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Let X log be a fine (cf. [Kato1], §2.3) saturated (cf. (the evident étale general-
ization of) [Kato2], §1.5) log scheme (cf. [Kato1], §1.2) whose underlying scheme
X is locally noetherian. Let us denote by

Sch(X)

the category whose objects are morphisms of finite type Y → X, where Y is a
noetherian scheme, and whose morphisms (from an object Y1 → X to an object
Y2 → X) are morphisms of finite type Y1 → Y2 lying over X, and by

Schlog(X log)

the category whose objects are morphisms of fine saturated log schemes Y log → X log,
where Y is a noetherian scheme, and the underlying morphism of schemes Y → X

is of finite type, and whose morphisms (from an object Y log
1 → X log to an object

Y log
2 → X log) are morphisms of finite type Y log

1 → Y log
2 (i.e., morphisms for which

the underlying morphism of schemes Y1 → Y2 is of finite type) lying over X log.

Our main results (which correspond to Theorems 1.7, 2.19, in the text) are the
following:

Theorem A. (Categorical Reconstructibility of Locally Noetherian
Schemes) The locally noetherian scheme X may be reconstructed category-theoreti-
cally from Sch(X), in a fashion that is functorial with respect to X — cf. Theorem
1.7 for more details.

Theorem B. (Categorical Reconstructibility of Locally Noetherian Log
Schemes) The locally noetherian fine, saturated log scheme X log may be recon-
structed category-theoretically from Schlog(X log), in a fashion that is functorial
with respect to X log — cf. Theorem 2.19 for more details.
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2 SHINICHI MOCHIZUKI

These results are partially motivated by the anabelian philosophy of Grothen-
dieck — cf., e.g., [Mzk], [NTM], for more details. In essence, the difference is that
in the anabelian case, instead of considering the category Sch(X) of (roughly speak-
ing) all schemes of finite type over X, one considers the category Ét(X) of finite
étale coverings of X.

Another important motivating circle of ideas for the author was the work of
[Bell1–4], [Lwv1–2]. The main idea here is (roughly speaking) that instead of
working with set-theoretic objects — such as schemes or log schemes — one should
regard categories as the “fundamental, primitive objects” of mathematics discourse.
From this point of view, it is thus of interest to know — cf., e.g., [John], Theorem
7.24, for the case of sober topological spaces — whether or not schemes/log schemes
may be “represented” by categories (such as Sch(X), Schlog(X log)). Theorems A
and B provide one natural (though most probably non-unique!) affirmative answer
to this question.
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with me in countless stimulating discussions.

Notations and Conventions:

We will denote by N the set of natural numbers, by which we mean the set of
integers n ≥ 0, and by Z the ring of rational integers.
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Section 1: Locally Noetherian Schemes

Let X be a locally noetherian scheme. Let us denote by

Sch(X)

the category whose objects are morphisms of finite type Y → X, where Y is a
noetherian scheme, and whose morphisms (from an object Y1 → X to an object
Y2 → X) are morphisms of finite type Y1 → Y2 lying over X. To simplify ter-
minology, we shall often refer to the domain Y of an arrow Y → X which is an
object of Sch(X) as an “object of Sch(X)”. The purpose of the following discussion
(cf. Theorem 1.7 below) is to show that the scheme X may be reconstructed purely
category-theoretically from the category Sch(X).

In the following discussion, we shall often speak of various properties of objects
and morphisms of Sch(X) as being “category-theoretic”. By this, we mean that they
are preserved by arbitrary equivalences of categories

Sch(X) ∼→ Sch(X ′)

(where X ′ is another locally noetherian scheme). To simplify notation, however, we
omit explicit mention of this equivalence, of X ′, and of the various “primed” objects
and morphisms corresponding to the original objects and morphisms in Sch(X).

Proposition 1.1. (Characterization of One-Pointed Schemes) Let us refer
to schemes whose underlying topological spaces consist of precisely one element as
one-pointed.

(i) If X is nonempty, then there exists an immersion Y ↪→ X from a reduced
one-pointed Y into X.

(ii) The reduced one-pointed objects Y of Sch(X) (i.e., objects which are spectra
of fields) may be category-theoretically characterized as the “minimal objects”,
i.e., the nonempty objects for which any monomorphism Z � Y in Sch(X) (where
Z is nonempty) is necessarily an isomorphism.

(iii) The one-pointed objects Y of Sch(X) may be category-theoretically char-
acterized as the objects for which there exists (up to isomorphism) precisely one
monomorphism Z � Y in Sch(X) (namely, Yred ↪→ Y ) from a reduced one-pointed
object Z to Y .

Proof. We begin with assertion (i). By replacing X by an open affine in X, we
may assume that X is the spectrum of a noetherian ring A. Then assertion (i)
follows from the fact that such a ring possesses at least one maximal ideal.
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Next, we turn to assertion (ii). Since an immersion is a monomorphism, the
sufficiency portion of assertion (ii) follows formally from assertion (i). As for ne-
cessity, let Z � Y be a monomorphism to a reduced one-pointed Y . Thus, the
diagonal Z → Z ×Y Z is an isomorphism (since Z → Y is a monomorphism), so
Z → Y is unramified. Since it is also clearly flat (since Y is the spectrum of a field),
we thus conclude that Z → Y is an étale monomorphism. Since Z is nonempty, we
thus conclude that Z → Y is an isomorphism, as desired.

Finally, we verify assertion (iii). Necessity follows from the existence of the
monomorphism Yred � Y ; the fact that every monomorphism Z � Y (where Z
is a reduced one-pointed object) necessarily factors through Yred; and the necessity
portion of assertion (ii). To prove sufficiency, observe that the condition stated in
assertion (iii) implies that every nonempty open subscheme of Y is equal to Y (cf.
assertion (i), applied to the open subscheme and its complement). In particular,
the underlying topological space of Y is connected and of dimension zero. Since Y
is a noetherian scheme, this implies that Y is one-pointed, as desired. ©

Corollary 1.2. (Characterization of Smooth Morphisms) The smooth
morphisms Y1 → Y2 of Sch(X) may be characterized category-theoretically as those
morphisms which satisfy the following property: Let Z0 � Z be a monomorphism
of one-pointed schemes. Then any commutative diagram

Z0 −→ Y1⏐⏐�
⏐⏐�

Z −→ Y2

admits a morphism Z → Y1 such that both of the resulting triangular diagrams
commute.

Proof. One verifies immediately that a monomorphism of one-pointed schemes
is necessarily a closed immersion. Thus, Corollary 1.2 is a formal consequence of
Proposition 1.1, (i), (iii), and a well-known characterization of smoothness (cf., e.g.,
[EGA IV], Corollary 12.1.7, Proposition 17.14.2). ©

Corollary 1.3. (Characterization of Open Immersions and Cover-
ings) The open immersions Y1 → Y2 of Sch(X) may be characterized category-
theoretically as the smooth monomorphisms. A collection Zα → Y (for α ranging
over the elements of some index set A) of open immersions of Sch(X) is a cover-
ing if and only if every monomorphism P � Y , where P is a reduced, one-pointed
scheme, admits a factorization through some Zα.

Proof. This is a formal consequence of Corollary 1.2; Proposition 1.1, (i) (applied
to the complement of the union of the images of the Zα), (ii); and [EGA IV],
Theorem 17.9.1. ©
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Next, let us recall that a sober topological space is one for which every irre-
ducible closed subset has exactly one generic point (cf. [John], Definition 7.21, (ii)).
If T is a topological space, then we shall denote the category of sheaves on T by:

Shv(T )

Here, we implicitly wish to think of Shv(T ) as a “topos over some fixed category of
sets Ens” (cf. [John], p. 113). In fact, since the natural geometric morphism of
topoi Shv(T ) → Ens is unique up to canonical isomorphism (cf. [John], Proposi-
tion 4.41), we shall take the liberty of omitting explicit mention of the “structure
morphisms to Ens” in the following discussion.

If T1, T2 are topoi, then let us denote by

Mor(T1, T2)

the category of geometric morphisms of topoi T1 → T2 (cf. [John], Definition 1.16),
and by

Mor(T1, T2)

the set of isomorphism classes of geometric morphisms of topoi T1 → T2 (i.e., the
set of isomorphism classes of objects of the category Mor(T1, T2)). Then sober
topological spaces admit the following interesting property (cf. [John], Theorem
7.24):

Theorem 1.4. (Categorical Reconstructibility of Sober Topological
Spaces) Let T1, T2 be sober topological spaces. Denote by Mor(T1, T2) the set of
continuous maps T1 → T2. Then the natural morphism

Mor(T1, T2) → Mor(Shv(T1),Shv(T2))

is a bijection.

Corollary 1.5. (Categorical Reconstructibility of Underlying Topolog-
ical Spaces) If Y is an object of Sch(X), then denote the underlying topological
space of Y by |Y |. Then |Y | may be categorically reconstructed (up to canonical
isomorphism) from the data (Sch(X), Y ) (i.e., of a category and an object in this
category).

Proof. Indeed, (since |Y | is sober — cf. [John], p. 230) this is a formal consequence
of Corollary 1.3, Theorem 1.4, since the category of sheaves Shv(|Y |) may be recon-
structed from Sch(X) as soon as one knows the subcategory of Sch(X) consisting
of open immersions into Y , together with the information of which collections of
open immersions are coverings. ©
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Ultimately, we would like to reconstruct not just the topological space |Y |
but the scheme structure of Y category-theoretically from the data (Sch(X), Y ).
Thus, to do this, it remains to reconstruct the structure sheaf OY of Y . Since this
structure sheaf is represented by the ring scheme A1

Y (i.e., the affine line, equipped
with its usual ring scheme structure) over Y , it thus suffices to show that we can
reconstruct this ring scheme category-theoretically.

Proposition 1.6. (Canonical Open Subschemes of the Projective Line)
Suppose (for simplicity) that Y is connected.

(i) The projective line P1
Y over Y , together with its labeled sections 0Y , 1Y ,

∞Y over Y , may be characterized category-theoretically (up to unique isomor-
phism) from the data (Sch(X), Y ).

(ii) The scheme (Gm)Y over Y , together with its group scheme structure and
section 1Y over Y , may be characterized category-theoretically (up to an isomor-
phism, which is unique — up to the inversion morphism on this group scheme)
from the data (Sch(X), Y ).

(iii) The scheme A1
Y over Y , together with its ring scheme structure and sec-

tions 0Y , 1Y over Y , may be characterized category-theoretically (up to canonical
isomorphism) from the data (Sch(X), Y ).

Proof. Note that, in light of Corollary 1.5, the proper morphisms of Sch(X) may be
characterized category-theoretically as those which are universally closed and give
rise to closed diagonal morphisms. Then P1

Y may be characterized as the unique (up
to possibly noncanonical isomorphism) smooth (cf. Corollary 1.2), proper Z → Y
whose fibers over reduced one-pointed objects of Sch(X) have underlying topological
spaces (cf. Corollary 1.5) which are connected and one-dimensional, and which,
moreover, admit a section σ : Y → Z with the property that the cardinality of the
Y ′-linear automorphisms of the data (Z → Y, σ) after base-change to some Y ′ → Y
cannot be bounded (by a finite cardinal) independently of Y ′. Thus, assertion (i)
follows from the fact that automorphisms of P1

Y that fix three non-intersection
sections are necessarily equal to the identity.

Assertion (ii) follows formally from assertion (i) by thinking of (Gm)Y as rep-
resenting the functor that assigns to Y ′ → Y the set of automorphisms of P1

Y ′ which
fix 0Y , ∞Y .

Finally, assertion (iii) follows formally from assertions (i), (ii) by observing
that the addition operation on A1

Y may be characterized as the unique morphism

A
1
Y ×Y A

1
Y → A

1
Y

which has the expected restrictions to 0Y , 1Y and is compatible with the action
of (Gm)Y on all three copies of A1

Y . (Note that this compatibility is simply the
“distribuitivity” property of the addition and multiplication operations of the ring
structure.) ©
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If C1, C2 are categories, then let us denote by

Isom(C1, C2)

the category of equivalences C1
∼→ C2, and by

Isom(C1, C2)

the set of isomorphism classes of equivalences C1
∼→ C2 (i.e., the set of isomorphism

classes of objects of the category Isom(C1, C2)).

We are now ready to state the main result of the present §:

Theorem 1.7. (Categorical Reconstructibility of Locally Noetherian
Schemes) Let X, X ′ be locally noetherian schemes.

(i) Let f : X → X ′ be a quasi-compact morphism of schemes. Then the
functor

Sch(f) : Sch(X ′) → Sch(X)

induced by base-change by f has no nontrivial automorphisms.

(ii) Denote the set of isomorphisms of schemes X
∼→ X ′ by Isom(X, X ′). Then

the natural map
Isom(X, X ′) → Isom(Sch(X ′),Sch(X))

given by f �→ Sch(f) is bijective.

Proof. Observe that, in assertion (i), it is necessary to assume that f be quasi-
compact in order to ensure that base-change by f preserves the property of being
noetherian. To complete the proof of assertion (i), it suffices to show that there
do not exist any nontrivial collections of automorphisms αY : Y

∼→ Y which are
functorial in Y , as Y varies among the objects in the essential image Im(Sch(f))
of Sch(f). (Here, the functoriality is also with respect to morphisms in the image
of Sch(f).) Let Y ↪→ X be an open immersion in this essential image Im(Sch(f)),
arising, say, from an open immersion Y ′ ↪→ X ′ of Sch(X ′). Since Y ↪→ X is a
monomorphism, it follows that αY is the identity. Write PY

def= P1
Y . Let CY be

the stable curve (cf., e.g., [DM]) over Y obtained by gluing together two copies
of PY along the copies of 0Y , 1Y , ∞Y . Then since any automorphism of CY

necessarily preserves the (scheme-theoretic) nodes — thought of, for instance, as
the support locus of the coherent sheaf Ext1(ΩCY /Y ,OCY ) (which is functorial in
automorphisms of CY ) — we conclude that αPY fixes (scheme-theoretically) the
sections 0Y , 1Y , ∞Y , up to a permutation ∈ S3 (the symmetric group on three
letters). But by the functoriality of Z �→ αZ , we thus conclude that this permutation
lies in the center of S3 (which is trivial), hence that αPY is the identity. From this,
we conclude (by considering the evident open immersion) that αA1

Y
is the identity,
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hence (by considering fibered products over Y ) that αAn
Y

is the identity, for all
n ≥ 1. But this implies that αZ is the identity for any Z = φ(Z ′), where Z ′ → Y ′

is affine. Thus, by the functoriality of Z �→ αZ , we conclude that αZ is the identity,
for all objects Z of Im(Sch(f)), as desired.

Next, we turn to assertion (ii). Suppose that we are given an equivalence:

φ : Sch(X ′) ∼→ Sch(X)

Let Y ′ be an object of Sch(X ′), write Y
def= φ(Y ′). Then by Corollary 1.5 above,

we obtain a natural homeomorphism

|Y | ∼→ |Y ′|

induced by φ, together with, by Proposition 1.6, (iii), a compatible isomorphism
OY ′

∼→ OY of structure sheaves. That is to say, we obtain an isomorphism of
schemes

φY : Y
∼→ Y ′

which is functorial in Y ′.

Now, let us observe that the objects of Sch(X) which are open immersions
U ↪→ X into X may be characterized category-theoretically as follows: First of all,
the objects of Sch(X) given by monomorphisms Y � X may be characterized by
the property that any arrow Z → Y in Sch(X) is the unique arrow from Z to Y .
Among such objects Y → X of Sch(X), the open immersions are those for which,
for every Z0 ↪→ Z as in Corollary 1.2, any Z0-point of Y lifts to a (unique) Z-point
of Y . Thus, by taking Y ′ equal to various open subschemes U ′ ⊆ X ′, we obtain
(by gluing) an isomorphism

φX : X
∼→ X ′

which satisfies (by the functoriality of φY ): Sch(φX) = φ (where the “=” makes
sense, in light of assertion (i)). Finally, when φ = Sch(f) for some f : X

∼→ X ′, it
is clear that φX = f . This completes the proof. ©

Finally, before proceeding, we note the following partial strengthening of The-
orem 1.7, (i):
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Theorem 1.8. (Further Rigidity Property) Let X be a locally noetherian
scheme. Suppose that for every object Y → X of Sch(X), one is given an auto-
morphism αY : Y

∼→ Y — not necessarily over X! — with the property that for
every morphism Y1 → Y2 of Sch(X), one has a commutative diagram:

Y1
αY1−→ Y1⏐⏐�

⏐⏐�
Y2

αY2−→ Y2

Then all of the αY are equal to the identity.

Proof. By considering morphisms as in Proposition 1.1, (i), one sees that every
αY induces the identity on the underlying topological space |Y | of Y . Next, observe
that the stable curve CY of the proof of Theorem 1.7, (i), is, in fact, defined over
Z. Thus, there is a natural isomorphism βCY : CY

∼→ CY lying over αY (i.e., the
product over Z of αY with the identity on the evident natural model for CY over
Z). As in the proof of Theorem 1.7, (i), αCY induces the automorphism αPY of
PY , so αPY preserves the sections 0Y , 1Y , ∞Y (up to a permutation). Moreover,
just as in the proof of Theorem 1.7, (i), this permutation is necessarily the identity.
Thus, we conclude that αPY is equal to the isomorphism βPY induced on PY by
βCY , hence that αA1

Y
is equal to the isomorphism βA1

Y
induced on A1

Y by βPY . But,
by considering sections of A1

Y → Y (i.e., morphisms Y → A1
Z), this implies that αY

induces the identity not only on |Y |, but also on sections of the structure sheaf OY ,
i.e., that αY is the identity, as desired. ©
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Section 2: Log Structures

In this §, we discuss the logarithmic analogue of the theory of §1. Let X log

be a fine (cf. [Kato1], §2.3) saturated (cf. (the evident étale generalization of)
[Kato2], §1.5) log scheme (cf. [Kato1], §1.2) whose underlying scheme X is locally
noetherian. Let us denote by

Schlog(X log)

the category whose objects are morphisms of fine saturated log schemes Y log → X log,
where Y is a noetherian scheme, and the underlying morphism of schemes Y → X

is of finite type, and whose morphisms (from an object Y log
1 → X log to an object

Y log
2 → X log) are morphisms of finite type Y log

1 → Y log
2 lying over X log. To simplify

terminology, we shall often refer to the domain Y log of an arrow Y log → X log which
is an object of Schlog(X log) as an “object of Schlog(X log)”. Note that by associating
to an object Y → X of Sch(X) the object Y log → X log of Schlog(X log) obtained by
equipping Y with the log structure obtained by pulling back the log structure on
X log via Y → X, we obtain an embedding

Sch(X) ↪→ Schlog(X log)

— which thus allows us to regard Sch(X) as a subcategory of Schlog(X log).

Let Y log be a log scheme. Then we shall denote its underlying scheme (re-
spectively, the morphism of monoids defining its log structure) by Y (respectively,
expY : MY → OY ). Thus, we have an exact sequence of étale monoids on Y

0 → O×
Y → MY → PY → 0

— where the “characteristic” PY is defined so as to make the sequence exact. If
Y log is fine (hence integral), then we have injections

PY ↪→ P gp
Y ; MY ↪→ Mgp

Y

(where the superscript “gp” denotes the group associated to the monoid in ques-
tion).

If Y is reduced (respectively, one-pointed — cf. Proposition 1.1), then we shall
say that Y log is reduced (respectively, one-pointed). Suppose that Y log is reduced
and one-pointed, i.e., Y is equal to the spectrum of a field k. Then one may think
of PY as the data of a (discrete) monoid equipped with a continuous action of the
absolute Galois group Gk of k. When this action is trivial, we shall say that the
log structure on Y log is split. In this case, we shall denote (by abuse of notation)
Γ(Y,PY ) by PY .
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Proposition 2.1. (Local Structure of Monoids) Let Y log be a reduced,
one-pointed fine saturated log scheme with split log structure. Then PY is a finitely
generated, torsion-free, integral saturated monoid, with no nonzero invertible ele-
ments. In particular, P gp

Y is a finitely generated torsion-free abelian group.

Proof. Indeed, since torsion elements of PY are necessarily invertible, and the
properties “finitely generated”, “integral”, and “saturated” follow from the defini-
tions, it suffices to verify that PY has no nonzero invertible elements. Suppose that
fP ∈ PY is invertible. Then since O×

Y is a group, any lifting (which exists étale
locally on Y ) fM of fP to MY is invertible. On the other hand, by the definition
of a log structure (cf. [Kato1], §1.2), the invertibility of expY (fM ) implies that
fM ∈ O×

Y , so fP = 0, as desired. ©

Lemma 2.2. (Pointwise Nature of Log Structures) Let Z log → Y log be a
morphism of fine log schemes. Let Σ ⊆ |Z| be a subset of the underlying topological
space |Z| of Z such that every open subset of |Z| containing Σ is equal to |Z| itself.
Suppose further that Z

∼→ Y , and that for every geometric point ζ of Z whose image
in Z lies in Σ, we have PY,ζ

∼→ PZ,ζ . Then Z log → Y log is an isomorphism.

Proof. Indeed, since we have PY,ζ = MY,ζ/O×
Y,ζ , PZ,ζ = MZ,ζ/O×

Z,ζ , it follows that
PY,ζ

∼→ PZ,ζ implies that MY,ζ
∼→ MZ,ζ . Thus, our hypothesis on Σ, together with

the coherence of the log structures involved implies that MY
∼→ MZ , as desired. ©

Proposition 2.3. (Monomorphisms of Fine Saturated Log Schemes) A
morphism Z log → Y log in Schlog(X log) is a monomorphism (in Schlog(X log)) if
and only if Z → Y is a monomorphism in the category of schemes, and, moreover,
for every geometric point ζ of Z, the induced morphism P gp

Y,ζ → P gp
Z,ζ is surjective.

Proof. Sufficiency is a formal consequence of the definitions (and the fact that for
any fine log scheme S log, MS → Mgp

S is injective). Moreover, the necessity of the
condition that Z → Y be a monomorphism (in Sch(X), which is easily verified to be
the same as a monomorphism in the category of all schemes) is a formal consequence
of the definitions. Thus, to complete the proof of necessity, it suffices — by applying
an appropriate base-change — to consider the case where Z = Y = Spec(k) (where
k is a field) and the log structures on Z log, Y log are split. If P gp

Y → P gp
Z fails to be

surjective, then there exists an artinian k-algebra A (of finite type), together with
a nontrivial character χ : P gp

Z /P gp
Y → μN (A) def= {a ∈ A× | aN = 1} (for some

integer N ≥ 1). If we equip W
def= Spec(A) with the log structure pulled back from

Z log, then we obtain a morphism W log → Z log in Schlog(X log). In particular, since
PZ

∼→ PW , we may think of χ as a character on Mgp
W which vanishes on Mgp

Y . Thus,
the automorphism α : W log → W log which is the identity on W and which maps
a section f ∈ MW to f · χ(f) has a nontrivial composite with W log → Z log, but a
trivial composite with W log → Z log → Y log. This shows that Z log → Y log is not a
monomorphism, thus completing the proof of necessity. ©
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Proposition 2.4. (Minimal Objects) An object Y log of Schlog(X log) will be
called minimal if it is nonempty and satisfies the property that any monomorphism
Z log � Y log (where Z log is nonempty) in Schlog(X log) is necessarily an isomor-
phism.

(i) A minimal object Y log is necessarily reduced and one-pointed.

(ii) If Y log is reduced and one-pointed, and its log structure is trivial, then
Y log is minimal.

(iii) If Y log is reduced and one-pointed, and its log structure is given by the
chart N 	 1 �→ 0, then Y log is minimal.

Proof. Assertions (i) and (ii) are a formal consequence of the definitions; Propo-
sition 1.1, (ii); and Proposition 2.3. Assertion (iii) is a formal consequence of the
definitions; Proposition 1.1, (ii); Proposition 2.3; and the following elementary ob-
servation: Any quotient of integral monoids N � Q for which Q has no nonzero
invertible elements (cf. Proposition 2.1), and N 	 1 does not map to 0 ∈ Q, is an
isomorphism. ©

Before proceeding, we review the following well-known

Lemma 2.5. (Monoids and Cones) Let VZ be a finitely generated free Z-
module. Write VR

def= VZ ⊗Z R; V ∨
Z

def= HomZ(VZ, Z); V ∨
R

def= V ∨
Z ⊗Z R. If σ ⊆ V ∨

R is
a strongly convex rational polyhedral cone (cf., e.g., [Oda], p. 5), then let
us write σ∨ def= {v ∈ VR | 〈v,w〉 ≥ 0, ∀ w ∈ σ}. Then:

(i) The correspondence σ �→ P
def= σ∨ ⋂

VZ defines a bijection between the set
of strongly convex rational polyhedral cones σ in V ∨

R and the set of finitely generated
saturated monoids P ⊆ VZ which generate VZ as a group.

(ii) Let P ⊆ VZ be a finitely generated monoid which generates VZ as a group.
Then its saturation P sat def= {v ∈ VZ = P gp | ∃ n ∈ Z>0 such that n · v ∈ P} is also
finitely generated.

(iii) Let P ⊆ VZ be a finitely generated saturated monoid which generates VZ

as a group and satisfies P
⋂

(−P ) = 0; let a, b ∈ P be distinct elements. Then
there exists a morphism of monoids

φ : P → N

such that φ(a) �= φ(b), and φ(c) �= 0, for all nonzero c ∈ P .

(iv) Let P1 ⊆ P2 (⊆ VZ) be finitely generated saturated monoids which generate
VZ as a group and satisfy P1 �= P2, P1

⋂
(−P1) = 0. Then there exists a morphism

of monoids
φ : P1 → N
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such that φ(c) �= 0, for all nonzero c ∈ P1, and the induced map φgp : P gp
1 = VZ → Z

satisfies φgp(P2) �⊆ N.

Proof. Indeed, assertion (i) is stated in [Oda], p. 9. Assertion (ii) follows, for
instance, from the fact that the normalization of C[P ] is finite (by elementary
commutative algebra) over C[P ] and also clearly of the form C[Q] for some monoid
Q ∈ VZ. Since by a well-known argument (cf. [Oda], p. 14), we have Q = P sat,
this finiteness implies the finite generation of P sat.

Next, we turn to assertion (iii). The condition P
⋂

(−P ) = 0 implies that
the cone σ corresponding to P (cf. (i)) generates V ∨

R . In particular, there exists an
element λ ∈ σ such that λ(b − a) �= 0. Moreover, λ can be chosen to be lie in the
interior of σ — which means that σ contains an open ball in V ∨

R containing λ —
and (since V ∨

Q is dense in V ∨
R ) to be integral (i.e., λ ∈ V ∨

Z ). These conditions imply
that the map λ : VZ → Z determined by λ maps nonzero elements of P to nonzero
elements of N (and a, b to distinct elements), hence defines a map φ : P → N with
the desired properties.

Finally, we condition assertion (iv). Let σ2 ⊆ σ1 be the cones corresponding
to P1, P2, respectively. Since σ1 �⊆ σ2, and both σ1, σ2 are closed subsets of V ∨

R ,
we conclude that the interior of σ1 is not contained in σ2, hence that there exists
an element λ in the interior of σ1 such that λ /∈ σ2. Moreover, (since V ∨

Q is dense
in V ∨

R ) λ may be chosen to belong to V ∨
Z . Since P1

⋂
(−P1) = 0, it follows that

the interior of σ1 is open in V ∨
R , so the map λ : VZ → Z maps nonzero elements of

P1 to nonzero elements of N. Since λ /∈ σ2, it follows that there exist elements of
P2 on which λ takes negative values. Thus, λ defines a map φ : P1 → N with the
desired properties. ©

Lemma 2.6. (Fibered Products of Fine Saturated Log Schemes) Let
Y log

1 → Z log, Y log
2 → Z log be morphisms in Schlog(X log). Write

W log
Schlog

def= Y log
1 ×Schlog

Zlog Y log
2 ; W log

fs
def= Y log

1 ×fs
Zlog Y log

2

W log
fine

def= Y log
1 ×fine

Zlog Y log
2 ; W log

log
def= Y log

1 ×log
Zlog Y log

2

for the fibered products in the category Schlog(X log); the category of all fine, sat-
urated log schemes; the category of all fine log schemes; the category of all log
schemes, respectively. Then:

(i) We have natural morphisms

W log
Schlog → W log

fs → W log
fine → W log

log

of which the first is an isomorphism. Moreover, Wlog may be identified with the
fibered product Y1 ×Z Y2 in the category of schemes.

(ii) The underlying morphism of schemes Wfine → Wlog of the third mor-
phism of (i) is a closed immersion which induces an isomorphism (Wfine)red →
(Wlog)red. The underlying morphism of monoids PWlog → PWfine is surjective.
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(iii) The underlying morphism of schemes Wfs → Wfine of the second morphism
of (i) is finite and surjective. The underlying morphism of monoids PWfine →
PWfs is injective and induces an isomorphism P sat

Wfine

∼→ PWfs .

Proof. Assertion (i) (except for the isomorphism assertion) is a formal conse-
quence of the definitions and [Kato1], §1.6. Assertion (ii) is a formal consequence
of the definitions and [Kato1], §2.6, 2.8 (cf. also the proof of [Kato1], Proposition
2.7). Assertion (iii) (together with the isomorphism assertion of (i)) follows by
applying the same argument as that of the proof of [Kato1], Proposition 2.7, to
the “saturation” of a chart, i.e., if P → MWfine is a local chart for W log

fine, then W log
fs

is obtained (étale locally) from W log
fine by base-changing by Z[P ] → Z[P sat], where

Spec(Z[P ]) (respectively, Spec(Z[P sat])) is regarded as being equipped with the
log structure associated to the evident pre-log structure P → Z[P ] (respectively,
P sat → Z[P sat]). ©

Proposition 2.7. (Minimal Hulls) Let Y log be a one-pointed object of the
category Schlog(X log). Then a monomorphism H log � Y log will be called a hull
for Y log if every morphism S log → Y log from a minimal object S log to Y log factors
(necessarily uniquely!) though H log. A hull H log � Y log will be called a minimal
hull if every monomorphism H log

1 � H log for which the composite H log
1 � Y log

is a hull is necessarily an isomorphism. A one-pointed object H log will be called a
minimal hull if the identity morphism H log → H log is a minimal hull for H log.

(i) There exists a morphism S log → Y log, for some minimal object S log.

(ii) If H log
1 � Y log, H log

2 � Y log are hulls, then the product H log
1 ×Y log H log

2

(in Schlog(X log)) is also a hull. In particular, any two minimal hulls are isomorphic
(via a unique isomorphism over Y log).

(iii) Y log
red � Y log is a minimal hull.

Proof. First, observe that assertion (ii) is a formal consequence of the definitions.

Next, recall that by Proposition 2.4, (i), every minimal object is reduced and
one-pointed. Thus, every morphism S log → Y log (where S log is minimal) factors
(uniquely) though Y log

red . In particular, Y log
red � Y log is a hull for Y log. Thus, for

the remainder of the proof, we may assume (without loss of generality) that Y log is
reduced. By Proposition 2.4, (ii), we may also assume (without loss of generality)
that the log structure on Y log is nontrivial.

Next, let us observe that if Y ′ → Y is finite étale, then the result H log×Y Y ′ �
Y log×Y Y ′ of base-changing a hull H log � Y log is again a hull. Indeed, this follows
immediately from the definitions. In particular, to show that any (reduced) Y log is
a minimal hull, we may assume (without loss of generality) that the log structure
on Y log is split.

Now let H log � Y log be a hull. Then I claim that the morphism P gp
Y → P gp

H is
bijective. Indeed, surjectivity follows from Proposition 2.3, while injectivity follows
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from the following observation: By Lemma 2.5, (iii) (cf. also Proposition 2.1), for
any two distinct elements a, b ∈ PY , there exists a morphism of monoids

PY → N

that maps a, b to distinct elements of N and nonzero elements of PY to nonzero
elements of N. In particular, this morphism of monoids determines a morphism from
a minimal object of the type described in Proposition 2.4, (iii), to Y log. Thus, the
desired injectivity follows from the existence of such a morphism (and the definition
of a hull). Note that the existence of such a morphism also completes the proof of
assertion (i).

Thus, to complete the proof of assertion (iii), it suffices to show that the injec-
tion PY ↪→ PH is surjective. But this follows by constructing a suitable morphism
from a minimal object of the type described in Proposition 2.4, (iii), to Y log (cf.
the preceding paragraph), by applying Lemma 2.5, (iv). ©

Corollary 2.8. (Classification of Split Minimal Objects) Every minimal
object with split log structure is one of the two types described in Proposition 2.4,
(ii), (iii).

Proof. Indeed, this follows by constructing a suitable morphism from a minimal
object of the type described in Proposition 2.4, (iii), to Y log (cf. the proof of
Proposition 2.7), by applying Lemma 2.5, (iii). ©

Corollary 2.9. (Characterization of One-Pointed Objects) The one-
pointed objects Y log of Schlog(X log) may be characterized category-theoretically as
the nonempty objects which satisfy the following property: For any two morphisms
S log

i → Y log (for i = 1, 2), where S log
i is a minimal object, the product S log

1 ×Y log

S log
2 (in Schlog(X log)) is nonempty.

Proof. If an object Y log of Schlog(X log) is not one-pointed, then by Proposition
1.1, (iii), there exist non-isomorphic monomorphisms T1, T2 � Y (in Sch(X)), for
some reduced one-pointed T1, T2. Thus, T1, T2 necessarily have non-intersecting
images in Y . If we equip T1, T2 with the log structures pulled back from Y , then
we obtain morphisms T log

1 , T log
2 → Y log in Schlog(X log) such that T log

1 ×Y log T log
2

is empty (cf. Proposition 2.6, (i), (ii), (iii)). Thus, if we choose (for i = 1, 2) a
morphism S log

i → T log
i , where S log

i is minimal — cf. Proposition 2.7, (i) — we
obtain a contradiction to the condition of Corollary 2.9.

Conversely, if an object Y log of Schlog(X log) is one-pointed, and S log
i → Y log

(for i = 1, 2) are as in the statement of Corollary 2.9, then by Proposition 2.6, (i),
(ii), (iii), S log

1 ×Y log S log
2 is nonempty, as desired. ©
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Corollary 2.10. (Characterization of Reduced One-Pointed Objects)
The reduced one-pointed objects Y log of Schlog(X log) may be characterized category-
theoretically as the one-pointed objects which are minimal hulls (cf. Proposition
2.7).

Proof. Indeed, this is a formal consequence of Proposition 2.7, (iii), and Corollary
2.9. ©

Definition 2.11.

(i) A morphism Y log
1 → Y log

2 of objects of Schlog(X log) will be called log-like if
the underlying morphism of schemes Y1 → Y2 is an isomorphism.

(ii) A morphism Y log
1 → Y log

2 of objects of Schlog(X log) will be called scheme-
like if the log structure on Y log

1 is the pull-back of the log structure on Y log
2 via the

underlying morphism of schemes Y1 → Y2.

Corollary 2.12. (Characterization of Log-like and Scheme-like Mor-
phisms of Reduced One-Pointed Objects) Let Y log

1 → Y log
2 be a morphism of

reduced one-pointed objects of Schlog(X log). Then we have the following category-
theoretic criteria for this morphism to be log-like/scheme-like:

(i) Y log
1 → Y log

2 is log-like if and only if it factors as the composite of
a monomorphism Y log

1 � Y log
3 , where Y log

3 is a reduced one-pointed object of
Schlog(X log), with a morphism Y log

3 → Y log
2 which admits a section Y log

2 → Y log
3

(i.e., such that Y log
2 → Y log

3 → Y log
2 is the identity).

(ii) Y log
1 → Y log

2 is scheme-like if and only if the category of factorizations
Y log

1 → Y log
3 → Y log

2 , where Y log
3 is a reduced one-pointed object of Schlog(X log),

and Y log
1 → Y log

3 is log-like — i.e., whose objects are such factorizations and whose
morphisms are commutative diagrams

Y log
1 −→ Y log

3 −→ Y log
2⏐⏐�

⏐⏐�
⏐⏐�

Y log
1 −→ Y log

4 −→ Y log
2

of morphisms in Sch(X log), of which Y log
1 → Y log

1 and Y log
2 → Y log

2 are the identity
morphisms — admits the factorization Y log

1 = Y log
1 → Y log

2 as a terminal object.

Proof. First, we consider assertion (i). The sufficiency of the given condition
follows from Proposition 2.3 (and the fact that the section Y log

2 → Y log
3 is necessarily

a monomorphism). To prove necessity, we construct Y log
3 as follows. First, let

Y ′ → Y
def= Y1

∼= Y2 be a finite étale Galois covering (with Y ′ connected) so that the
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pull-backs of the log structures on Y log
1 , Y log

2 to Y ′ are split. Write G
def= Gal(Y ′/Y ).

Suppose that PY1×Y Y ′ is generated by r elements. Write

PG

for the monoid given by taking the direct product of [Y ′ : Y ] copies of N, one
indexed by each element of G. Thus, G acts naturally on PG. If we equip the
scheme Y ′ with the log structure defined by the pre-log structure which sends
nonzero elements of P r

G (the direct product of r copies of PG) to 0 ∈ OY ′ and then
descend (by using the G-action on P r

G) to Y , we obtain a log scheme Y log
4 such that

PY4×Y Y ′ = P r
G.

Next, observe that (by the definition of r) there exists a G-equivariant surjec-
tion of monoids:

P r
G � PY1×Y Y ′

Thus, by descent, this surjection determines a monomorphism Y log
1 � Y log

4 .

Now set Y log
3

def= Y log
4 ×Y Y log

2 . Note that this product yields the same log
scheme, whether taken in Schlog(X log) or in the category of all log schemes. More-
over, the morphisms Y log

1 → Y log
2 , Y log

1 � Y log
4 determine a monomorphism

Y log
1 � Y log

3

whose composite with the projection Y log
3 → Y log

2 is the original morphism Y log
1 →

Y log
2 . Thus, to complete the proof of assertion (i), it suffices to prove the existence of

a section of the projection Y log
3 → Y log

2 . But the existence of such a section follows
from the (readily verified) existence of a G-equivariant morphism of monoids:

P r
G → PY2×Y Y ′

(which is not necessarily surjective).

Finally, we verify assertion (ii). Consider the factorization Y log
1 → Y log

4 →
Y log

2 , where Y4
def= Y1, and its log structure is the log structure pulled back from

Y log
2 . One checks easily that this factorization is a terminal object in the category of

factorizations and that Y log
4 → Y log

2 is (by construction) scheme-like. If Y log
1 → Y log

2

is scheme-like, then it follows from the definitions that the factorization Y log
1 →

Y log
4 → Y log

2 is isomorphic to the factorization Y log
1 = Y log

1 → Y log
2 . This proves

necessity. On the other hand, if the factorization Y log
1 = Y log

1 → Y log
2 is a terminal

object, then since a terminal object is unique (up to isomorphism), we thus conclude
that Y log

1 = Y log
1 → Y log

2 is isomorphic to Y log
1 → Y log

4 → Y log
2 , so Y log

1 → Y log
2 is

scheme-like. This proves sufficiency. ©
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Corollary 2.13. (Characterization of Restriction of the Log Structure
to a Point) Let S log � Y log be a monomorphism of objects of Schlog(X log). Sup-
pose that S log is reduced and one-pointed. Then S log → Y log is scheme-like if and
only if it is a terminal object among the arrows T log → Y log over Y log for which
T log is reduced and one-pointed, and, moreover, T log ×Y log S log is nonempty.

Proof. Indeed, this is a formal consequence of the observation that the condition
that T log ×Y log S log be nonempty is equivalent to the condition that T and S have
the same image in Y (cf. Corollary 2.9). ©

Corollary 2.14. (Characterization of Arbitrary Scheme-like Morphisms)
Let Y log

1 → Y log
2 be a morphism of objects of Schlog(X log). Then we have the follow-

ing category-theoretic criterion for this morphism to be scheme-like: Y log
1 →

Y log
2 is scheme-like if and only if for every commutative diagram

S log
1 � Y log

1⏐⏐�
⏐⏐�

S log
2 � Y log

2

of morphisms in Sch(X log), where (for i = 1, 2) S log
i is reduced and one-pointed,

and the horizontal morphisms are scheme-like monomorphisms, it holds that the
morphism S log

1 → S log
2 is also scheme-like.

Proof. Indeed, this is a formal consequence of Corollaries 2.12, (ii); 2.13; Lemma
2.2; and Proposition 1.1, (i) (which implies that any open subset of Y1 that contains
the images of all scheme-like monomorphisms S log

1 → Y log
1 is equal to Y1). ©

Corollary 2.15. (Reconstruction of the Underlying Scheme) Let Y log be
an object of Schlog(X log). Then the functor

Sch(Y ) → Schlog(Y log) (⊆ Schlog(X log))

{Z → Y } → {Z log → Y log}

— defined by equipping Z with the log structure pulled back from Y — determines
an equivalence of categories between Sch(Y ) and the subcategory of Schlog(Y log)
of objects Z log → Y log for which the morphism Z log → Y log is scheme-like and
morphisms Z log

1 → Z log
2 (over Y log) which are scheme-like. In particular, (cf.

Theorem 1.7) one can reconstruct the scheme Y category-theoretically from the data
(Schlog(X log), Y log) (i.e., of a category and an object in the category) in a fashion
which is functorial in Y log.

Proof. This is a formal consequence of Corollary 2.14 and Theorem 1.7. ©
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Remark 2.15.1. Note that the above proof of Corollary 2.15 furnishes an inter-
esting application of Theorem 1.7, i.e., an interesting instance of a natural situation
in which the category “Sch(Y )” may appear “in disguise” (i.e., as a certain subcate-
gory of Schlog(Y log)). Another (similar) example of the category Sch(Y ) appearing
in disguise is the (classical) theory of (say, faithfully flat) descent: Indeed, suppose
that Y is an S-scheme of finite type (where S is noetherian), and that T → S
is faithfully flat. Then Sch(Y ) “appears in disguise” as the category of objects of
Sch(Y ×S T ) equipped with descent data for T → S.

Thus, in order to prove the logarithmic analogue of Theorem 1.7, it remains
only to reconstruct (in a category-theoretic fashion) the log structure on an object
Y log of Schlog(X log). To do this, we use the object A1

Y (as in §1), which we equip
with two distinct log structures, as follows: Write

AY log
def= A

1
Z ×Z Y log; A

log
Y log

def= (A1
Z)log ×Z Y log

where (A1
Z)log is defined to be the affine line A1

Z = Spec(Z[T ]) over Z equipped with
the log structure determined by the divisor V (T ) (i.e., “the origin”). Thus, (one
verifies easily that) we have a natural morphism

expA : A
log
Z → AZ

whose induced map on Y log-valued points may be naturally identified with:

expY : MY → OY

Moreover, (one verifies easily that) the morphism AY ×Y AY → AY that defines
the multiplication operation on the ring scheme AY → Y admits a unique extension
to a morphism of log schemes over Y log:

A
log
Y log ×Y log A

log
Y log → A

log
Y log

This morphism induces (on Y log-valued points) the monoid operation on MY .

Lemma 2.16. (Characterization of the Log Structure on the Affine
Line) Let Y log be an object of Schlog(X log). Then the arrow A

log
Y log → Y log of

Schlog(X log) may be category-theoretically characterized as the unique (up to canon-
ical isomorphism) arrow Z log → Y log equipped with an identification of the under-
lying morphism of schemes (cf. Corollary 2.15) Z → Y with AY → Y satisfying
the following properties:

(i) Away from the zero section of Z → Y , the morphism Z log → Y log is
scheme-like.
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(ii) Let Z log
1 � Z log, Z log

2 � Y log be scheme-like monomorphisms, where Z log
1 ,

Z log
2 are reduced, one-pointed. Suppose that the composite Z log

1 → Z log → Y log

factors through (necessarily uniquely!) Z log
2 , and that the image of Z1 lies in the

zero section of Z → Y . Then if the log structure on Z log
2 is trivial, we assume that

Z log
1 → Z log

2 is not an isomorphism. On the other hand, if the log structure on
Z log

2 is nontrivial, we assume that Z log
1 → Z log

2 satisfies the (category-theoretic)
condition of Lemma 2.17, (ii), below.

(iii) Let T log
0 � T log be a monomorphism of one-pointed objects of Schlog(X log).

Then any commutative diagram

T log
0 −→ Z log

⏐⏐�
⏐⏐�

T log −→ Y log

admits a morphism T log → Z log such that both of the resulting triangular diagrams
commute.

(iv) There exists a Y log-morphism Z log×Y logZ log → Z log in Schlog(X log) whose
induced morphism on underlying schemes is equal to the morphism AY ×Y AY → AY

defining the multiplication operation on AY .

Finally, assuming that all of these conditions (i) — (iv) are satisfied, the morphism
Z log ×Y log Z log → Z log of (iv) is the unique Y log-morphism in Schlog(X log) whose
induced morphism on underlying schemes is equal to the morphism AY ×Y AY → AY

defining the multiplication operation on AY .

Proof. First, we observe that condition (ii) of Lemma 2.16 is category-theoretic
— cf. Lemma 2.17, (i), (ii), below. Next, we observe that it suffices to determine
the log structure in a formal neighborhood of the zero section of Z → Y . Thus, it
suffices to replace Z, Y by étale localizations of Z, Y such that the zero section
Y → Z is compatible with these étale localizations. To keep the notation simple,
we shall denote (for the remainder of this proof) these étale localizations (by abuse
of notation) by Z, Y . Thus, we have a morphism of log schemes Z log → Y log,
together with a “zero section” Y log → Z log. Also, in the following discussion, we fix
a point z ∈ Z lying in this zero section which is the image of a morphism of finite
type from a reduced, one-pointed scheme to Z. Write y ∈ Y for the image of z in
Y .

Since we have allowed ourself to pass to étale localizations, we may assume
that the morphism Z log → Y log admits a chart Q → P — where we may assume
that Q (respectively, P ) maps bijectively onto PY,y (respectively, PZ,z) (cf. [Kato2],
Lemma 1.6, (2)) — i.e., that we have a commutative diagram

Z log −→ W log −→ Spec(Z[P ])log

↘
⏐⏐�

⏐⏐�
Y log −→ Spec(Z[Q])log
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where W log is defined as the fibered product that makes the square cartesian;
all of the horizontal morphisms are scheme-like; and Spec(Z[P ])log, Spec(Z[Q])log

are equipped with the log structures associated to the evident pre-log structures
P → Spec(Z[P ]), Q → Spec(Z[Q]). Note that z �→ w ∈ W such that the residue
fields k(z), k(w), k(y) all coincide. Let us denote this field by k.

Now let us write Ŵ log for the formal completion of W log at w. Write W log
0 ⊆

Ŵ log for Spec(k(w)), equipped with the log structure pulled back from W log. Then
it follows formally from the above discussion that the monomorphism W log

0 � W log

factors (uniquely) through Z log → W log, and that the composite of W log
0 → Z log

with Z log → Y log coincides with the composite of W log
0 � W log with W log → Y log.

It thus follows from condition (iii) of Lemma 2.16 that we have a morphism

Ŵ log → Z log

whose composite κ : Ŵ log → W log with Z log → W log restricts to the natural
monomorphism W log

0 � W log on W log
0 , hence induces a morphism κ̂ : Ŵ log → Ŵ log

(which is the identity on W log
0 ). Moreover, (by condition (iii) of Lemma 2.16) we

may choose Ŵ log → Z log so that the composite of κ with W log → Y log is the
natural morphism Ŵ log → Y log. It thus follows formally that the scheme-like
endomorphism

κ̂ : Ŵ log → Ŵ log

is a closed immersion, hence (by the elementary commutative algebra fact that
surjective endomorphisms of noetherian rings are necessarily bijective) an isomor-
phism. In particular, we conclude that if we denote by Ẑ log the formal completion
of Z log at z, then the morphism Ŵ log → Z log gives rise to a closed immersion

Ŵ log ↪→ Ẑ log

whose composite with the natural morphism Ẑ log → Ŵ log is κ̂.

Next, let us denote by Ŵ log
y , Ẑ log

y the fibers of Ŵ log, Ẑ log over y. Then by
condition (ii) of Lemma 2.16, we have the following inequalities:

1 = dim(Ẑy) ≥ dim(Ŵy) ≥ dim(Spec(Z[P ])) − dim(Spec(Z[Q]))

= rk(P gp) − rk(Qgp) ≥ 1

Thus, 1 = dim(Ẑy) = dim(Ŵy). Moreover, since Ẑy is the formal spectrum of a
power series ring in one variable over the field k (a ring which has no nontrivial
dimension one quotients), we thus conclude that the closed immersion Ŵy ↪→ Ẑy is,
in fact, an isomorphism. In particular, if we interpret this fact (cf. the definition
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of W log) in terms of the “power series rings” k[[Q]], k[[P ]] (where we note that it
makes sense to consider such power series since Q, P have no nonzero invertible
elements — cf. Proposition 2.1), we conclude that the fiber over the closed point
of the range of the morphism

Spf(k[[P ]]) → Spf(k[[Q]])

is isomorphic to Spf(k[[T ]]) (where T is an indeterminate). That is to say, there
exists a surjection (of complete noetherian rings)

k[[Q]][[T ]] � k[[P ]]

(where T is an indeterminate). Since k[[Q]][[T ]] is a domain — indeed, k[Q] is
an excellent normal domain, so its completion k[[Q]], being local and normal, is
necessarily a domain — and dim(k[[Q]][[T ]]) = dim(k[[P ]]), we thus conclude that
this surjection is, in fact, an isomorphism.

In particular, it follows that the morphism

k[[Q]] → k[[P ]]

is flat. This implies — cf. [Kato1], the proof of the implication (iii) =⇒ (v) of
Proposition 4.1, in which it is clear that “k[[P ]]”, “k[[Q]]” may be substituted for
“k[P ]”, “k[Q]” — that the morphism of monoids Q → P is integral, i.e., satisfies
the conditions of [Kato1], Proposition 4.1. Moreover, by condition (ii) of Lemma
2.16; Lemma 2.17, (ii), below, the morphism Qgp → P gp is injective, with nonzero,
torsion-free cokernel. Put another way, we have shown that the morphism

Spec(k[P ])log → Spec(k[Q])log

is integral (in the sense of [Kato1], Definition 4.3), log smooth, and of relative
dimension 1. Moreover, the scheme-theoretic fiber of this morphism over the k-
point of the range defined by sending all the elements of Q to 0 is smooth over
k. Thus, by the theory of [KatoF] (cf. especially, [KatoF], Theorem 1.1, (2)), we
conclude that the morphism of monoids Q → P may be identified with the natural
inclusion:

Q ↪→ Q × N

Finally, by Lemma 2.18 below (and condition (iv) of Lemma 2.16), we conclude
that the divisor in Z determined by considering the image under MZ → OZ of
the inverse image in MZ of the element 1 ∈ N ⊆ Q × N = P = PZ is equal
(scheme-theoretically) to the zero section. This completes the proof of Lemma 2.16
(including the assertion at the end of the statement of Lemma 2.16). ©
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Lemma 2.17. (Characterization of Trivial and Relatively Nontrivial
Log Structures)

(i) Suppose that Z log is a reduced, one-pointed object of Schlog(X log). Then
the condition that the log structure on Z log be trivial may be categeory-theoretically
characterized by the condition that a morphism W log → Z log in Schlog(X log) is
completely determined by the underlying morphism of schemes (cf. Corollary 2.15).

(ii) Let Z log
1 → Z log

2 be a log-like morphism between reduced, one-pointed
objects of Schlog(X log) with nontrivial log structures. Suppose that the morphism
W log

1 → W log
2 obtained by base-changing this morphism by some scheme-like mor-

phism W log
2 → Z log

2 between reduced, one-pointed objects of Schlog(X log) admits
at least two sections. Then the morphism P gp

Z2
→ P gp

Z1
is injective and has a

nonzero, torsion-free cokernel.

Proof. Assertion (i) is a formal consequence of the definitions and the observa-
tion that if the log structure on Z log is split and nontrivial, then Z log has lots of
endomorphisms which induce the identity on the underlying scheme Z — given
by multiplication by a positive integer on PZ . As for assertion (ii), the injectiv-
ity of P gp

Z2
→ P gp

Z1
, as well as the fact that its cokernel is torsion-free, is a formal

consequence of the existence of sections of W log
1 → W log

2 (and Proposition 2.1).
Finally, if this cokernel were zero, then W log

1 → W log
2 would be a monomorphism

(by Proposition 2.3), hence could not admit more than one section. This completes
the proof of assertion (ii). ©

Lemma 2.18. (Characterization of the Origin) Let A be an artinian
local ring, with maximal ideal mA. Then any δ ∈ mA such that one has

T1 · T2 − δ ∈ (T1 − δ)(T2 − δ) · A[[T1, T2]]×

(where T1, T2 are indeterminates) is equal to 0.

Proof. Indeed, by induction on the length of A, we may assume (without loss of
generality) that δ ∈ I, for some ideal I ⊆ A such that I2 = 0. Then for some unit
u ∈ A[[T1, T2]]×, we have:

(T1 · T2 − δ) = (T1 − δ)(T2 − δ) · u
= (T1 · T2 − δ · T1 − δ · T2) · u ∈ A[[T1, T2]]

Thus, projecting by A[[T1, T2]] � A (where T1, T2 �→ 0) yields δ = 0, as desired. ©

We are now ready to state the main result of the present §:



24 SHINICHI MOCHIZUKI

Theorem 2.19. (Categorical Reconstructibility of Locally Noetherian
Log Schemes) Let X log, (X′)log be fine saturated log schemes, whose under-
lying schemes are locally noetherian.

(i) Let f log : X log → (X′)log be a morphism of log schemes, whose underlying
morphism of schemes is quasi-compact. Then the functor

Schlog(f log) : Schlog((X′)log) → Schlog(X log)

induced by base-change by f log has no nontrivial automorphisms.

(ii) Denote the set of isomorphisms of log schemes X log ∼→ (X′)log by:

Isom(X log, (X′)log)

Then the natural map

Isom(X log, (X′)log) → Isom(Schlog((X′)log),Schlog(X log))

given by f log �→ Schlog(f log) is bijective.

Proof. First, we verify assertion (i). It is a formal consequence of Theorem
1.7, (i), that any functorial automorphism of the objects of the essential image
Im(Schlog(f log)) of Schlog((X′)log) is the identity on the underlying schemes. More-
over, since every automorphism of a log scheme of the form given in Proposition
2.4, (iii), which induces the identity on the underlying scheme necessarily induces
the identity on the characteristic of the log scheme, and the morphisms from such
log schemes (i.e., of the form given in Proposition 2.4, (iii)) to an arbitrary object
(Y ′)log of Schlog((X′)log) are sufficiently abundant to “separate points” (cf. Lemma
2.5, (iii)) of the geometric fibers of the characteristic PY ′ of (Y ′)log, we conclude
that the induced automorphism on the characteristic PY ′ is also the identity. Thus,
by functoriality (and the discussion preceding Lemma 2.16), it follows that it suf-
fices to prove that any Y log-linear automorphism βZlog of an arrow Z log → Y log

satisfying the conditions of Lemma 2.16 such that βZlog induces the identity on the
underlying schemes and characteristics is necessarily the identity on Z log. But since
the subobject L× of MZ given by the sheaf of ideals of the zero section — where we
note that this subobject L× is stabilized by βZlog since βZlog induces the identity
on the characteristic PZ — clearly maps injectively via expZ into OZ (and βZlog

induces the identity on OZ), we thus conclude that such an βZlog is the identity on
Z log, as desired.

Finally, assertion (ii) follows formally — cf. the proof of Theorem 1.7, (ii)
— from assertion (i); Theorem 1.7, (ii); and Lemma 2.16 (cf. also the discussion
preceding Lemma 2.16). ©

Finally, we consider the logarithmic analogue of Theorem 1.8:
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Theorem 2.20. (Further Rigidity Property) Let X log be a fine saturated
log scheme, whose underlying scheme is locally noetherian. Suppose that for
every object Y log → X log of Schlog(X log), one is given an automorphism αY log :
Y log ∼→ Y log — not necessarily over X log! — with the property that for every
morphism Y log

1 → Y log
2 of Schlog(X log), one has a commutative diagram:

Y log
1

α
Y

log
1−→ Y log

1⏐⏐�
⏐⏐�

Y log
2

α
Y

log
2−→ Y log

2

Then all of the αY log are equal to the identity.

Proof. By Theorem 1.8, every αY log induces the identity on the underlying scheme
Y . In particular, α

A
log
Y log

induces the identity on the underlying scheme AY . More-

over, just as in the proof of Theorem 2.19, (i), since the characteristic of a log
scheme of the form given in Proposition 2.4, (iii), has no nontrivial automorphisms,
one concludes — by applying Lemma 2.5, (iii), to “separate points” — that αY log

induces the identity on the characteristic PY . Thus, we conclude (cf. the proof of
Theorem 2.19, (i)) that αY log is the identity, as desired. ©
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