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Abstract

In this paper, we develop the theory of “cuspidalizations” of the
étale fundamental group of a proper hyperbolic curve over a finite or
nonarchimedean mixed-characteristic local field. The ultimate goal of
this theory is the group-theoretic reconstruction of the étale fundamental
group of an arbitrary open subscheme of the curve from the étale fun-
damental group of the full proper curve. We then apply this theory to
show that a certain absolute p-adic version of the Grothendieck Conjec-
ture holds for hyperbolic curves “of Belyi type”. This includes, in particu-
lar, affine hyperbolic curves over a nonarchimedean mixed-characteristic
local field which are defined over a number field and isogenous to a hy-
perbolic curve of genus zero. Also, we apply this theory to prove the
analogue for proper hyperbolic curves over finite fields of the version of
the Grothendieck Conjecture that was shown in [Tama).
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Introduction

Let X be a proper hyperbolic curve over a field k which is either finite or
nonarchimedean local of mized characteristic; let U C X be an open subscheme
of X. Write Il x for the étale fundamental group of X. In this paper, we study
the extent to which the étale fundamental group of U may be group-theoretically
reconstructed from Il x.

In §1, we show that the abelian portion of the extension of I1x determined
by the étale fundamental group of U may be group-theoretically reconstructed
from Mx [cf. Theorem 1.1, (iii)], and, moreover, that this construction has
certain remarkable rigidity properties [cf. Propositions 1.10, (i); 2.3, (i)].

In §2, we show that this abelian portion of the extension is sufficient to
reconstruct [in essence] the multiplicative group of the function field of X [cf.
Theorem 2.1, (ii)]. In the case of nonarchimedean [mized-characteristic] local
fields, this already implies various interesting consequences in the context of the
absolute anabelian geometry studied in [Mzk5], [Mzk6], [Mzk8]. In particular,
it implies that the absolute p-adic version of the Grothendieck Conjecture [i.e.,
an absolute version of [a certain portion of] the relative result that appears
as the main result of [Mzk4]] holds for hyperbolic curves “of Belyi type” [cf.
Definition 2.3; Corollary 2.3]. This includes, in particular, hyperbolic curves “of
strictly Belyi type”, i.e., affine hyperbolic curves over a nonarchimedean [mixed-
characteristic| local field which are defined over a number field and isogenous
to a hyperbolic curve of genus zero. In particular, we obtain a new countable
class of “absolute curves” [in the terminology of [Mzk6]|, whose absoluteness is,
in certain respects, reminiscent of the absoluteness of the canonical curves of
p-adic Teichmailler theory discussed in [Mzk6] [cf. Remark 30], but [in contrast
to the class of canonical curves] appears [at least from the point of view of
certain circumstantial evidence] unlikely to be Zariski dense in most moduli
spaces [cf. Remark 31].

Finally, in §3, we apply the theory of the weight filtration [cf., e.g., [Kane],
[Mtm]], together with various generalities concerning free Lie algebras [cf. the
Appendix], to develop various “higher order generalizations” of the theory of
61, 2. In particular, we obtain various “higher order generalizations” of the
“remarkable rigidity” referred to above [cf. Propositions 3.4, 3.6, especially
Proposition 3.6, (iii)], which we apply to show that, relative to the notation
introduced above, the geometrically pro-l portion [where [ is a prime number
invertible in k] of the étale fundamental group of U may be recovered from
IIx, at least when U is obtained from X by removing a single k-rational point
[cf. Theorem 3.1]. This, along with the theory of §2, allows one to verify the
analogue for proper hyperbolic curves over finite fields of the version of the
Grothendieck Conjecture that was shown in [Tama] [cf. Theorem 3.2].

Acknowledgements. 1 would like to thank Akio Tamagawa, Makoto
Matsumoto, and Seidai Yasuda for various useful comments. Also, I would
like to thank Yuichiro Hoshi for his careful reading of an earlier version of this
manuscript, which led to the discovery of various errors in this earlier version.



Absolute Anabelian Cuspidalizations of Proper Hyperbolic Curves 3

0. Notations and Conventions

Numbers:

We shall denote by Z the profinite completion of the additive group of
rational integers Z. If p is a prime number, then Z, denotes the ring of p-
adic integers; Q, denotes its quotient field. We shall refer to as a p-adic local
field (respectively, nonarchimedean local field) any finite field extension of Q,
(respectively, a p-adic local field, for some p). A number field is defined to be a
finite extension of the field of rational numbers. If ¥ is a set of prime numbers,
then we shall refer to a positive integer each of whose prime factors belongs
to X as a X-integer. We shall refer to a finite étale covering of schemes whose
degree is a Y-integer as a X-covering. Also, we shall write Primes for the set
of all prime numbers.

Topological Groups:

Let G be a Hausdorff topological group, and H C G a closed subgroup. Let
us write

Gab

for the abelianization of G [i.e., the quotient of G by the closed subgroup of G
topologically generated by the commutators of GJ. Let us write

Za(H) S {geGlg-h=h-g ¥YheH)}

for the centralizer of H in G,

def _
Ne(H)={g9eG|g-H-go' =H}

for the normalizer of H in G; and

Cq(H) dZEf{geG | (g~H~g*1)ﬂH has finite index in H, g- H - g~ '}

for the commensurator of H in G. Note that: (i) Zg(H), Ng(H) and Cq(H)
are subgroups of G; (ii) we have inclusions

H, Zg(H) € Ng(H) C Cg(H)

and (iii) H is normal in Ng(H). If H = Ng(H) (respectively, H = Cq(H)),
then we shall say that H is normally terminal (respectively, commensurably
terminal) in G. Note that Zg(H), Ng(H) are always closed in G, while C¢(H)
is not necessarily closed in G.

If G1, Gy are Hausdorff topological groups, then an outer homomorphism
G1 — G4 is defined to be an equivalence class of continuous homomorphisms
G1 — Ga, where two such homomorphisms are considered equivalent if they
differ by composition with an inner automorphism of G5. The group of outer
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automorphisms of G [i.e., bijective bicontinuous outer homomorphisms G —
G] will be denoted Out(G). If G is center-free, then there is a natural exact
sequence:

1—G— Aut(G) — Out(G) — 1

[where the homomorphism G — Aut(G) is defined by letting G act on G by
congugation].

If G is a profinite group such that, for every open subgroup H C G, we
have Zg(H) = {1}, then we shall say that G is slim. One verifies immediately
that G is slim if and only if every open subgroup of G is center-free [cf. [Mzk5],
Remark 0.1.3].

If G is a profinite group and X is set of prime numbers, then we shall say
that G is a pro-X group if the order of every finite quotient group of G is a
Y-integer. If ¥ = {i} is of cardinality one, then we shall refer to a pro-3 group
as a pro-l group.

Curves:

Suppose that g > 0 is an integer. Then if S is a scheme, a family of curves
of genus g

X -8

is defined to be a smooth, proper, geometrically connected morphism of schemes
X — S whose geometric fibers are curves of genus g.

Suppose that g, > 0 are integers such that 2g — 2+ r > 0. We shall
denote the moduli stack of r-pointed stable curves of genus g (where we as-
sume the points to be unordered) by M, [cf. [DM], [Knud] for an exposition
of the theory of such curves; strictly speaking, [Knud] treats the finite étale
covering of Mgw determined by ordering the marked points]. The open sub-
stack My, € M, of smooth curves will be referred to as the moduli stack of
smooth r-pointed stable curves of genus g or, alternatively, as the moduli stack
of hyperbolic curves of type (g,r).

A family of hyperbolic curves of type (g,r)

X -85

is defined to be a morphism which factors X < Y — S as the composite of an
open immersion X — Y onto the complement Y\ D of a relative divisor D CY
which is finite étale over S of relative degree r, and a family Y — S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y, D) is unique up
to canonical isomorphism. (Indeed, when S is the spectrum of a field, this fact
is well-known from the elementary theory of algebraic curves. Next, we consider
an arbitrary connected normal S on which a prime [ is invertible (which, by
Zariski localization, we may assume without loss of generality). Denote by
S’ — S the finite étale covering parametrizing orderings of the marked points
and trivializations of the l-torsion points of the Jacobian of Y. Note that
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S — S is independent of the choice of (Y, D), since (by the normality of S), S’
may be constructed as the normalization of S in the function field of S’ (which
is independent of the choice of (Y, D) since the restriction of (Y, D) to the
generic point of S has already been shown to be unique). Thus, the uniqueness
of (Y, D) follows by considering the classifying morphism (associated to (Y, D))
from S’ to the finite étale covering of (Mg,r)z[%] parametrizing orderings of the
marked points and trivializations of the I-torsion points of the Jacobian [since
this covering is well-known to be a scheme, for [ sufficiently large].) We shall
refer to Y (respectively, D; D) as the compactification (respectively, divisor of
cusps; divisor of marked points) of X. A family of hyperbolic curves X — S is
defined to be a morphism X — S such that the restriction of this morphism
to each connected component of S is a family of hyperbolic curves of type (g,7)
for some integers (g,r) as above. A family of hyperbolic curves X — S of type
(0, 3) will be referred to as a tripod.

If X is a hyperbolic curve over a field K with compactification X C X,
then we shall write

XCI, XCI+

for the sets of closed points of X and X, respectively.

If Xy (respectively, Y1) is a hyperbolic curve over a field K (respectively,
L), then we shall say that Xx is isogenous to Yy, if there exists a hyperbolic
curve Zy; over a field M together with finite étale morphisms Zy — Xk,
Zy — Yr. Note that in this situation, the morphisms Zy; — Xg, Zy — Y1
induce finite separable inclusions of fields K «— M, L — M. [Indeed, this
follows immediately from the easily verified fact that every subgroup G C
I'(Z,0%) such that G J{0} determines a field is necessarily contained in M *.]

If X is a generically scheme-like algebraic stack [i.e., an algebraic stack
which admits a “scheme-theoretically” dense open that is isomorphic to a
scheme] over a field K of characteristic zero that admits a [surjective] finite
étale [or, equivalently, finite étale Galois| coveringY — X, where Y is a hyper-
bolic curve over a finite extension of K, then we shall refer to X as a hyperbolic
orbicurve over K. [Although this definition differs from the definition of a “hy-
perbolic orbicurve” given in [Mzk6|, Definition 2.2, (ii), it follows immediately
from a theorem of Bundgaard-Nielsen-Fox [cf., e.g., [Namba], Theorem 1.2.15,
p. 29] that these two definitions are equivalent.] If X — Y is a dominant
morphism of hyperbolic orbicurves, then we shall refer to X — Y as a par-
tial coarsification morphism if the morphism induced by X — Y on associated
coarse spaces [cf., e.g., [FC], Chapter I, §4.10] is an isomorphism.

Let X be a hyperbolic orbicurve over an algebraically closed field of char-
acteristic zero; denote its étale fundamental group by Ax. We shall refer to
the order of the [manifestly finite!] decomposition group of a closed point x of
X as the order of x. We shall refer to the [manifestly finite!] least common
multiple of the orders of the closed points of X as the order of X. Thus, it
follows immediately from the definitions that X is a hyperbolic curve if and
only if the order of X is equal to 1.
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1. Maximal Abelian Cuspidalizations

Let X be a proper hyperbolic curve over a field k which is either finite or
nonarchimedean local. Write

dy,

for the cohomological dimension of k. Thus, if k is finite (respectively, nonar-
chimedean local), then d;, = 1 (respectively, d;, = 2 [cf., e.g., [NSW], Chapter
7, Theorem 7.1.8, (i)]). If k is finite (respectively, nonarchimedean local), we
shall denote the characteristic of k (respectively, of the residue field of k) by p
and the number p (respectively, 1) by p. Also, we shall write

Primes' Primes\ (Primes ﬂ{pT 19

[where PBrimes is the set of all prime numbers [cf. §0]; the intersection is taken
in the “ambient set” Z|.

Let X be a set of prime numbers that contains at least one prime number
that is invertible in k. Write

S ESE e ST ERENPD

[where the intersections are taken in the “ambient set” Z]. Denote by Z the
mazimal pro-Y' quotient of Z and by Z' the mazimal pro-Xt quotient of A

If k is an algebraic closure of k, then we shall denote the result of base-
changing objects over k to k by means of a subscript “k”. Any choice of a
basepoint of X determines an algebraic closure k of k, and hence an ezact
sequence

1 —m(X3) = m(X)—Gp — 1

where Gy, %' Gal(k/k); m(X), m1(X3z) are the étale fundamental groups of X,

X%, respectively. Write Ax for the mazimal pro-X quotient of 7 (X3) and

My & 71 (X)/Ker(m (X3) - Ax). Thus, we have an ezact sequence:

1->Ax -IIx -G — 1
Similarly, if we write X x X dof ¥ X X, then we obtain [by considering the
mazimal pro-Y quotient of m ((X x X);)] an exact sequence

1= Axxx = lUxxx =G — 1

where ITx » x (respectively, Ax x x) may be identified with Iy x ¢, ITx (respec-
tively, Ax x Ax). Let IIz C IIxxx be an open subgroup that surjects onto

G. Write Z — X x X for the corresponding covering; Az def Ker(Ilz — Gi).
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Proposition 1.1. (Group-theoreticity of Etale Cohomology) Let
7t — A be a finite quotient, and N a finite A-module equipped with a con-
tinuous Ax - (respectively, Ilx-; Agz-; lz-) action. Then fori € Z, the natural
homomorphism

H'(Ax,N)— H (X, N) (respectively, H'(ILx,N) — H} (X, N);

H'(Az,N) — Hg (Z;, N); H'(Ilz,N) — Hi(Z,N))

is an isomorphism.

Proof. In light of the Leray spectral sequence for the surjections Iy —»
Gy, Iz — Im(Ilz) C Ix [i.e.,, where “Im(—)” denotes the image via the
natural homomorphism associated to one of the projections 7 — X x X —
X], it suffices to verify the asserted isomorphism in the case of Ax. If Y —
X7 is a connected finite étale Galois ¥X-covering, then the associated Leray
spectral sequence has “Es-term” given by the cohomology of Gal(Y/X) with
coefficients in the étale cohomology of Y and abuts to the étale cohomology
of X7. By allowing Y to vary, one then verifies immediately that it suffices to
verify that every étale cohomology class of Y [with coefficients in N] vanishes
upon pull-back to some [connected] finite étale Y-covering Y/ — Y. Moreover,
by passing to an appropriate Y, one reduces immediately to the case where
N = A, equipped with the trivial Il x-action. Then the vanishing assertion in
question is a tautology for “H'”; for “H?”, it suffices to take Y’ — Y so that
the degree of Y/ — Y annihilates A [cf., e.g., the discussion at the bottom of
[FK], p. 136]. |

Set:

Mx = Homif (H2(AX,ZT),ZT); M, def HornzT (Hik (Gk7M§dk_l),M§dk_l)

Thus, My, Mx are free Zt-modules of rank one; My is isomorphic as a G-
module to Z(1) [where the “(1)” denotes a “Tate twist” — i.e., G acts on ZT (1)
via the cyclotomic character|; M}, is isomorphic as a Gi-module to Zt (d, —1).
[Indeed, this follows from Proposition 1.1; Poincaré duality [cf., e.g., [FK],

~

Chapter II, Theorem 1.13]; the fact, in the finite field case, that Gj = Z
[together with an easy computation of the group cohomology of Z]; the well-

known theory of the cohomology of nonarchimedean local fields [cf., e.g., [NSW],
Chapter 7, Theorem 7.2.6].]

Remark 1. Note that for any open subgroup IIx, C IIx [which we
think of as corresponding to a finite étale covering X’ — X], we obtain a
natural isomorphism

MX 5 MX/
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~

by applying the functor Homg; (—, Z.1) to the induced morphism on group coho-

mology HQ(AX,ZT) — H2%(Ax:,Z) [where Ax. def Ker(Ilx: — Gy)] and di-
viding by [Ax : Ax/]. [One verifies easily that this does indeed yield an isomor-
phism — cf., e.g., the discussion at the bottom of [FK], p. 136.] Moreover, rela-
tive to the tautological isomorphisms H?(Ax, Mx) = 2*, H?*(Ax, Mx/) = i*,
the isomorphism Mx = My just constructed induces [via the restriction mor-
phism on group cohomology| the morphism 7t — 7t given by multiplication
by [Ax : Ax/]. Similarly, if &' is the base field of X', then we obtain a natural
isomorphism

My = My

by applying the natural isomorphism My = Mx just constructed and the dual
of the natural pull-back morphism on group cohomology and then dividing by
[k : k] [cf., e.g., [NSW], Chapter 7, Corollary 7.1.4].

Proposition 1.2. (Top Cohomology Modules)
(i) There are natural isomorphisms:
H% (G, My) =71 H*(Ax,Mx) 22T H&F2(Ix, Mx ® M) = Z1
HY Az, M2?) =7, HUH(I, ME® @ My) = 7

(ii) There is a unique isomorphism Mx = iT(l) such that the image of 1 € Z1
maps via the composite of the isomorphism Z1 = H2(Ax,Mx) of (i) with
the isomorphism H?(Ax, Mx) = H*(Ax,Z(1)) induced by the isomorphism
Mx = Z1(1) in question to the [first] Chern class of a line bundle of degree 1
on X3

Proof. Assertion (i) follows from the definitions; the Leray spectral se-
quence for the surjections Iy — Gy, [z — Im(Ily) C I x [i.e., where “Im(—)”
denotes the image via the natural homomorphism associated to one of the
projections Z — X x X — X]. Assertion (ii) is immediate from the defini-
tions. O

Proposition 1.3. (Duality) Fori € Z, let Zt — A be a finite quo-
tient, and N a finite A-module.

(i) Suppose that N is equipped with a continuous Gg-action. Then the pairing
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H (G, N) x H%~ (G, Homa (N, M}, ® A)) — A

determined by the cup product in group cohomology and the natural isomor-
phisms of Proposition 1.2, (i), determines an isomorphism as follows:

HY (G, N) = Homy (H4 (G, Homa (N, My, @ A)), A)

(ii) Suppose that N is equipped with a continuous I x - (respectively, Ax-; z-;
Az-) action. Then the pairing

Hi(Ilx, N) x H%+2=i(IIx, Homa (N, Mx ® My, ® A)) — A
(respectively, H'(Ax, N) x H?>~*(Ax,Homa (N, Mx ® A)) — A;
Hi(Tlz, N) x H&4=1(Tlz, Homa (N, M$? @ My, @ A)) — A;

H'(Az,N) x H*=/(Az,Homa (N, ME*® A)) — A)

determined by the cup product in group cohomology and the natural isomor-
phisms of Proposition 1.2, (i), determines an isomorphism as follows:

Hi(Hx, N) = HOHlA(Hdk—’_Q—i(Hx, HOIDA(N, Myx ® M, ® A)), A)
(respectively, H'(Ax, N) = Homa(H?> ' (Ax,Homa (N, Mx ® A)), A);
Hi(Ilz,N) = Homu (H% =4Iz, Homa (N, M @ My, ® A)), A);
H'(Az,N) = Homu(H* "' (Az,Homa (N, M$* @ A)), A))

Proof. Assertion (i) follows immediately from the fact that Gj = Z [to-
gether with an easy computation of the group cohomology of Z] in the finite
field case; [NSW], Chapter 7, Theorem 7.2.6, in the nonarchimedean local field
case. Assertion (ii) then follows from assertion (i); the Leray spectral sequences
associated to Iy — G, Iz — Im(Ily) C IIx [i.e., where “Im(—)” denotes
the image via the natural homomorphism associated to one of the projections

Z — X x X — X]; Proposition 1.1; Poincaré duality [cf., e.g., [FK], Chapter
II, Theorem 1.13]. O

Proposition 1.4. (Automorphisms of Cyclotomic Extensions)

(i) We have: H°(Gy, H' (Ax, Mx)) = 0.

(ii) There are natural isomorphisms
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H'(Ilx, Mx) & HY (G, Mx) = ()"

HY(Ilz, Mx) = HY(Gp, Mx) = (k)"

— where the first isomorphisms in each line are induced by the surjections
IIx — Gg, lIz — Gy; the second isomorphisms in each line are induced by the
isomorphism of Proposition 1.2, (ii), and the Kummer exact sequence; (kx)A
is the maximal pro-Xf-quotient of k*.

Proof.  Assertion (i) follows immediately from the “Riemann hypothesis
for abelian varieties over finite fields” [cf., e.g., [Mumf], p. 206] in the finite
field case; [Mzk8|, Lemma 4.6, in the nonarchimedean local field case. The
first isomorphisms of assertion (ii) follow immediately from assertion (i) and
the Leray spectral sequences associated to IIx — Gy, IIz — Gy; the sec-
ond isomorphisms follow immediately from consideration of the Kummer exact
sequence for Spec(k). O

Definition 1.1.

(i) Let H be a profinite group equipped with a homomorphism H — IIy. Then

we shall refer to the kernel Iy of H — Ilx as the cuspidal subgroup of H [rel-
ative to H — Tlx]. We shall say that H is cuspidally abelian (respectively,
cuspidally pro-3* [where ¥* is a set of prime numbers]) [relative to H — Ilx]
if Iy is abelian (respectively, a pro-X* group). If H is cuspidally abelian, then
observe that H/Iy acts naturally [by conjugation] on I ; we shall say that H is
cuspidally central [relative to H — Ilx] if this action of H/Iy on Iy is trivial.
Also, we shall use similar terminology to the terminology just introduced for
H — IIx when IIx is replaced by Ax, Ixxx, Axxx-

(ii) Let H be a profinite group; Hy C H a closed subgroup. Then we shall

refer to as an Hi-inner automorphism of H an inner automorphism induced
by conjugation by an element of Hy. If H’' is also a profinite group, then we
shall refer to as an Hi-outer homomorphism H' — H an equivalence class
of homomorphisms H' — H, where two such homomorphisms are considered
equivalent if they differ by composition by an Hi-inner automorphism. If H
is equipped with a homomorphism H — Gy, [cf., e.g., the various groups in-
troduced above|, and H; 2ef Ker(H — Gy,), then we shall refer to an Hp-inner
automorphism (respectively, Hi-outer homomorphism) as a geometrically in-
ner automorphism (respectively, geometrically outer homomorphism). If H is
equipped with a structure of extension of some other profinite group Hy by a
finite product H;p of copies of Mx, or, more generally, a projective limit H;
of such finite products, then we shall refer to an Hj-inner automorphism (re-
spectively, Hj-outer homomorphism) as a cyclotomically inner automorphism
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(respectively, cyclotomically outer homomorphism). If H is equipped with a
homomorphism to IIx, Ax, Hxxx, or Axxx [cf. the situation of (i)], and
H, is the kernel of this homomorphism, then we shall refer to an H;-inner
automorphism (respectively, Hi-outer homomorphism) as a cuspidally inner
automorphism (respectively, cuspidally outer homomorphism).

Next, let
My C Iy

be an open normal subgroup, corresponding to a finite étale Galois covering
X' — X. Set
def
MMz = Mxrwx - IIx CHxxx
[where we regard IIx as a subgroup of Ilxxx via the diagonal map|; write
7' — X x X for the covering determined by IIz/. Thus, it is a tautology that
the diagonal morphism ¢ : X — X x X lifts to a morphism

D G4

which induces the inclusion IIx < IIz on fundamental groups. If Z — X x X
is a connected finite étale covering arising from an open subgroup of Ilx x,
write:
def def
Uxxx = (X x X)\u(X); Uz = (Uxxx) X(xxx) 2

Denote by Ay, the mazimal cuspidally [i.e., relative to the natural map
to m1((X x X)g)] pro-XT quotient of the maximal pro-X quotient of the tame
fundamental group of (Uxxx); [where “tame” is with respect to the divisor
((X) € X x X] and by Iy, the quotient 71 (Uxxx)/Ker(mi (Uxxx)z) =
Apuy, x); write Iy, C Iy, for the open subgroup corresponding to the
finite étale covering Uy — Uxxx.

Proposition 1.5. (Characteristic Class of the Diagonal)

(i) The pull-back morphism arising from the natural inclusion

Iy — Iz (CHxxx =1x xg, IIx)

composed with the natural isomorphism of Proposition 1.2, (i), determines a
homomorphism

H4 42 (10, Mx @ My) — HS(Ix, Mx ® My) = 2
hence [by Proposition 1.3, (ii)] a class

Ny e € H*(Nz, Mx)
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which is equal to the étale cohomology class associated to J'(X) C Z', or, alter-
natively, the [first] Chern class of the line bundle Oz (/(X)).

(#i) Denote by

L(Tiag[Z’] — 7'

the complement of the zero section in the geometric line bundle [i.e., G,,-torsor/

determined by Oz (V'(X)), by A]Lf- (2] the mazimal cuspidally pro-St quotient
iag

of the maximal pro-YX quotient of the tame fundamental group of (L(Tiag[Z’])E

[where “tame” is with respect to the divisor determined by the complement of

the Gy,-torsor LY., [Z'] in the naturally associated P*-bundle], and by Iy x 121
ag

diag
[2/]) /Ker(m (L3 2'Dg) = Apx (7). Then fin light of

the quotient m (L} ding
the isomorphism of Proposition 1.2, (ii)] we have a natural exact sequence

diag

1 — Mx — 1II x [Z’]_’HZ’_’l

diag

‘ ‘ 4 di
whose associated extension class is equal to the class 1,,"®.

(iii) The global section of Oz:(J' (X)) over Z' determined by the natural inclu-
sion Oz — Oz (/' (X)) defines a morphism

Uz — L%

diag [ZI]

over Z' which induces a surjective homomorphism of groups over Iy :

HUZ’ - H]LX

diag [Z/]

Proof. Assertion (i) follows immediately from Propositions 1.1, 1.2, 1.3,
together with well-known facts concerning Chern classes and associated cycles
in étale cohomology [cf., e.g., [FK], Chapter II, Definition 1.2, Proposition 2.2].
Assertion (ii) follows from Proposition 1.1; [Mzk7], Definition 4.2, Lemmas 4.4,
4.5. Assertion (iii) follows from [Mzk8], Lemma 4.2, by considering fibers over
one of the two natural projections IIz — IIxyx — IlIx. [Here, we note that
although in [Mzk7], §4; [Mzk8], the base field is assumed to be of characteristic
zero, one verifies immediately that the same arguments as those applied in loc.

cit. yield the corresponding results in the finite field case — so long as we
restrict the coefficients of the cohomology modules in question to modules over
VAR O

Definition 1.2.
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(i) We shall refer to a covering Z' — X x X as in the above discussion as the

diagonal covering associated to the covering X' — X. We shall refer to an
extension of profinite groups

1My =D =1z —1

whose associated extension class is the class ndZi,ag of Proposition 1.5, (i), as a
fundamental extension [of TIz/]. In the following (ii) — (iv), we shall assume

that 1 - Mx — D — IIx«x — 1 is a fundamental extension.

(ii) Let =,y € X(k); write D, D, C IIx for the associated decomposition
groups [which are well-defined up to conjugation by an element of Ax — cf.
Remark 2 below]. Now set:
def def
D, = Dlp,xe,nix; Day = Dlp,xa,n,

Thus, D, (respectively, D, ,) is an extension of ITx (respectively, Gi) by Mx.
Similarly, if D =", m; -2, E = Zj n; - y; are divisors on X supported on
points that are rational over k, then set:

def def
DD = E my; "Dmi; DD,E = E mi-n; 'Dzi,yj
i 4]

[where the sums are to be understood as sums of extensions of IIx or G} by
Mx — i.e., the sums are induced by the additive structure of Mx]. Also, we

shall write C def —Dlny [where we regard ITx as a subgroup of Il xxx via the
diagonal map]. [Thus, C is an extension of I[Ix by Mx whose extension class is
the Chern class of the canonical bundle of X ]

(iii) Let S € X (k) be a finite subset. Then we shall write

ps =[] D.

zeS

[where the product is to be understood as the fiber product over IIx]. Thus,
Dy is an extension of Ilx by a product of copies of Mx indexed by elements of
S. We shall refer to Dg as a mazimal abelian S-cuspidalization [of Ilx at S].
Observe that if T'C X (k) is a finite subset such that S C T, then we obtain a
natural projection morphism Dp — Dg.

(iv) We shall refer to a homomorphism

HUXXX —D

over IIxx x as a fundamental section if, for some isomorphism of D with II; x
diag
that induces the identity on Ilxxx, Mx, the resulting composite homomor-

phism Iy, — I x s the homomorphism of Proposition 1.5, (iii).
iag
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Remark 2. Relative to the situation in Definition 1.2, (ii), conjuga-
tion by elements § € Ax induces isomorphisms between the different possible
choices of “D,”, all of which lie over the isomorphism between any of these
choices and G} induced by the projection Ilx — Gji. Moreover, by lifting
(0,1) € Axxx C IIxxx to an element dp € D, and conjugating by dp, we
obtain natural isomorphisms between the various resulting “D,’s” which in-
duce the identity on the quotient group D, — Ilx, as well as on the subgroup
Mx C D,. Note that this last property [i.e., of inducing the identity on IIx,
Mx] holds precisely because we are working with § € Ax C IIx, as opposed to
an arbitrary “6 € IIx”.

Remark 3. By Proposition 1.4, (ii), if £ is any profinite group exten-
sion of ITx (respectively, Gg; an open subgroup II; C Ilxyx that surjects
onto Gy) by Mx, then the group of cyclotomically outer automorphisms of the
extension € [i.e., that induce the identity on Ix (respectively, Gj; IIz) and
Mx] may be naturally identified with (kX)A. In particular, in the context of
Definition 1.2, (iv), any two fundamental sections of D differ, up to composition
with a cyclotomically inner automorphism of D, by a “(k* )A—multiple”.

Next, if k is nonarchimedean local, then set GL def Gy; if k is finite, then
write G}; C Gy, for the mazimal pro-$T subgroup of Gy, [so G% =~ 7. Also, we
shall use the notation

1t

def
() E 1) %6, G STy

[where “(—)” is any smooth, geometrically connected scheme over k, with arith-
metic fundamental group IT(_y — Gyl

Proposition 1.6. (Basic Properties of Maximal Abelian Cusp-
idalizations) Let

1—-Mx -D—Ilxxx — 1

be o fundamental extension; ¢ : Iy, , — D o fundamental section;
S C X(k) a finite subset. Then:

(i) The profinite groups Axxx, Ax, as well as any profinite group extension
of Hﬂ(xx or HE( by a [possibly empty] finite product of copies of Mx is slim
[ef. §0]. In particular, the profinite group DTS def Ds Xq, GL is slim.

(i) For x € X (k), write U, Lof X\{z}. Denote by Ay, the mazimal cuspidally

fi.e., relative to the natural map to m ((Uy)g)] pro-Xt quotient of the mawi-
mal pro- quotient of the tame fundamental group of (U,)y [where “tame” is
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with respect to the complement of U, in X ] and by Iy, the quotient given by
71 (Uz) /Ker(m1(Us)z) = Au, ). Then the inverse image via either of the natu-
ral projections Ny, . — Ilx of the decomposition group D, C Ilx is naturally
isomorphic to Iy, . In particular, Ay, «, HTUXXX are slim.

(iti) For S C X(k) a finite subset, write:

Us € I v.

zeS

[where the product is to be understood as the fiber product over X]. Denote
by Ay the mazimal cuspidally [i.e., relative to the natural map to m ((Us))]
pro-2t quotient of the mazimal pro-Y quotient of the tame fundamental group
of (Us)z [where “tame” is with respect to the complement of Ug in X, and by
Iy the quotient m (Usg)/Ker(m ((Us)y) = Avg). Then Ay, HTUS are slim.
Forming the product of the specializations of ¢ to the various Dy xqg, IIx C
xxx yields homomorphisms

Iy, — [[ Tw, — Ds
zeS

[where the product is to be understood as the fiber product over Ilx ]. Moreover,
the composite morphism 1y, — Dg is surjective; the resulting quotient of
Ayg def Ker(Ily, — Gy) is the maximal cuspidally central quotient of
Ayyg, relative to the surjection Ay, — Ax.

(iv) The quotient of Ay, et Ker(Ily, « — G) determined by ¢ : Uy, —

D is the maximal cuspidally central quotient of Ay, ., relative to the
surjection Ayy, « = Axxx-

Proof.  Assertion (i) follows immediately from the slimness of H&, Ax [cf.,
e.g., [Mzk5], Theorem 1.1.1, (ii); the proofs of [Mzk5], Lemmas 1.3.1, 1.3.10],
together with the [easily verified] fact that GL acts faithfully on My via the
cyclotomic character. Next, we consider assertion (ii). The portion of assertion
(ii) concerning IIy;, follows immediately from the existence of the “homotopy
exact sequence associated to a family of curves” [cf., e.g., [Stix], Proposition
2.3]. The slimness assertion then follows from assertion (i) [applied to II%]
and the slimness of Ay, [cf. the proofs of [Mzk5], Lemmas 1.3.1, 1.3.10]. As
for assertion (iii), the slimness of Ay, HTUS follows via the arguments given
in the proofs of [Mzk5], Lemmas 1.3.1, 1.3.10. The existence of homomor-
phisms IIyy — [[,cs Hu, — Ds as asserted is immediate from the definitions,
assertion (ii). For z € S, write

D, [Us] C Iy,
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for the decomposition group of xz; I,[Us] C D,[Us]| for the inertia subgroup.
Now it is immediate from the definitions that I,[Us] maps isomorphically onto
the copy Mx in Dg corresponding to the point x. This implies the desired
surjectivity. Since, moreover, it is immediate from the definitions that the
cuspidal subgroup of any cuspidally central quotient of Ay is generated by
the image of the I,[Us], as  ranges over the elements of S, the final assertion
concerning the mazimal cuspidally central quotient of Ay follows immediately.
Assertion (iv) follows by a similar argument to the argument applied to the final
portion of assertion (iii). O

Next, let Z/ — X x X (respectively, 7" — X x X; Z* — X x X) be the
diagonal covering associated to a covering X’ — X (respectively, X" — X;
X* — X) arising from an open subgroup of Ilx; denote by ¢/ : X — Z’
(respectively, /' : X — Z";1* : X < Z*) the tautological lifting of the diagonal
embedding ¢ : X — X x X and by k' (respectively, k”; k*) the extension of k
determined by X’ (respectively, X”’; X*). Assume, moreover, that the covering
X" — X factors as follows:

X// N XI N X* N X
Thus, we obtain a factorization 2" — 7/ — Z* — X x X. Let
1—>Mx—>D//—)HZ// —)1

be a fundamental extension of Il ..
Write

1— MX — D/)/(”XX” — HX//XXN — 1

for the pull-back of the extension D" via the inclusion IIy»y x» C IIz». Now
if we think of ITx« x or Ilx»xx~ as only being defined up to Ax» x {1}-inner
automorphisms, then it makes sense, for 6 € Ax /Ax» to speak of the pull-back
of the extension D'y, i via 6 X 1:

1— MX - (6 X 1)*D;/(”><X” — HX”XX” — 1

In particular, we may form the fiber product over Il x .y x:

def
SX”/X* (D//)X”XX” = H ((5 X 1)>k I)I(//XX//
JGAX*/AX//

Thus, Sx v/ x+(D")xxx is an extension of ITx~ x~ by a product of copies of
MX indexed by Ax*/AX//; SX”/X* (DN)X”XX” admits a tautological AX// X
{1}-outer [more precisely: a (Ax» x {1}) X1y, 1 Sxr/x+(D")x1xxn-outer]
action by the finite group Ax+/Axr = (Ax+«/Axr») x {1}. Moreover, the
natural outer action of Gal(X"/X) = Gal((X" x X")/Z") = Ilx/IIx~ on
IIx/«x [arising from the diagonal embedding IIx < TlIz.] clearly lifts to
an outer action of Gal(X"/X) on Sxu,x+(D")x»xx, which is compatible,
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relative to the natural action of Gal(X”/X) on Ax+/Ax» by conjugation,
with the Ax» x {1}-outer action of Ax~/Ax» on Sxux«(D")xnxxr. Thus,
in summary, the natural isomorphism

{(AX* JAxn) x {1}} x Gal(X"/X) 2 Gal(X" x X")/Z*)

determines a homomorphism Gal((X" x X")/Z*) — Out(Sx/x+(D")xmxx)
via which we may pull-back the extension “1 — (=) — Aut(—) — Out(—) — 17
[cf. §0; Proposition 1.6, (i)] for Sx/x+(D")x»xx» to obtain an extension

1 — H MX — SX”/X* (D//) — Hz* — 1
Axx /Ay

in which T2+ is only determined up to Ax» x {1}-inner automorphisms. Note,
moreover, that every cyclotomically outer automorphism of the extension D"
— ie., an element of (k%)" [cf. Remark 3] — induces a cyclotomically outer
automorphism of Sy /x- (D). In particular, we have a natural cyclotomically
outer action of (k*)" on Sxyx+(D").

Next, let us push-forward the extension Sx.,x«(D") just constructed via

the natural surjection
I M- I Mx
Axr /Ay Axr /Ay

[which induces the identity morphism Mx — Mx between the various factors
of the domain and codomain], so as to obtain an extension Trx.,x.x+(D") as
follows:

1 — H MX — TrX”/X’:X* (D”) — HZ* — 1
Axx /Ay

[in which Iz« is only determined up to Ax~» x {1}-inner automorphisms].

Proposition 1.7. (Symmetrizations and Traces) In the notation
of the discussion above:

(i) The extension Trxx:.x/(D") of Iz, by Mx is a fundamental extension
Of HZ’ .
(#i) There is a natural commutative diagram:

1 — 11 My — SXN/X('D”) — Ixyxx — 1
Ax/Axn

l ! i

1 — H MX — SX//X(TI‘X///X/:X/(’DN)) — HXXX — 1
Ax/Axr
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[which is well-defined up to Ax: x {1}-inner automorphisms — cf. Remark 4
below].

(#ii) Relative to the commutative diagram of (i), the natural cyclotomically
outer action of (k)" on Sx)x (D") lies over the composite of the map (k* "=
(k:x)A given by raising to the [Ax/ : Ax/]|-power with the natural cyclotom-
ically outer action of (lcx)/\ on Sy x(Trxr x.x/(D")). In particular, if N
is a positive integer that divides [Ax: : Axn], then the natural cyclotomically
outer action of an element of (k)" on Sxu x(D") lies over the cyclotomically

outer action of an element of{(k‘x)A}N on Sx:/x (Trxin xr.x/(D")).

Proof. To verify assertion (i), observe that it is immediate from the defi-
nitions that

L/(X) XZ/ (X// X XI/) g X// X XI/

is equal to the Ax//Axn-orbit of '(X) xzv (X" x X") C X" x X", Now
assertion (i) follows by translating this observation into the language of étale
cohomology classes associated to subvarieties; assertions (ii), (iii) follow for-
mally from assertion (i) and the definitions of the various objects involved. [

Remark 4. Relative to the commutative diagram of Proposition 1.7,
(ii), note that, although Sx//x(Trxw/x/.x/(D")) is, by definition, only well-
defined up to Ax: x {1}-inner automorphisms, the push-forward of Sx.,x (D")
by

is well-defined up to Ax: x {1}-inner automorphisms. That is to say, the push-
forward extension implicit in this commutative diagram furnishes a canonically
more rigid version of the extension Sx//x (Trx»/x.x/(D")).

Definition 1.3.

(i) We shall refer to the extension Sy /x«(D") [of IIz+] constructed from the

fundamental extension D" as the [X"/X*-]symmetrization of D", or, alterna-
tively, as a symmetrized fundamental extension. We shall refer to the extension
Trx/xi.x+(D") [of Iz-] constructed from the fundamental extension D" as
the [X" /X' : X*-Jtrace of D", or, alternatively, as a trace-symmetrized funda-
mental extension.
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(ii) If D’ is a fundamental extension of Iz, then we shall refer to as a morphism

of trace type any morphism
Sxn/x(D") = Sxr/x(D')
obtained by composing the morphism
SX”/X(DH) - SX//X(TTX”/X/:X'(D”))
of Proposition 1.7, (ii), with a morphism
Sxt/x(Trxnxr.x/(D")) — Sx:/x (D)
arising [by the functoriality of the construction of “Sx.,x (—)"] from an isomor-

phism of [fundamental] extensions Trx /x.x:(D") 5 D' of Iz by Mx [which
induces the identity on Iz, Mx].

(iii) We shall refer to as a pro-symmetrized fundamental extension any compat-

ible system [indexed by the natural numbers]
S S = Hxxx

of morphisms of trace type [up to inner automorphisms of the appropriate
type] between symmetrized fundamental extensions, where S; is the X;/X-
symmetrization of a fundamental extension of Ilz,; Z; is the diagonal covering
associated to an open normal subgroup IIx, C IIx; the intersection of the Ily,
is trivial. In this situation, we shall refer to the inverse limit profinite group

Soe E'lim S

i
as the limit of the pro-symmetrized fundamental extension {S;}; any profinite
group S arising in this fashion will be referred to as a pro-fundamental exten-

sion [of Uxxx].

(iv) Let S C X (k) be a finite subset; &’ an X’/ X-symmetrization of a funda-

mental extension D’ of IIz. Then we shall write

 def /
SS - H SDIXGkHX
zeS

[where the product is to be understood as the fiber product over ITx]. Thus,
S§ is an extension of ITx by a product of copies of Mx. Similarly, given a
projective system {S;} as in (iii), we obtain a projective system {(S;)s}, with
inverse limit:

(SOO)S

We shall refer to (Sx)s as a mazimal abelian S-pro-cuspidalization [of N x at
S]. Observe that if T C X (k) is a finite subset such that S C T, then we obtain
a natural projection morphism (Seo)r — (Sso)s-



20 Shinichi Mochizuki

Remark 5. Let D be as in Definition 1.2, (iil); &', {S;}, Seo as in
Definition 1.3, (iii), (iv). Then observe that it follows from Proposition 1.6, (i),
that the “daggered versions” DY, (§')1, S;r, and SI_ [i.e., the result of applying
“Xan GL” to D, &', S;, and Su| are slim. In particular, if S C X is any finite
set of closed points of X, then we may form the objects

Dl (SHE (Sl (Sx)k

by passing to a Galois covering X, — X [i.e., the result of base-changing X
to some finite Galois extension kg of k] such that the closed points of X}, that
lie over points of S are rational over kg; forming the various objects in question
over Xy, [cf. Definition 1.2, (iii); Definition 1.3, (iv)]; and, finally, “descending
to X ” via the natural outer action of Gk/GLS on the various objects in question
[cf. the exact sequence “1 — (=) — Aut(—) — Out(—) — 1”7 of §0; the slimness
mentioned above]. Thus, in the remainder of this paper, we shall often speak
of the various objects defined in Definition 1.2, (iii); Definition 1.3, (iv), even
when the points of the finite set S are not necessarily rational over k.

Before proceeding, we note the following:

Lemma 1.1. (Conjugacy Estimate) Let H C Ax be a normal open
subgroup; a € Ax/H an element not equal to the identity; N a Lf-integer
[ef. §0]. Then there exists a normal open subgroup H' C Ax contained in
H such that for any normal open subgroup H" C Ax contained in H' and
any o’ € Ax/H" that lifts a, the cardinality of the H-conjugacy class
Conj(a”,H") C Ax/H" of a” in Ax/H" is divisible by N.

Proof. 1In the notation of the statement of Lemma 1.1, let us denote by
Z(a",H") C H the subgroup of elements § € H such that § -a” -§~! = a” in
Ax/H"”. Then it is immediate that if a’ is the image of a” in Ax/H’, then
Z(a' H") C Z(a',H'), so the cardinality of Conj(a”, H") =2 H/Z(a",H") is
divisible by the cardinality of Conj(a’, H') = H/Z(a', H"). Thus, it suffices to
find a normal open subgroup H’ C H such that for any o’ € Ax/H’ that lifts
a, the cardinality of Conj(a’, H') is divisible by N.

To this end, let us consider, for some prime number | € X, the mazimal
pro-l quotient H][I] of the abelianization H*® of H. Note that Ax/H acts by
conjugation on H*P, HI[l]. Now I claim that there exists a [nonzero] h; € H][l]
such that a(h;) # h;. Indeed, if this claim were false, then it would follow
that a acts trivially on H[l]. But since a induces a nontrivial automorphism
of the covering of X determined by H, it follows that a induces a nontrivial
automorphism of the [-power torsion points of the Jacobian of X7 [since these
points are Zariski dense in this Jacobian] — a contradiction. This completes
the proof of the claim.
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Now let j € H be an element that lifts the various h; obtained above for
the [finite collection of] primes [ that divide IV; let ax € Ax be an element that
lifts a. Then observe that for some integer power M of N that is independent
of the choice of ax, the image of j" - ax - j " - ay' in H® @ (Z/MZ) is
nonzero, for n € 7 with nonzero image in i/N 7. Thus, if we take H' equal
to the inverse image of M - H®> in H(C Ax), we obtain that the intersection
of the subgroup jZ C H with Z(a/, H') [where o’ € Ax/H' lifts a] does not
contain j", for n € Z with nonzero image in i/N .Z. But this implies that the
intersection (j2)( Z(a’, H') C jN%, hence that [H : Z(a', H')] is divisible by
N, as desired. U

Next, we consider the following fundamental extensions of Iz, Mz

def def
D" =11, « [z D' = Tryxn/xi.x (D)

diag

[cf. Proposition 1.5, (ii)]. Note that in this situation, it follows immediately
from the definitions that we obtain a natural isomorphism D’ = II; x (Z)

diag

which we shall use in the following discussion to identify D', H]Lcﬁag[ 7 Thus,

we have fundamental sections:
1 /
y,, » D" Iy, - D

[cf. Proposition 1.5, (iii)]. In particular, by pulling back from Z"” to X" x X"
we obtain a surjection:

H D//
UX”XX” i X X!

Now if we apply the natural outer (Ax/Ax») x {1}-action on Iy, ., to
this surjection, it follows from the definition of “Sx.,x(D")” that we obtain a

natural homomorphism
2
oy = Sxrnyx (D7) xmxxr

which is easily verified [cf. Proposition 1.6, (ii), (iii)] to be surjective. Since,
moreover, the construction of this surjective homomorphism is manifestly com-
patible with the outer actions of Gal(X"”/X) on both sides, we thus obtain a
natural surjection:

HUXXX —» SX”/X(QH)
Now let us denote by
-DX g HUXXX

the decomposition group of the subvariety ¢(X) C X x X. [Thus, Dy is well-
defined up to conjugation; here, we assume that we have chosen a conjugate
that maps to the image of the diagonal embedding I[Ix — Ilx« x via the natural
surjection My, = Ilxxx.] Observe that we have a natural exact sequence

1—Ix —>Dx —1IIx —1
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[where Ix — i.e., the inertia subgroup of Dx — is defined so as to make the
sequence exact], together with a natural isomorphism Iy = Mx. Also, we shall

write D x- def Dx Ny, o Dxr df Dx NIy, .- Since the construction
just carried out for double primed objects may also be carried out for single
primed objects, we thus obtain the following:

Proposition 1.8. (Symmetrized Fundamental Sections) In the
notation of the discussion above:

(i) There is a natural commutative diagram:

Dx < HUXXX - SX”/X(Q//)

oo

Dx < HUXXX - SX’/X(Q/)

[where the vertical arrow on the right is the morphism in the diagram of Propo-
sition 1.7, (ii)].

(ii) Denote by means of a subscript X" the result of pulling back extensions of

Mxxx, g, Mxnyxr tolx [via the diagonal inclusion]. Then the projection
[cf. the fiber product defining Sx./x(D")] to the factor labeled “Ax»/Axn”
detemines a natural surjection

¢":Sxnx(D")xn — D

whose restriction to Dx. [i.e., relative to the arrows in the first line of the
commutative diagram of (i)] defines an isomorphism Dx.» = D%.,,. Moreover,
the cuspidal subgroup of Dx» maps isomorphically onto the factor of Mx in
Sxm/x (D) labeled “Axi/Axn”. In particular, if we denote by

Sxn/x(D")*

the quotient of Sx./x(D") by this factor of Mx, then (" determines a surjec-
tion

¢+ Sxnyx(D")gn — Txn

whose restriction to the quotient Dx» — Ilxn is equal to the identity ILx» — I xu

[up to geometric inner automorphisms]. Thus, we have a natural commuta-
tive diagram [well-defined up to geometric inner automorphisms]

DX” — SX///X (QII)X// g—) 2/)/(/,

! ! !

C,I
HX// —> SX///X(Q’)?;// i} HX//
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in which the two horizontal composites are isomorphisms; the vertical arrows
are surjections; both squares are cartesian.

(#i) If we carry out the construction of (ii) for the single primed objects, then

the commutative diagram of (i) induces a natural commutative diagram
[well-defined up to geometric inner automorphisms/:

C”
HX// — SX”/X(Q”);E(// i} HX//

l l l

/

<
HX/ — SX//X(Q/)_;‘;(/ —#> HX/

Moreover, there is a natural outer action of Gal(X" /X) (respectively, Gal(X'/X))
on the first (respectively, second) line of this diagram; these outer actions are
compatible with one another.

(iv) When considered up to cyclotomically inner automorphisms, the sections

of g;g form a torsor over the group
I1 ((K"))"
(Ax /A )\ (A xrr /Axn)

[where the “\” denotes the set-theoretic complement]. The Gal(X" /X )-equi-
variant sections of ¢, form a torsor over the Gal(X" /X )-invariant subgroup
of this group. Similar statements hold for the single primed objects.

(v) The double and single primed torsors of equivariant sections of (iv) are

related, via the right-hand square of the diagram of (iii), by a homomorphism

II ((K"))

(Ax /A )\(Axr [/Axm)

A Gal(X""/X)
} ~

ey}

(AX/AX’)\(AX’/AX’)

[where the superscripts denote the result of taking invariants with respect to the
action of the superscripted group] that satisfies the following property:

An element £ of the domain maps to an element of the codomain

whose component in the factor labeled o’ € AX/AX/ s a product of
elements of (K')*)" of the form Ny (N')"".

Here, ' € (Ax/Ax:)\(Ax:/Axn) maps to a’ in Ax/Axi; N e (K))"

is the component of & in the factor labeled o”; k!, is an intermediate field
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extension between k' and k" such that X' € ((k.,)*)"; N e (kL))" —

(K"~ )/\ is the norm map; n’ is the cardinality of the A x/-conjugacy class
of ' in (Ax/Ax»). In particular, by Lemma 1.1 [where we take “H” to be
Axr, “H"” to be Ax ], for a given Ax, if, for a given positive integer N, Ax»
is “sufficiently small”, then an arbitrary Gal(X" /X )-equivariant section of
(;2 lies over the canonical section of C;é given in (iii), up to the cyclotomically
outer action of some N-th power of an element of the single primed version of
the group exhibited in the display of (iv).

Proof. All of these assertions follow immediately from the definitions
[and, in the case of assertion (iv), Proposition 1.4, (ii)]. O

Definition 1.4.  Let D’ be a fundamental extension of Ilz/; {S;} a pro-
symmetrized fundamental extension, with limit Soo [cf. Definition 1.3, (iii)].

(i) We shall refer to as a symmetrized fundamental section a homomorphism

HUXxx - SX’/X(D/)

obtained by composing the surjection I, — SX//X(QI) of Proposition 1.8,
(i), with the isomorphism Sy, x (D) = Sx/,x(D’) induced by an isomorphism
D' 5 D' of fundamental extensions of ITy by Mx [which induces the identity
on Iy, Mx]. We shall refer to an inclusion

Dx — Sx//x(D')

obtained by restricting a symmetrized fundamental section to Dx C Iy,
[cf. Proposition 1.8, (i)] as a fundamental inclusion.

(ii) We shall refer to a compatible system of symmetrized fundamental sections

My« — Si as a pro-symmetrized fundamental section and to the resulting
limit homomorphism Iy, , — S as a pro-fundamental section. Similarly,
we have a notion of “pro-fundamental inclusions”.

Remark 6. Thus, by the above discussion, if we take the “S;” to be the
symmetrizations of the I x 1z, as in Proposition 1.5, (ii), then we obtain nat-
iag

ural pro-fundamental sections and pro-fundamental inclusions [cf. Proposition

1.8, (i), (1), (iii)].
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Proposition 1.9. (Maximal Cuspidally Abelian Quotients) Let
{8} be a pro-symmetrized fundamental extension, with limit S, [cf.
Definition 1.3, (iii)] and pro-fundamental section Iy, , — S [¢f. Defi-
nition 1.4, (ii)]; S C X a finite set of closed points [cf. Remark 5]. Then:

(i) The pro-fundamental section y,,  — Ss determines a surjection

HUS - (SOO)S

[¢f. Proposition 1.6, (#i)]. The resulting quotient of Ay, (respectively, Iy, )
is the maximal cuspidally abelian quotient Ay, — ACU‘:b (respectively,

Iy — II§2P) of Ay (respectively, Iy ).

(ii) The quotient of Ay, (respectively, My, ) induced by the pro-funda-

mental section Iy, — Soo ts the maximal cuspidally abelian quotient
[which we shall denote by] Ay, — A%jjf;x (respectively, My« — H‘fjibxx
of Auy, x (respectively, My, ).

Proof. Indeed, this follows as in the proof of Proposition 1.6, (iii), (iv),
by observing that the cuspidal subgroup of the maximal cuspidally abelian
quotient of Ay, (respectively, Ay, , ) is naturally isomorphic to the inverse
limit of the cuspidal subgroups of the maximal cuspidally central quotients of
the Ays xay Axr (€ Ayg) (respectively, Ay, ) [as Axs € Ax ranges over
the open normal subgroups of Ax]. 1

Proposition 1.10. (Automorphisms and Commensurators) Let
{8} be a pro-symmetrized fundamental extension, with limit S, /cf.
Definition 1.3, (iii)] and pro-fundamental inclusion Dx — S [cf. Defi-
nition 1.4, (ii)]. Then:

(i) Any automorphism a of the profinite group H‘fjf(bxx which

(a) is compatible with the natural surjection H‘{]'f‘(bx — I xxx and induces

the identity on Ilxxx;

X

(b) preserves the image of Mx = Ix C Dx wvia the natural inclusion

c-ab
Dx — HUXXX

is cuspidally inner.

(i) Mx (respectively, Ax ) is commensurably terminal [cf. §0] in TIxxx
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(respectively, Axxx ).

~ TTCc-ab

(ii) Dx is commensurably terminal in S;, Sy T

Proof. First, we verify assertion (i). By Proposition 1.9, (ii), we have a
natural isomorphism H‘fj;t;X = 8., so we may think of o as an automorphism
of Seo. In light of (a); Proposition 1.6, (iii), it follows that « is compatible with
the natural surjections So, — S;. Write «; for the automorphism of S; induced
by . By (a), (b), it follows that «; is an automorphism of the extension S; of
IIx« x by a product of copies of M x which induces the identity on both Ilx « x
and the product of copies of Mx [cf. the definition by a certain fiber product of
the symmetrized fundamental extension S;]. [Here, we note that the fact that a;
induces the identity on each copy of Mx follows by considering the non-torsion
[cf. Propositions 1.2, (ii); 1.5, (i), (ii)] extension class determined by that copy
of Mx [which is preserved by «;!], together with the fact that «; induces the
identity on the second cohomology groups of open subgroups of Axyx with
coefficients in Mx.] Thus, up to cyclotomically inner automorphisms, a; arises
from a collection of elements of (k;* )/\7 where k; is some finite Galois extension
of k [cf. Proposition 1.4, (ii)], one corresponding to each copy of Mx. Moreover,
since these copies of Mx are permuted by the action of IIx « x by conjugation, it
follows that [up to cyclotomically inner automorphisms] «; arises from a single
element of (kiX)A, which in fact belongs to (kX)" (C (k:iX)A) [as one sees by
considering the conjugation action via the “Gj portion” of Ixxx]. On the
other hand, since the a; form a compatible system of automorphisms of the S;,
it follows from Proposition 1.7, (iii), that this element of (kx)A must be equal
to 1, as desired.

Next, to verify assertion (ii), let us observe that it suffices to show that
Ax is commensurably terminal in Ay x. But this follows immediately from
the fact that Ax is slim [cf. Proposition 1.6, (i)]. Finally, we consider assertion
(iii). Clearly, it suffices to show that Dx is commensurably terminal in ;.
By assertion (ii), to verify this commensurable terminality, it suffices to show
that the [manifestly abelian] cuspidal subgroup H; C S; [i.e., relative to the
natural surjection S; — Ilx« x| satisfies the following property: Every h € H;
such that h® —h € Dy, for all § in some open subgroup J of Dy, satisfies
h € Dx. But this property follows immediately [cf. the definition by a certain
fiber product of the symmetrized fundamental extension S;] from the fact that,
for J sufficiently small, the J-module H;/(Dx (] H;) is isomorphic to a direct
product of a finite number of copies of Mx. O

The following result is the main result of the present §1:
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Theorem 1.1. (Reconstruction of Maximal Cuspidally Abelian
Quotients) Let X, Y be hyperbolic curves over a finite or nonarchimedean
local field; denote the base fields of X, Y by kx, ky, respectively. Let ¥x
(respectively, Yy ) be a set of prime numbers that contains at least one prime
number that is invertible in kx (respectively, ky ); write Ax (respectively, Ay )
for the maximal cuspidally pro-E} (respectively, pro-E{/ ) quotient of the
maximal pro-Xx (respectively, pro-Xy ) quotient of the tame fundamen-
tal group of Xy (respectively, Y ) [where “tame” is with respect to the
complement of X7y (respectively, ng) in its canonical compactification/, and
IIx (respectively, Iy ) for the corresponding quotient of the étale fundamental
group of X (respectively, Y ). Let

Oé:HXlHY

be an isomorphism of profinite groups. Then:

(i) We have E} = E{/; write $1 % E} = Efy. Moreover, kx is a finite field
if and only if ky is; o preserves the decomposition groups of cusps; X is
of type (g,r) [where g,7 > 0 are integers such that 29 —2+r > 0] if and only if
Y is of type (g,7). Finally, if kx, ky are nonarchimedean local, then their
residue characteristics coincide.

(ii) a is compatible with the natural quotients IIx — Gy, , Iy — G, .

(i4i) Assume that X, Y are proper. Denote by Uy,  — TGP Ty, —

Uxxx’
H‘i};‘}‘iy the maximal cuspidally [i.e., relative to the natural surjections Iy —
Mxxx, y, ., — Iyxy/ abelian quotients [cf. Proposition 1.9]. Then
there is a commutative diagram [well-defined up to cuspidally inner auto-

morphisms/

c-ab o c-ab
Uxxx HUY XY

My«x — Iyxy

— where, the horizontal arrows are isomorphisms which are compatible with
the natural inclusions Dy — H‘f]'ibxx, Dy — H‘{jf}liy [¢f. Proposition 1.8,

(i)]; the vertical arrows are the natural surjections. Finally, the correspondence

o — ac-ab

is functorial [up to cuspidally inner automorphisms] with respect to «.

Proof. First, we consider assertions (i), (ii). Note that kx is finite if and
only if, for every open subgroup H C Ilx, the quotient of the abelianization
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H# by the closure of the torsion subgroup of H®" is topologically cyclic [cf.
[Tama], Proposition 3.3, (ii)]; a similar statement holds for ky, IIy. Thus, kx
is finite if and only if ky is. Now suppose that kx, ky are finite. Then assertion
(ii) also follows from [Tamal, Proposition 3.3, (ii). The fact that E& = E{, then
follows from the following observation: The subset Z} C Primes is the subset
on which the function

Primes 3 [ — dimg, (Ax)* ®@ Q)

attains its mazimum value [cf. [Tama], Proposition 3.1]; a similar statement
holds for Y. Now by considering the respective outer actions of Gy, Gk, on
the mazimal pro-l quotients of Ax, Ay, for some | € £, we obtain that o
preserves the decomposition groups of cusps [hence that X is of type (g,r) if
and only if Y is of type (g,7)], by [Mzk9], Corollary 2.7, (i). This completes
the proof of assertions (i), (ii) in the finite field case.

Next, let us assume that kx, ky are nonarchimedean local. Then the
portion of assertion (i) concerning ¥ x = ZE(, Yy = E{, follows by considering
the cohomological dimension of I x, Iy — cf., e.g., Proposition 1.3, (ii) [in the
proper case]. As for assertion (ii), if the cardinality of ¥ L5t is > 2, then
assertion (ii) follows from the evident pro-X analogue of [Mzk5], Lemma 1.3.8;
if the cardinality of ¥ is 1, then assertion (ii) follows from Lemma 1.2, (c), (d)
below. Now the portion of assertion (i) concerning the residue characteristics
of kx, ky follows from assertion (ii) and [Mzk5], Proposition 1.2.1, (i); the fact
that « preserves the decomposition groups of cusps [hence that X is of type
(g,7) if and only if Y is of type (g, r)] follows from [Mzk9], Corollary 2.7, (i).
This completes the proof of assertions (i), (i) in the nonarchimedean local field
case.

Finally, we consider assertion (iii). It follows from the definitions that «
induces an isomorphism My = My. If, moreover, Zy — X, Zj, — Y are
diagonal coverings corresponding to [connected] finite étale Galois coverings
X' — X, Y’ — Y that arise from open subgroups of IIx, Iy that correspond
via «, then « induces an isomorphism of group cohomology modules

H2(Iy,, Mx) & H(I,, My)

that preserves the extension classes associated to fundamental extensions of
Iz, Uz, [cf. Proposition 1.5, (i)]. In particular, if D" (respectively, &)
is a fundamental extension of Iz, (respectively, HZ;/), then « induces an
isomorphism
/ :) gl

which is compatible with the morphisms My = My, Uz = Lz, already
induced by «, and, moreover, uniquely determined, up to cyclotomically inner
automorphisms, and the action of (k)x()A (respectively, (k}X,)A) [cf. Proposition
1.4, (ii)]. On the other hand, by allowing X', Y to vary, taking symmetriza-

tions of the fundamental extensions involved [which may be constructed entirely
group-theoretically!], and making use of the vertical morphism in the center of
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the diagram of Proposition 1.7, (ii) [again an object which may be constructed
entirely group-theoreticallyl], it follows from Proposition 1.7, (iii), that the inde-
terminacy of the isomorphism D’ = £’ arising from the action of (k)x()/\, (kix,)A
“converges to the identity indeterminacy” [i.e., by taking D' = &' to arise as
just described from an isomorphism of fundamental extensions D" = £ as-
sociated to [connected] finite étale coverings X” — X', Y” — Y’ [that arise
from open subgroups of IIx, Iy that correspond via o], where the open sub-
groups Ix» C Ilx/, Iy~ C Iy are sufficiently small]. Thus, in light of the
manifest functoriality of the vertical morphism in the center of the diagram of
Proposition 1.7, (ii) [the detailed explication of which, in terms of various com-
mutative diagrams, is a routine task which we leave to the reader!], we obtain
an isomorphism
{Si} = AT}

of pro-symmetrized fundamental extensions [cf. Definition 1.3, (iii)] of IIxxx,
IIy «y, respectively, which arises from « and is completely determined up to
cyclotomically inner automorphisms. Here, we pause to note that although
in the construction of the symmetrization of a fundamental extension D’ (re-
spectively, £’), one must, a priori, contend with a certain indeterminacy with
respect to Axs X {1}- (respectively, Ay, x {1}-)inner automorphisms [cf., e.g.,
Proposition 1.7, (ii)], in fact, by allowing X', Y’ to vary, this indeterminacy
also “converges to the identity indeterminacy” [cf. Remark 4].

Thus, in summary, « induces an isomorphism [well-defined up to cyclo-
tomically [or, alternatively, cuspidally] inner automorphisms]

Soo = To

of pro-fundamental extensions of Ilxxx, Ily«y, respectively. Moreover, by
applying the fact that the left-hand square of the commutative diagram of
Proposition 1.8, (ii), is cartesian, together with the fact that the “canonical
section” of “C;ﬁ” that appears in Proposition 1.8, (iii), is completely determined
[cf. Proposition 1.8, (v); Lemma 1.1] by the condition that it lie under an
arbitrary “equivariant section” [cf. Proposition 1.8, (iv)] of the “C/,” associated
to coverings “X” — X'” arising from arbitrarily small open subgroups Ilx. C
IIx, it follows that the isomorphism S, — 7o just obtained is compatible
with the pro-fundamental inclusions Dx — Sso, Dy — Ty In particular, by
Proposition 1.9, (ii) [cf. also Proposition 1.8, (i)], we conclude that « induces
an isomorphism [well-defined up to cuspidally inner automorphisms]
(SOO = ) %J_ilix = (T:]_}afbxy ( = TOO)

which is compatible with the natural inclusions Dx — H%jibxx, Dy — II&2b
Finally, the functoriality of this isomorphism follows from the naturality of its
construction. O
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Remark 7. It follows immediately from the naturality of the construc-
tions used in the proof of Theorem 1.1, (iii), that when “a” arises from an
isomorphism of schemes X = Y, the resulting a“?*P of Theorem 1.1, (iii), co-
incides with the morphism induced on fundamental groups by the resulting
isomorphism of schemes Ux xx — Uy xy.

Lemma 1.2. (Normal Subgroups of the Absolute Galois Group
of a Nonarchimedean Local Field) Let k be a nonarchimedean local
field of residue characteristic p; write Gy, for the absolute Galois group of
k. Also, let us write I C Gy, for the inertia subgroup of G, and W C I for
the wild inertia subgroup. [Here, we recall that W is the unique Sylow pro-p
subgroup of I.] Let H C Gy, be a closed subgroup that satisfies [at least] one
of the following four conditions:

(a) H is a finite group.
(b) H commutes with W.

(¢) H is a pro-prime-to-p group [i.e., the order of every finite quotient
group of H is prime to p] that is normal in Gj.

(d) H is a topologically finitely generated pro-p group that is nor-
mal in G.

Then H = {1}.

Proof. Indeed, suppose that H satisfies condition (a). Then the fact that
H = {1} follows from [NSW], Corollary 12.1.3, Theorem 12.1.7. Now suppose
that H satisfies condition (b). Then by the well-known functorial isomorphism
[arising from local class field theory] between the additive group underlying a
finite field extension of k that corresponds to an open subgroup J C Gy and
the tensor product with @, of the image of W (.J in the abelianization J2",
it follows immediately that the conjugation action of H on W is nontrivial,
whenever H is nontrivial. Thus we conclude again that H = {1}. Next,
suppose that H satisfies condition (¢). Then since H, W are both normal in
Gy, it follows [by considering commutators of elements of H with elements of
W] that arbitrary elements of H commute with arbitrary elements of W. In
particular, H satisfies condition (b), so we conclude yet again that H = {1}.

Finally, we assume that H is nontrivial and satisfies condition (d). Then I
claim that H has trivial image Im(H) in G, /W . Indeed, since I/ W, Im(H) are
normal in G /W, and, moreover, I/W is pro-prime-to-p, it follows that these
two groups commute. On the other hand, since, as is well-known, G /I acts
faithfully [by conjugation, via the cyclotomic character] on I/W, it thus follows
that Im(H) is trivial, as asserted. Thus, H C W. Since [as in well-known —
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cf., e.g., the proof of [Mzk4], Lemma 15.6] W is a free pro-p group of infinite
rank, we thus conclude that there exists an open subgroup U C W [so U is also
a free pro-p group of infinite rank] containing H such that the natural map

H* @F, - U ®F,

is injective, but not surjective. Then it follows immediately from the well-known
theory of free pro-p groups that there exists a set of free topological generators
{& }ier [so the index set I is infinite] of U such that for some finite subset J C I,
the elements {¢;};e s lie in and topologically generate H. On the other hand,
since H is normal in U, it follows from the well-known structure of free pro-p
groups that we obtain a contradiction. This completes the proof of Lemma
1.2. |

Remark 8. The author would like to thank A. Tamagawa for inform-
ing him of the content of Lemma 1.2.

Definition 1.5.  In the situation of Theorem 1.1, (i), (ii), suppose fur-
ther that Yy = Yy ; write £ % Ny = 0y,

(i) If, for every finite étale covering X’ — X of X arising from an open subgroup

Iy C Ilx, it holds that the map from (X’)°'* [cf. §0] to conjugacy classes
of closed subgroups of IIx/ given by assigning to a closed point its associated
decomposition group is injective, then we shall say that X is X-separated.

(ii) If the map induced by « on closed subgroups of IIx, ITy induces a bijection

between the decomposition groups of the points of Xt YI* then we shall
say that « is quasi-point-theoretic. If «v is quasi-point-theoretic, and, moreover,
X, Y are X-separated — in which case a induces bijections

Xcl :) Ycl, XCH— :) YCH—
— then we shall say that « is point-theoretic.

(iii) Suppose further that we are in the finite field case. Then we shall say

that o is Frobenius-preserving if the isomorphism Gy, — G}, induced by «
[cf. Theorem 1.1, (ii)] maps the Frobenius element of Gj, to the Frobenius
element of Gy, .
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Remark 9. In the finite field case, when X1 = mtimeﬁT, the Frobenius
element of G, may be characterized as in [Tama], Proposition 3.4, (i), (ii); a
similar statement holds for the Frobenius element of Gi, . [Moreover, in the
proper case, the Frobenius element of G, may be characterized as the element
of G, that acts on Mx via multiplication by the cardinality of kx, i.e., the
cardinality of H'(Gyy, Mx) plus 1.] Thus, when Xt = Primes', any « as in
Theorem 1.1, (i), (i), is automatically Frobenius-preserving.

Remark 10. Let us suppose that we are in the situation of Definition
1.5, and that the base fields kx, ky are finite. Let us refer to as a quasi-section
[of Iy — G| any closed subgroup D C IIx [i.e., such as a decomposition
group of a point € X°!| that maps isomorphically onto an open subgroup of
Gy - Let us refer to a quasi-section of Ilx — G, as a subdecomposition group
if it is contained in some decomposition group of a point € X°'. Then:

(i) Since X is not necessarily X-separated, it is not necessarily the case that

decomposition groups of points € X' are commensurably terminal in x [cf.
Proposition 2.3, (ii), below]. On the other hand, if D C IIx is a quasi-section,

and we write B & Cry (D) CIIx for the commensurator of D in Ix [cf. §0],
then one verifies immediately E is also a quasi-section. [Indeed, by considering
the projection IIx — Gy, it follows immediately that every element of £
centralizes some open subgroup D’ C D; on the other hand, by considering the
well-known properties of the action of open subgroups of G on abelianizations
of open subgroups of Ay [i.e., more precisely, the “Riemann hypothesis for
abelian varieties over finite fields” — cf., e.g., [Mumf], p. 206], it follows that
every centralizer of D' in Ax is trivial, i.e., that F(\Ax = {1}]

(ii) It is immediate that any mazimal subdecomposition group of I x is, in fact,

a decomposition group of some point € X°. On the other hand, since X is
not necessarily 3-separated, it is not clear whether or not every decomposition
group of a point € X is necessarily a maximal subdecomposition group. If X,
Y are X-separated, then the arguments of [Tama], Corollary 2.10, Proposition
3.8, yield a “group-theoretic” characterization of the subdecomposition groups
[hence also of the maximal subdecomposition groups, i.e., the decomposition
groups of points € X! of Iy, IIy in terms of the actions of the Frobenius
elements. That is to say, if X, Y are X-separated, then any Frobenius-preserving
isomorphism « is [quasi-[point-theoretic.

(iii) Nevertheless, as was pointed out to the author by A. Tamagawa, even if

X, Y are not necessarily X-separated, it is still possible to conclude, essentially
from the arguments of [Tama], Corollary 2.10, Proposition 3.8, that:

Any Frobenius-preserving isomorphism « is quasi-point-theoretic.
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Indeed, it suffices to give a “group-theoretic” characterization of the quasi-
sections D C Ilx which are decomposition groups of points € X . We may

assume [for simplicity] without loss of generality that X, Y are proper. Write

ol Cuy(D); kp, kg for the finite extension fields of kx determined by

D, E. Let H C Ax be a characteristic open subgroup; denote by ¥ — X
the covering determined by the open subgroup E - H C IIx. Then it follows
immediately from the definition of a “decomposition group” that it suffices to
give a “group-theoretic” criterion for the condition that Y (kp) contain a point
whose field of definition [which is, a priori, some subextension in kp of kg] is
equal to kp. In [Tamal, the Lefschetz trace formula is applied to compute the
cardinality of Y (kp). On the other hand, if we use the superscript “fld-def” to
denote the subset of points whose field of definition is equal to the field given
in parentheses, and “| —|” to denote the cardinality of a finite set, then for any
subextension k' C kp of kg, we have

|Y(k/)| _ Z |Y(k//)ﬂd—def|

k!

[where k" C k' ranges over the subextensions of kg|. In particular, by apply-
ing induction on [k’ : kg], one concludes immediately from the above formula
that |V (£)#4-9¢f| may be computed from |Y (k)| for subextensions k” C &'
of kg [while |Y(k”)] may be computed, as in [Tama|, from the Lefschetz trace
formaula). This yields the desired “group-theoretic” characterization of the de-
composition groups of IIx.

Remark 11. Note that in the finite field case, if a as in Theorem 1.1,
(i), (ii), is Frobenius-preserving, then the cardinalities, hence also the char-
acteristics, of kx, ky coincide. Indeed, this follows immediately by reducing
to the proper case via Theorem 1.1, (i), and considering the actions of Gy,
Gy, [cf. Theorem 1.1, (ii)] on My, My [which are compatible relative to the
isomorphism My — My induced by .

Now we return to the notation of the discussion preceding Theorem 1.1.
Observe that the automorphism

T: X xX—>XxX

given by switching the two factors induces an outer automorphism of Iy, .
Moreover, by choosing the basepoints used to form the various fundamental
groups involved in an appropriate fashion, it follows that there exists an auto-
morphism

I - HUXXX - HUXXX

among those automorphisms induced by 7 [i.e., all of which are related to one
another by composition with an inner automorphism] which induces the auto-
morphism on Ty« x = IIx x g, I x given by switching the two factors; preserves
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the subgroup Dx C Iy, ; and preserves and induces the identity automor-
phism on the subgroup Ix C Dy (C Iy, ). Note that by the slimness of
Proposition 1.6, (i), together with the well-known commensurable terminality
of Dx C Iy, in Oy, [cf., e.g., [the proof of] [Mzk5], Lemma 1.3.12],
it follows that, at least when ¥ = Primes, these three conditions [are more
than sufficient to] uniquely determine Il,, up to composition with an inner au-
tomorphism arising from Ix; one then obtains a natural I, for arbitrary X
[well-defined up to composition with an inner automorphism arising from Ix]
by taking the automorphism induced on the appropriate quotients by “Il; in
the case ¥ = Primes”.

Proposition 1.11. (Switching the Two Factors) The automor-
phism

c-ab . Tyc-ab c-ab
HT 'HUXXX _>HUX><X

induced by 11, is the unique automorphism of the profinite group H‘f]‘f{bxx , up to

composition with a cuspidally inner automorphism, that satisfies the following
two conditions: (a) it preserves the quotient H‘f}ibxx — Il x«x and induces on
this quotient the automorphism on llxxx = Ilx x¢g, Illx given by switching

the two factors; (b) it preserves the image of Ix C Dx — H?}f{bxx.
Proof. This follows immediately from Proposition 1.10, (i). |

2. Points and Functions

We maintain the notation of §1 [i.e., the discussion preceding Theorem
1.1]. If # € X°!, then we shall denote by

DmgHX

the decomposition group of x [well-defined up to conjugation in IIx]|. If = €
X (k), then D, determines a section s, : G, — Ilx [which is well-defined as a
geometrically outer homomorphism].

Next, let S C X be a finite set. If n is a Xi-integer [cf. §0], then the
Kummer ezact sequence

1—>IJ,n—>(Gm—>Gm—>1

[where G, — Gy is the n-th power map; w,, is defined so as to make the
sequence exact] on the étale site of X determines a homomorphism Pic(X) —
H?(Ax,p,) [where Pic(X) is the Picard group of X]. Now there is a unique
isomorphism

K, :> Mx/Tl-MX



Absolute Anabelian Cuspidalizations of Proper Hyperbolic Curves 35

such that the homomorphism Pic(X) — H?(Ax,p,) sends line bundles of
degree 1 to the element determined by 1 € Z/nZ via the composite of the
induced isomorphism H?(Ax, u,,) — H?(Ax, Mx /n-Mx) with the tautological
isomorphism H*(Ax,Mx /n- Mx) = Z/nZ [cf. Proposition 1.2, (i)]. In the
following discussion, we shall identify p,, with My /n-Mx via this isomorphism.

If we consider the Kummer exact sequence on the étale site of Ug C X
[and pass to the inverse limit with respect to n|, then we obtain a natural
homomorphism

F(US,Oés) - Hl(HUvaX)

[where we note that here, it suffices to consider the group cohomology of Tl
[i.e., as opposed to the étale cohomology of Ug], since the extraction of n-th
roots of an element of T'(Usg, (’)55) yields finite étale coverings of Ug that corre-
spond to open subgroups of Iy, | which is injective [since the abelian topolog-
ical group I'(Usg, Oés) is clearly topologically finitely generated and free of pf-

torsion, hence injects into its prime-to-p! completion] whenever X1 = ‘ﬁtimesT.

In particular, by allowing S to vary, we obtain a natural homomorphism

K;é _)hi,n Hl(HUvaX)
S

[where Kx is the function field of X; the direct limit is over all finite subsets
S of X¢!| which is injective whenever T = Primes'.

Proposition 2.1. (Kummer Classes of Functions) If S C X is
a finite subset, write

c-ab c-cn
Ayg — AUS —» AUS

for the maximal cuspidally abelian and maximal cuspidally central quo-

tients, respectively, and
c-ab c-cn
HUS - HUS - Us

for the corresponding quotients of Iy. If ¥ € X, then let us write
D, [Us] C Ty,
for the decomposition group of x in Iy, [which is well-defined up to con-

Jugation in Uy ] and I,[Us] C D, [Us] for the inertia subgroup. [Thus, when

x € S, we obtain [cf. Proposition 1.5, (ii), (iii)] a natural isomorphism of Mx

with I,[Us] < D,[Us] N Avs.]

(i) The natural surjections induce isomorphisms as follows:

HY (TGS, Mx) = HY(IIgE", Mx) = H' (T, Mx)



36 Shinichi Mochizuki

In particular, we obtain natural homomorphisms as follows:

I'(Us,0p,) — H' (5™, Mx) = H'(IIGEP, Mx) = H'(Ty,, Mx)

K = lim BTG My) 5 lim 1 (T2, M) 5 lim (T, M)
S S S

These natural homomorphisms are injective whenever ¥ = Primes' .

(ii) Suppose that S C X (k) is a finite subset. Then restricting cohomology

classes of Iy, to the various I,[Us], for x € S, yields a natural ezact sequence

1 (k)" = B (o, 0Mx) — (@) 2)
€S
[where we identify Homs, (I,[Us|, Mx) with Z']. Moreover, the image [via the
natural homomorphism given in (i)] of T(Us, O ) in HY(Myg, Mx)/ (k)" is
equal to the inverse image in H'(Ilyy, Mx)/(k*)" of the submodule of

(@ 2)< (D7)

zeS zeS

determined by the principal divisors [with support in S]. A similar statement
holds when “Ilyg” is replaced by ‘TG " or “IIG™”.

(i) If f € T(Us, Op,), write

kG e HYIIGS™, Mx);  w5%° € HY(IIG, Mx); Ky € H'(Ily,, Mx)

for the associated Kummer classes. If x € X°\S, then D,[Us| maps, via the
natural surjection llyg — Gy, isomorphically onto the open subgroup G,y
Gy [where k(x) is the residue field of X at x]. Moreover, the images of the
pulled back classes

~

KS " |, us) = ffff_abbzws] = rslp,jws) € H (D2 [Us], Mx) = H"(Gyay, Mx)
= (k)"

in (k(z)*)" are equal to the image in (k(x)*)" of the value of f at x.

Proof.  Assertion (i) follows immediately from the definitions. The exact
sequence of assertion (ii) follows immediately from Proposition 1.4, (ii). The
characterization of the image of T'(Us, Oy ) is immediate from the definitions
and the exact sequence of assertion (ii). Assertion (iii) follows immediately
from the definitions and the functoriality of the Kummer class. O
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Remark 12.  If, in the situation of Proposition 2.1, (iii), we think of the
extension of II§;<" of IIx as being given by the extension Dg [cf. Proposition
1.6, (iii)], where D is a fundamental extension of IIxx that appears as a
quotient of Ty, [hence is “rigid” with respect to the action of (k*)" — cf.
Proposition 1.7, (iii); the proof of Theorem 1.1, (iii)], then it follows that the
image of D,[Us| in IFE" may be thought of as the image of D,[Us] in Dg.
If, moreover, we assume, for simplicity, that x € X(k), S C X(k), then this
image of D,[Us| in Dg amounts to a section of Dg — IIx — G} lying over
the section s, of Ilx — Gj. Since Dg is defined as a certain fiber product,
this section is equivalent to a collection of sections [regarded as cyclotomically
outer homomorphisms|

Yyw : Gk = Dy o

[where y ranges over the points of S]. [Here, we note that it is immediate from
the definitions that, as the notation suggests, v, depends only on z, y — i.e.,
that v, . is independent of the choice of S.] That is to say, from this point of
view, Proposition 2.1, (iii), may be regarded as stating that:

The image in (k*)" = (k(z)*)" of the value of a function € T'(Ug, Op.)
at ¢ € X (k) may be computed from its Kummer class, as soon as
one knows the sections vy . : Gi — Dy, for y € S.

Also, before proceeding, we note that an arbitrary section of D, , — G, differs
[as a cyclotomically outer homomorphism] from v, , by the action of an element
of H' (G, Mx) = (k*)". Thus, the datum of “y,.,” may be regarded as a

trivialization of a certain (k™) -torsor.

Remark 13. The finite field portion of Proposition 2.1 may be re-
garded as the evident finite field analogue of [a certain portion of] the theory
of [Mzk8], §4. Also, we observe that the approach of “reconstructing the func-
tion field of the curve via Kummer theory, as opposed to class field theory [as
was done in [Tama], [Uchi]]” has the advantage of being applicable to nonar-
chimedean local fields, as well as to finite fields.

Definition 2.1. For z,y € X (k), we shall refer to the section [regarded
as a cyclotomically outer homomorphism]

Yy, - Gk - Dy,w

as the Green’s trivialization of D at (y,xz). If D is a divisor on X supported in
the subset of k-rational points X (k) € X, then multiplication of the various
Green’s trivializations for the points in the support of D determines a section
[regarded as a cyclotomically outer homomorphism]

YD,z : Gk — Dp o
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which we shall refer to as the Green’s trivialization of D at (D, z). [Note that
the definition of yp , generalizes immediately to the case where the divisor D,
but not necessarily the points in its support, is rational over k — cf. Remark

5]

Remark 14. The terminology of Definition 2.1, is intended to sug-
gest the similarity between the -, , of the present discussion and the “Green’s
functions” that occur in the theory of bipermissible metrics — cf., e.g., [MB],
64.11.4.

Remark 15. Note that the Green’s trivializations are symmetric with
respect to the involution of D induced by the automorphism I1¢2P of Proposi-
tion 1.11. Indeed, relative to the natural projections

HUXxx - H(I:J_i]ix - D

the Green’s trivialization at (y,z) is simply the section of D — G, arising [by
composition| from the section of Iy, — Gj determined by the decomposi-
tion group of the point (y,z) € Uxxx (k). Thus, the asserted symmetry of the
Green’s trivializations follows from the fact that I1S#P is compatible with I1,,
together with the evident fact that [by “transport of structure”] I, maps the
decomposition group of (y,z) € Uxxx (k) isomorphically onto the decomposi-
tion group of (z,y) € Uxxx (k).

If d € 7Z, denote by J? the subscheme of the Picard scheme of X that

parame-trizes line bundles of degree d; write J &t o, Thus, J<¢ is a torsor
over J. Note that there is a natural morphism X — J! [given by assigning
to a point of X the line bundle of degree 1 determined by the point]. Thus,
the basepoint of X [already chosen in §1] determines a basepoint of J!. At the
level of “geometrically pro-X7 étale fundamental groups, this morphism induces
a surjective homomorphism

HX—»HJI

whose kernel is the kernel of the maximal abelian quotient Ax — A%, In
particular, for « € X (k), the section s, determines a section ¢, : Gy — Il 1.
Note that applying the “change of structure group” given by the “multiplication
by d map” on J to the J-torsor J! yields the J-torsor J¢. [Indeed, this follows
by considering the group structure of the Picard scheme.] Thus, we obtain a
morphism J' — J¢ whose induced morphism on fundamental groups

HJl HH‘]d
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determines an isomorphism of Il jo with the push-forward of the extension II ;1
[i.e., of Gy by Ay = A%] via the homomorphism A% — A given by mul-
tiplication by d. When d > 1, the group structure on the Picard scheme also
determines a morphism

|J RIS

[where the product is a fiber product over Gy of d factors of Il ;:] which de-
termines an isomorphism of 1l ;4 with the push-forward of the extension con-
stituted by the fiber product via the homomorphism [] A% — A% [i.e., from
a product of d copies of A3 to A% given by adding up the d components].
Moreover, one verifies immediately that when d > 1, these two constructions
of “II;a” from Il ;1 yield groups that are naturally isomorphic.

Thus, by applying the various homomorphisms induced on fundamental
groups by the group structure of the Picard scheme, it follows that if D is
any divisor of degree d on X whose support lies in the set of k-rational points
X (k) € X, then D determines a section

tp: Gy — 1 ja

which may be constructed entirely group-theoretically from the “t,”, where
x € X (k) ranges over the points in the support of D. In particular, if D is of
degree 0, then the section tp : Gy — II; may be compared with the identity
section of I1; to obtain a cohomology class:

D € Hl(Gkv Ag}))

Now we have the following well-known result:

Proposition 2.2. (Points and Galois Sections) Suppose that ¥ =
Primes. Then, in the notation of the above discussion:

(i) The divisor D is principal if and only if np = 0.

(ii) The map = +— D, from X to conjugacy classes of closed subgroups of Ilx

is injective, i.e., X is Primes-separated.

Proof. First, we consider assertion (i). By well-known general nonsense
[cf., e.g., [Naka], Claim (2.2); [NTs|, Lemma (4.14); [Mzk4], the Remark pre-
ceding Definition 6.2], there is a natural isomorphism

H'(k,AR) = (k)" (2 J (k)

[where the “A” denotes the profinite completion] which maps np to the ele-
ment of J(k) determined by D. [Here, we recall that this natural isomorphism
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arises by considering the long exact sequence obtained by applying the functors
H*(G}, —) to the short exact sequence of Gj-modules

1— J(E)n] — J(k) — J(k) — 1

— where n is a positive integer; the morphism J(k) — J(k) is the “multipli-
cation by n map”; J(k)[n] is defined so as to make the sequence exact.] Thus,
assertion (i) follows immediately.

To prove assertion (ii), it suffices [by possibly base-changing to a finite ex-
tension of k] to verify that two points @1, 22 € X (k) that induce A x-conjugate
sections s, Sy, are necessarily equal [cf. also [Tamal, Corollary 2.10]. But
this follows formally from assertion (i), by considering the divisor 21 — z9 [and
the well-known fact that the natural morphism X — J! considered above is an
embedding]. O

Remark 16.  From the point of view of Definition 1.2, (ii), the reader
may feel tempted to expect that [still under the assumption that X = Primes]
D is principal if and only if the extension Dp of IIx [by Mx] is trivial [i.e.,
determines the zero class in H?(Ily, Mx)]. When k is nonarchimedean local, it
is not difficult to verify, using Proposition 2.2, (i), that this is indeed the case.
On the other hand, when k is finite, although this condition for principality
is easily verified to be necessary, it is not, however, sufficient, since it only
involves the “prime-to-p’ portion” of the point of J(k) determined by D.

Definition 2.2. In the situation of Theorem 1.1, (iii), suppose further

that (X d:Cf) Yx = Yy, and that « is point-theoretic. Let S C X! be a [not

necessarily finite] subset that corresponds via the bijection X' = Y induced
by [the point-theoreticity of] o to a subset T C Y.

(i) Write D (respectively, £) for the fundamental extension of IIxyx (respec-
tively, ITy xy) that arises as the quotient of H‘f}ibxx (respectively, TI§*" ) by

Uy xvy

the kernel of the maximal cuspidally central quotient AG™ — — AG  (re-
XxX XxX

spectively, AG2P —— AG™ ) [cf. Proposition 1.6, (iv)]. Thus, a“*? induces

an isomorphism:
a™™:D 5 E
We shall say that « is (S, T')-locally Green-compatible if, for every pair of points
(x1,22) € X (kx)xX (kx) corresponding via the bijection induced by « to a pair
of points (y1,y2) € Y(ky) X Y (ky), such that o € S, ya € T, the isomorphism
D$1,12 :’ 5@/1»?42
[obtained by restricting a“°"] is compatible with the Green’s trivializations.
We shall say that « is (S,T)-locally degree zero (respectively, (S,T)-locally
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principally) Green-compatible if, for every x € X(kx)[()S and every divisor
of degree zero (respectively, principal divisor) D supported in X (kx) C X¢
corresponding via the bijection induced by « to a pair (y,E) of Y [so y €
Y (ky) () T], the isomorphism

DD,:c - EE,y

is compatible with the Green’s trivializations.

(ii) We shall say that « is totally (S, T)-locally Green-compatible (respectively,

totally (S, T)-locally degree zero Green-compatible; totally (S,T)-locally prin-
cipally Green-compatible) if, for all pairs of connected finite étale coverings
X' — X, Y’ — Y that arise from open subgroups of IIx, Iy that correspond
via a, the isomorphism

HX’ :> HY/

induced by «a is (S’,T”)-locally Green-compatible (respectively, (S’,T")-locally
degree zero Green-compatible; (S’,T")-locally principally Green-compatible),
where S' C (X/)!, T" C (Y')°! are the inverse images in X', Y’ of S, T,
respectively.

(iii) With respect to the terminology introduced in (i), (ii), when S = X T =
Y, then we shall replace the phrase “(S,T)-locally” by the phrase “globally”.

Remark 17. In the situation of Definition 2.2, if X’ — X, Y’ — Y
are connected finite étale coverings that arise from open subgroups of ITx, Iy
that correspond via a; D 5 & is the isomorphism of fundamental extensions of
Hxxx, Hyxy that arises from the isomorphism a#" of Theorem 1.1, (iii); and
the points x1, zo (respectively, y1, y2) are Ax- (respectively, Ay-) conjugate,
then it follows immediately from the compatibility of a“?" with the natural

inclusions Dx — TIi2° | Dy < TI§G2°  [ef. Theorem 1.1, (iii)] that the

isomorphism Dy, 4, — €y, .4, 1S automatically compatible with the Green’s triv-
ializations. [Indeed, this follows from the easily verified fact that the Green’s
trivializations in this case are, in essence, specializations of conjugates of the
“canonical sections of ( ;é ” of Proposition 1.8.] Unfortunately, however, the au-
thor is unable, at the time of writing, to see how to generalize the argument
applied in the proof of Theorem 1.1, (iii), involving Lemma 1.1; Proposition
1.8, (v), so as to cover the case where the points x1, 2o (respectively, yi1, y2)
fail to be Ax- (respectively, Ay-) conjugate.

Remark 18. It is immediate that (.S, T')-local Green-compatibility (re-
spectively, (S, T)-local degree zero Green-compatibility) implies (.5, T')-local de-
gree zero Green-compatibility (respectively, (S, T)-local principal Green-compa-
tibility), and that total (S,T)-local Green-compatibility (respectively, total
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(S, T)-local degree zero Green-compatibility) implies total (S, T)-local degree
zero Green-compatibility (respectively, total (S, T')-local principal Green-compa-
tibility).

Theorem 2.1. (Reconstruction of Functions) In the situation of

Theorem 1.1, (iii), suppose further that (¥ d:ef) Yx =Xy, and that « is point-

theoretic. Then:

(i) Let S C X4 T C Y pe finite subsets that correspond via the bijection

~

X 5 v induced by a. Then a, o induce isomorphisms [well-defined
up to cuspidally inner automorphisms/

c-ab ™~ c-ab
Is” — 1y

[where Vi e Y\T] lying over o, which are functorial with respect to o and
S, T, as well as with respect to passing to connected finite étale coverings
of X, Y [that do not necesarily arise from open subgroups of Ilx, Ty /].

(ii) Suppose that ¥ = Primes. Then the bijection X = Y induced by o

induces a bijection between the groups of principal divisors on X, Y. This
bijection, together with the isomorphisms of (i), induces a compatible iso-
morphism

K- (k)" 5 K- (1)
between the push-forwards of the multiplicative groups associated to the func-

tion fields of X, Y, relative to the homomorphisms k% — (k;{)A, ky —
A

(k)

Proof. Assertion (i) follows immediately by “specializing to S, T ” the iso-
morphism of Theorem 1.1, (iii) [cf. also Proposition 1.9, (i), (ii); the definitions
of the various objects involved]. [Here, we note that the functoriality asserted
in assertion (i), which is somewhat stronger than the functoriality asserted in
Theorem 1.1, (iii), follows from the definitions, together with the naturality of
the constructions applied in the proof of Theorem 1.1, (iii) — cf., e.g., the dia-
gram of Proposition 1.7, (ii).] Assertion (ii) follows immediately from assertion
(i); Proposition 2.2, (i); Proposition 2.1, (i), (ii). O

Remark 19. In fact, the crucial isomorphism Hfj‘:b = H‘f}q"}b of Theo-
rem 2.1, (i), may also be constructed, in the finite field case, via the techniques
to be introduced in §3 [although we shall not discuss this approach in detail;
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cf., however, the proof of Theorem 3.1]. On the other hand, observe that unlike
the techniques of §3, the techniques of §1 [in particular, the proof of Theorem
1.1, (iii), via Propositions 1.7, 1.8] apply to situations [e.g., the case of nonar-
chimedean local fields!] where the weight filtration [cf. §3] does not admit a
Galois-invariant splitting. Indeed, the techniques of §1, essentially only require
that the Galois cohomology of the base field admit a natural duality pairing.
Moreover, even in the finite field case, in light of the importance of this iso-
morphism H‘{]‘gb = H‘{;;’b in the theory of the present paper, it is of interest
to see that this isomorphism may be constructed via two fundamentally dif-
ferent approaches. Finally, although the techniques of §3 are better suited to
the reconstruction of the Green’s trivializations, they have the drawback that
they depend essentially on the choice of a “basepoint” x. € X (k). Thus, it
is of interest to know that this isomorphism may be constructed [i.e., via the
techniques of §1] “cohomologically” [cf. Proposition 1.5, (i)] without making
such a choice.

Remark 20. In the case of nonarchimedean local fields, it is natural to
ask, in the style of [Mzk8], §4, whether or not various “canonical integral struc-
tures” on the extensions D, , [where z,y € X (k)] of Gy by Mx are preserved
by arbitrary isomorphisms of arithmetic fundamental groups. When = # v,
such a canonical integral structure is determined by the Green’s trivialization;
when x = y, such a canonical integral structure is determined by the integral
structure [in the usual sense of scheme theory] on the canonical sheaf of the
stable model of the curve [when the curve has stable reduction] — cf. [Mzk8],
84.

Before proceeding, we note the following “analogue for H‘{jgb ” of Proposi-
tion 1.10, (i):

Proposition 2.3. (Automorphisms and Commensurators) Let
Hggb be as in Proposition 2.1. Forx € S, write D,[Ug] — H%J';'}b for the natural
inclusion. Then:

(i) Any automorphism « of the profinite group H‘(}'gb which

(a) is compatible with the natural surjection H‘fjgb — Ilx and induces the
identity on Ilx;

(b) for each x € S, preserves the image of Mx = I,[Ug] C D.[Us] via the
natural inclusion Dy[Us] — TGP
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is cuspidally inner.

(i) Suppose that X is X-separated. Then for xz € S, D, is commensurably
terminal in I1x.

(iii) Suppose that X is Y-separated. Then the image of D,[Ug] — H‘f}gb 18

commensurably terminal in Hfj:b,

Proof. First, we observe that assertion (ii) follows formally from the def-
inition of a “decomposition group” and “Y-separated”. Thus, assertion (i)
(respectively, (iii)) follows by an argument which is entirely similar to the ar-
gument that was used to prove assertion (i) (respectively, (iii)) of Proposition
1.10. ]

Remark 21. In the situation of Definition 2.2, suppose that S, T are
finite, and that « arises from an isomorphism

HUS — HVT

which is point-theoretic [or, equivalently, quasi-point-theoretic] — a condition
that is automatically satisfied in the finite field case whenever « is Frobenius-
preserving [cf. Remark 10]. Then observe that, [in light of our point-theoreticity
assumption] it follows from Proposition 2.3, (i), that the resulting induced
isomorphism

c-ab ™~ c-ab
HUS — HVT

coincides [up to cuspidally inner automorphisms] with the isomorphism of Theo-
rem 2.1, (i). Thus, in light of Remark 15, it follows formally from the definitions
that « is totally (S, T)-locally Green-compatible.

Corollary 2.1. (Point-theoretic Totally Locally Principally Green-

compatible Isomorphisms) In the situation of Theorem 1.1, (iii), assume

further that (3 d:Cf) Yx = Xy = Primes, and that o is point-theoretic and

totally (S, T')-locally principally Green-compatible, for some nonempty
subsets S C X, T C Y which correspond via the bijection X' = Y in-
duced by a. Then « arises from a uniquely determined commutative diagram
of schemes

~
—

<
< =<

12
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in which the horizontal arrows are isomorphisms; the vertical arrows are the
pro-finite étale coverings determined by the profinite groups I x, Ty .

Proof. Corollary 2.1 follows immediately — i.e., by “specializing func-
tions to points” — from the definitions; Theorem 2.1, (ii); Proposition 2.1,
(iii); Remark 12; and [Tamal, Lemma 4.7. Here, we note that, in the present
situation, the isomorphism

K- (k)" 5 K5 (k)

of Theorem 2.1, (i), necessarily induces an isomorphism K3 = Ky [cf. the
assumption that Xf = %timesT]. Indeed, this is immediate in the finite field
case. In the nonarchimedean local field case, it follows via the arguments applied
in the proof of [Mzk8], Theorem 4.10: That is to say, we assume for simplicity
that S C X (kx); then if f € K¥, and x € S is a point that does not lie in the
divisor of zeroes and poles of f, then let us observe that the subset

Fokg SRR
may be characterized as the subset of elements whose values [cf. Proposition
2.1, (iii)] at z lie in k% C (k;)x()A Note that since, for a given x1 € S, there
clearly exist f € K [at least after possibly passing to an appropriate connected
finite étale covering of X| that have a zero or pole at 21 but not at some other
x € S, this observation allows us to recover the canonical discrete structure
[cf. [Mzk8], Definition 4.1, (iii); the proof of [Mzk8], Theorem 4.10] on the
decomposition groups in H?j;f [where S; € X is an arbitrary finite subset
containing S, which corresponds, say, to a subset 7} C Y that contains T at
arbitrary points [i.e., arbitrary “z;1”] of S. Thus, by applying this canonical

discrete structure [as in the proof of [Mzk8], Theorem 4.10], we may recover
the subset

A
frkx C©f- (k%)
for arbitrary f € K5 [i.e., even f that have a zero or pole at every point of S]
as the subset of elfments for which the restriction to each point = of S either
lies in k% C (k%)  or [when the element in question has a zero or pole at x]
is compatible with the canonical discrAete structure at x. Since this characteri-
zation of the subset f- k% C f- (k%) is manifestly compatible [in light of the
Green-compatibility assumption on «] with the isomorphisms H?jsf 5 H%}f}f’
induced by «, we thus conclude that the isomorphism
N~ A
K% - (kx) = K - (ky)
of Theorem 2.1, (ii), maps the subset K3 C K% - (kX)" onto the subset K C
K- (k3)", as desired. O
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Remark 22. Suppose, in the situation of Corollary 2.1, that S = X,
T = Y. Then unlike the situation discussed in [Tama], one has the freedom
to evaluate functions at arbitrary points of the entire sets X!, Yl as opposed
to just certain restricted subsets S C X, T'C Y°.. Thus, instead of applying
[Tama], Lemma 4.7, one may instead apply the somewhat easier argument
implicit in [Uchi], §3, Lemmas 8-11 [which is used to treat the function field
case).

Thus, in light of Remark 21 [together with the portion of Theorem 1.1,
(i), concerning the preservation of decomposition groups of cusps|, Corollary 2.1
implies the following result, in the affine case:

Corollary 2.2. (Point-theoretic Isomorphisms in the Affine
Case) Let U, V be affine hyperbolic curves over a finite or nonarchimedean
local field. Suppose that ¥ = Primes. Write Ay (respectively, Ay ) for the
maximal cuspidally pro-Xf quotient of the maximal pro-¥ quotient
of the tame geometric fundamental group of U (respectively, V') [where “tame”
is with respect to the complement of U (respectively, V') in its canonical com-
pactification], and Iy (respectively, Iy ) for the corresponding quotient of the
étale fundamental group of U (respectively, V). Then any point-theoretic
isomorphism

ﬂ:HUlHV

arises from a uniquely determined commutative diagram of schemes

v =5 v
Lo
v =5 v

in which the horizontal arrows are isomorphisms; the vertical arrows are the
pro-finite étale coverings determined by the profinite groups g, Iy .

Remark 23. In light of the results of [Tama] [cf. Remarks 9, 10],
Corollary 2.2 is only truly of interest in the case of nonarchimedean local fields.

Definition 2.3. Suppose that k is a nonarchimedean local field.

(i) A [necessarily affine] hyperbolic curve U over k will be said to be of strictly
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Belyi type if it is defined over a number field and isogenous [cf. §0] to a hyper-
bolic curve of genus zero.

(ii) A [necessarily affine] hyperbolic curve U over k will be said to be of Belyi

type if it is defined over a number field, and, moreover, for some positive integer
m, there exists a finite sequence

U:Ul’\’")UQ’V"’...’V“? m—l“""Um

of hyperbolic orbicurves [cf. §0] U; such that U,, is a tripod [cf. §0], and,
moreover, for each j =1,... ,m—1, Uj; is related to U; in one of the following
ways:

a) there exists a finite étale morphism U; 1 — U; [i.e., “U,11 is a finite
J J it
étale covering of U;”];

(b) there exists a finite étale morphism U; — Ujyq [i.e., “Ujyq is a finite
étale quotient of U;”];

(c) there exists an open immersion U; — Uj41 [i.e., in the terminology of
[Mzk8], “Uj11 is a [hyperbolic] partial compactification of U;”];

(d) there exists a partial coarsification morphism [cf. §0] U; — Ujiq [ie.,
“Uj41 is a partial coarsification of U;”].

(iii) A [necessarily affine] hyperbolic curve U over k will be said to be of quasi-
Belyi type if it is defined over a number field and admits a connected finite
étale covering V' — U such that V' admits a [not necessarily finite or étale!]
dominant morphism V' — W to a tripod W.

Remark 24. It is immediate that every hyperbolic curve of strictly
Belyi type is also of Belyi type [as the terminology suggests]. Moreover, one
verifies easily by “induction on m” [where “m” is as in Definition 2.3, (ii)] that
every hyperbolic curve of Belyi type is also of quasi-Belyi type [as the termi-
nology suggests]. It is not difficult to see that there exist [multiply] punctured
elliptic curves that are of Belyi type, but not of strictly Belyi type [cf. Remark
31 below]. On the other hand, it is not clear to the author at the time of writing
whether or not there exist hyperbolic curves of quasi-Belyi type that are not
of Belyi type.

Remark 25. Hyperbolic curves of strictly Belyi type are precisely the
sort of curves considered in [Mzk8], Corollaries 2.8, 3.2.
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Remark 26. The author would like to thank A. Tamagawa for useful
discussions concerning Definition 2.3, (ii), especially Definition 2.3, (ii), (d).

Proposition 2.4. (Decomposition Groups of Curves of Quasi-
Belyi Type) Let U (respectively, V') be a hyperbolic curve over a nonar-
chimedean local field. Denote the base field of U (respectively, V') by ky (re-
spectively, ky ), the étale fundamental group of U (respectively, V') by Uy (re-
spectively, Iy ) [i.e., “we take ¥ = Primes”/]. Let

ﬂZHU;HV

be an isomorphism of profinite groups. Then:

(i) If U is of quasi-Belyi type, then the closed points of “DLoc-type” [in

the sense of [Mzk8], Definition 2.4] are py-adically dense [where py is the
residue characteristic of ku | in U(ky).

(ii) If U is of quasi-Belyi type, then 5 maps every decomposition group of a

closed point of U isomorphically onto a decomposition group of a closed point
of V.

(iii) If both U, V are of quasi-Belyi type, then [ is point-theoretic.

(iv) If U is of Belyi type, then so is V.

Proof. The proof of assertion (i) is similar to the proof of [Mzk§], Corol-
lary 2.8: That is to say, in the terminology of loc. cit., it follows formally
from the fact that U is of quasi-Belyi type that the “algebraic” closed points
[i.e., closed points defined over a number field, which are manifestly py -adically
densein U(ky)] of U are of “DLoc-type” [cf. the proof of [Mzk8], Corollary 2.8]:
Indeed, it suffices to consider the following commutative diagram of hyperbolic
curves, whose existence follows from the assumption that U is of quasi-Belyi
type:

Vi — W — U — U

Lo

u «— V — W

Here, the “hooked arrow <7 is an open immersion; all of the “non-hooked
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arrows” except for V.— W, V' — W' are finite étale morphisms; V. — W,
V' — W' are dominant; the finite étale morphism U’ — U is obtained by a base-
change to a finite extension of the base field ky; and W is a tripod [so W/ — W
is a “Belyi map”]. Note that the composite arrow V' — W' — U’ — U may
be thought of as an arrow in the category DLocy,, (U) of [Mzk8], §2. Observe,
moreover, that the arrow W’ < U’ may be chosen to have arbitrarily designated
algebraic closed points in the complement of its image. Thus, we conclude that
this diagram exhibits the [arbitrarily designated] algebraic closed points in the
complement of the image of W’ — U’ — U as points of DLoc-type, as desired.
This completes the proof of assertion (i).

In light of assertion (i) [applied to the various connected finite étale cover-
ings of U], the proof of assertion (ii) is entirely similar to the proof of [Mzk§],
Corollary 3.2: That is to say, by [Mzk8], Corollary 2.5, it follows that 3 maps
decomposition groups of DLoc-type of U to decomposition groups of DLoc-type
of V. Thus, assertion (ii) follows by applying [Mzk8], Lemma 3.1 [where the
density statement of assertion (i) concerning points of DLoc-type allows one to
replace the “algebraicity” condition of [Mzk8], Lemma 3.1, (iii), by the condi-
tion that the points in question be of DLoc-type]. Finally, assertion (iii) follows
formally from assertion (ii) [and Proposition 2.2, (ii)].

Finally, we consider assertion (iv). First, I claim that by applying the
isomorphism (3 [and thinking of hyperbolic orbicurves as being represented by
their associated étale fundamental groups|, one may transform the sequence

U:Ul“")UQW...WUmfl“""Um
of Definition 2.3, (ii), into a sequence
V=Vi~wVors ..o Vg~ V,

that also satisfies the conditions of Definition 2.3, (ii), in such a way that we
also obtain compatible isomorphisms 3; : Iy, = Iy, [where j = 1,...,m;
B1 = ). Indeed, we reason by induction on m. If [for j =1,... ,m—1] Uj4q is
related to U; as in (a) [of Definition 2.3, (ii)], then it is immediate [by thinking
in terms of open subgroups of Ily,, IIy,] that one may construct [from V] a
Vj41 related to Vj asin (a). If Uj4q is related to U; as in (b) (respectively, (c)),
then it follows from [Mzk6], Theorem 2.4 (respectively, [Mzk8], Theorem 1.3,
(iii) [cf. also [Mzk8], Theorem 2.3]), that one may construct [from V;] a Vjiq
related to V; as in (b) (respectively, (c)). If U;41 is related to U; as in (d), then
Iy, ., is obtained from Iy, by forming the quotient of IT;; by the closed normal
subgroup of Iy, generated by some finite collection of elements of Ay, that
belong to the decomposition groups of points of U; in Ay,. Thus, by Lemma 2.1,
(v), below, we conclude that the quotient Iy, — Ily,,, determines a quotient
Iy, — Ily,,, that corresponds to a partial coarsification V; — V1, as desired.
Finally, if U,, is a tripod, the existence of the isomorphism Ilr;, — Iy, implies
that V,,, is also a tripod [cf. [Mzk5], Lemma 1.3.9]. This completes the proof of
the claim.

Thus, to complete the proof of assertion (iv), it suffices to verify that V is
defined over a number field. But observe that since U is defined over a number
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field, there exists a diagram of hyperbolic curves [i.e., in essence, a “Belyi map”]
U, «— U, — U — U

where the “hooked arrow <" is an open immersion; the “non-hooked arrows”
are finite étale morphisms; and the finite étale morphism U’ — U is obtained by
a base-change to a finite extension of the base field ky. Now the isomorphisms
Oy, = Iy, Oy = Iy allow us to transform [cf. [Mzk8], Theorem 2.3 and

m m)

its proof] this diagram into a similar diagram
Vi «— VI — V' — V

whose existence [since V,, is also a tripod!] shows that V is also defined over a
number field, as desired. This completes the proof of assertion (iv). (I

Remark 27. Note that the essential reason that the author is unable
to prove the stronger statement of Proposition 2.4, (iv), in the quasi-Belyi
case is that, in the notation of the proof of Proposition 2.4, (i), it is unclear
how to construct [at the level of arithmetic fundamental groups| the dominant
morphism V. — W from V. That is to say, unlike the situation involving the
operations of Definition 2.3, (ii), (a), (b), (c), (d), it is by no means clear how to
construct, via purely group-theoretic operations, the quotient of an arithmetic
fundamental group arising from an arbitrary dominant morphism.

Lemma 2.1. (Finite Subgroups of Fundamental Groups of
Hyperbolic Orbicurves) Let W be a hyperbolic orbicurve over an alge-
braically closed field of characteristic zero; Yy a nonempty set of prime num-
bers. Denote the mazimal pro-Xyw quotient of the étale fundamental group
of W by Aw ; suppose that W admits a finite étale covering by a hyperbolic
curve that arises from an open subgroup of Aw . Let A C Ay (respectively,
B C Aw) be the decomposition group [well-defined up to conjugation in
Aw] of a closed point wy (respectively, wp) of W; suppose that wa # wp.
Then:

(i) A, B are cyclic.

(1)) A\ B = {1}. In particular, if A # {1}, then A is normally terminal in
Aw.

(iii) The order of every finite cyclic closed subgroup C' C Ay divides the
order of W [cf. §0].
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(iv) Every finite nontrivial closed subgroup C' C Ay is contained in a

decomposition group of a unique closed point of W.

(v) The nontrivial decomposition groups of closed points of W may be charac-

terized as the maximal finite nontrivial closed subgroups of Ay .

Proof. Assertion (i) follows immediately from the well-known [and easily
verified] fact that the absolute Galois group of a complete discrete valuation
field with algebraically closed residue field of characteristic zero is cyclic.

Next, we consider assertion (ii). Let C' C A B be a subgroup of prime
order | € Y. Now consider a normal open subgroup H C Ay such that
the covering Wy — W determined by H is a hyperbolic curve. Note that
this implies that A(VH = B(\H = C(H = {1} [cf., e.g., assertion (iii),
which will be proven below without applying the present assertion (ii)]. Write
Wy — We — W for the covering determined by the open subgroup C'- H C
Ay Observe that there exist closed points w/y, wiz of We that lift wa, wg,
respectively, and whose decomposition groups [well-defined up to conjugation
in C- H] are equal to C. Note that since Wy is a hyperbolic curve, and C' is of
prime order [, it follows that the order of every closed point of W is equal to
either 1 or . Now if W is affine, then let v be a cusp of We. If W is proper
and admits > 3 points of order [, then let v be a point of W of order [ such
that v # w/y, wz. Note that if We is proper and admits < 2 points of order I,
then it follows from the hyperbolicity assumption that the coarsification of We
is a proper smooth curve of genus > 1; thus, by replacing H by an appropriate
open subgroup of H, one verifies immediately that one may assume without loss
of generality that either W¢ is affine or W¢ admits > 3 points of order [. Now
observe that W admits a finite étale cyclic covering W/, — We of degree [
which is étale over the compactification of the coarsification of We, except over
the points in the compactification of the coarsification of W corresponding
to v, wz, over which W, is totally ramified. In particular, it follows that any
point of W/, lying over w/, (respectively, w’) is of order I (respectively, 1), thus
contradicting the observation that the decomposition groups [well-defined up
to conjugation in C' - H] of w'y, w'y are equal to C. This completes the proof
that A( B = {1}. By applying this fact to arbitrary finite étale coverings of
W, it follows formally [cf. Proposition 2.3, (ii)] that A is normally terminal in
Ay, whenever A # {1}.

Next, we consider assertion (iii). Denote the order of W by n. Now if
C C Aw is a nontrivial finite cyclic closed subgroup, then there exists a normal

open subgroup N C Ay such that C (N = {1}. In particular, it follows that

if we take H < ¢ . N [so H C Ay is an open subgroup|, then the natural

map C — H? is injective. On the other hand, if we denote by Wy — W
the covering determined by H, then it is clear that the order of Wy divides
n, hence that H?P is an extension of a torsion-free profinite abelian group by
a finite abelian group annihilated by n. Thus, we conclude from the injection
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C < H? that the order of C' divides n, as desired. This completes the proof
of assertion (iii).

Next, we consider assertion (iv). First, let us observe that uniqueness
follows formally from assertion (ii). Next, let us verify assertion (iv) under the
further assumption that C'is solvable. By induction on the order of C, we may
assume that [at least] one of the following conditions is satisfied: (a) C' is an
extension of a group of prime order by a nontrivial subgroup C; C C which is
contained in the decomposition group A; (b) C is of prime order | € Xy . If (a)
is satisfied, then by replacing W by a finite étale covering of W determined by
a suitable open subgroup containing C, we may assume that (C; C) A C C.
Thus, if A # C, then A = C is normal in C. But this implies, by the normal
terminality portion of assertion (ii), that A = C, a contradiction. Thus, (a)
implies that C' C A. If (b) is satisfied, then we argue as follows: Observe that
by assertion (iii), every open subgroup H C Ay that contains C' determines
a finite étale covering Wy — W such that the order of Wy is divisible by .
Write

Stack; (W)

for the set of closed points of W whose order is divisible by [. Now observe
that since the order of Wy is divisible by the prime number [, it follows that
Stack; (W) is nonempty. Since the set Stack;(Wy) is finite and nonempty, we
thus conclude that, if we allow H to vary [among open subgroups H C Ay,
that contain C], then the inverse limit

lim Stack; (W)
H

is nonempty. But, unraveling the definitions, this means precisely that C' con-
tains the decomposition group D associated to some compatible system of
points of the sets Stack;(Wx). Since D is of order divisible by I, we thus
conclude that D = C, as desired. This completes the proof of assertion (iv) for
C solvable. On the other hand, a well-known theorem from the theory of finite
groups asserts that a finite group in which every Sylow subgroup is cyclic is
solvable [cf. [Scott], p. 356]. Thus, in light of assertion (i), we conclude that
assertion (iv) for C' solvable implies assertion (iv) for C' arbitrary.

Finally, we observe that assertion (v) follows formally from assertions (ii),
(iv). |

Remark 28. The author would like to thank A. Tamagawa for inform-
ing him of Lemma 2.1 and, in particular, of the theorem on finite groups that
was applied in the proof of Lemma 2.1, (iv).

We are now ready to state the following “absolute p-adic version of the
Grothendieck Conjecture” for hyperbolic curves of Belyi or quasi-Belyi type:
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Corollary 2.3. (Curves of Belyi or Quasi-Belyi Type) Let U
(respectively, V') be a hyperbolic curve over a nonarchimedean local field.
Denote the base field of U (respectively, V') by ky (respectively, ky ), the étale
fundamental group of U (respectively, V') by Iy (respectively, Iy ) [i.e., “we
take X = Primes”]. Suppose further that at least one of the following condi-
tions holds:

(a) both U and V are of quasi-Belyi type;
(b) either U or V' [but not necessarily both!] is of Belyi type.

Then any isomorphism of profinite groups
6 : HU :> HV

arises from a uniquely determined commutative diagram of schemes

u =5 v
Lo
u =5 v

in which the horizontal arrows are isomorphisms; the vertical arrows are the
pro-finite étale coverings determined by the profinite groups g, Iy .

Proof. Inlight of Proposition 2.4, (iii), (iv) [cf. also Remark 24], Corollary
2.3 follows formally from Corollary 2.2. 1

Remark 29.  Note that in the proof of Proposition 2.4, Corollary 2.3, it
is necessary, in the quasi-Belyi case, to apply the full “Hom version” of [Mzk4],
Theorem A. This differs from the situation of [Mzk8], Corollaries 2.8, 3.2 —
i.e., where one only treats hyperbolic curves of strictly Belyi type — or, indeed,
of the portion of Proposition 2.4, Corollary 2.3, that concerns curves of Belyi
type, in which the “somorphism version” of [Mzkd4], Theorem A, suffices [cf.
[Mzk8], Remark 2.8.1].

Thus, in the terminology of [Mzk6], Definition 3.7, the portion of Corollary
2.3 concerning hyperbolic curves of Belyi type admits the following formal
consequence:
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Corollary 2.4. (Absoluteness of Curves of Belyi Type) Every
hyperbolic curve of Belyi type over a nonarchimedean local field is absolute.

Remark 30. It is interesting to note that the essential property that
underlies the absoluteness of Corollary 2.4 is the existence of a Belyi map [since
the curve is defined over a number field], which, in the context of the theory
of [Mzk8], §2, may be regarded as a sort of endomorphism of the curve. From
this point of view, Corollary 2.4 is reminiscent of [Mzk6], Corollary 3.8, which
states that the “canonical curves” of p-adic Teichmiller theory are absolute.
Indeed, from the point of view of the theory of [Mzk2], this canonicality may be
regarded as the existence of a sort of “Frobenius endomorphism” of the curve.
It is also interesting to note that both of these results assert that every member
of some countable collection of nonarchimedean hyperbolic curves is absolute.

Remark 31. In the context of Remark 30, it is interesting to note
that, unlike the canonical curves discussed in [Mzk6], §3, the set of points
determined by the hyperbolic curves of strictly Belyi type fails, for all pairs
(g,7) such that 29 —2+41r > 3, g > 1, to be Zariski dense in the moduli stack of
hyperbolic curves of type (g,7). Indeed, this follows immediately from [Mzkl1],
Theorem B. On the other hand, it is not clear to the author at the time of
writing whether or not the set of points determined by the hyperbolic curves
of Belyi (respectively, quasi-Belyi) type is Zariski dense in the moduli stack
of hyperbolic curves of type (g,r) [when, say, 29 — 2 +r > 3, g > 2]. Note,
however, that when g = 0, 1, [one verifies easily that] every hyperbolic curve of
type (g,7) that is defined over a number field is automatically of Belyi type.

3. Maximal Pro-/ Cuspidalizations

In this §, we apply the theory of the weight filtration [cf. [Kane], [Mtm]], to-
gether with various generalities concerning free Lie algebras [cf. the Appendix],
to construct, in the finite field case, “maximal cuspidally pro-l cuspidalizations”
[cf. Theorem 3.1], whose existence implies, under quite general conditions [cf.
Corollary 3.1 below], that an isomorphism “«” as in Theorem 1.1, (iii), is always
totally globally Green-compatible.

In the following discussion, we maintain the notation of §2, and assume

further throughout the present §3 that we are in the finite field case.

Definition 3.1. Let [ be a prime number; G, H, A topologically finitely
generated pro-l groups; ¢ : H — A a [continuous] homomorphism. Suppose
further that A is abelian, and that G is an [-adic Lie group [cf., e.g., [Serre],
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Chapter V, §7, §9, for basic facts concerning l-adic Lie groups].

(i) We shall refer to as the ¢-central filtration on H the filtration defined as

follows:

HL) Y "
def

H(2) < Ker(@)
H(m) def <the subgroup topologically generated by the commutators

[H(a),H(b)], where a +b=m, ¥V m > 3)

Thus, in words, this filtration on H is the “fastest decreasing central filtration
among those central filtrations whose top quotient factors through ¢”. We shall
say that H is ¢-nilpotent if H(m) = {1} for sufficiently large m. If H is
¢-nilpotent when ¢ is taken to be the natural surjection H — H?P to its
abelianization H?P, then we shall say that H is nilpotent. In the following, for
a,b,n € Z such that 1 < a <b, n > 1, we shall write

H(a/b) “ H(a)/H(b)

and
Gr(H)(n) & @ H(m/m+1)C Gr(H) < Gr(H)(1)

m>n
def

Gr(H)(a/b) = Gr(H)(a)/Gr(H)(b)
and append a subscript Q; (respectively, IF;) to these objects to denote the result
of tensoring over Z; with Q; (respectively, F;). Thus, Gr(H), Grq, (H), Gry,(H)
are graded Lie algebras over Zj, Qq, Fy, respectively; Gr(H)(n) C Gr(H) is a
[Lie algebra-theoretic] ideal. Also, if Z 3 a > 1, then we shall write:

H(a/o0) ' lim H (a/b)
b

[where b ranges over the integers > a + 1].

(ii) We shall denote by Lie(G) the Lie algebra over Q; determined by G. If G

is nilpotent, then Lie(G) is a nilpotent Lie algebra over Q;, hence determines
a connected, unipotent linear algebraic group Lin(G), which we shall refer to
as the linear algebraic group associated to G. In this situation, there exists
[cf., e.g., Remark 33 below| a natural [continuous] homomorphism [with open
image]

G — Lin(G)(Qy)

[from G to the l-adic Lie group determined by the @Q;-valued points of Lin(G)]
which is uniquely determined [since Lin(G) is connected and unipotent!] by the
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condition that it induce the identity morphism on the associated Lie algebras.
In the situation of (i), if Z 3 a > 1, then we shall write:

Lie(H (a/o00)) “ lim Lie(H (a/b)); Lin(H(a/oc)) “ lim Lin(H (a/b))
b b

[where b ranges over the integers > a + 1; we recall that it is well-known [or
easily verified| that each H(a/b) is an l-adic Lie group].

Now let us fiz a prime number [ € 3. For S C X (k) a finite subset, let
us denote by

AUS —» Agl, AX —» Agl()
the mazimal pro-l quotients and by

My, — 0 Ty — Y

the quotients of Iy, IIx by the kernels of Ay — Ag)s, Ax —» Agl(). [Here,
we recall that Ayyg, Iy, are as defined in Proposition 1.6, (ii), (iii).] Also, for
x € X let us write

pPws) cny; 10[Us) € AL

for the images of D,[Us], I,[Us] [notation as in Proposition 2.1], respectively,
in 1)

Us*

Note that we have a natural surjection:

l l I)\a
AY — AQ - (AP

The cup product on the group cohomology of Ag? determines an isomorphism
[cf. Proposition 1.3, (ii)]

D\a l ~ )\a
Hom((AY)™, MP) = (AR)»

) def

[where we write M g = Mx ® Zi], hence a natural Gj-equivariant injection

M)((l) N /\2 (Agl()>ab

whose image we denote by Igl)p.

Definition 3.2. We shall refer to the central filtration
l
{AJ(m)}

on Agg with respect to the natural surjection Ag)s —» (Ag?)ab as the weight
filtration on Ag?s [cf., e.g., [Mtm], §3, p. 200].
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Proposition 3.1. (Freeness and Centralizers) Let © € S. Write

Sz def S\{z}; r for the cardinality of S, g for the genus of X. For 2’ € S, let

Czr be a generator of Iil,) [Us]. By abuse of notation, we shall also denote by (,
the image of (1 in Ang)s (2/3). Then:

(i) Gr(Ag)S) is a free Lie algebra over Z; [hence, in particular, is torsion-free

as a Zy-module] which is freely generated by 2g elements
atyee g, B, By € AV (1/2)

together with the (. € Ag)s (2/3), fora' € S,. Alternatively, for an appropriate
choice of the elements (., Gr(Ag)S) is the quotient of the free Lie algebra

generated by ax,... ,aq, b1, .., 0By, together with the (3 € Ag)s (2/3), fora' €
S, by the single relation:

g
Z Cw’ + Z [anaﬁn] =0
n=1

z’'eS
At a more intrinsic level, this relation is a generator of the image of the natural

Gr-equivariant morphism

MY < ( P 1 [US]) o 1Y)
x’EeS

[determined by the various natural isomorphisms M)((l) = IS,) [Us], M)((l) = I§f)p]],

whose codomain maps to Gr(Ag)s) via the natural Gp-equivariant mor-
phism

! l
(D 10ws]) @ 18, — AL (2/3)
z’esS
[determined by the natural inclusions Ig(al,) [Us] — Ag)s (2/3) and the bracket
operation N? (Ag?)ab — Agl(2/3)/

(i1) Let & be any of the elements aq, ... ,oq,01,...,Bq; Cur, where ' € Sy, of
(i). Then the centralizer in GrQl(Agl) of [the image of] £ [in GrQL(AS)S )] is
equal to Q; - €. In particular, the Lie algebra GrQL(Ag)S) is center-free.

(i11) Let & be as in (ii). Then for m > 1, the centralizer in Ag)s(l/m +2) of
[the image of [ € [in Ag)s (1/m+2)] is contained in the subgroup of Ag)s (1/m+2)
generated by [the image of] £ and Ag)s (m/m+2).

(iv) Let S, C S be a subset of S. Write
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New() € Gr(A())

for the sub-Lie algebra over Z; generated by the image of the restriction

(P Pwsl)c (P 1ws]) - able/s)

' €S, x'esS

to the direct summands indexed by elements of S. of the morphism of (i), and
Newl (a) & Gr(AY )(a) Newl ; Newl (a/b) < Newl (a)/Newl) (b) for
a,b € Z such that 1 < a < b. Then, in the notation of (i), New(slz 1s a free

Lie algebra over Z; generated by the elements (., for ' € S.. Moreover, the
[“new” and “co-new” ] Z;-modules

New (a/b);  Cowl (a/b) < Gr(AY) ) (a/b)/New (a/b)

are free. In the following discussion, we shall write Newg):’(l) (a/b) &ef Newgz (a/b)®

Q/Z.

Proof. Assertion (i) (respectively, (ii)) is, in essence, the content of [Kane],
Proposition 1 (respectively, Proposition A.1, (ii), (iii)). Assertion (iii) follows
formally from assertion (ii). Finally, we consider assertion (iv). By Proposition
A.1, (iii), it follows that any free Lie algebra over F; with > 2 generators is
center-free. Thus, let M be the module determined by any faithful representa-
tion [e.g., when the cardinality of S is > 2, the adjoint representation] of the
free Lie algebra F over F; in the formal generators (., where 2’ € S,. Now

observe that we obtain an action of GrFl(Ag)s) on M' %' M & M as follows:

We let ag,...aq; Ba,...08q; (o, where 2/ € Sy def S\S,, act by multiplication

by 0 on M’. We let a1, 31 act on M’ = M & M via the matrices

0 /Z Cz’ ) 0 0
o "o ) <—1 0)

respectively. Finally, we let (,/, where 2’ € S,, act on M’ via the following

matrix:
Coc’ 0
0 —Cu
@)

Thus, [by assertion (i)] M’ determines a representation of Gry, (A, ) whose

restriction to the image of Newgz ®z, F; in Gry, (Ag)s) determines [via the

natural surjection F — Newgi ®z, Fi] a faithful representation of F. Thus,
we conclude that the natural surjection F — Newgz ®z, F; is an somorphism,

and that Newgz ®z, F; injects into Grp, (Ag)s) Assertion (iv) now follows
formally. O
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Remark 32. The author wishes to thank A. Tamagawa for pointing
out to him the content of Proposition 3.1, (i).

Remark 33. One way to verify the existence of the homomorphism
“G — Lin(G)(Qq)” of Definition 3.1, (ii), is to think of G as a quotient of a
free pro-I group of finite even rank F', whose associated “Grg,(—)” is a center-
free free Lie algebra [cf. Proposition 3.1, (i), (ii), in the case of r = 1], hence
determines an [infinite-dimensional, over Q| faithful [cf. Proposition 3.1, (iii)]
unipotent representation [i.e., the adjoint representation — cf. the proof of
Proposition 3.1, (iv)] of F. More precisely, by Proposition 3.1, (iii), it follows
that there exists a unipotent linear representation pr : F — GL(V) on a
finite-dimensional Q;-vector space V' such that Ker(pr) C Ker(F' — G). But
this implies that F' — G factors through a quotient F' — ¢ — G such that
Q is nilpotent and admits an injective homomorphism of topological groups
po : Q — Qag(Qp) [induced by pr], where Qayg is a connected, unipotent
algebraic group over Qy, such that pg is a local isomorphism, and Ker(pg) C
Ker(Q — G). Thus, pg determines a structure of l-adic Lie group on @ such
that the morphism Lie(pg) induced by pg on Lie algebras is an isomorphism.
Moreover, the morphism induced by ¢ — G on Lie algebras factors through
Lie(pg), thus determining a homomorphism of [connected, unipotent] algebraic
groups Qalg — Lin(G) such that the resulting composite homomorphism ¢ —
Qaig(Q) — Lin(G)(Qy) factors [cf. the induced morphisms on Lie algebras,
together with the fact that Lin(G)(Q;) has no torsion!] though G, thus yielding
a homomorphism G' — Lin(G)(Q;), as desired.

Next, let us fiz an x, € S, as well as a choice of decomposition group
D, [Us] C Ty,

[i.e., among the various Iy -conjugates of this subgroup] associated to .
[Thus, D, [Us] determines a specific subgroup [i.e., not just a conjugacy class

of subgroups| p [Us] C H[(Jl)s .] Recall that the natural exact sequences

5

1 — I, [Us] = D, [Us] = Gy, — 1; 1 — IV[Us] — DP[Us] — Gy, — 1

split. [Indeed, extracting roots of any local uniformizer of X at z, determines
such a splitting — cf., e.g., the discussion at the beginning of [Mzk8], §4.] In
the following discussion, we shall fiz a splitting

Gy — Dy, [Us]
of this exact sequence. Thus, this splitting determines a natural action of Gy

[by conjugation] on Ag)s, hence also on

Ling? (a/b) € Lin(AY (a/0))(@);  Lief? (a/b)  Lie(AL (a/b))

S

Grg, (A1) (a/b)
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[where a,b € Z; 1 < a < b]. Write
Fy, € Gy

for the Frobenius element of Gi. In the following, we shall denote the cardinality
of k by qx.

Proposition 3.2. (Galois Invariant Splitting) Let a,b € Z, 1 <
a <b.
(i) The eigenvalues of the action of F}, on Lieg)s (a/a+1) are algebraic numbers

all of whose complex absolute values are equal to qZ/Q [i.e., “of weight a”].
(ii) There is a unique Gi-equivariant isomorphism of Lie algebras
Liel! (a/b) = Grg, (A" )(a/b
iel) (a/b) = Gro, (A )(a/b)

which induces the identity isomorphism Lieg)s (c/c+1) = Grg, (Ag)s)(c/c—l— 1),
for all ¢c € Z such that a < c<b-—1.

(iii) The isomorphism of (ii) together with the natural inclusions Ig(cl)[US] —

Ag)s for x € S [which are well-defined up to Ag)s -conjugation] determine a
G-equivariant morphism

(P rOws) e @) o Lief)) (1/2) — Liel7) (1/50)
€S

which exhibits, in a Gy-equivariant fashion, Lie,(Jl)S(l/oo) as the quotient of the
completion [with respect to the filtration topology] of the free Lie algebra
generated by the finite dimensional Q;-vector space

(EB IOUs] ® Q;) @ Liey (1/2)
zeS

[equipped with o natural grading, hence also a filtration, by taking the
él)[US] ® Qq to be of weight 2, Liegl(l/2) to be of weight 1], by the single
relation determined by the image of the morphism

M eQ - (@ 10U eQ) o (1, © Q)
z€eS

of Proposition 3.1, (i), tensored with Q.

(iv) For each g € Ling)s(l/oo), there exists a unique h € Lingl(l/oo) such
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that
I}, oInng = Inny, o Iy, o Inny, 1

[where “Inn” denotes the inner automorphism of Lingl(l/oo) defined by con-
Jugation by the subscripted element]. Moreover, when g lies in the image of

I(l) ® Qq [which is stabilized by the action of Fy/, h also lies in the image of

Proof.  Assertion (i) follows immediately from the “Riemann hypothesis
for abelian varieties over finite fields” — cf., e.g., [Mumf], p. 206. Assertion
(ii) (respectively, (iii); (iv)) follows formally from assertion (i) (respectively,
and Proposition 3.1, ( ), and successive approximation of h with respect to the

natural filtration L1n L(a/oo) C ng)s(l/oo)). O
Next, let
S, CS
def

be a subset such that z, € Si; So = S\Ss. In the following, we shall regard
Ling)s (a/b) as being equipped with its natural l-adic topology. Thus, G acts
continuously on Ling)s (a/b), Lieg)s (a/b), and we have natural Gy-equivariant
surjections:

Lln(Ul) (a/b) — Lln (a/b) Lieg)s (a/b) — Liegjl)s0 (a/b)

Let us write
Llngj)/US (a/b); Llegj Us, (a/b)

for the kernels of these surjections. In the following, to simplify the notation, we
shall often omit the superscript (1) from the objects “Lin(l)”7 “Lie(l)”, “New(l)”,
“New'" () introduced above and write:

Ling,(a/b); Lieyg(a/b); LinUSO(a/b); Lieyg, (a/b)
Linggus, (a/b);  Lieygug, (a/b);  Newg (a/b); Newtor(a/b)

Also, we shall write:

News (a/b) = NewS (a/b) @ Q; AL‘C dZClenUs(l/OO) XLingg, (1/00) )y Ausg,

Note that, for Z 5 b > 1, we have a natural Gy -equivariant inclusion

Ling, /v, (b+1/c0) = Linyg us, (b+1/00) x (13 {1}

— Lans(l/OO) XLIHUS (1/00) AUSU = ALle
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. Lie. :
whose image forms a normal subgroup of Ap¢; write

Lie Lie<b
AUS —» AUS

for the quotient of A{jlse by this normal subgroup. Also, we have a natural
G-equivariant [composite] inclusion

Newg (b+1/b+2) — Liey, ju, (b+1/b+2) 5 Ling, jp, (b+1/b+2) — Ape="*
whose image forms a normal subgroup of A{}:’Sbﬂ; write
Lie<b+1 Lie<b+
AUS* —» AUS*

for the quotient of Alfjisgbﬂ by this normal subgroup. Thus, we have natural
G.-equivariant homomorphisms of topological groups:

Lie Lie<b+ Lie<b
AUS - AUs - AUS - AUs - AUSO

[the last three of which are easily verified to be surjective]. Moreover, forming
the semi-direct product with Gy, [via the natural actions of G| yields topological
groups and homomorphisms as follows:

Lie Lie<b+ Lie<b
HUS - HUS - HUS - HUS - HUSO
Also, we note that we have natural exact sequences:
: Lie
1 — Lingg v, (1/00) = ApS — Ayg, — 1

1 — Ling, v, (1/00) — e — Myg, — 1

Definition 3.3.

(i) We shall refer to A{j‘sc (respectively, ngisc; AI[}isgb; H[I}isegb; AE:SH; Hbisegb"’)
as the [l-adic] Lie-ification (respectively, Lie-ification; Lie-ification, truncated
to order b; Lie-ification, truncated to order b; Lie-ification, truncated to order
b+; Lie-ification, truncated to order b+) of Ay (respectively, Iyg; Apg; Hyg;
Ayg; yg) [over Ay, (respectively, g 5 Avg, s Hug, s Avs,s Hus, )]-

(ii) Observe that it follows immediately from the definitions that, for Z > b > 1,

we have natural exact sequences

1 — New$ (b+1/b+2) — Apesttl o Apestt g

1 — New$ (b+1/b+2) — o=t — o=t 1
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on which HII}iESbH acts naturally by conjugation. [Here, we note in passing

that it is immediate from the definitions that the submodule
Newg_ (b+1/b+2) C New$ (b+1/b+2)
is contained in the image of Ay, .] In particular, we obtain a natural inclusion:
Newg (b+1/b+2) — AFeSUT (C Imyestt)

We shall refer to the quotients of Ageébﬂ, Hbieébﬂ by the image of this
S S

. L . . . tor<b+1 tor<v+1
natural inclusion as the toral Lie-ifications Ay, g of Ayg, g
lover Ay, Iy, ]. Thus, we have natural evact sequences

1 — Newi¥™ (b + 1/b+2) — A=t 5 Apestt
1 — New§" (b+1/b+2) — =t S T — 1
on which Hbisegbﬂ acts naturally by conjugation.

(iii) Suppose that U lé — Usg, is a connected finite étale covering that arises
from an open subgroup HUé/ C Iy, ; write X' — X for the normalization of

0
X in U/()' Then we shall say that the [ramified] covering X' — X is (.5, So, X)-
admissible if every closed point of X’ that lies over a point of S is rational over
the base field &’ of X', and, moreover, HUé/ is a characteristic subgroup of
0

My, .

Remark 34. Note that it follows immediately from the definition of
IT5° [cf. also Proposition 3.2, (iii)] that we obtain a natural subgroup

Dl (10[Us] © Q) x Gy C T

which contains the image of the decomposition group D, [Us] C Iy, via
the natural homomorphism Ily, — H%,‘; Let us write, for Z > b > 1,

< ie< . e : ie<b. rLie def L e, rLie<b def
DHiesb C Hblse—b for the image of D¢ in H{}f—b; Ihe = plie ) Afje; JHiesb <
DYesb Y AF°=" [Also, we shall use similar notation when “b” is replaced by
“b_i_” ]

Proposition 3.3. (Center-freeness of Lie-ification) Ap'° is center-
free.
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Proof.  Since Ayg, is center-free [cf. Proposition 1.6, (iii)], and the nat-
ural morphism AII}‘SQ — Ay, is surjective, it suffices to verify that the cen-
tralizer in Ling(1/00) of the image of AF® is trivial. But the image of Ap
in Ling(1/00) contains the image of Ay, in Ling,(1/00). In particular, it
follows that the centralizer in question lies in the center of Liny(1/00). Thus,
Proposition 3.3 follows from Proposition 3.1, (ii) [or, alternatively, (iii)]. O

Remark 35. Observe that changing the choice of splitting
Gy — Dq, [Us]

affects the image of the element Fj € Gj via the composite of the inclusion
G, — Iy, with the morphisms

Lie, Lie<b, Lie<b+
HUS - HU57 1_IUs - 1_IUS ) HUS - HUS

by conjugation by an element h &€ I};iﬂ which, up to a denominator divid-
ing g — 1, lies in the image of I, [Us] € Ayg — cf. Proposition 3.2, (iv);
Proposition 3.3. In particular, it follows that changing the choice of split-
tings G — D, [Us]| affects the Galois invariant splittings of Proposition 3.2,
(ii), by conjugation by h. Put another way, if we identify the “Liny,(1/00)”,
“Lingg, (1/00)” portions of Ay [cf. the definition of Ap'] with the [l-adic
points of the pro-unipotent algebraic groups determined by the] correspond-
ing graded Lie objects “Grg,(—)(1/00)” via the Galois invariant splittings of
Proposition 3.2, (ii), then it follows that: Changing the choice of splitting
Gy — D, [Us]| affects the images of the morphisms
My — Mg Ty, — 50 Ty, — o=t

i

[where Z > b > 1] by conjugation by h.

In light of Proposition 3.3, we may apply the exact sequence “1 — (=) —
Aut(—=) — Out(=) — 17 [cf. §0] to construct the following topological group:

def ;. i
AgISE < @ Aut(ALE/) XOM(AI{]Z,) Gal(Xé/XE)

X/

[where X’ — X ranges over the (.5, Sy, X)-admissible coverings of X; Ug, C X'
is the open subscheme determined by the complement of the set S’ of closed
points of X’ that lie over points of S]. Note that G acts naturally on AI,jISE;
thus, we may form the semi-direct product of A],jISE with Gy to obtain a topo-
logical group HBISE Also, since the various AUéf [where U Z% C X’ is the open

0
subscheme determined by the complement of the set S{) of closed points of X’
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that lie over points of Sp] arising from the X’ — X that appear in this inverse
limit are center-free [cf. Proposition 1.6, (iii)], the natural isomorphism

lim Aut(Aur, ) Xou(a, ) Gal(XG/X) = Au,
0
X/

determines surjections ALIE - Ayg,, HI(‘]LE — Iy, -
Next, let us observe that for Z 3 b > 1, the various quotients ALle —»

Aborsbr ALle<b+ ALle<b determine quotients of topological groups ALIE —»

S/
< < < < < <
AEOR_b-}-l ALIE b+ ALIE b HLIE HESR_I;H . HI&ISE_H . HEISE_b
Thus, we obtain natuml homomorphzsms of topological groups:

LIE TOR<b+1 LIE<b+ LIE<b

Ayg — Ay — AUS —» AUS —» AUS —» AUSO
LIE TOR<b41 LIE<b+ LIE<b

Ny — Uy — g — Iy, = =" = yg

We shall denote by

< <
ASHH C ALIE b+,

<bt LIE<b+. <b LIE<b.
Us v gt C g ) AUs C Ay

<b LIE<b
) H[j's - HUS -
the respective images of AUS7 ITy, via these natural homomorphisms. Thus,

one may think of AUS, Us as being a sort of “canonical integral structure” on

the “inverse limit truncated Lie-ifications” ALIE<b HLIE<b

S
Here, we note in passing, relative to the theory of §1, 2, that [it is immediate
from the definitions that] when S = S, [so Us, = X], the quotient Iy, — Hl?s
is the mazimal cuspidally pro-l abelian quotient of Iy, [cf. Proposition 1.9,

(i)]-
Next, let us observe that in the inverse limit used to define AI{,ISE, HI&ISE7
the various “I}®”, “DLie” [¢f. Remark 34] form a compatible system, hence

give rise to subgroups

ILIE C DLIE C HLIE

LIE<b LIE<b LIE<b
; ILPSh ¢ pLIPst it
together with natural exact sequences and isomorphisms [when b > 2]

LIE LIE
1— L% — Dy,

— G —1

1— I%EESI’ — DgESb

— G — 1

LIE = < = [)[Us] © Q

[and similarly when “b” is replaced by “b+7]. Also, the images of the subgroups
I..[Us], D,.[Us] of Iy, determine subgroups

<b <b <b
I;* < Daf-* < HUS

[and similarly when “b” is replaced by “b+”7].
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In the following, let us write [cf. Proposition 3.1, (iv)]

Cnwg_(a/b) < Cow) (a/b);  Cow? (a/b) < Cowl (a/b) © Q

[where a,b € Z, 1 < a < b].
Before proceeding, let us observe that [it is immediate from the definitions
that] the natural surjections

LIE<1+ LIE<1 ) LIE<1+ LIE<1
AUs - AUs - AUSO’ HUS - HUS - HUSO

are isomorphisms. On the other hand, for b > 2, we have the following result:

Proposition 3.4. (Plus Liftings of Canonical Integral Struc-
tures) For Z >b > 2:

. o <b+ <b  pr<bt <b . .
(i) The natural surjections Ay." — Ag., II." — IIj;. are isomorphisms.

1) Any two liftings of the natural inclusion =P — ISP 46 inclusions
Us Us

Hég SN HEISESH differ by conjugation in HEISESH by a unique element of

LIE<b+ LIE<b
the kernel of 11y — 1=

7 ny itwo Ljitngs o, € naturat mMciuston e - 0 1nciusions
iii) Any two lifti the natural inclusion 115" — TIFE=" to inclusi

<b LIE<b+ . . <bt - -
Hg, — Uy, whose images contain DZ’" in fact coincide.

Proof. First, we consider assertion (i). It follows immediately from the
definitions that the kernel in question

Ker(AégJr — Aés) = Ker(l’[éi’Ir — ng)
is contained in [and, in fact, equal to] the inverse limit

lim Cnwg, (b+1/b+2)

X/
[where X’ — X ranges over the (5, So, 2)-admissible coverings of X; S, (respec-
tively, S') is the set of closed points of X’ that lie over points of S, (respectively,
S)]. On the other hand, it follows from the definition of “Cnwg, (b+1/b+2)”
that Cnwg, (b+1/b+ 2) is generated by certain successive brackets of the var-
ious generators of the Lie algebra Gr(Ag), ) [cf. Proposition 3.1, (i)] with the

s/

property that at least one of the generators appearing in the successive bracket
is [in the notation of Proposition 3.1, (i)] either one of the |[analogue for X’

of the] “aq,...,aq,01,...,04" or one of the “C;/”, where 2’ € S| et SNS..
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Moreover, since, by taking HU/S/” C HU’s' to be sufficiently small, one may ar-
0 0
range that the image of Ag?, (1/3) in Ag? (1/3) be contained in an arbitrarily
Y S
small open subgroup of Aﬁ? (1/3), it thus follows that the above inverse limit
SI

0
vanishes. This completes the proof of assertion (i).
Next, let us observe that to prove assertion (ii), it suffices — in light of
the natural isomorphism

Ker(I =" — I;"=") 5 lim Cnwg, (b+1/b+2)
X/

[where X', S/ are as above] — to show that

H'(TI5!, Cowd, (b+1/b+2)) =0

for i = 0,1, each S’ as above. Since the action of Agg on ang, (b+1/b+2)
clearly factors through a finite quotient of Aég — Ayg,, it thus suffices to
observe [by considering the Leray spectral sequence associated to the surjection
Hég — (] that the action of Fj, on angi (b+1/b+2)is “of weight b+1 > 37,
while the action of Fj on (Ag? )2 is “of weight < 27 [cf. Proposition 3.2, (i)].
S/

This completes the proof of assertion (ii).

Finally, we consider assertion (iii). First, let us observe that any two liftings
of the natural inclusion Hgg — H{}ISESZ’ to inclusions H%g — HII}ISESZH' whose

~

images contain DT = DSP [since b > 2] in fact coincide on D" C HEZ
Thus, by assertion (ii), it suffices to verify that the submodule of F-invariants
of

LIE<b LIE<b
Ker(IT;; *="" — I =")
is zero. But in light of the natural isomorphism
Ker(I =% — P 5 lim Cow, (b+1/b+ 2)
X/

[where X', S! are as above], this follows from Proposition 3.2, (i). This com-
pletes the proof of assertion (iii). O

Next, for Z 3 b > 1, let us denote by

bl

A§b++ C AEORSbH. H5b++ c H’[EORSbH
S S S S

the respective images of Ay, Iy, via the natural homomorphisms considered
above and by

<b++ <b++ <b++
IJJ* < Dw* < HUS
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the images of the subgroups I, [Us|, D5, [Us]| of ;. Observe that it follows
from the definition of AESORS("H, HESORSZ"H [cf. also Proposition 3.1, (iv)]

that the natural surjections A§g++ —» Agg+, H§:++ —» Hgf:r are, in fact,
isomorphisms. Thus, by Proposition 3.4, (i), we obtain a commutative diagram
of natural homomorphisms

<bt1 bt ~ <o+~ <b
HUS —» HUS — HUS — HUS

l l l I

LIE<b+1 TOR<b+1 LIE<b LIE<b
1 e R | e e § L
Us US US US

[where the vertical arrows are the natural inclusions; all of the horizontal arrows
are surjections; the second two upper horizontal arrows are isomorphisms].
Moreover, it follows immediately from the definitions that the first square in

this commutative diagram is cartesian. That is to say, the subgroup HEZH C

HBIESI’H may be thought of as the inverse image via the natural surjection

HII}IESb“ —» HESRSZ’“ of the image of a certain lifting of the natural inclusion

Hgg — HII}ISESH [cf. Proposition 3.4, (i)] to an inclusion Hgs — H[T](S)Rgbﬂ.
Also, let us write:

def
115 [esp] = Ker(IT5;" — Tlx)

Hgg++[csp] def Ker(l'[glsﬂr+ — Ix)
for the cuspidal subgroups of Hég, H§§++.
Next, following the pattern of §1, we relate the constructions made so
far to the fundamental groups Ay, «, Huy, « [cf. the discussion preceding
Proposition 1.5]. For simplicity, we assume from now on that:

S =5, ={z.}

[so So = @]. Write D,,[X] C Ilx for the image of D, [Ug] via the natural
surjection IIyr, —» IIx. Then the projection Il  — IIx to the second factor
determines a natural isomorphism

1_[Us = HUXXX Xy DI*[X]

[cf. Proposition 1.6, (ii)]. Moreover, this isomorphism determines a natural
isomorphism

(Iys 2) D, [Us] = Dx X1y Da. [X] (€ Dx Clyy, )

)

[where “Dx” is as in the discussion preceding Proposition 1.8] which is compat-
ible with the natural inclusions D, [Us] — Iyy, Dx — Iy, . Put another
way, D, [Us] [hence also I, [Us], G, C Dy, [Usg]] may be thought of as being
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“simultaneously” a subgroup of both lly;, and Dx. Thus, we obtain a natural
exact sequence

1 — Ay, — Iy, — IIx — 1
together with compatible inclusions

Avs 2 Ay, 2 L, [Us] € Do, [Us] € Dx C Hyy,x

S

[where X’ — X is an (5,0, X)-admissible covering of X; U, C X' is the open
subscheme determined by the complement of the set S’ of closed points of X'
that lie over z,]. Also, we shall write:

A def
Dy = DXnAUXXX Cluy, x

In particular, we obtain natural actions [by conjugation] of Dx on Ay, AUé/
[as well as on the various objects naturally constructed from Ag,, AUéf in the
above discussion], which we shall refer to as diagonal actions.

Proposition 3.5. (Characterization of the Diagonal Action)
Suppose that S = S, = {x.}. Then in the notation and terminology of the
above discussion, the diagonal action of Dx on Ling:, (1/00) is completely

determined [i.e., as a continuous action of the topological group Dx on the
topological group LinU/S/(l/oo)/ by the following conditions:

(a) the action is compatible with the natural action of D, [Us] C Dx on
Liny,, (1/00);

(b) the action is compatible with the filtration {LinU/s, (a/o0)} [where a > 1

is an integer] on Liny, (1/00).

(¢) the action coincides with the diagonal action of Dx on the quotient
Liny, (1/4) [cf. condition (b)] of Liny,, (1/00).

Proof. First, I claim that it suffices to show that these conditions deter-
mine the action of the subgroup Dﬁ//x def D% XAy Axr C D)A( C Dx on
Liny, (1/00). Indeed, once the action of D%, /x is determined, it follows that
the action of

def
DX’/X = DX XTIy HX/ g DI*[US] 'D)A(//X Q DX

is determined [cf. condition (a)]. On the other hand, since ITx is an open
normal subgroup of Ilx, it follows that Dx/,x is an open normal subgroup of
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Dx. Thus, by considering the conjugation actions of Dx on Dx//x and of
Im(Dx) C LinU/S,(l/oo) on Im(Dx//x) € LinU/S,(l/oo) [i.e., of the group of
automorphisms of LinUfS/(l /oo) induced by elements of Dx on the group of
automorphisms of Ling,, (1/00) induced by elements of Dy, x|, we conclude
that the action of Dx on Ling, (1/00) is determined up to composition with
automorphisms of Ling,, (1/00) that commute with the action of Dy, /x and
[cf. condition (c)] induce the identity on the quotient LinU/S/(l/4). Now let «
be an automorphism of Liny,, (1/00) that commutes with the action of Dx//x
and induces the identity on the quotient Liny,, (1/4). Then o commutes with
some open subgroup of G, C D, [Us] C Dx, so « induces an automorphism of
Liey,, (1/00) that is compatible with the splittings of Proposition 3.2, (ii). Since
Gr(Ag), /) is generated by its elements “of weight < 27 [ef. Proposition 3.1, (i)],
we thug conclude that a induces the identity automorphism of LieUrS,(l /00),
hence that « itself is the identity automorphism. This completes the proof of
the claim.

Next, let us observe that by condition (c) [cf. also Proposition 3.1, (i)],
the action of D%, sx on Ling,, (1/00) is unipotent, relative to the filtration of
condition (b). Thus, it follows [from the definition of “Lie(—)”] that the induced
action of D%,/X on Lieg, (1/00) determines an action of the Lie algebra

Lie(D%//x) = Lie((D%/,x)P(1/c0))

[where we write (Dj‘(,/x)(l) for the maximal pro-l quotient of (Dj‘(,/x)(l)] on
the Lie algebra LieU/S/ (1/00). Moreover, to complete the proof of Proposition
3.5, it suffices to show that this Lie algebra action is the action arising from
the diagonal action. In fact, since this Lie algebra action is compatible [cf.
condition (a)] with the actions of G, on Lie(D%,x), Lieyr, (1/00), it follows,
by considering the induced eigenspace splittings [cf. Proposition 3.2, (ii)], that

[to complete the proof of Proposition 3.5] it suffices to show that the Lie algebra
action of Gr(D%,/X) def Gr(Lie(D)%,/X)) on Gr(Agi/) is the action arising
from the diagonal action. On the other hand, since Gr(Dj‘(,/X), GY(ASZ/) are

generated by elements “of weight < 2”7 [cf. Proposition 3.1, (i)], this follows
by observing that the Lie algebra action of the unique generator of Gr(D%, / )

“of weight 2” [which arises from I, [Us] C D%, /x| is determined by condition

(a), while the Lie algebra action of the generators of Gr(D%, /x) “of weight

17 [which send elements of Gr(Agz ) “of weight < 2”7 to elements of Gr(Agz )
s/ s

“of weight < 3”] is determined by condition (c). This completes the proof of
Proposition 3.5. O

Remark 36. Note that the conditions of Proposition 3.5 allow one
to characterize not only the diagonal action of Dx on LinUrS, (1/00), but also
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on AII}Z, H]I}i,;, hence also on AFYF, TIF'F [where we note that the diagonal
action of Dx on Gal(X7/X7) is simply the conjugation action arising from the

quotients Dx — IIx, Ax —» Gal(Xé/XE)].

Remark 37. Note that the groups Ling, (1/4) of condition (c) of
Proposition 3.5 are, as groups equipped with the surjection LinU/S/(l /4) —
Linx-(1/4), cuspidally abelian [i.e., the kernel of this surjection is abelian], hence
may be constructed from the mazimal cuspidally abelian quotients Iy, —
Hfjf(bxx of Theorem 1.1.

Proposition 3.6. (Extensions of Canonical Integral Structures)
Suppose that S = S, = {x.} [c¢f. Remark 39 below]. Let b > 1 be an integer.
Then:

(i) Suppose that b = 1. Then any two liftings of the natural inclusion Hgs —
HBISESH to inclusions Hgg — HESORSE’H differ by conjugation in HESRSI’H

by an element of the kernel of HgSRSbH —» H[I}ISESH.

(ii) Suppose that b > 2. Then any two liftings of the natural inclusion HEZ —
HI{]ISESH to inclusions Hgg s HESRSI’H whose images contain 1=+ differ

by conjugation in H[T]SRSbH by an element of the kernel of HgSRSb“ —
[UE<b+
Us °

(iii) Let B be an automorphism of the profinite group Hégﬂ that satisfies the
following two conditions: (a) B preserves and induces the identity on the quo-
tient H%g“ —» Hég ; (b) B preserves the subgroup Iﬁbﬂ - Hgg“. Then (3 is
a Ker(l’[éi"‘1 — H%ﬁ )-inner automorphism.

(iv) Let § € Ker(HgSRSHl — HII}ISESH) be an element that is invariant un-

der the diagonal action of Dx. Then if b = 1, then ¢ lies in the image of
I, [Us] ® (Qi/Zy); if b > 2, then § is the identity element.

(v) Write
<oo def . <b. <oo def . <b
HUS - HUS - lin HUS’ AUS - AUs - lin AUs
b b

for the the quotients of Iy, Ay defined by the inverse limit of the HEZ, AEZ

and

<oo <oo
HUXXX - HUXXX’ AUXXX 7 BUxyx
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for the quotients of ly ., Avuy, « determined by the kernel in Ay, € Ay, C
My, [cf. the discussion preceding Proposition 3.5] of Ker(Ay, — AESOO)

Then My, — H* (respectively, Ayy — A(%Soo; My, — HU;O AUy

AE;’:;X ) is the max1mal cuspidally pro-l quotient of Iy, (respectively,

<00 (qr< <
Aug; Uuy, x5 Aux, x); moreover, (H N AGE, (UG )Y, AGY . [where

the daggers denote the result of applymg the operation “xq, Gl w ] are slim.

Proof.  First, we consider assertions (i), (ii). Observe that, for Z 3 b > 1,

the difference of any two liftings of the natural inclusion HEZ — HI[}ISESH t

<b .. HTO

inclusions 117 RSbHL Jetermines a compatible collection of cohomology

classes
s € H'(II5", New's! (b+ 1/b + 2))

[where X’ — X ranges over the (S, 0, X)-admissible coverings of X; S’ is the set
of closed points of X’ that lie over x,]. Since News'(b+1/b+2) = 0 whenever
b is even, we may assume for the remainder of the proof of assertions (i), (ii)
that b is odd.

Next, let us observe that by Proposition 3.2, (i), the zeroth cohomology
module

HO(II5", Newr (b+1/b+2))

is finite. This finiteness implies that any [not necessarily compatible!] system
of sections of a compatible system of torsors over HO(HU ,New&" (b+1/b+2))
always admits a compatible cofinal subsystem. In light of the natural isomor-
phism
Ker(IT;OM=""1 — TP=P%) 5 lim Newly (b+1/b + 2))
X/

[where X', S” are as described above], we thus conclude that in order to show
that the two inclusions Hég — HESRSZ’H differ by conjugation by an element

of Ker(HESRSb+1 HLIESH) it suffices to show that the ng = 0.
Note that H [csp] acts trivially on New's" (b+1/b+2)). Now I claim that:

FEach ng: arises from a unique class [which, by abuse of notation,
we shall also denote by ns:] in H'(ILx, News (b + 1/b+ 2)).

Indeed, if b = 1, this claim follows from the fact that H [csp] = {1} [cf. the
discussion precedmg Proposition 3.4], so assume that b > 2 and that we are in
the situation of assertion (ii). Now observe that since S = S, is of cardinality

one, it follows that HUs [csp] (respectively, H<b++[csp]) is topologically generated

by the Hﬁs' (respectively, 1_[US+Jr ) conjugates of I=P (respectively, I=0FT).
Note, moreover, that it is immediate from the definitions that every element

of Ker(II;; TOR<b+1 —» HEISESH) commutes with I=°*F. In particular, it follows
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that the images of Hgg [csp] via the two inclusions HLS,: — HgORSbH under

consideration necessarily coincide. But this implies that each ng/ arises from a
unique class in H'(Ix, New" (b + 1/b + 2)), thus completing the proof of the
claim.

Next, [returning to the general situation involving both assertions (i) and
(ii)] let
X// s X/
be a morphism of (S, (), 2)-admissible coverings of X. Write UZ, C X" for the
open subscheme determined by the complement of the set S” of closed points
of X" that lie over points of S. Also, let us assume that the open subgroup
Axn C Ax/ arises from some open subgroup H" C A3 that is preserved by

the action of Ilx. Thus, it follows that the covering X% — Xé is abelian; write

Gal(X"/X") €of Gal(X{/X7). For c a positive integer, set:

R 7 R % Zjfe- Gal(X"/X)] € R”“ 7,[Gal(X" /X))

[where we write ¢- Gal(X"”/X") C Gal(X"”/X’) for the subgroup of the abelian
group Gal(X"”/X') that arises as the image of multiplication by c]. Thus, R
(respectively, R”; R!) is a commutative ring with unity whose underlying R’-
(respectively, R”-; R’-) module is finite and free; moreover, R”, R/ admit a
natural ITx-action [induced by the conjugation action of Ilx on the subquotient
Gal(X"/X") of TIx]. Also, we shall denote by

e/ Rl »R; ¢ :R'"—- R

the augmentations obtained by mapping all of the elements of Gal(X”/X") to
1.

Next, let us observe that S’, S” admit natural I1x -actions with respect to
which we have natural isomorphisms of Ilx-modules [cf. Proposition 3.1, (i),

(iv)]
Newg, (2/3) > R'[S]@ M{; Newg.(2/3) = R'[S"] @ M
which determine natural isomorphisms of Ilx -modules

Newg (2¢/2c + 1) 5 Lieh, (R[S @ M)

New g (2¢/2¢ 4+ 1) = LieS, (R'[S"] @ M)

[cf. the notation of Proposition A.1] for integers ¢ > 1. In the following,
we shall identify the domains and codomains of these isomorphisms via these
isomorphisms.

Next, let us observe that the R’-module R'[S”] admits a natural R”-module
structure that is compatible with the ITx-action on R”, R'[S”]. Note, moreover,
that R'[S”] is a free R”-module, and that we have a natural isomorphism

R/[s//] ®R//,€” R/ :} R/[s/]
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induced by the augmentation ¢ : R” — R’. Also, we observe that any choice
of representatives in S” of the Ax//Ax» = Gal(X"/X')-orbits of S” [where we
note that the set of such orbits may be naturally identified with S’] determines
an R-basis of R'[S”], hence [by considering “Hall bases” — cf., e.g., [Bour],
Chapter II, §2.11] an R”-basis of Lie}, (R'[S”]). Note that since the natu-
ral action of Gal(X”/X') on Liek, (R'[S”]) is compatible with the Lie algebra
structure, it follows that:

This natural action of Gal(X”/X') on Lieg, (R'[S"]) is given by
composing the R”-module structure action Gal(X"”/X’) — R" with
the morphism ¢ : Gal(X"/X’) — Gal(X"/X') given by multiplica-
tion by c.

In particular, this natural action of Gal(X”/X') on Lie%, (R'[S”]) factors through
the quotient Gal(X”/X') — ¢-Gal(X"”/X") and hence determines on Lie%. (R'[S”])
a structure of “induced” ¢ - Gal(X"/X’)-module [in the terminology of the co-
homology theory of finite groups|. Thus, we obtain natural, Ilx-equivariant
isomorphisms

R/[S/] ~ R/[S//]@(X”/X’)
EiQCRu(R/[SN]) Ry e R = Eie%//(R/[S//])@(X///X/) _ Sie(};%”(R/[S//Dc.@(xu/x/)

[where we use superscripts to denote the submodules of invariants with re-
spect to the action of the superscripted group]. Moreover, we observe that
relative to these natural isomorphisms, the restriction of the natural surjection
Liek, (R'[S"]) — Lieqn (R'[S"]) ®py.er R’ to the submodule of Gal(X"/X")-
invariants induces the endomorphism of the module Lie%. (R'[S"]) @py v R
given by multiplication by the order of ¢ - Gal(X" /X').

Now let us write:

Newss o (2¢/2¢ + 1) €' Lieh, (R'[S"] © MY) © (Qu/Z1)

New'$h g/(2¢/2c + 1) € New'S g (2¢/2¢ + 1) @y, B

[where ¢ > 1 is an integer]. Then in light of the above observations [together
with Propositions A.1, (iv); 3.1, (iv)], we conclude the following:

(A) The natural surjection of Il x-modules
Newih (b + 1/b+2) — News' (b + 1/b+ 2)
admits a factorization

NeWtSo/l/A(b‘F 1/b+ 2) —» NeWtSC)/l;/S/(b+ 1/b+ 2) —» NeWtSO/S/S/(b+ 1/b+ 2)
— New' (b+1/b+2)
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[via morphisms of IIx-modules]. Moreover, the natural action of Ax: on the
module Newgolf/s, (b+1/b+2) factors through the quotient Ay — Gal(X"/X') —

¢-Gal(X"/X’) and determines on Neng,f/s, (b+1/b+2) a structure of induced
¢+ Gal(X"”/X")-module.

(B) The induced morphism on Ax--invariants
New'Sh (b + 1/b+2)2x" — New's" (b + 1/b + 2)2x" = New's" (b + 1/b + 2)

of the [first] natural surjection of (A) factors, in a Ilx-equivariant fashion,
through the endomorphism

Newh /(b4 1/b+2) — New$h /(b4 1/b + 2)

[hence also through the endomorphism New s (b+1/b+2) — NewS' (b+1/b+2)]
given by multiplication by the order of ¢ - Gal(X" /X").

Also, before proceeding, we make the following elementary observation
concerning the group cohomology of induced modules:

(C) Suppose that H” = ["" . A%, C A%, where n” is a positive integer.
For M a finitely generated Z;-module [which we regard as equipped with the
trivial A x-action], write:

Hx & HY (Ax, Mo M)

def

Hocr & HY (Axon, M@ M) S HY (Axr, M[Gal(X"/X")] @ M)

Then the “trace map”
Try : Hxr — Hx

— i.e., the map induced by the morphism of coefficients M[Gal(X"/X")] - M
that maps each element of Gal(X"”/X’) to 1 — factors through the endomor-
phism of Hx/ given by multiplication by I™ [cf. Remark 39 below].

[Indeed, to verify (C), we recall that this trace map Try is well-known
to be dual [via Poincaré duality — cf., e.g., [FK], pp. 135-136] to the pull-
back morphism; we thus conclude that, relative to the natural isomorphisms
Hxr = A%, @ M, Hx = A%, @ M [arising from Poincaré duality — cf., e.g.,
Proposition 1.3, (ii)], the trace map corresponds to the natural morphism

Hxn = A3, @ M — AL, @ M = Hy:
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induced by the inclusion Ax~» C Ax, — hence, by the definition of H”, fac-
tors through the endomorphism of Hx: given by multiplication by """, This
completes the proof of (C).]

Next, let us suppose that we have been given morphisms of (S,0,3)-
admissible coverings of X

1%

X" X N /N X”* X/

1% 1% 11 %

and write U2, C X", Uome € X", UL, € X" for the open subscheme

s s
determined, respectively, by the complements of the sets S/, S* , " of closed
points of X, X" X that lie over points of S. Also, let us assume that the
open subgroups Axm C Axr, Ayms CAxr, Axn CAxry, Ayrs € Axo arise,

respectively, from open subgroups

117 %

1 11% 1
H" =1"" A%, C H =I0" A%, C A,

H =1 A% C H™ =" A% C AR
— where 0" ¥ _ eon” def ¢; we suppose that n” > 2¢, n” > ¢
are “sufficiently large” positive integers, to be chosen below. Then we wish to
apply the theory developed above [in particular, the observations (A), (B), (C)]
by taking “X” — X'” in this theory to be various subcoverings of X" — X',

Now let us compute the cohomology of Il x via the Leray spectral sequence
associated to the surjection Iy — Iy /A y»+. Suppose that ¢ has been chosen
so that b+ 1 = 2c¢. Then by applying (A) to the covering “X” — X'
(respectively, “X"" — X ”*”), we conclude that Ay« (respectively, A yr+)
acts trivially on Newgo,f/sn* (b+1/b+2) (respectively, Newg?f,/su* (b+1/b+2)).
Also, it follows immediately from the definitions that we have a natural IIx-

equivariant surjection Newg’,’f,/su* b+1/b+2) —» Newts",’f/su* b+ 1/b+2).

Now, by applying (A) to the covering “X” — X7 and (C) to the covering
“X  — X 7, we conclude that the Ilx-equivariant natural morphism

HY(Axr, New), gne (b+1/b+2)) — H' (A=, New) g (b+1/b+2))

[which maps the image of ng to the image of ng~!] factors through a “trace

111 % 77 %

map” as in (C) for the covering “X  — X 7, hence in particular, through the
endomorphism of H!(A v, Newg),f/su* (b+1/b+2)) [a module whose submod-

ule of IIx-invariants is finite, by Proposition 3.2, (i)] given by multiplication
by n ", in a Ilx-equivariant fashion. Thus, by taking n” to be “sufficiently
.large”, we conclude that the image of ng» in H1(A i, NeWtSC),I;/S//* (b+1/b+2))
is zero.

Now I claim that the image of ng» in
H'(Ax:,New§) /g/(b+1/b+2))
[obtained by applying the surjection
Newi (b + 1/b+2)) - New) 5 (b+1/b+2)
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of (A) applied to the covering “X” — X'7| is zero. Indeed, note that it
follows immediately from the definitions that we have a natural surjection

Newgo,f/sm (b+1/b42) - Newg /g (b+1/b+2) [induced, in effect, by the inclu-
sion Gal(X"”/X ) — Gal(X"”/X")]. Thus, since we have already shown that
tor

the image of ng~ in the cohomology module H (A ./, New g, /g1« (b+1/b+2))

17 %

is zero, it follows immediately that the image of g~ in H'(A -, Newtscif/s/ (b+
1/b+ 2)) is zero, hence that the image in question in the claim arises from a
class

€ H'(Gal(X " /X'), (New(i g/ (b+ 1/b+2))%x"")
= H'(Gal(X"" /X"), New'sl 5/ (b+1/b+2)) =0

[where the last cohomology module vanishes since, by (A) applied to the cov-
ering “X” — X7, Newg‘)ﬁ/s/(b +1/b+2) is an induced Gal(X"~/X')-module].
This completes the proof of the claim.

Thus, in summary, we conclude that the image of g/ in the cohomology
module H!(ITx, Newgo,f/s, (b+1/b+ 2)) arises from a unique class in

H'(ILx /Axr, (New§) 5 (b+1/b+2))2x') 5 H (ILx /A x/, New'h /g, (b+1/b+2))
which maps to the unique class in
H'(ITx /Ax:,News" (b+1/b+2))

[a module which is finite, by Proposition 3.2, (i)] that gives rise to ng: via a
morphism that factors through the endomorphism given by multiplication by
the order of ¢- Gal(X"/X') [cf. (A), (B) applied to the covering “X"” — X'7].
In particular, by taking n” to be “sufficiently large”, we may conclude that
ns: = 0, as desired. That is to say:

This completes the proof that the two inclusions HISJ.Z — HEORSHl

S
differ by conjugation by an element of Ker(l’IE(s)RSb‘”'1 —» HBISESH).
In particular, the proof of assertions (i), (ii) is complete.

Next, we consider assertion (iii). First, let us observe that when b = 1,
assertion (iii) follows immediately from [the “pro-l version” of the argument
applied to prove] Proposition 2.3, (i) [cf. the discussion preceding Proposition
3.4]. Thus, in the remainder of the proof of assertion (iii), we assume that b > 2.
Note that since the elements of Ker(l’[éﬁ'"1 —» Hég) manifestly commute with
the elements of I=°*1, it follows from conditions (a), (b), the fact that b > 2,
and the assumption that S = S, is of cardinality one that 3 induces the identity
on HEZH [csp] [cf. the proof of assertion (ii) above]. Thus, to complete the proof
of assertion (iii), it suffices to show that the compatible system of classes

As: € H'(TTx, Newg, (b + 1/b+ 2))

determined by f [cf. Proposition 3.4, (i); 3.1, (iv)] vanishes. Note that since
(Ag?)ab is of “weight < 17, and Newg, (b+ 1/b+2) is of “weight b+1 > 3” [cf.
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Proposition 3.2, (i)], it follows immediately from the Leray spectral sequence
for IIx — G}, that we have a natural isomorphism

HY (G, Newg, (b+1/b+2))2%) 5 HY(ITx, Newg, (b + 1/b + 2))

[where the superscript “Ax” denotes the A x-invariants] and that the module
HY(Gy, (Newg (b + 1/b+ 2))2%) is finite. Thus, to show that the g = 0, it
suffices to show that the inverse limit

lim (Newg, (b+1/b+ 2))Ax
X/

[where X', S” are as described in the proof of assertions (i), (ii)] is zero. But this
follows from observation (B) of the proof of assertions (i), (ii). This completes
the proof of assertion (iii).

Next, we consider assertion (iv). In light of the definition of HESORSbH,
it suffices to show that any compatible system of D x -invariant [relative to the
diagonal action of Dx] classes

ks € News' (b +1/b+2)

[where X', S” are as described in the proof of assertions (i), (ii)] lies in the
image of I, [Us] ® (Q;/Z;) if b = 1 and vanishes if b > 2. [Here, we note that
since New' (b + 1/b +2) = 0 when b is even, we may assume without loss of
generality that b is odd.] To do this, let X', X", S’, S” be as in (A), (B). Now
we would like to apply the theory of the Appendiz [cf., especially, Theorem A.1]
to the present situation. To do this, it is necessary to specify the data “(i), (ii),
(iil), (vi), (vii), (viil), (ix), (x), (xi), (xii)” [cf. the discussion of the Appendix]
to which this theory is to be applied.

We take the “d” of Theorem A.1 to be such that 2d = b+1 [so the fact that
b is odd implies that d > 2 whenever b > 2] and the prime number “I” of “(i)”
to be the prime number [ of the present discussion. We take the profinite group
“A” of “(ii)” to be the quotient of the group Ax by the kernel of the quotient
(Ax D) Ax/ — A"}P, —» A"}P, ®Zy; this group “A” surjects onto Ax /A x/, which
we take to be the quotient group “G” of “(ii)”, with kernel A%, ® Z;, which
we take to be the subgroup “V” of “(ii)”. Here, we recall that the condition
of “(ii), (c)” concerning the regular representation follows immediately from
[Milne], p. 187, Corollary 2.8 [cf. also [Milne|, p. 187, Remark 2.9], in light
of our assumption that X is proper hyperbolic, hence of genus > 2. We take
the profinite group “I'” of “(ix)” to be the image Gy C Gy of IIx/ in Gy [so
“I' acts naturally on “A”, “G”, “H”]. Thus, “Ar” may be thought of as a
quotient of Ilx x g, G}, hence also as a quotient of Dx X, Gjr. Note that by
consideration of “weights”, it follows that

(New'S" (b + 1/b + 2))C*

is finite, hence annihilated by some finite power of [, which we take to be
the number “N” of “(iii)”. We take the covering X" — X’ of (A), (B) to
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be any (5,0, X)-admissible covering such that the resulting covering XZ —
Xi is the covering determined by the resulting subgroup “I"™ -V C A” [cf.
the statement of Theorem A.1], so “J” may be identified with Gal(X"/X").
Next, we take the “G-torsor Eg” of “(vi)” to be S” and the “H-torsor Ex” of
“(vil)” to be S”; thus, the natural surjection S” — S’ determines a surjection
“Eg — Eg” as in “(viii)”. Note that S” (respectively, S’) may be thought
of as a Ayy, -orbit (respectively, AUIS/-orbit) [via the action by conjugation]
of the conjugacy class of subgroups of Ay, determined by I, [Us] C Ays.
In particular, it follows that the particular member of this conjugacy class
constituted by the subgroup I, [Us] € Ay, determines a particular element
en € Egn (respectively, eq € Eg) as in “(xi)”. Moreover, the diagonal action
of Dx — hence also of Dx Xg, G € Dx — on Ay, determines an action
of Dx xg, G € Dx on Ep, Eg that fizes ey, e, and [as is easily verified]
factors through the quotient “Ar” of Dx x g, G — llx X g, Gy; in particular,
we obtain continuous actions of “Ar” on “Eg”, “Ey” as in “(x)”. Finally, we
take the “I'-module A” of “(xii)” to be the d-th tensor power of M)((l) ®(Q1/Zy).
This completes the specification of the data necessary to apply Theorem A.1.

Thus, by applying Theorem A.1 to the composite of the second and third
surjections in the factorization of (A), we conclude that since kgr is Dx-
imwvariant, it follows that

ks € New'or (b +1/b+ 2)

maps to an element [i.e., kg/] of N -New (b+1/b+2)% =0 when b > 2 and
to an element [i.e., kg/] in the image of I, [Us] ® (Qi/Z;) when b = 1. This
completes the proof of assertion (iv).

Finally, we consider assertion (v). It is immediate from the definitions that
the various quotients in question are cuspidally pro-l. That these quotients are
the maximal cuspidally pro-l quotients follows from the construction of Aégo

and the easily verified fact that each A,(JQ injects into Lin(Agz (1/00))(Qy).
’ s/

S
Finally, the asserted slimness follows from the fact that the profinite groups
in question may be written as inverse limits of profinite groups that admit

normal open subgroups [with trivial centralizers] — namely, “Ag? 7, “(HS? L
s’ s’
“Agl/xxl”7 “(Hgl/xX/)T” — which are slim, by Proposition 1.6, (i), (iii) [which
implies that the quotients Agl, o Ag?/, (Hg; X,)Jf — (Hg?,)T, as well as
the kernels of these quotients, are slim). |

Remark 38.  Proposition 3.6, (iii), may be regarded as a “higher order,
pro-l analogue” of Proposition 2.3, (i).

Remark 39. It is important to note that if one omits [as was, mis-
takenly, done in an earlier version of this paper] the hypothesis that Sy = 0,
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then it no longer holds that the image of the trace map “Try : Hx» — Hx:”
[appearing in the proof of Proposition 3.6, (i), (ii)] lies in {™ - Hx.. Indeed,
this phenomenon may be understood by considering the trace map on first
étale cohomology modules with Z;-coefficients associated to the [™-th power
map Gy, — Gy, on the multiplicative group Gy, over k — a map which, as an
easy computation reveals, is surjective.

We are now ready to prove the main technical result of the present §3:

Theorem 3.1. (Reconstruction of Maximal Cuspidally Pro-I
Extensions) Let X, Y be proper hyperbolic curves over a finite field;

denote the base fields of X, Y by kx, ky, respectively. Suppose further that we

have been given points x,. € X (kx), ys € Y(ky); write S &f {z.}, T &of {ys}

Us & X\S, Vr & Y\T. Let ¥ be a set of prime numbers that contains

at least one prime number that is invertible in kx, ky; thus, ¥ determines
various quotients Iy, x, Hyy, ., Uxxx, Mv,, Iy, Oy, ., Oyxy [cf.
Proposition 1.6, (#i); the discussion preceding Proposition 1.5] of the étale
fundamental groups of Us, X, Uxxx, X XX, Vp, Y, Uyxy, Y XY, re-
spectively. Also, we write llx — G, Ily — Gy, for the quotients determined
by the respective absolute Galois groups of kx, ky. Let

aZHX;Hy

be a Frobenius-preserving [hence also quasi-point-theoretic — c¢f. Re-
mark 10/ isomorphism of profinite groups that maps the decomposition group
of . inx [which is well-defined up to conjugation] to the decomposition group
of y« in Iy [which is well-defined up to conjugation]. Then for each primel € &
such that | # p, there erist commutative diagrams

X
<oo Qoo <oco <oo Yoo <oo
1_[Us - HVT HUXXX - HUYXY
« aXo
Iy — Iy Mxxx — Iyxy

. . <oo <oo <oo <oo
— in which Wy, — g ", Muy,  —» U - o v, — Uy =, oy — 150

are the maximal cuspidally pro-l quotients /cf. Proposition 3.6, (v)];
IIxwx = Ix X Gy IIx, Hyxy = Iy X Gy IIy; the vertical arrows are the
natural surjections; o, o are isomorphisms, well-defined up to composi-
tion with a cuspidally inner automorphism, that are compatible, relative to
the natural surjections

<oo c-ab,l <oo c-ab,l | <oo c-ab,l, <oo c-ab,l
Us 7 HUS ’ HUXxX - HUXXX’ vr HVT ’ HUYXY - HUYXY
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— where we use the superscript “c-ab,l” to denote the respective maximal
cuspidally pro-l abelian quotients — with the isomorphisms
I N TN

of Theorem 2.1, (i); Theorem 1.1, (iii), respectively. Moreover, an, (Tespec-
tively, aX ) is compatible, up cuspidally inner automorphisms, with the de-
composition groups of Ty, Ys in HZSJSOO, H‘S/;X’ (respectively, with the images of the
decomposition groups Dx, Dy in Hg;oxx, Hg;oxy). Finally, this condition of
“compatibility with decomposition groups”, together with the condition of mak-
ing the above diagrams commute, uniquely determine the isomorphisms ao,
o, up to composition with a cuspidally inner automorphism; in particular, o’
is compatible, up to composition with a cuspidally inner automorphism, with

the automorphisms of Hg;oxx, lgj;foxy given by switching the two factors.

Proof. First, let us consider the isomorphism [i.e., more precisely: a spe-
cific member of the cuspidally inner equivalence class of isomorphisms]

ac—ab,l . HC—ab,l -~ Hc—ab,l
Uxxx Uy xvy

arising from the isomorphism H‘(’]';bxx = H%‘f;liy of Theorem 1.1, (iii). Recall

that since a is Frobenius-preserving, it is quasi-point-theoretic [cf. Remark 10],
and that a®2P! is compatible with the images of Dx, Dy, which we denote by

Dg?, Dg). Thus, we may assume without loss of generality that our choices of
decomposition groups D, [Us| C Iy, Dy, [Vr] C Ily,., as well as our choices
of splittings Gix — Dy.[Us], G, — Dy, [Vr], have images in 122! | 11620

Uxxx’ “Uyxy
cab.l In particular, it follows that a®?P! maps HcU'zb’l C
HCUibxi( isomorphically onto H?};b’l C H(E:J;bxi

that correspond via «

In the following argument, let us identify the “Ling,(1/00)”, “Linx (1/00)”
portions of A%,g? with the [completions, relative to the natural filtration topol-
ogy, of the] corresponding graded objects “Grg,(—)(1/00)” via the Galois in-
variant splittings of Proposition 3.2, (ii), and similarly for V. Then, in light
of our assumption that a is Frobenius-preserving, it follows immediately from
the naturality of our constructions [cf., especially, Proposition 3.2, (iii)] that «
induces, for each Z 3 b > 1, compatible isomorphisms

LIE . [{LIE ~, 77LIE. LIE<b , 77LIE<b ~ rfLIE<b
« Al — Iy a7 =" o — Iy
which are, moreover, compatible [with respect to the natural projections to
ITx, Iy ] with the isomorphism «. Moreover, it follows from the construction of
“H%P?Sb” that the latter displayed isomorphism maps DEESI’ C HII}ISESZ’ bijec-
tively onto D"F<b C H{J,ITESI’, and that the resulting isomorphism D}TF<b = pLIE<b
induces an isomorphism

<b ~ <b
D;* — Dg*
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which is compatible [again by construction!] with the respective Frobenius
elements “F},” on either side.

Next, let us observe that since the isomorphism af induces an isomor-
phism TI7; abl = IIy° ab.l that is compatible with the images of the decomposi-
tions groups Dy, [US] . [Vr| and Frobenius elements in these decomposition
groups, it follows immediately that for corresponding [i.e., via a] (S,0,>)-
, (T,0,%)-admissible coverings X’ — X, Y’ — Y [which induce coverings

) Lie<2 ~ A Lie<2
Ul — Us, Vpr — Vp], a©*™! induces an isomorphism AP Avf,

c-ab,l

LIE<2 AL18§2 ALIGSQ
: ’

which is compatible with « Moreover, although are

ie<
AL1672

o Lie<2
not center-free, the semi-direct products AUl,e* X Hx, X Hy are eas-
!

S
ily seen to be center-free [cf. Proposition 1.6, (i)], for arbitrary open sub-

groups Hx C GJ,LX, Hy C GJ,[Cy [where the daggers are as in Proposition 1.6,
i at correspond via «a. Since =7 (respectively, =7) is an inverse
)] that d vi Since ITj;"=? tively, T/ =?) is an i
limit of topological groups that admit normal closed subgroups of the form

All}l,e <% Hx (respectively, AI‘};?,Q x Hy), we thus conclude [by applying the
S/
extension “1 — (=) — Aut(—) — Out(—) — 1”7 of §0 to these normal closed

subgroups] that the isomorphism ngb’l = H‘{}jb’l induced by a®P! is com-
patible — relative to the natural inclusions

[Ieabd ) s2 o pEs?

c-ab ~ 11<2 LIE<2,
il _>HUS HUS ) Vi Vr Vr

Us

[cf. the discussion preceding Proposition 3.4] — with aFTB<2 : TI;7P=? 5 TIyP=2,

In fact, since 3 is odd, it follows immediately from the definitions that

the modules “News,(3/4)” vanish, hence [cf. Definition 3.3, (ii)] that we have

[[LE<3 ~ [LIE<2+
Us Us

an isomorphism , which implies [cf. Proposition 3.4, (i)]

that we have an isomorphism H53 = H§2 [and similarly for Vr|. Thus, by

Proposition 3.4, (iii), it follows that the 1somorphlsm I abl Hi};b’l induced

c-ab,l

by « is compatible — relative to the natural 1nclus1ons

c-ab,l ~ <3 LIE<3, c-ab,l ~ <3 LIE<3

HUS = HUS — II;; ; HVT = HVT AN HVT
R LIE<3 . 7yLIE<3 ~ LIE<3
with o : HUS = HVT .

Next, let us observe that the diagonal actions of Dx, Dy on HIﬁISE, HLIE
(l)

(l) pWw [
Dy

clearly factor through D hence determine “diagonal actions” of Dy

D@” on HgIsE, H{;ITE] Moreover, by what we have already shown concerning the

compatibility of a3 with a“2P:! [cf. also the compatibility of a®*P! with Dgl(),
Dﬁ)} and the compatibility of a®*P! with the decomposition groups D, [Us],
D, [Vr], it follows [cf. Remarks 36, 37] that the conditions (a), (b), (c) of
Proposition 3.5 are compatible with o™F hence that o'¥ is compatible with
the diagonal actions of Dgp, D(Y” on HBISE, H%/ITE [relative to the isomorphism
DY = D induced by a2+,

Now I claim that the isomorphism oF<?

maps Hgg bijectively onto H‘S,;,
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thus inducing a compatible inverse system [parametrized by b] of isomorphisms

<b . psb o~ st
« .HUS—>HVT

that are compatible [with respect to the natural projections Hgg — Ix, H‘S/f —»

ITy] with «. To verify this claim, we apply induction on b. The case b =1 is
vacuous; the case b = 2 follows from what we have already shown concerning
the compatibility of a™P<? with a®?P!. Thus, we assume that b > 2, and that
the claim has been verified for “b” that are < the b under consideration.
Now observe that by Propositions 3.4, (iii); 3.6, (ii), it follows that the
isomorphism
HBISESb+1 ~ H%/ITESb-H

maps Hég“ bijectively onto a Ker(l’[{}ITESH1 —» HI‘}ITESH)—conjugate of H‘S,:'H.

In particular, by conjugating by an appropriate element vy € Ker(l’[{“}TESb'H —»

< . . .
HI‘}IE*H), we obtain an isomorphism
T
< ~ <
: Hﬁb-u o~ qrsbtt
S

6b+1 Vir

that is compatible with o= and, moreover, [since vy commutes with Iy%b“]

maps I=PT bijectively onto I=PT1. Note that by Propositions 3.4, (i); 3.6,
(iii), it follows that the choice of v is unique, modulo Ker( %H — ‘S,;f"’). In

TOR<b+1 . T TTOR<b+1
Iy, =bt of v in II;,- =bt

LIE

particular, the image § € is uniquely determined.
is compatible with the diagonal actions of
Dg?, Dg) on HBISE, H{;ITE, it follows immediately, by “transport of structure”,
that 0 is fized by the diagonal action of Dg). But, by Proposition 3.6, (iv), this
implies that 6 = 0. This completes the proof of the claim.

Thus, we obtain an isomorphism s, : Hg;o = H‘S/;O as in the statement of
Theorem 3.1. Next, let us recall that AE;’O, A‘S,;o are slim [cf. Proposition 3.6,
(v)]. Thus, since this isomorphism o, is compatible with the diagonal actions
of Dg? , Dg), we may apply the isomorphism Aut(Aggo) = Aut(A‘S/;)O) induced
by as to obtain — i.e., by pulling back the extension

On the other hand, since «

1— A5Z — Aut(A5Y) — Out(A5) — 1
[cf. §0] via the homomorphism

(DY —) Iy — Out(AF>)

arising from the diagonal action [and similarly for A‘S,;o] — an isomorphism
ak éioxx = HE;‘;Y as in the statement of Theorem 3.1. Here, we note

that the “cuspidally inner indeterminacy” of o, aX, that is referred to in the
statement of Theorem 3.1 arises from the “cuspidally inner indeterminacy” in
the choice of corresponding decomposition groups D, [Us|, D, [Vr]| [more pre-

cisely: the images of these groups in Hégo, H‘S/;o, as opposed to just in H‘i};b’l,
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Hi}jb’l]. Finally, we observe that the asserted uniqueness follows immediately
by considering eigenspaces relative to the Frobenius actions [cf. Proposition
3.2, (ii)], together with the construction of the isomorphism o™¥ [cf. also
Propositions 1.10, (i); 2.3, (i)]. O

Remark 40. The argument of the proof of Theorem 3.1 involving
Proposition 3.6, (iv), may be regarded as a sort of “higher order analogue”
of the argument applied in the proof of Theorem 1.1, (iii), involving Lemma
1.1; Proposition 1.8, (v).

Remark 41. At first glance, it may appear that the portion of The-
orem 3.1 concerning aX may only be concluded when X (kx), Y(ky) are
nonempty. In fact, however, since (Hg;oxx)f, (Ha‘foxy)T are slim [cf. Proposi-
tion 3.6, (v)], it follows that the portion of Theorem 3.1 concerning aX may
be concluded even without assuming that X (kx), Y (ky) are nonempty, by ap-
plying Theorem 3.1 after passing to corresponding [via «] finite extensions of

kx, ky [Cf. Remark 5].

Remark 42. It seems reasonable to expect that, when, say, ¥ = {i},
the techniques applied in the proof of Theorem 3.1, together with the theory of
[Mtm], should allow one to reconstruct the [geometrically pro-Y| étale funda-
mental groups of the various configuration spaces [i.e., finite products of copies
of X over kx, with the various diagonals removed]| “group-theoretically” from
ITx [under, say, an appropriate hypothesis of “Frobenius-preservation” as in
Theorem 3.1]. This topic, however, lies beyond the scope of the present paper.

Remark 43. If the “cuspidalization of configuration spaces” [cf. Re-
mark 42] can be achieved, then it seems likely that by applying an appropriate
“specialization” operation, it should be possible to generalize Theorem 3.1 to
the case where S, T are subsets of arbitrary finite cardinality.

Remark 44. One essential portion of the proof of Theorem 3.1 is the
Galois invariant splitting of Proposition 3.2, (ii). Although it does not appear
likely that such a splitting exists in the case of a mnonarchimedean local base
field [cf., e.g., the theory of [Mzk4]], it would be interesting to investigate the
extent to which a result such as Theorem 3.1 may be generalized to the nonar-
chimedean local case, perhaps by making use of some sort of splitting such as
the Hodge-Tate decomposition, or a splitting that arises via crystalline methods.
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In the context of absolute anabelian geometry over nonarchimedean local fields,
however, such p-adic Hodge-theoretic splittings might not be available, since
the isomorphism class of the Galois module “C,” is not preserved by arbitrary
automorphisms of the absolute Galois group of a nonarchimedean local field
[cf. the theory of [Mzk3]].

The development of the theory underlying Theorem 3.1 was motivated by
the following important consequence:

Corollary 3.1. (Total Global Green-compatibility) In the sit-
uation of Theorem 1.1, (iii) [in the finite field case], suppose further that
o = ‘BtimesT, and that X, Y are Y-separated [which implies that « is
Frobenius-preserving and point-theoretic — c¢f. Remarks 9, 10]. Then
the isomorphism « is totally globally Green-compatible.

Proof. Indeed, we may apply Theorem 3.1 to the isomorphism « of Theo-
rem 1.1, (iii), and arbitrary choices of sets of cardinality one S = {z.}, T = {y.}
that correspond via a. Let I € Xf. Then let us observe that the quotient
My, — HLS,;’O satisfies the following property:

If Iy — @ is a finite quotient of Il such that for some quotient
Q — Q' whose kernel has order a power of I, Iy, — Q' factors
through Iy — Hg;x’, then Il;;y — @ also factors through Il —
5>

Us

A similar statement holds for the quotient Iy, — H‘S,;O In light of this obser-

vation, together with our assumption that X1 = ‘BtimesT [which implies that «
is Frobenius-preservingl, it follows that the reasoning of [Tamal, Corollary 2.10,
Proposition 3.8 [cf. also Remark 10 of the present paper]|, may be applied to
the isomorphism

<o~ pp<eo
I U e I

of Theorem 3.1 to conclude that the isomorphism «., maps the set of de-
composition subgroups of the domain bijectively onto the set of decomposition
subgroups of the codomain.

On the other hand, sorting through the definitions, the datum of the lift-
ing of a decomposition group of ITx, Iy corresponding to a point that does
not belong to S, T to a [noncuspidal] decomposition group of the domain or
codomain of a, determines, by projection to Hg‘:b’l, H(‘:/‘;b’l, the l-adic portion
of the Green’s trivialization associated to this point and the unique point of S
or T. Since [ is an arbitrary element of X = ‘IitimesT, and the points x., y.
are arbitrary points that correspond via «, this shows that « is globally Green-
compatible. That « is totally globally Green-compatible follows by applying this
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argument to the isomorphism induced by a between open subgroups of Ilx,
Iy. O

Theorem 3.2. (The Grothendieck Conjecture for Proper Hy-
perbolic Curves over Finite Fields) Let X, Y be proper hyperbolic
curves over a finite field; denote the base fields of X, Y by kx, ky, re-
spectively.  Write Illx, Ily for the étale fundamental groups of X, Y,
respectively. Let

Oé:HXlHY

be an isomorphism of profinite groups. Then « arises from a uniquely de-
termined commutative diagram of schemes

X 5 Y
Lo
X 5 Y

in which the horizontal arrows are isomorphisms; the vertical arrows are the
pro-finite étale universal coverings determined by the profinite groups I x, Iy .

Proof. Theorem 3.2 follows formally from Corollaries 2.1, 3.1; Remarks
9, 10; Proposition 2.2, (ii). O

Appendix. Free Lie Algebras

In this Appendix, we discuss various elementary facts concerning free Lie
algebras that are necessary in §3. In particular, we develop a sort of “higher
order analogue” of the theory developed in Lemma 1.1.

Proposition A.1. (Free Lie Algebras) Let R be a commutative
ring with unity; V « finitely generated free R-module. Write Lier(V)
for the free Lie algebra over R associated to V; for Z > b > 1, denote by
SieZ}{(V) C Lier(V) the R-submodule generated by the “alternants of degree b”
[¢f. [Bour], Chapter II, §2.6]. Also, we shall denote by Ur(V') the enveloping
algebra of Lieg(V). [Thus, we have a natural inclusion Lieg(V) — Ur(V).]
Then:

(i) Each £ie% (V) is o finitely generated free R-module. Moreover, there is
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a natural isomorphism V- = Lieg (V).

(i1) Let v € V be a nonzero element such that the quotient module V/R - v

is free. Then the centralizer of v in Ur(V') is equal to the R-submodule of
Ur(V) generated by the nonnegative powers of v. In particular, if R is a field
of characteristic zero, then the centralizer of v in Lier(V) is equal to R - v.

(iii) Suppose that the rank of V over R is > 2. Then the Lie algebra Lieg(V) is

center-free. In particular, the adjoint representation of Lier (V) is faith-
ful.

(iv) Let R’ be an R-algebra which is finitely generated and free as an

R-module. Let ¢ : R' — R be a surjection of R-algebras; suppose that V =
V' Qg ¢ R, for some finitely generated free R'-module V' [so we obtain a natu-
ral surjection V' — V compatible with ¢]. Then the natural surjection V' — V
induces a surjection of R-modules Lie% (V') — Liely(V) that factors as a com-
posite of natural surjections as follows:

Lieh (V') — Liel, (V) — Lieh (V)

Here, the first arrow of this factorization is the arrow naturally induced by
observing that every Lie algebra over R' naturally determines a Lie algebra
over R; the second arrow of this factorization is the arrow functorially induced
by the natural ¢-compatible surjection V' — V. Finally, this second arrow
induces an isomorphism Lieh, (V') @ g R = Lieh (V).

Proof. Assertion (i) follows immediately from [Bour], Chapter II, §2.11,
Theorem 1, Corollary. Assertion (ii) follows from the well-known structure of
the enveloping algebra Ur(V') [i.e., the natural isomorphism of Ur (V') with the
free associative algebra determined by V over R; the fact that when R is a field
of characteristic zero, the image of Lieg (V) in Ur (V') may be identified with the
set of primitive elements — cf. [Bour], Chapter II, §3, Theorem 1, Corollaries
1,2], by considering the effect on “words” of forming the commutator with v
— cf. the argument of [Mtm], Proposition 3.1 [which is given only in the case
where R is a field of characteristic zero, but does not, in fact, make use of this
assumption on R in an essential way]. Assertion (iii) follows immediately from
assertion (ii) [by allowing the element “v” of assertion (ii) to range over the
elements of an R-basis of V. Assertion (iv) follows formally from the universal
property of a free Lie algebra, together with the well-known functoriality of a
free Lie algebra with respect to tensor products [cf. [Bour|, Chapter II, §2.5,
Proposition 3]. O

Next, let us suppose that we have been given data as follows:
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(i) a prime number [;

(ii) a profinite group A that admits an normal open subgroup V' C A such
that the following conditions are satisfied: (a) V' is abelian [so we shall regard
V as a module]; (b) the topological module V is a finitely generated free R-
module, where we write R def Zy; (c) the resulting action of the finite group

G A/V on V determines a G-module Vp, ve Q; that contains the

regular representation of G,
(iil) a positive power N of [;

(iv) a collection of [not necessarily distinct!] elements g1, ..., g4 € G [where
d > 11is an integer] of G at least one of which is not equal to the identity element.

Write

def

¢ =

M=

(1-gi) € RG]

1
G with coefficients in R]. Then we have the

s

[where R[G] is the group ring o
following result:

Lemma A.1. (Nontriviality of a Certain Operator) There exists
an integer n > 1 such that the order |J¢| of the image

JeCJ

of the action of ¢ on [the finite group] J Ly e (Z/1"Z) is divisible by N.

Proof. Indeed, since the G-module Vg, contains the regular representation
[cf. condition (ii), (c)], it follows that the image of the action of ¢ on Vp, is a
nonzero Q;-vector space, hence that the image of the action of ¢ on the finitely
generated free R-module V' [cf. condition (ii), (b)] contains a rank one free
R-module. Now Lemma A.1 follows immediately. O

Next, let J- C J be as in Lemma A.1; write H def A/ V) [so JC H,
H/J = G]. Also, let us assume that we have been given data as follows:

(v) a collection of elements hy,... ,hqg € H that lift g1,... , g4 € G;

(vi) a G-torsor Eg [whose G-action will be written as an action from the

left];
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(vil) an H-torsor Ey [whose H-action will be written as an action from the

left);

(viii) a surjection
e: Fg —» Eg

that is compatible with the natural surjection H — G;

(ix) a continuous action of a profinite group I' on A that preserves the

subgroup V' C A, hence determines a profinite group Ar 4f A % T that acts
continuously on G, H [in such a way that the restriction of this action to
A C Ar is the action of A on G, H by conjugation];

(x) continuous actions of Ar on Eq, Ex [which will be denoted via super-
scripts] that are compatible with the continuous actions of Ar on G, H, as well
as with the surjection e and, moreover, induce the t¢rivial action of I' C Ar on
E¢ [hence also on GJ;

(xi) an element [i.e., “basepoint”’] ey € Ep, whose image via € we denote
by eq € Eg, such that ey, eg are fized by the action of Ar on Ey, Eq.

Next, let us write

R; ¥ R[]
for the group ring of J with coefficients in R. Thus, Ry is a commutative R-
algebra, and we have a natural augmentation homomorphism Rj; — R [which
sends all of the elements of J to 1]. Moreover, if we write

enr : My < RIEL] — Mg % R[EG)

for the morphism of R j-modules induced by € on the respective free R-modules
with bases given by the elements of Ey, Eq, then e induces a natural iso-
morphism My ®g, R = Mg. Thus, it follows from Proposition A.1, (iv),
that, for b > 1 an integer, we have [in the notation of Proposition A.1] natural
surjections

Liely (M) — Liely (Mp) — Liel (M)

the second of which determines a natural isomorphism Siei’z‘] (Mp)®r, R Lieh(Mg).
Now let

P(X1,...,X4)

be an “alternant monomial of degree d” [i.e., a monomial element of Lied(—)
of the free Z-module on the indeterminate symbols X7, ..., X,] in which each
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X; [for i = 1,...,d] appears precisely once. Then P(Xq,...,X ) determines
an element

P(gl'6G7"'7gi'6G7"'7gd'eG)

of Sie(}%(Mg). Moreover, by allowing such P(Xy,...,X4) and g1,...,94 to
vary appropriately, we obtain a Hall basis [cf., e.g., [Bour], Chapter II, §2.11]
of Lieh (M) [at least if d > 2; if d = 1, then one must also allow for the unique
g1 to be the identity element]. Similarly, by allowing such P(X1,...,Xy) and

hi,...,hq € H to vary appropriately, we obtain a Hall basis [again, strictly
speaking, if d > 2] of Sie%J(MH) of elements of the form P(hy-ep, ..., hq-€m).
Lemma A.2. (Relation of Superscript and Left Actions) For

any v € V. C A C Ar that maps to j € J, we have
P(hy-em,... hi-em,... ;ha-en)’ =C((j) - P(h1-em,... ,hi-em,... ,ha-en)

in Lieh, (Mp).

Proof. Indeed, we compute:

P(h1~eH,...,hlweH,...,hd-eH)”:P(hlf-eH,...,h;’-eH,..., Z'@H)

=P(hY-hit hi-em, ... hY -hit hi-em, ... hY-h' - hg-en)
d

= (H [],hl]> 'P(h1-€H7... ,hi-6H7... ,hd-eH)
i=1

:C(j)P(hleH, ,hi~6H,... ,hd~6H)

[where we apply the Rj-module structure of Ey and the fact that ¥, = ey [cf.
(xi)]]. |

Next, let us assume that we have also been given the following data:

(xii) a topological R-module A equipped with a continuous action by I" [which

thus determines, via the natural surjection Ar — I, a continuous action by Ar
on A



Absolute Anabelian Cuspidalizations of Proper Hyperbolic Curves 91

Write:

Vi ¥V T C A

Fy dZEfJ~P(h1 CEeH, .. ,hd'eH) gﬂie}i{,(MH);

R[FYy] “R.F =R, P(hy-eq,... hq-ey) C Lieh, (Mp);

A[F)) € RIFj| @r A C Lieh (Mp)@p; A

def

F P(gl €G- 5 9d EG) € Sle%(MGL

def

R[F] % E

R-F C gieh(Mg); A[F] < R[F)®gr A C Lieh(Ma) ®r A
Thus, the natural surjection Lie% S (Mp) — Lied (M¢) determines [compatible]
natural surjections Fy — {F'}, R[Fy| — R[F], A[F;] — A[F]. Also, we observe
[cf. the fact that Lie}, (Mp) is a finitely generated free R j-module] that F; is
a J-torsor [relative to the action from the left], hence, in particular, a finite
set.

Now observe that since Vi acts trivially on G, ey [cf. (ix), (x), (xi)], it
follows immediately that Vi acts compatibly on F;, R[Fy], A[F,]|, F, R[F],
A[F], and that the natural action of Vi on R[G] preserves ¢. In particular, it
follows that Vr preserves Jo C J, hence that Vr acts naturally on the set of
orbits

(Fy =) F¢

of F; with respect to the action of J¢; moreover, by Lemma A.2, it follows that
this action of Vr on F¢ factors through the quotient Vp — I'.

Now let us consider invariants with respect to the various superscript ac-
tions under consideration. Let us write

Invar(—, —)

for the set of invariants of the second argument in parentheses with respect to
the superscript action of the group given by the first argument in parentheses.
Then any element

n € Invar(Vr, A[Fy))

may be regarded as a A-valued function on the set F; which descends [cf.
Lemma A.2] to a I'-invariant A-valued function on Fg, i.e., an element 7 €
Invar(T", A[F¢]). Next, let us observe that [since 7 is I'-invariant] the sum of
the values € A of the A-valued function on F¢ determined by n¢ is a I'-invariant
element [ ne € Invar(T, A). Thus, the sum

/nEA
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of the values € A of the A-valued function on F; determined by 7 satisfies the

relation
[ =15 [ e

in A. But the image of 1 in A[F] is precisely the element ([ n)-F. Thus, since,
by Lemma A.1, |J¢| is divisible by N, we conclude the following:

Lemma A.3. (Monomial-wise Computation of Invariants) The
mage

Im(Invar(Vr, A[Ey])) C A[F]

of Invar(Vr, A[Fy]) C A[Fy] in A[F] lies in N - Invar(T', A[F]).

Thus, by allowing P(X1,...,X4) and hy,... ,hq € H as in the above
discussion to wvary appropriately so as to obtain a Hall basis [again, strictly
speaking, if d > 2] of Sie‘éJ(MH) of elements of the form P(hy-eq,...  hq-en),
we conclude the following:

Theorem A.1. (Invariants of Free Lie Algebras) Let d > 1 be
an integer. Suppose that we have been given data as in (i), (i), (¥i) above.
Let n > 1 be an integer that satisfies the property of Lemma A.1 for all [of the

finitely many] possible choices of data as in (iv) [relative to the given integer

d>1; 7Y v vy c HY A/ V); Ry Y RIJ]. Suppose that

have also been given data as in (vi), (vii), (viii), (iz), (z), (xi), (zii) above;
def

let My < RIEy], Me < RIEG], Vb ¥V xT (C Ar). Then the natural
surjection
Lie}, (My) @p A — Lieh(Me) @ A
maps
Invar(Vr, Sie}é] (Mu) ®r A)
nto
N - Tnvar(Vr, Lieh(Mg) @ A)

ifd > 2. In a similar vein, the natural surjection My®rA — Mg®RrA maps
Invar(Vp, Mg ®grA) into N -Invar(Vp, Mg®@prA)+Invar(Vr, A)-ec € Mg®grA.
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