotent opers

We will denote by Nilpr (X ) := HM−1(0) ⊂ OpPGL(r)(X ) the fiber
over 0 of the Hitchin-Mochizuki morphism.
It parameterizes nilpotent PGL(r)-opers and contains in
particular dormant PGL(r)-opers.

Theorem (Main Theorem I)

The scheme Nilpr (X ) is finite.

For r = 2 this is due to S. Mochizuki and lies at the heart of his
p-adic uniformization program.
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Finiteness/Properness

The key observation we have is: the Hitchin-Mochizuki
morphism is a also a Hitchin map–so it should be proper. On
the other hand it is a proper map between two affine schemes.
So it is finite.
We prove finiteness by proving properness (via a valuative
criterion).
This provides a more conceptual philosophical framework for
those interested in meditating up on such matters.
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Finiteness/Properness

Valuative criterion for opers

Proposition

Let R be a discrete valuation ring and let s and η be the closed
and generic point of Spec(R). For any nilpotent SL(r)-oper
(Vη,∇η, (Vη)•) over X × Spec(K ) there exists a nilpotent
SL(r)-oper (VR,∇R, (VR)•) over X × Spec(R) extending
(Vη,∇η, (Vη)•).
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Stability and Frobenius

In 1970s Mumford and later Gieseker found examples of
vector bundles V on smooth, projective curves X such that
F ∗(V ) is not semistable.
The question of understanding this phenomena was first
raised by Mumford.
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The sheaf locally of exact differentials

Now let B1
X = d(OX ) ⊂ Ω1

X , then Leibnitz rule

d(f pg) = f pdg

shows that d is linear with respect to the Frobenius and that B1
X

lives naturally as a locally free subsheaf of F∗(Ω1
X ).

Thus B1
X is a vector bundle on X of rank p − 1 and slope g − 1.

Note that B1
X is not a vector bundle in characteristic zero.

Frobenius, opers and Hitchin-Mochizuki morphism



Introduction
Opers

The Hitchin-Mochizuki morphism
Frobenius destabilized bundles

Early results
Inside the Instability Locus

Raynaud’s Theorem (1982)

The theorem is the following.

Theorem

For p > 2 the bundle B1
X is semistable and F ∗(B1

X ) is not
semistable.

In 2004 I proved that B1
X is stable.
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The instability locus

Let M(r) denote the coarse moduli space of
S-equivalence classes of semistable bundles of rank r and
degree 0 over the curve X .
Let J (r) ⊂M(r) be the locus of semistable bundles E
which are destabilized by Frobenius pull-back, i.e. F ∗(E) is
not semistable.
Set-theoretically the locus J (r) is well-defined, since,
given a strictly semistable bundle E with associated graded
gr(E) = E1 ⊕ · · · ⊕ El with Ei stable, one observes that E is
Frobenius-destabilized if and only if at least one of the
stable summands Ei is Frobenius-destabilized.
Moreover, J (r) is a closed subvariety of M(r). Let
J s(r) ⊂ J (r) be the open subset corresponding to stable
bundles. Frobenius, opers and Hitchin-Mochizuki morphism
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The case p = 2, g = 2, r = 2

This is rather special:
The moduli of semistable bundles of trivial determinant is
smooth and ' P3, with the locus of non-stable bundles
embedded as the Kummer of the Jacobian of X .
Mehta in the mid 1990s observed (in private
conversations) that the instability locus is finite as its
complement contains the Kummer–an ample divisor in P3.
In 2000 with Eugene Xia we gave a complete classification
of all vector bundles of degree one and p = 2,g = 2, r = 2
which are destabilized by Frobenius.
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In 2004 that Laszlo-Pauly (ordinary X ) and later
(2005-2008) Laszlo-Pauly, Ducrohet completed the
analysis (for non-ordinary g = 2).
Later Osserman (2006,2008) provided analysis for
g = 2, r = 2,p ≤ 5 (and X general).
The Laszlo-Pauly, Ducrohet, Osserman approaches are
quite computational and involves explicit equations which
cannot be generalized beyond g = 2 as the equations
become increasingly complicated with p (for g = 2).
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The case p = 2, g ≥ 2, r = 2

This case was completely dealt with from a completely
intrinsic viewpoint in a joint work (JRXY) of Joshi, S.
Ramanan, Eugene Xia and Jiu-Kang Yu.
We gave a complete construction of all Frobenius
destabilized bundles in all degrees and all genus g ≥ 2
and gave a complete construction of the instability locus.
We also proved: if p ≤ 5 and M a line bundle, then F∗(M)
is stable.

Frobenius, opers and Hitchin-Mochizuki morphism



Introduction
Opers

The Hitchin-Mochizuki morphism
Frobenius destabilized bundles

Early results
Inside the Instability Locus

The following is natural after JRXY:

Question
Given a semistable vector bundle M on X , is it true that F∗(M)
(the push-forward) is semistable?
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In 2007 Lange-Pauly proved that for any line bundle M,
F∗(M) is stable.
Soon Mehta-Pauly showed that if M (of degree zero) is
semi-stable then F∗(M) is semi-stable.
The Mehta-Pauly approach is, philosophically speaking,
similar to Raynaud’s approach: show a bundle is
semistable by showing that it has a theta divisor.
On the other hand my approach to stability of B1

X did not
use theta divisors at all.
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In 2008 Xiao-Tao Sun showed that

Theorem
If g ≥ 2 and if M is any stable (resp. semistable) bundle then
F∗(M) is stable (resp. semistable).

Sun’s beautiful proof: improves certain slope-bounds proved for
proving stability of B1

X ,F∗(L) and uses a critical construction of
JRXY: that F ∗(F∗(M)) carries a canonical filtration.
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The JRXY filtration alluded to here is the following: Let
Vp = V = F ∗(F∗(E)),

Vp−1 = ker(Vp = F ∗(F∗(E))→ E),

for 0 ≤ i ≤ p − 2 let

Vi = ker(Vi+1 → V ⊗ Ω1
X → (V/Vi+1)⊗ Ω1

X ).

Frobenius, opers and Hitchin-Mochizuki morphism



Introduction
Opers

The Hitchin-Mochizuki morphism
Frobenius destabilized bundles

Early results
Inside the Instability Locus

Opers III

The following result which combines the results of JRXY and
Sun provides the basic example of opers in characteristic
p > 0.

Theorem

Let E be any stable vector bundle over X and let F : X → X be
the absolute Frobenius of X . Then the triple

(V = F ∗(F∗(E)),∇can,V•),

where V• is the canonical filtration defined by JRXY is a
dormant oper of type rk (E) and length p. Moreover, there is an
equality V0/V1 = E.
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Oper polygons
Structure of dormant opers
Rank two case
The key bound
Canonical sections for small p

Main Theorem II

Theorem

Let r ≥ 2 be an integer and put C(r ,g) = r(r − 1)(r − 2)(g − 1).
If p > C(r ,g), then we have

1 Every stable, Frobenius-destabilized vector bundle V of
rank r and slope µ(V ) = µ over X is a subsheaf
V ↪→ F∗(Q) for some stable vector bundle Q of rank
rk (Q) < r and µ(Q) < pµ.

2 Conversely, given a semistable vector bundle Q with
rk (Q) < r and µ(Q) < pµ, every subsheaf V ↪→ F∗(Q) of
rank rk (V ) = r and slope µ(V ) = µ is semistable and
destabilized by Frobenius.
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Oper polygons
Structure of dormant opers
Rank two case
The key bound
Canonical sections for small p

For p = 2 this result was proved by JRXY.
The road, from p = 2, to the above theorem involves
considerable issues which simply do not show up for p = 2.
For instance: one major difficulty is this: suppose F ∗(V ) is
not semi-stable and say F ∗(V ) → Q is a destabilizing
quotient of minimal slope, then by adjunction one obtains a
morphism V → F∗(Q).
But is this mapping injective? This is a major headache but
relatively simpler to handle for p = 2 or r = 2 (as was
shown by JRXY).
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The key bound
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The degree zero case

In the case when the degree of the Frobenius-destabilized
bundle equals 0, we the following.

Theorem (Main Theorem III)

Let X be a smooth, projective curve of genus g ≥ 2 over an
algebraically closed field k of characteristic p. If p > C(r ,g),
then every stable, Frobenius-destabilized vector bundle V of
rank r and of degree 0 over X is a subsheaf

V ↪→ F∗(Q)

for some stable vector bundle Q of rank rk (Q) < r and degree
deg(Q) = −1.
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A quot-scheme

Let 1 ≤ q ≤ r − 1 be an integer and let M(q,−1) be the
moduli space of semistable bundles of rank q and degree
−1 over the curve X .
As gcd(q,−1) = 1 we are in the coprime case and so every
semistable bundle Q ∈M(q,−1) is stable.
So there exists a universal Poincaré bundle U on
M(q,−1)× X .
Let Quot(q, r ,0) be the relative Quot-scheme:

α : Quotr ,0((F × idM(q,−1))∗U) −→M(q,−1)

The fibre α−1(Q) over a point Q ∈M(q,−1) equals
Quotr ,0(F∗(Q)) of quotients F∗(Q) with associated kernel of
rank r and degree 0.
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Oper polygons
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Theorem (Main Theorem IV)

If p > C(r ,g), then the image of the forgetful morphism

π :
r−1∐
q=1

Quot(q, r ,0) −→M(r), [E ⊂ F∗(Q)] 7→ E

is contained in the locus J (r) and contains the closure J s(r) of
the stable locus J s(r).
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Oper polygons

We introduce the oper-polygon

Poper
r : with vertices (i , i(r − i)(g − 1)) for 0 ≤ i ≤ r .

This is a convex polygon with line segments of integer slopes.
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Examples

For r = 2, Poper
2 is For r = 3, Poper

3 is
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Oper Polygons are maximal

Theorem (Main Theorem V)

Let (V ,∇) be a semistable local system of rank r and degree 0.
Then

1 PV lies on or below Poper
r .

2 And the equality
Poper

r = PV

holds if and only if the triple (V ,∇,V HN
• ) is an oper.
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This theorem is, in some sense an analogue of Mazur’s
Theorem (Katz’ conjecture for F -crystals).
The oper polygon is a polygon with integer slopes and
integer break points. It plays the role of Hodge polygon.
The theorem is equivalent to a bunch of a complicated
inequalities for slopes of F ∗(V ).

Frobenius, opers and Hitchin-Mochizuki morphism



Introduction
Opers

The Hitchin-Mochizuki morphism
Frobenius destabilized bundles

Early results
Inside the Instability Locus

Oper polygons
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Theorem (Main Theorem VI)

Let r ≥ 2 be an integer and assume p > C(r ,g). Then we have
1 Given a line bundle Q of degree deg(Q) = −(r − 1)(g − 1),

the Quot-scheme Quotr ,0(F∗(Q)) is non-empty and any
vector bundle W ∈ Quotr ,0(F∗(Q)) we have

(F ∗(W ),∇can) with PF∗W = Poper
r ,

i.e., the triple (F ∗(W ),∇can, (F ∗(W ))HN
• ) is a dormant oper.

2 Conversely, any dormant oper of degree 0 is of the form
(F ∗(W ),∇can, (F ∗(W ))HN

• ) with W ∈ Quotr ,0(F∗(Q)) for
some line bundle Q of degree deg(Q) = −(r − 1)(g − 1).
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Oper polygons
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The key bound
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As a corollary we deduce:

Corollary

Assume p > C(g, r). Then the locus of semistable bundles V of
degree zero with PV = Poper

r is finite. This is the zero
dimensional stratum of the instability locus J (r).
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The r = 2 case

In this case C(2,g) = 0, so results are valid for all p ≥ 2,
and J s(2) = J (2) as there are no strictly semistable
rank-2 Frobenius-destabilized vector bundles.
A formal consequence of results of S. Mochizuki, pointed
out by B. Osserman, is that dimJ (2) = 2g − 4 for a
general curve X under the assumption p > 2g − 2.
JRXY have shown that this is true for any X (g ≥ 2) if
p = 2.
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As an application of our results on opers we obtain the following
information on the locus of Frobenius-destabilized bundles
J (2).

Theorem (Main Theorem VII)

For any X with g ≥ 2 and p ≥ 2, any irreducible component of
J (2) containing a dormant oper has dimension 2g − 4.

Dormant opers always exists and so there is at least one
irreducible component which satisfies the conditions of the
theorem.
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The key estimate

The key technical tool in the the proof of Main Theorem II is the
following:

Theorem (Key Estimate)

Let Q be a semistable vector bundle over the curve X. Let
δ ∈ R>0 and let n be a positive integer. Assume that
p > (n−1)(g−1)

δ . Then any subbundle W ⊂ F∗(Q) of rank
rk (W ) ≤ n has slope

µ(W ) <
µ(Q)

p
+ δ.
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Key Estimate ⇒ Main Theorem II

Let V be a stable and Frobenius-destabilized vector bundle of
rank r and slope µ(V ) = µ. Consider the first quotient Q of the
Harder-Narasimhan filtration of F ∗(V ). So we have a stable Q
such that

F ∗(V ) → Q and pµ = µ(F ∗(V )) > µ(Q).

Moreover rk (Q) < rk (V ) = r . By adjunction we obtain a
non-zero map

V → F∗(Q).

So to prove Main Theorem II it will suffice to prove that this map
is injective.
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Key Estimate ⇒ Main Theorem II

Suppose that this is not the case. Then the image of
V → F∗(Q) generates a subbundle, say, W ⊂ F∗(Q) and one
has 1 ≤ rk (W ) ≤ r − 1 and by the stability of V , we have

µ(V ) = µ < µ(W ).

Now we observe that we can bound µ(W ) from below

µ(W ) ≥ µ+
1

r(r − 1)
>
µ(Q)

p
+

1
r(r − 1)

.

The proof of Main Theorem II now follows from the Key
Estimate with δ = 1

r(r−1) and n = r − 1.
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Proof of the Key Estimate

Here are the important issues:
The Key Estimate is a substantial strengthening of bounds
for subbundles of F∗(Q) proved (and improved) by various
people starting with JRXY, Joshi, Lange-Pauly, Sun.
Sun’s bound are useful for proving stability of F∗(Q) (for Q
stable) but are not strong enough to prove stability of the
subsheaves (of the sort which come up in proving
injectivity of V ↪→ F∗(Q)).
The Proof of the Key Estimate uses the fact (combining
result of JRXY and Sun) that F ∗(F∗(Q)) carries a structure
of a dormant oper in a critical way.
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Proof of Main Theorem III: The degree zero case

By Main Theorem II, every V of rank r and degree zero is a
subsheaf of F∗(Q) for some stable Q with µ(Q) < 0.
We observe that if Q ⊂ Q′ is a subsheaf then
F∗(Q) ⊂ F∗(Q′), so to find a Q′ of degree −1, starting with
Q, we perform upper modifications on Q.
This needs a delicate technical argument because a
general modification will disturb stability of Q but we will
not give its proof here.
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Canonical sections for small p

The results of Joshi and Raynaud can be stated as follows:

Theorem

For p > 2, the bundle P(F ∗(B1
X )) together with its Cartier

connection and the Harder-Narasimhan filtration is a dormant
oper.

Equivalently: The morphism Nilp−1 → Mg has a canonical
section whose image lies in the dormant locus.
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Even for p = 2 we have a canonical section (this is implicit in
JRXY). The prescription is as follows. For p = 2, B1

X is a line
bundle of degree g − 1 and is a canonical theta line bundle.
Then (F ∗(F∗((B1

X )−1),∇can,HN•) is a canonical dormant oper
(on any genus g ≥ 2 curve).
In contrast if p > r + 1 then there are no canonical sections of
Nilr → Mg .
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