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Abstract.

Let ¥ be a nonempty set of prime numbers. In the present pa-
per, we continue our study of the pro-3 fundamental groups of hyper-
bolic curves and their associated configuration spaces over algebraically
closed fields of characteristic zero. Our first main result asserts, roughly
speaking, that if an F-admissible automorphism [i.e., an automorphism
that preserves the fiber subgroups that arise as kernels associated to the
various natural projections of the configuration space under consider-
ation to configuration spaces of lower dimension] of a configuration
space group arises from an F-admissible automorphism of a configura-
tion space group [arising from a configuration space| of strictly higher
dimension, then it is necessarily FC-admissible, i.e., preserves the cus-
pidal inertia subgroups of the various subquotients corresponding to
surface groups. After discussing various abstract profinite combinato-
rial technical tools involving semi-graphs of anabelioids of PSC-type
that are motivated by the well-known classical theory of topological
surfaces, we proceed to develop a theory of profinite Dehn twists, i.e.,
an abstract profinite combinatorial analogue of classical Dehn twists
associated to cycles on topological surfaces. This theory of profinite
Dehn twists leads naturally to comparison results between the abstract
combinatorial machinery developed in the present paper and more clas-
sical scheme-theoretic constructions. In particular, we obtain a purely
combinatorial description of the Galois action associated to a [scheme-
theoreticl] degenerating family of hyperbolic curves over a complete
equicharacteristic discrete valuation ring of characteristic zero. Finally,
we apply the theory of profinite Dehn twists to prove a “geometric ver-
sion of the Grothendieck Conjecture” for — i.e., put another way, we
compute the centralizer of the geometric monodromy associated to —
the tautological curve over the moduli stack of pointed smooth curves.
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§ Introduction

Let 3 C Primes be a nonempty subset of the set of prime numbers
Primes. In the present paper, we continue our study [cf. [SemiAn],
[CnbGC], [CmbCsp], [MT], [NodNon]|| of the anabelian geometry of
semi-graphs of anabelioids of [pro-X] PSC-type, i.e., semi-graphs of an-
abelioids that arise from a pointed stable curve over an algebraically
closed field of characteristic zero. Roughly speaking, such a “semi-
graph of anabelioids” may be thought of as a slightly modified, Galois
category-theoretic formulation of the “graph of profinite groups” asso-
ciated to such a pointed stable curve that takes into account the cusps
[i.e., marked points] of the pointed stable curve, and in which the profi-
nite groups that appear are regarded as being defined only up to inner
automorphism. At a more conceptual level, the notion of a semi-graph of
anabelioids of PSC-type may be thought of as a sort of abstract profi-
nite combinatorial analogue of the notion of a hyperbolic topolog-
ical surface of finite type, i.e., the underlying topological surface of
a hyperbolic Riemann surface of finite type. One central object of study
in this context is the notion of an outer representation of IPSC-type [cf.
[NodNon], Definition 2.4, (i)], which may be thought of as an abstract
profinite combinatorial analogue of the scheme-theoretic notion of a de-
generating family of hyperbolic curves over a complete discrete valuation
ring. In [NodNon]|, we studied a purely combinatorial generalization of
this notion, namely, the notion of an outer representation of NN-type [cf.
[NodNon], Definition 2.4, (iii)], which may be thought of as an abstract
profinite combinatorial analogue of the topological notion of a family
of hyperbolic topological surfaces of finite type over a circle.
Here, we recall that such families are a central object of study in the
theory of hyperbolic threefolds.

Another central object of study in the combinatorial anabelian ge-
ometry of hyperbolic curves [cf. [CmbCsp], [MT], [NodNon]| is the no-
tion of a configuration space group [cf. [MT], Definition 2.3, (i)], i.e.,
the pro-X fundamental group of the configuration space associated to a
hyperbolic curve over an algebraically closed field of characteristic zero,
where ¥ is either equal to Primes or of cardinality one. In [MT], it
was shown [cf. [MT], Corollary 6.3] that, if one excludes the case of
hyperbolic curves of type (g,7) € {(0,3), (1,1)}, then, up to a permu-
tation of the factors of the configuration space under consideration, any
automorphism of a configuration space group is necessarily F-admissible
[cf. [CmbCsp|, Definition 1.1, (ii)], i.e., preserves the fiber subgroups
that arise as kernels associated to the various natural projections of the
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configuration space under consideration to configuration spaces of lower
dimension.

In §1, we prove our first main result [cf. Corollary 1.9], by means of
techniques that extend the techniques of [MT], §4, i.e., techniques that
center around applying the fact that the first Chern class associated
to the diagonal divisor in a product of two copies of a proper hyper-
bolic curve consists, in essence, of the identity matriz [cf. Lemma 1.3,
(iii)]. This result asserts, roughly speaking, that if an F-admissible auto-
morphism of a configuration space group arises from an F-admissible
automorphism of a configuration space group [arising from a configu-
ration space| of strictly higher dimension, then it is necessarily
FC-admissible [cf. [CmbCsp]|, Definition 1.1, (ii)], i.e., preserves the
cuspidal inertia subgroups of the various subquotients corresponding to
surface groups.

Theorem A (F-admissibility and FC-admissibility). Let ¥ be
a set of prime numbers which is either of cardinality one or equal
to the set of all prime numbers; n a positive integer; (g,r) a pair
of nonnegative integers such that 2g — 2 +r > 0; X a hyperbolic curve
of type (g,r) over an algebraically closed field k of characteristic ¢ %;
X, the n-th configuration space of X ; 1L, the mazimal pro-% quotient
of the fundamental group of X,,; “Out™(=)”, “Out’(=)” € “Out(-)”
the subgroups of FC- and F-admissible [cf. [CmbCsp]|, Definition 1.1,
(ii)] outomorphisms [cf. the discussion entitled “Topological groups” in
§0] of {(—=)”. Then the following hold:

(i) Let a € Out™(I,41). Then o induces the same outomor-

phism of IL,, relative to the various quotients 11,11 — 1L, by
fiber subgroups of length 1 [cf. [MT], Definition 2.3, (iii)]. In
particular, we obtain a natural homomorphism

Out®(IT,,41) — Out”(I1,,) .

(ii)  The image of the homomorphism
OutF(HnH) — OutF(Hn)
of (i) is contained in
Out™(11,,) € Out¥(11,,) .
For the convenience of the reader, we remark that our treatment of
Theorem A in §1 does not require any knowledge of the theory of semi-

graphs of anabelioids. On the other hand, in a sequel to the present pa-
per, we intend to prove a substantial stengthening of Theorem A, whose
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proof makes quite essential use of the theory of [CnbGC], [CmbCsp], and
[NodNon] [i.e., in particular, of the theory of semi-graphs of anabelioids
of PSC-type].

In §2 and §3, we develop various technical tools that will play a cru-
cial role in the subsequent development of the theory of the present pa-
per. In §2, we study various fundamental operations on semi-graphs
of anabelioids of PSC-type. A more detailed description of these opera-
tions may be found in the discussion at the beginning of §2, as well as in
the various illustrations referred to in this discussion. Roughly speaking,
these operations may be thought of as abstract profinite combinatorial
analogues of various well-known operations that occur in the theory of
“surgery” on topological surfaces — i.e.,

e restriction to a subsurface arising from a decomposition, such
as a “pants decomposition”, of the surface or to a [suitably
positioned] cycle;

e partially compactifying the surface by adding “missing
points”;

e cutting a surface along a [suitably positioned] cycle;

e gluing together two surfaces along [suitably positioned] cy-
cles.

Most of §2 is devoted to the abstract combinatorial formulation of these
operations, as well as to the verification of various basic properties in-
volving these operations.

In §3, we develop the local theory of the second cohomology group
with compact supports associated to various sub-semi-graphs and com-
ponents of a semi-graph of anabelioids of PSC-type. Roughly speaking,
this theory may be thought of as a sort of abstract profinite combina-
torial analogue of the local theory of orientations on a topological
surface S, i.e., the theory of the locally defined cohomology modules

(U,x) — H*(U,U\{z}Z) (27)

— where U C S is an open subset, x € U. In the abstract profinite
combinatorial context of the present paper, the various locally defined
second cohomology groups with compact supports give rise to cyclo-
tomes, i.e., copies of quotients of the once-Tate-twisted Galois module
2(1) The main result that we obtain in §3 concerns various canoni-
cal synchronizations of cyclotomes [cf. Corollary 3.9], i.e., canon-
ical isomorphisms between these cyclotomes associated to various local
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portions of the given semi-graph of anabelioids of PSC-type which are
compatible with the various fundamental operations studied in §2.

In §4, we apply the technical tools developed in §2, §3 to define
and study the notion of a profinite Dehn [multi-|twist [cf. Defini-
tion 4.4; Theorem 4.8, (iv)]. This notion is, needless to say, a natural
abstract profinite combinatorial analogue of the usual notion of a Dehn
twist in the theory of topological surfaces. On the other hand, it is de-
fined, in keeping with the spirit of the present paper, in a fashion that
is purely combinatorial, i.e., without resorting to the “crutch” of consid-
ering, for instance, profinite closures of Dehn twists associated to cycles
on topological surfaces. Our main results in §4 [cf. Theorem 4.8, (i),
(iv); Proposition 4.10, (ii)] assert, roughly speaking, that profinite Dehn
twists satisfy a structure theory of the sort that one would expect from
the analogy with the topological case, and that this structure theory is
compatible, in a suitable sense, with the various fundamental operations
studied in §2.

Theorem B (Properties of profinite Dehn multi-twists). Let
3 be a nonempty set of prime numbers and G a semi-graph of anabelioids
of pro-% PSC-type. Write

Autle™Pl(G) € Aut(G)

for the group of automorphisms of G which induce the identity automor-
phism on the underlying semi-graph of G and

Dehn(G) o { o € AutlePhl(g) |ag|, =idg, for any v € Vert(G) }

— where we write ag|, for the restriction of « to the semi-graph of
anabelioids G|, of pro-¥ PSC-type determined by v € Vert(G) [¢f. Def-
initions 2.1, (ui); 2.14, (ii); Remark 2.5.1, (ii)]; we shall refer to an
element of Dehn(G) as a profinite Dehn multi-twist of G. Then the
following hold:

(i) (Normality) Dehn(G) is normal in Aut(G).

(ii)  (Structure of the group of profinite Dehn multi-twists)
Write o
Ag © Homs,, (H2(G,2%),Z%)
for the cyclotome associated to G [cf. Definitions 3.1, (ii),
(iv); 3.8, (i)]. Then there exists a natural isomorphism

Dg: Dehn(G) = P Ag
Node(G)
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that is functorial, in G, with respect to isomorphisms of semi-
graphs of anabelioids. In particular, Dehn(G) is o finitely
generated free Z>-module of rank Node(G)!. We shall
refer to a nontrivial profinite Dehn multi-twist whose image
€ @Brode(g) Mg lies in a direct summand [i.e., in a single “Ag”]
as a profinite Dehn twist.

(iii) (Exact sequence relating profinite Dehn multi-twists
and glueable outomorphisms) Write

Glu(g)c [ Aut®=PM(gl],)

veVert(G)

for the [closed] subgroup of “glueable” collections of outomor-
phisms of the direct product [ ], ever(q) Aut!®P(G,)) consist-
ing of elements (Qy)vevert(g) such that x,(aw) = Xw(aw) for
any v, w € Vert(G) — where we write G|, for the semi-graph of
anabelioids of pro-¥. PSC-type determined by v € Vert(G) [cf.
Definition 2.1, (i1i)] and x,: Aut(Gl|,) — (Z®)* for the pro-
¥ cyclotomic character of v € Vert(G) [c¢f. Definition 3.8,
(ii)]. Then the natural homomorphism

AUtlgrphl(g) — H'L)GVert(g) AU‘tlgrphl(g|v)
«a = (ag|, )vevert(g)

factors through Glu(G) C [T, evert(g) Aut'#P (G|,), and, more-

over, the resulting homomorphism pge”: Autlereh! (G) —
Glu(9) [cf. (i)] fits into an exact sequence of profinite groups

1 — Dehn(G) — Aut/#™l(G) 2N Glu(G) — 1.

The approach of §2, §3, §4 is purely combinatorial in nature. On the
other hand, in §5, we return briefly to the world of [log]/ schemes in or-
der to compare the purely combinatorial constructions of §2, §3, §4
to analogous constructions from scheme theory. The main techinical
result [cf. Theorem 5.7] of §5 asserts that the purely combinatorial
synchronizations of cyclotomes constructed in §3, §4 for the profinite
Dehn twists associated to the various nodes of the semi-graph of anabe-
lioids of PSC-type under consideration coincide with certain natural
scheme-theoretic synchronizations of cyclotomes. This technical
result is obtained, roughly speaking, by applying the various fundamen-
tal operations of §2 so as to reduce to the case where the semi-graph of
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anabelioids of PSC-type under consideration admits a symmetry that
permutes the nodes [cf. Fig. 6]; the desired coincidence of synchro-
nizations is then obtained by observing that both the combinatorial and
the scheme-theoretic synchronizations are compatible with this symme-
try. One way to understand this fundamental coincidence of synchro-
nizations is as a sort of abstract combinatorial analogue of the cyclotomic
synchronization given in [GalSct], Theorem 4.3; [AbsHyp], Lemma 2.5,
(ii) [cf. Remark 5.9.1, (i)]. Another way to understand this fundamental
coincidence of synchronizations is as a statement to the effect that

the Galois action associated to a [scheme-theoretic!]
degenerating family of hyperbolic curves over a com-
plete equicharacteristic discrete valuation ring of
characteristic zero — i.e., “an outer representation
of IPSC-type” — admits a purely combinatorial
description [cf. Corollary 5.9, (iii)].

That is to say, one central problem in the theory of outer Galois repre-
sentations associated to hyperbolic curves over arithmetic fields is pre-
cisely the problem of giving such a “purely combinatorial description”
of the outer Galois representation. Indeed, this point of view plays a
central role in the theory of the Grothendieck-Teichmiiller group. Thus,
although an explicit solution to this problem is well out of reach at
the present time in the case of number fields or mized-characteristic lo-
cal fields, the theory of §5 yields a solution to this problem in the case
of complete equicharacteristic discrete valuation fields of characteristic
zero. One consequence of this solution is the following criterion for an
outer representation to be of IPSC-type [cf. Corollary 5.10].

Theorem C (Combinatorial/group-theoretic nature of
scheme-theoreticity). Let (g,r) be a pair of nonnegative integers such
that 29 — 2 +r > 0; X a nonempty set of prime numbers; R a complete
discrete valuation ring whose residue field k is separably closed of char-

acteristic € X; S'°% the log scheme obtained by equipping S def Spec R

with the log structure determined by the mazimal ideal of R; (Mg,r)s
the moduli stack of r-pointed stable curves of genus g over S whose

r marked points are equipped with an ordering; (Mgy.)s C (My.r)s

— ——1
the open substack of (Mg »)s parametrizing smooth curves; (M;f)s the

log stack obtained by equipping (Mg ,)s with the log structure associ-

ated to the divisor with normal crossings (Mg, )s\ (Mgr)s C (Mg, )s;
z € (My,)s(k) a k-valued point of (Mg,)s; O the completion of the
local ring of (My,,)s at the image of x; T'°¢ the log scheme obtained by
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equipping T' = Spec@ with the log structure induced by the log struc-
—1

ture of (M;f)s,' t°8 the log scheme obtained by equipping the closed

point of T with the log structure induced by the log structure of T'°%;

X;Og the stable log curve over t'°¢ corresponding to the natural strict (1-
)morphism t'°8 — (ﬂ;f)s; Ipiez the maximal pro-X quotient of the log
fundamental group 7 (T'°8) of T'°8; Iqe the mazimal pro-Y. quotient
of the log fundamental group m(S'8) of S'°8; G e the semi-graph of
anabelioids of pro-X PSC-type determined by the stable log curve thog

[¢f. [CmbGC], Ezample 2.5]; puX“lio‘;: Ipoe — Aut(Gyioy) the natural

outer representation associated to X;Og [¢f. Definition 5.5]; I a profinite
group; p: I — Aut(Gy...) an outer representation of pro-X PSC-type
[¢f. [NodNon], Definition 2.1, (i)]. Then the following conditions are
equivalent:

(i) pis of IPSC-type [cf. [NodNon], Definition 2.4, (i)].

(ii)  There exist a morphism of log schemes ¢'°8: §1°8 — T'°8 oyer
S and an isomorphism of outer representations of pro-%
PSC-type p = pgéioé o Iyos [cf. [NodNon], Definition 2.1, (i)]
— where we write Iyos: Igos — Ipios for the homomorphism
induced by ¢'°% — i.c., there exist an automorphism 3 of

gXlog and an isomorphism o: I = I},;Og such that the diagram

I — s Aut(Gye)

o I

pxlog OI¢log
Lo 2 A GG )

— where the right-hand vertical arrow is the automorphism of
Aut(Gyiop) induced by B — commutes.

(iii)  There exist a morphism of log schemes ¢'°8: S'°8 — T'°8 oper
S and an isomorphism o: I = I}S?g such that p = p;(niioé ol 050
a — where we write I yos : Igi0s — Ipios for the homomorphism
induced by ¢'°% — i.e., the automorphism “B” of (ii) may be
taken to be the identity.

Before proceeding, in this context we observe that one fundamen-
tal intrinsic difference between outer representations of IPSC-type and
more general outer representations of NN-type is that, unlike the case
with outer representations of IPSC-type, the period matrices associated
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to outer representations of NN-type may, in general, fail to be nonde-
generate — cf. the discussion of Remark 5.9.2.

Here, we remark in passing that in a sequel to the present paper,
the theory of §5 will play an important role in the proofs of certain
applications to the theory of tempered fundamental groups developed in
[André].

Finally, in §6, we apply the theory of profinite Dehn twists developed
in §4 to prove a “geometric version of the Grothendieck Conjec-
ture” for — i.e., put another way, we compute the centralizer of the
geometric monodromy associated to — the tautological curve over the
moduli stack of pointed smooth curves [cf. Theorems 6.13; 6.14].

Theorem D (Centralizers of geometric monodromy groups
arising from moduli stacks of pointed curves). Let (g,7) be a
pair of nonnegative integers such that 2g — 2 +r > 0; ¥ a nonempty
set of prime numbers; k an algebraically closed field of characteristic
zero. Write (Mg, )i for the moduli stack of r-pointed smooth curves
of genus g over k whose r marked points are equipped with an order-

ing; Cgr — Mg, for the tautological curve over M, [cf. the dis-

cussion entitled “Curves” in §0]; Inz, , of T ((Mg,r)i) for the étale

fundamental group of the moduli stack (Mg, )i; g, for the mazimal
pro-X quotient of the kernel Ny, of the natural surjection w1 ((Cy,r)k) —
T (Mgr)r) = Hm,,; He, . for the quotient of the étale fundamen-
tal group w1 ((Cyr)k) of (Cgr)r by the kernel of the natural surjection
Ny — 1g.; OutC(Hgyr) for the group of outomorphisms [cf. the dis-
cussion entitled “Topological groups” in §0] of Iy, which induce bijec-
tions on the set of cuspidal inertia subgroups of Il, .. Thus, we have a
natural exact sequence of profinite groups

1— 1y, — e, , — pm,, — 1,
which determines an outer representation
Py, 1am, , — Out(Ily,,.).
Then the following hold:

(i) Let H C Iln,, be an open subgroup of Ilaq, .. Suppose that
one of the following two conditions is satisfied:

() 29—2+47r>1, e, (g,7) ¢{(0,3),(1, 1)}
(b) (g,r)=(1,1),2€ X, and H =1, .
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Then the composite of natural homomorphisms
AUt(Mgm)k ((Cg,r)k) — AutHMg,r (Hcgyr)/InIl(Hg,r)

— Zow,,,)(Im(pg.+)) € Zow,.)(Pg.r(H))

[cf. the discussion entitled “Topological groups” in §0] deter-
mines an isomorphism

A'ut(Mg,’r‘)k ((Cgﬂ“)k) - ZOutc(Hgﬁr)(pg,r(H)) .

Here, we recall that Aut(n, ), ((Cy.r)k) is isomorphic to

7.)27 x 7./ 27 if (g,7) = (0,4);
Z/2L if (9,r) € {(1,1),(1,2),(2,0)};
{1 if (9,7) € £(0,4),(1,1),(1,2),(2,0)}

(i) Let H C Out®(Il,,.) be a closed subgroup of Out®(Il, ) that
contains an open subgroup of Im(p,,) C Out(Il, ). Suppose
that

2g—2+r>1, e, (g,7r) €{(0,3),(1,1)}.
Then H is almost slim [cf. the discussion entitled “Topolog-
ical groups” in §0]. If, moreover,
29—24r>2, e, (g,7) €4{(0,3),(0,4),(1,1),(1,2),(2,0)},
then H is slim [cf. the discussion entitled “Topological groups’
in §0].

)

§0. Notations and Conventions

Sets: If S is a set, then we shall denote by 2° the power set of S and
by S* the cardinality of S.

Numbers: The notation Brimes will be used to denote the set of all
prime numbers. The notation N will be used to denote the set or [ad-
ditive] monoid of nonnegative rational integers. The notation Z will be
used to denote the set, group, or ring of rational integers. The notation
Q will be used to denote the set, group, or field of rational numbers.
The notation Z will be used to denote the profinite completion of Z.
If p € Primes, then the notation Z, (respectively, Q,) will be used to
denote the p-adic completion of Z (respectively, Q). If ¥ C Primes, then
the notation Z= will be used to denote the pro-X completion of Z.
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Monoids: We shall write M#&P for the groupification of a monoid M.

Topological groups: Let G be a topological group and P a property
of topological groups [e.g., “abelian” or “pro-X” for some ¥ C PBrimes].
Then we shall say that G is almost P if there exists an open subgroup
of G that is P.

Let G be a topological group and H C G a closed subgroup of
G. Then we shall denote by Zg(H) (respectively, Ng(H); C(H)) the
centralizer (respectively, normalizer; commensurator) of H in G, i.e.,

Za(H) < {ge G|ghg ' =hforany he HY,

(respectively, Ng(H) def {geGlg-H-g'=H};

Ca(H) & {geG | HnN gH-g 'isof finiteindexin H and g-H-g~' } );

we shall refer to Z(G) Lof Zc(G) as the center of G. It is immediate

from the definitions that
Zg(H) C Ng(H) € Cg(H) ; HC Ng(H).

We shall say that the closed subgroup H is centrally terminal (respec-
tively, normally terminal; commensurably terminal) in G if H = Zg(H)
(respectively, H = Ng(H); H = Cg(H)). We shall say that G is slim if
Zc(U) = {1} for any open subgroup U of G.

Let G be a topological group. Then we shall write G for the
abelianization of G, i.e., the quotient of G by the closure of the commu-
tator subgroup of G.

Let G be a topological group. Then we shall write Aut(G) for the

group of [continuous| automorphisms of G, Inn(G) C Aut(G) for the

group of inner automorphisms of G, and Out(G) o Aut(G)/Inn(G).

We shall refer to an element of Out(G) as an outomorphism of G. Now
suppose that G is center-free [i.e., Z(G) = {1}]. Then we have an exact
sequence of groups

1 — G (5 Inn(G)) — Aut(G) — Out(G) — 1.

If J is a group and p: J — Out(G) is a homomorphism, then we shall
denote by

out

G x J

the group obtained by pulling back the above exact sequence of profinite
groups via p. Thus, we have a natural exact sequence of groups

1—>G—>G0>121tJ—>J—>1.
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Suppose further that G is profinite and topologically finitely generated.
Then one verifies easily that the topology of G admits a basis of char-
acteristic open subgroups, which thus induces a profinite topology on the
groups Aut(G) and Out(G) with respect to which the above exact se-
quence relating Aut(G) and Out(G) determines an exact sequence of
profinite groups. In particular, one verifies easily that if, moreover, J
is profinite and p: J — Out(G) is continuous, then the above exact

sequence involving G O;t J determines an exact sequence of profinite
groups.

Let G, J be profinite groups. Suppose that G is center-free and
topologically finitely generated. Let p: J — Out(G) be a continuous

t
homomorphism. Write Aut;(G Y J) for the group of [continuous]

out
automorphisms of G x J that preserve and induce the identity auto-
morphism on the quotient J. Then one verifies easily that the operation
of restricting to G determines an isomorphism of profinite groups

Aut; (G J)/In(G) < Zow(cy(Im(p))

Let G and H be topological groups. Then we shall refer to a homo-
morphism of topological groups ¢: G — H as a split injection (respec-
tively, split surjection) if there exists a homomorphism of topological
groups ¥: H — G such that v o ¢ (respectively, ¢ o 1)) is the identity
automorphism of G (respectively, H).

Log schemes: When a scheme appears in a diagram of log schemes,
the scheme is to be understood as the log scheme obtained by equipping
the scheme with the trivial log structure. If X'°2 is a log scheme, then
we shall refer to the largest open subscheme of the underlying scheme of
X082 gver which the log structure is trivial as the interior of X'°%. Fiber
products of fs log schemes are to be understood as fiber products taken
in the category of fs log schemes.

Curves: We shall use the terms “hyperbolic curve”, “cusp’, “stable log
curve”, “smooth log curve”, and “tripod” as they are defined in [CmbGC],
§0; [Hsh], §0. If (g,r) is a pair of nonnegative integers such that 2g —
2+ r > 0, then we shall denote by Mw the moduli stack of r-pointed
stable curves of genus g over Z whose r marked points are equipped with
an ordering, by M, C M, the open substack of M, parametrizing

| J—
smooth curves, by M ;f the log stack obtained by equipping M, , with
the log structure associated to the divisor with normal crossings My, \
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Mgy € Mgy, by Cyr — M, the tautological curve over M, ,, and
by D, C C, the corresponding tautological divisor of marked points
of 6977" — ﬂg,r. Then the divisor given by the union of fg,r with the
inverse image in C,, of the divisor M, , \ My, C M, , determines
a log structure on C, ,; denote the resulting log stack by élgo,f. Thus,
we obtain a (1-)morphism of log stacks @;f — ﬂ;f. We shall denote

by Cy.» C Cgy,, the interior of Elgcif. Thus, we obtain a (1-)morphism of

stacks Cy,, — My .. Let S be a scheme. Then we shall write (ﬂg7r)s def

def ——log,  def ——log

Mg,r X SpecZ Sa (Mg,r)S = Mg,r XSpecZ Sa (M )S - Mg7r XSpecZ

g,r
def —log def

S, (ég,r)S def 6!}77“ XSpecZ S, (Cgﬂ»)s = Cy.r Xspecz S, and (Cg,r>5
Elgc:i XSpecZ S.

Let n be a positive integer and X'°¢ a stable log curve of type (g,)
over a log scheme S'°¢. Then we shall refer to the log scheme obtained

by pulling back the (1-)morphism M2

—1 . .
grtn — Mgof given by forgetting

. . e . -
the last n points via the classifying (1-)morphism S'°& — M gof of Xos

as the n-th log configuration space of X'°8.

§1. F-admissibility and FC-admissibility

In the present §, we consider the FC-admissibility [cf. [CmbCsp],
Definition 1.1, (ii)] of F-admissible automorphisms [cf. [CmbCsp], Def-
inition 1.1, (ii)] of configuration space groups [cf. [MT], Definition 2.3,
(i)]. Roughly speaking, we prove that if an F-admissible automorphism
of a configuration space group arises from an F-admissible automor-
phism of a configuration space group [arising from a configuration space]
of strictly higher dimension, then it is necessarily FC-admissible, i.e.,
preserves the cuspidal inertia subgroups of the various subquotients cor-
responding to surface groups [cf. Theorem 1.8, Corollary 1.9 below].

Lemma 1.1 (Representations arising from certain families
of hyperbolic curves). Let (g,r) be a pair of nonnegative integers such
that 2g — 2 4+ r > 0; | a prime number; k an algebraically closed field
of characteristic # 1; B and C hyperbolic curves over k of type (g,7);
n a positive integer. Suppose that (r,n) # (0,1). Fori=1,---,n, let
fi: B S C be an isomorphism over k; s; the section of B x; C 2
B determined by the isomorphism f;. Suppose that, for any i # j,
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Im(s;) NIm(s;) = 0. Write

ZEBx 0\ |J Im(s;) € BxC

i=1,-,n

for the complement of the images of the s;’s, where i ranges over the
integers such that 1 < i < n; pr for the composite Z — B x;, C B
[thus, pr: Z — B is a family of hyperbolic curves of type (g,r +
n)/; lg (respectively, llo; 11z ) the maximal pro-l quotient of the étale
fundamental group w1 (B) (respectively, m1(C); m1(Z)) of B (respectively,
C; Z); pr: Iz — llp for the surjection induced by pr; 1lz/p for the
kernel of pr; pz/p: llp — Out(lly, ) for the outer representation of
IIp onllz/p determined by the exact sequence

1—>HZ/B—>HZ£>HB—>1.

Let b be a geometric point of B and Zy the geometric fiber of pr: Z —
B atb. Fori=1,---,n, fit an inertia subgroup [among its various
conjugates| of the étale fundamental group m(Z;) of Zy associated to
the cusp of Z; determined by the section s; and denote by

I, Cllgzp

the image in 1z, of this inertia subgroup of m1(Zy). Then the following
hold:

(i) (Fundamental groups of fibers) The quotient 11,5 of the
étale fundamental group ™ (Z;) of the geometric fiber Zy co-
incides with the maximal pro-l quotient of 7 (Z;).

(ii) (Abelianizations of the fundamental groups of fibers)
Fori=1,---,n, write J5, C H%‘?B Jor the image of I,, C 1lz/p
m HaZk}B. Then the composite Iy, — 1l z,p — H%b/B determines

an isomorphism I, — J,,; moreover, the inclusions J;, —
ab :
HZ/B determine an exact sequence

n
1— (D o)/ ) — Ty — TP — 1
i=1

— where

J, C é T,
i=1
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1s a Zj-submodule such that

S Toifr=o,
"EY 0 ifr£0,

and, moreover, if r =0 and i = 1,--- | n, then the composite
n pr,,
e @ .,
i=1

18 an isomorphism.

(iii) (Unipotency of a certain natural representation) The
action of Iz on H%‘E}B determined by py,p preserves the exact
sequence

1— (@ Jo)/Jr — Ty — I — 1
=1

[cf. (#i)] and induces the identity automorphisms on the
subquotients (D;_, Js,)/Jr and 112P; in particular, the nat-
ural homomorphism Il — Auty, (H}‘?B) factors through a
uniquely determined homomorphism

M — Home, (1122, (€D J..)/ )
i=1

Proof.  Assertion (i) follows immediately from the [easily verified]
fact that the natural action of 71(B) on m(Z;)* ®; Z; is unipotent
— cf., e.g., [Hsh], Proposition 1.4, (i), for more details. [Note that
although [Hsh], Proposition 1.4, (i), is only stated in the case where
the hyperbolic curves corresponding to B and C' are proper, the same
proof may be applied to the case where these hyperbolic curves are
affine.] Assertion (ii) follows immediately, in light of our assumption
that (r,n) # (0,1), from assertion (i), together with the well-known
structure of the maximal pro-I quotient of the fundamental group of
a smooth curve over an algebraically closed field of characteristic # .
Finally, we verify assertion (iii). The fact that the action of Ilp on I,
preserves the exact sequence appearing in the statement of assertion (iii)
follows immediately from the fact that the surjection H%b/ B~ 2P is
induced by the open immersion Z — B X C' over B. The fact that the
action in question induces the identity automorphism on (B, Js,)/J»
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(respectively, H%b) follows immediately from the fact that the f;’s are
isomorphisms (respectively, the fact that the surjection H%t} B~ H‘"éb is
induced by the open immersion Z < B X C over B). Q.E.D.

Lemma 1.2 (Maximal cuspidally central quotients of certain
fundamental groups). In the notation of Lemma 1.1, fori=1,--- | n,
write

Uz p — Iiz/ppu (— o)

Jor the quotient of 1lz,p by the normal closed subgroup topologically
normally generated by the Is;’s, where j ranges over the integers such
that 1 < j<n and j #1i;

Hiz/pya = Ez/m)n

for the maximal cuspidally central quotient /cf. [AbsCsp|, Defini-
tion 1.1, (i)] relative to the surjection I z,py;) — Ilc determined by the
natural open immersion Z — B Xy C;

E
I, < Ez/p)

i

for the kernel of the natural surjection E(z,p)i;) — llo; and

def
Ezp = Ez/By X1e - X1e Ez/B)m) -
Then the following hold:

(i) (Cuspidal inertia subgroups) Let 1 <i,j < n be integers.
Then the homomorphism Iy, — Ig:j determined by the compos-
ite Is, = Uz, — E(z/p)[;) i an isomorphism (respectively,
trivial) if i = j (respectively, i # j).

(i)  (Surjectivity) The homomorphismIl;/p — Ez, 5 determined
by the natural surjections Uz, p — E(z/p);) — where i ranges
over the integers such that 1 < i <n — is surjective.

(iii) (Maximal cuspidally central quotients and abelianiza-
tions) The quotient llz;p — Bz, of llz,p [cf. (ii)] coin-
cides with the maximal cuspidally central quotient /cf.
[AbsCsp|, Definition 1.1, (i)] relative to the surjection Il g —
IIo determined by the natural open immersion Z — B xj C.
In particular, the natural surjection 1z, — H‘}t} p factors
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through the surjection 11z, — Ez/p, and the resulting sur-
Jection Bz p — H%b/B fits into a commutative diagram

L — @?:1 IE —_— IEZ/B e 1
L — (@?:1 Js,) /I —— Hasz/B H%b 1

— where the horizontal sequences are exact, and the vertical
arrows are surjective. Moreover, the left-hand vertical arrow
coincides with the surjection induced by the natural isomor-
phisms Iy, = J,, [cf. Lemma 1.1, (ii)] and I, = IE [ef. (i)].
Finally, if r # 0, then the right-hand square is cartesian.

Proof.  Assertion (i) follows immediately from the definition of the
quotient E(z,p)[j) of [Iz,p, together with the well-known structure of the
maximal pro-I quotient of the fundamental group of a smooth curve over
an algebraically closed field of characteristic # [ [cf., e.g., [MT], Lemma
4.2, (iv), (v)]. Assertion (ii) follows immediately from assertion (i).
Assertion (iii) follows immediately from assertions (i), (ii) [cf. [AbsCsp],
Proposition 1.6, (iii)]. Q.E.D.

Lemma 1.3 (The kernels of representations arising from cer-
tain families of hyperbolic curves). In the notation of Lemmas 1.1,
1.2, suppose that r # 0. Then the following hold:

(i) (Unipotency of a certain natural outer representation)
Consider the action of Ilg on Ky, determined by the natural
isomorphism

EZ/B = H%]E;B XH%b e

[cf. Lemma 1.2, (iii)], together with the natural action of llp
on H%@B induced by pz,p and the trivial action of llg on llc.
Then the outer action of llp on Ez,p induced by this ac-
tion coincides with the natural outer action of llp on Ez/p
induced by pz/p. In particular, relative to the natural identifi-
cation I, = IY [cf. Lemma 1.2, (i)], the above action of Il
on Ez,p factors through the homomorphism

HB — HOH’IZL (Hc, @ Isl> L> HOHlZl (H%b, @ 157)

i=1 i=1
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obtained in Lemma 1.1, (ii1).

(Homomorphisms arising from a certain extension) For
i=1,---,n, write ¢; for the composite

n
Il — Homg, (Hgb, an Jsj) — Homg, (Hgb, I)

j=1
— where the first arrow is the homomorphism of (i), and the
second arrow is the homomorphism determined by the projec-
tion pr;: @?:1 I, — I,. Then the homomorphism ¢; co-
incides with the image of the element of H*(Ilg x Ilg, Is,)
determined by the extension

1— I, — g, — g x1e — 1

def

= llz/Ker(Ilz;p — Ez/pr) — of
g x He by Iy, = It [cf. Lemma 1.2, (i)] via the composite

— where we write H]Em

i

H2(Ip x e, 1) S HY (I, H (e, 1) Hom(HB,Hom(HC,ISiD

(iii)

— where the first arrow is the isomorphism determined by

the Hochschild-Serre spectral sequence relative to the surjection
HB X HC p~r>i HB.

(Factorization) Write B (respectively, C) for the compactifi-
cation of C' (respectively, B) and Iy (respectively, Il ) for the
mazimal pro-l quotient of the étale fundamental group 1 (B)
(respectively, 71 (C)) of B (respectively, C). Then the homo-

morphism ¢; of (ii) factors as the composite
T — T2 55 12 3 Homy, (H%b, Isi) <+ Homy, (Hgb, 1)

— where the first (respectively, second; fourth) arrow is the
homomorphism induced by B — B (respectively, f;: B = C;
C — C), and the third arrow is the isomorphism determined
by the Poincaré duality isomorphism in étale cohomology, rel-
ative to the natural isomorphism I, = Z;(1). [Here, the “(1)”
denotes a “Tate twist”.]

(Kernel of a certain natural representation) The kernel
of the homomorphism 11p — Autg, (H'}b/B) determined by pz/p

coincides with the kernel of the natural surjection Il — H%’.
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Proof. Assertions (i), (ii) follow immediately from the various defi-
nitions involved. Next, we verify assertion (iii). It follows from assertion
(ii), together with [MT], Lemma 4.2, (ii), (v) [cf. also the discussion
surrounding [MT], Lemma 4.2], that, relative to the natural isomor-
phism I, = 7Z;(1), the image of ¢; € Hom(Ilz, Homg, (II2P, I,)) via the
isomorphisms

Hom(IIpz, Homy, (H%b, I,,)) = Hom(Ilp, Homy, (Hacb, Z,(1)))

& H* (Mg x U, Zy(1)) = H2(B x4, C,7Zy(1))

— where the first (respectively, second) isomorphism is the isomor-

phism induced by the above isomorphism I, = Z;(1) (respectively, the
Hochschild-Serre spectral sequence relative to the surjection I x I %

IIp) — is the first Chern class of the invertible sheaf associated to the
divisor determined by the scheme-theoretic image of s;: B; — B X, C.
Thus, since the section s; extends uniquely to a section 5;: B < B x, C,
whose scheme-theoretic image we denote by Im(s;), it follows that the
homomorphism ¢; € Hom(Ilp, Homg, (112, I,,)) coincides with the im-
age of the first Chern class of the invertible sheaf on B xj C associated
to the divisor Im(s;) via the composite

H?*(B x;, C,7;(1)) & H*(B x C, I,,) — H*(B x C, I,)

k3

& HX(Ip x e, IL,) S Hom(HB,Hole (HC,I&.))

— where the first arrow is the isomorphism induced by the above isomor-
phism I, = Z;(1), and the second arrow is the homomorphism induced
by the natural open immersion B xj, C < B x;, C. In particular, as-
sertion (iii) follows immediately from [Mln], Chapter VI, Lemma 12.2
[cf. also the argument used in the proof of [MT], Lemma 4.4]. Finally,
we verify assertion (iv). To this end, we recall that by Lemma 1.1, (iii),
the homomorphism IIp — Autg, (H}t} p) factors through the homomor-

phism IIp — Homyp, (Hab,@?zl Jsi> of assertion (i). Thus, assertion

(iv) follows immediately from assertion (iii). This completes the proof
of assertion (iv). Q.E.D.

Definition 1.4. For (J € {o, e}, let ¥ be a set of prime numbers
which is either of cardinality one or equal to the set of all prime numbers;
(g™, 759) a pair of nonnegative integers such that 2g9 — 2 + 75 > 0; XU
a hyperbolic curve of type (g=, rD) over an algebraically closed field of
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characteristic ¢ ¥; d” a positive integer; XED the d9-th configuration
space of XU [cf. [MT], Definition 2.1, (i)]; HEE, the pro-XF configura-
tion space group [cf. [MT], Definition 2.3, (i)] obtained by forming the
maximal pro-X5 quotient of the étale fundamental group 7 (XdDD) of

0
X3

(i)

(i)

(iii)

We shall say that an isomorphism of profinite groups o: II5, =
1%, is PF-admissible [i.e., “permutation-fiber-admissible”] if o
induces a bijection between the set of fiber subgroups [cf. [MT],
Definition 2.3, (iii)] of IS, and the set of fiber subgroups of II%,.
We shall say that an outer isomorphism I13, = II%. is PF-
admissible if it is determined by a PF-admissible isomorphism.

We shall say that an isomorphism of profinite groups a: 115, =
II%. is PC-admissible [i.e., “permutation-cusp-admissible”] if
the following condition is satisfied: Let

{1} =K4gpo CKgo 1 € CKp - C Ky C Ky C Ko =1Ig

be the standard fiber filtration of IIg, [cf. [CmbCsp], Definition
1.1, (i)]; then for any integer 1 < a < d°, the image a(K,) C
I1%. is a fiber subgroup of II%, of length d° —a [cf. [MT], Defi-
nition 2.3, (iii)], and, moreover, the isomorphism K, 1/K, —
a(K,—1)/a(K,) determined by « induces a bijection between
the set of cuspidal inertia subgroups of K, 1/K, and the set
of cuspidal inertia subgroups of a(K,_1)/a(K,). [Note that it
follows immediately from the various definitions involved that
the profinite group K,_1/K, (respectively, a(K,_1)/a(K,))
is equipped with a natural structure of pro-3° (respectively,
pro-X°) surface group [cf. [MT], Definition 1.2].] We shall say
that an outer isomorphism 1, = I1%. is PC-admissible if it is
determined by a PC-admissible isomorphism.

We shall say that an isomorphism of profinite groups o: 15, =
1% is PFC-admissible [i.e., “permutation-fiber-cusp-admissi-
ble”] if « is PF-admissible and PC-admissible. We shall say
that an outer isomorphism IIj, = I15. is PFC-admissible if it
is determined by a PFC-admissible isomorphism.
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(iv) We shall say that an isomorphism of profinite groups a:: 11, =
II5. is PF-cuspidalizable if there exists a commutative diagram

o ~ °
Moy —— geyy

l l

~

o L[]
Mg, ——— I,

— where the upper horizontal arrow is a PF-admissible iso-
morphism, and the left-hand (respectively, right-hand) vertical
arrow is the surjection obtained by forming the quotient by a
fiber subgroup of length 1 [cf. [MT], Definition 2.3, (iii)] of
ge,, (respectively, 1%, ;). We shall say that an outer iso-
morphism 13, = II8, is PF-cuspidalizable if it is determined
by a PF-cuspidalizable isomorphism.

Remark 1.4.1. It follows immediately from the various definitions
involved that, in the notation of Definition 1.4, an automorphism « of
IS, is PF-admissible (respectively, PC-admissible; PFC-admissible) if
and only if there exists an automorphism o of IIj, that lifts the outo-
morphism [cf. the discussion entitled “Topological groups’ in §0] of II5,
naturally determined by a permutation of the d° factors of the config-
uration space involved such that the composite a o o is F-admissible
(respectively, C-admissible; FC-admissible) [cf. [CmbCsp], Definition
1.1, (ii)]. In particular, a(n) F-admissible (respectively, C-admissible;
FC-admissible) automorphism of IS, is PF-admissible (respectively, PC-
admissible; PFC-admissible):

F-admissible <= FC-admissible — C-admissible

4 ¥ I

PF-admissible <= PFC-admissible = PC-admissible.

Proposition 1.5 (Properties of PF-admissible isomor-
phisms). In the notation of Definition 1.4, let a: 115, = I3 be an
isomorphism. Then the following hold:

(i) 2°=x.
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(ii)  Suppose that the isomorphism « is PF-admissible. Let 1 <
n < d° be an integer and H C 113, a fiber subgroup of length
n of II.. Then the subgroup a(H) C 118, is a fiber subgroup
of length n of I1%.. In particular, it holds that d° = d°.

(i)  Write 2° C 13, (respectively, 2° C 113, ) for the normal closed
subgroup of 115, (respectively, 113, ) obtained by taking the in-
tersection of the various fiber subgroups of length d° — 1 (re-
spectively, d®*—1). Then the isomorphism « is PF-admissible
if and only if o induces an isomorphism Z° = Z°.

Proof.  Assertion (i) follows immediately from the [easily verified]
fact that X5 may be characterized as the smallest set of primes X* for
which HED is pro-X*. Assertion (ii) follows immediately from the various
definitions involved. Finally, we verify assertion (iii). The necessity of
the condition follows immediately from assertion (ii). The sufficiency
of the condition follows immediately from a similar argument to the
argument used in the proof of [CmbCsp], Proposition 1.2, (i). This
completes the proof of assertion (iii). Q.E.D.

Lemma 1.6 (C-admissibility of certain isomorphisms). In the
notation of Definition 1.4, let ag: 115 =5 113, ad: Iy = 103, o2: 115 =
II$ be isomorphisms of profinite groups which, for i = 1, 2, fit into a
commutative diagram

(03

my —2 113

prc{’i}l lprfi}

m —— I
— where the vertical arrow “pr{Di} 7 4s the surjection induced by the pro-

jection “XQD — XlD 7 obtained by projecting to the i-th factor. Then the
isomorphism ai is C-admissible. In particular, (¢°,7°) = (¢°,7°).

Proof. Write def 10 — e [cf. Proposition 1.5, (i)]. Now it fol-
lows from the well-known structure of the maximal pro-X quotient of
the fundamental group of a smooth curve over an algebraically closed
field of characteristic € X that 1'[1D is a free pro-X group if and only if
rH # 0 [cf. [CmbGC], Remark 1.1.3]. Thus, if 7° = r* = 0, then it is
immediate that o} is C-admissible; moreover, it follows, by considering
the rank of the abelianization of II7 [cf. [CmbGC], Remark 1.1.3], that
g° = ¢°. In particular, to verify Lemma 1.6, we may assume without loss
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of generality that 7°, r® # 0. Then it follows from [CmbGC]|, Theorem
1.6, (i), that, to verify Lemma 1.6, it suffices to show that af is numer-
ically cuspidal [cf. [CmbGC], Definition 1.4, (ii)], i.e., to show that the
following assertion holds:

Let 1I3, C 1I§ be an open subgroup of II5. Write

3 < l(I13) C TIS, Y° — X© (respectively, Y* —

X*) for the connected finite étale covering of X° (re-

spectively, X*®) corresponding to the open subgroup

IS, C IIS (respectively, IS, C II9), and (g%, 75 ) (re-

spectively, (gy-,7%)) for the type of Y° (respectively,

Y®). Then it holds that ry =}
On the other hand, in the notation of the above assertion, one verifies
easily that for any [ € ¥ and O € {o,e}, if Hg, C Y is an open
subgroup of H'lj contained in Hg, then the natural inclusion Hg, — H}D,
induces a surjection

Ker((IIF,)™ — (II2,)™) @55 Q — Ker((IIF)** - (115)*?) @5, Q,

— where we write (H%), (Hg,) for the maximal pro-X quotients of the
étale fundamental groups of the compactifications Y, Y of Y, Y’ re-
spectively. Thus, since any open subgroup of 11 contains a character-
istic open subgroup of 117, it follows immediately from the well-known
fact that for 0 € {o,e}, (II}})2> (respectively, (H%)ab) is a free Z°-
module of rank 295 + 5 — 1 (vespectively, 2¢g%)) [cf., e.g., [CmbG(C],
Remark 1.1.3] that to verify the above assertion, it suffices to ver-
ify that if II3, C II{ in the above assertion is characteristic, then the
isomorphism 113, = I3 determined by of induces an isomorphism of
Ker((I1)*® — (I13)?") @35 Q; with Ker((I1$,)*” — (I12,)**) @55 Q; for
some [ € 3.

To this end, for [0 € {o, e}, write HE C 1Y for the normal open
subgroup of Hzm obtained by forming the inverse image via the surjection

(pr?l},pr%}): HQD - Hllj X 1_[|1j

of the image of the natural inclusion T} x TI§} — TP x OF; zY —
X2D for the connected finite étale covering corresponding to this normal
open subgroup H%’ C HQD; HE/Y for the kernel of the natural surjection
) — 1Y induced by the composite Z5 — X5 < X5 x; XU % x0,
Then the natural surjection I} — TI5} determines a representation

ny — Aut((HE/Y)ab) ;
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moreover, the isomorphisms as, ai, and a? determine a commutative
diagram
o o ab
Iy, — AUt((Hz/Y) )

l l

1 —— Aut((ITy,,)*)

— where the vertical arrows are isomorphisms. [Here, we note that since
I3 is a characteristic subgroup of II{, and the composite af o (af)~!
is an automorphism of 11, it follows that II}, = o3 (IIS,), hence that
s induces an isomorphism 113 = II%.] On the other hand, it follows
from the definition of Z that Z5 is isomorphic to the open subscheme
of Y5 x;, YH obtained by forming the complement of the graphs of the
various elements of Aut(Y'™/X"). Thus, it follows from Lemma 1.3, (iv)
— by replacing the various profinite groups involved by their maximal
pro-l quotients for some [ € ¥ — that the isomorphism II3 = 113
determined by o induces an isomorphism of Ker((I15,)*" — (I12.)*") @5y
Q; with Ker((I1$,)2> — (H'Y)ab) ®zx Q for some [ € ¥. This completes
the proof of Lemma 1.6. Q.E.D.

Lemma 1.7 (PFC-admissibility of certain PF-admissible iso-
morphisms). In the notation of Definition 1.4, let a: II5, = I3, be
o PF-admissible isomorphism. Then the following condition implies
that the isomorphism « is PFC-admissible:

Let H° C II3. be a fiber subgroup of length 1 [cf.
[MT], Definition 2.3, (iii)]. Write H® def a(H®) C
1%, for the fiber subgroup of length 1 obtained as
the image of H° wvia « [cf. Proposition 1.5, (ii)].
[Thus, it follows immediately from the various defini-
tions involved that H® (respectively, H®) is equipped
with a natural structure of pro-X° (respectively, pro-
¥* ) surface group.] Then the isomorphism H°® =
H* induced by o is C-admissible.

Proof. Let O € {o,e}. Then one may verify easily that the follow-
ing fact holds:
Let 1 < a < d” be an integer and F' C F C HED

fiber subgroups of HED such that F' is of length a,
and F’ is of length a — 1. Then there exists a fiber
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subgroup H C F C HdDD of HdDD of length 1 such that
the composite

H< F—F/F

arises from a natural open immersion of a hyperbolic
curve of type (g7, 7P +dF —1) into a hyperbolic curve
of type (¢7,7" + d” — a). [Note that it follows im-
mediately from the various definitions involved that
H (respectively, F/F') is equipped with a natural
structure of pro-XH surface group.] In particular, the
composite is a surjection whose kernel is topologically
normally generated by suitable cuspidal inertia sub-
groups of H; moreover, any cuspidal inertia subgroup
of F/F' may be obtained as the image of a cuspidal
inertia subgroup of H.
On the other hand, one may verify easily that Lemma 1.7 follows im-

mediately from the above fact. This completes the proof of Lemma 1.7.
Q.E.D.

Theorem 1.8 (PFC-admissibility of certain isomorphisms).
For O € {o,e}, let YU be a set of prime numbers which is either of
cardinality one or equal to the set of all prime numbers; (gD, ’I’D)
a pair of nonnegative integers such that 25 —2-+r5 > 0; XY a hyperbolic
curve of type (gD, T’D) over an algebraically closed field of characteristic
¢ Y5 dZ a positive integer; HED the pro-X5 configuration space group
[ef. IMT], Definition 2.3, (i)] obtained by forming the mazimal pro-X5
quotient of the étale fundamental group of the d2-th configuration space
Of XD,'

a: 15 — 113
an isomorphism of [abstract] groups. If

{(g°,7°), (g% 7*)} 0 {(0,3),(1, 1)} #0,

then we suppose further that the isomorphism « is PF-admissible [cf.
Definition 1.4, (i)]. Then the following hold:

(i) X°=2Xx°.
(ii)  The isomorphism « is an isomorphism of profinite groups.

(i)  The isomorphism o is PF-admissible. In particular, d® = d°.



Combinatorial anabelian topics 1 27

(iv) If a is PF-cuspidalizable [cf. Definition 1.4, (iv)], then «
is PFC-admissible [cf. Definition 1.4, (iii)]. In particular,
(9°,7°) = (g°,7°).

Proof.  Assertion (ii) follows from [NS], Theorem 1.1. In light of
assertion (ii), assertion (i) follows from Proposition 1.5, (i). Assertion
(iii) follows from Proposition 1.5, (ii); [MT], Corollary 6.3, together with
the assumption appearing in the statement of Theorem 1.8. Assertion
(iv) follows immediately from Lemmas 1.6, 1.7. Q.E.D.

Corollary 1.9 (F-admissibility and FC-admissibility). Let ¥
be a set of prime numbers which is either of cardinality one or equal
to the set of all prime numbers; n a positive integer; (g,7) a pair
of nonnegative integers such that 2g — 2 +1r > 0; X a hyperbolic curve
of type (g,r) over an algebraically closed field k of characteristic ¢ %;
X, the n-th configuration space of X ; Il,, the mazimal pro-% quotient
of the fundamental group of X,,; “Out™(=)”, “Out™(-)” C “Out(—)”
the subgroups of FC- and F-admissible [cf. [CmbCsp]|, Definition 1.1,
(ii)] outomorphisms [cf. the discussion entitled “Topological groups” in
80] of “(—)”. Then the following hold:

(i) Let o € Out"(Il,41). Then o induces the same outomor-
phism of 1L, relative to the various quotients 11,11 — 11, by
fiber subgroups of length 1 [cf. [MT], Definition 2.3, (iii)]. In
particular, we obtain a natural homomorphism

Out” (Ipg1) — Out” (I1,,) .

(ii)  The image of the homomorphism
OutF(Hn+1) — OUtF(Hn)
of (i) is contained in

Out™(11,,) € Out™(11,,) .

Proof. First, we verify assertion (i). Let H', H? C 1,41 be two
distinct fiber subgroups of IT,, ;1 of length 1. Observe that the normal
closed subgroup H C II,,,; of II,,,1 topologically generated by H' and
H? is a fiber subgroup of 11,1 of length 2 [cf. [MT], Proposition 2.4,
(iv)], hence is equipped with a natural structure of pro-X configuration
space group, with respect to which H* C H may be regarded as a fiber
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subgroup of length 1 [cf. [MT], Proposition 2.4, (ii)]. Moreover, it follows
immediately from the scheme-theoretic definition of the various config-
uration space groups involved that one has natural outer isomorphisms

,+1/H" = 11, and H/H' = H/H?. Thus, since for i € {1,2}, we
have natural outer isomorphisms

W, & Tyt /JH' S (H/HY) % s /H

[cf. the discussion entitled “Topological groups’ in §0] which are com-
patible with the various natural outer isomorphisms discussed above,
one verifies easily [cf. the argument given in the first paragraph of the
proof of [CmbCsp], Theorem 4.1] that to complete the proof of assertion
(i), by replacing IT,,+1 by H, it suffices to verify assertion (i) in the case
where n = 1. The rest of the proof of assertion (i) is devoted to verifying
assertion (i) in the case where n = 1.
Let @ € Aut"(Ily) be an F-admissible automorphism of Ily; &',

a? € Aut(Il;) the automorphisms of IT; induced by & relative to the
quotients ITy — Iy /HY = IIy, Il — IIy/H? =TI, respectively. Now
it is immediate that to complete the proof of assertion (i), it suffices to
verify that the difference &' o (a?)~1 € Aut(Il;) is II;-inner. Therefore,
it follows immediately from [JR], Theorem B, that to complete the proof
of assertion (i), it suffices to verify that

(*1): for any normal open subgroup N C II; of IIy,

it holds that a'(N) = a?(N).
To this end, let N C II; be a normal open subgroup of II;. Write
My © I, xp, N for the fiber product of Ty — I/H' =3 TI; and

N — II; and Fi for the kernel of the composite IIy = Il x5, N It):i
Iy — Iy /H? 5 T1;. Then the surjection IIy — N x II; determined by
the natural surjection IIy — Iy /Fx 5 II; and the second projection

pr
Iy = Iy xmq, N — N fits into a commutative diagram of profinite
groups

1 Fx Iy II, 1
1 N N xI; 225114 1

— where the horizontal sequences are ezxact, and the vertical arrows are

surjective. Write py: II; — Aut(F2P) for the natural action determined

by the upper horizontal sequence and Vy C F&P for the kernel of the

natural surjection Ff\‘,b — N2b induced by the left-hand vertical arrow.
Now we claim that
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(*2): the action py of II; on F;‘\l,b preserves Vy C
F j{}b, and, moreover, the resulting action pK: 1, —
Aut(Vy) factors as the composite

II; - II; /N < Aut(Vy)

— where the second arrow is injective.

Indeed, the fact that the action py of II; on F f\‘,b preserves Vy C F J?[b
follows immediately from the definition of py [cf. also the above com-
mutative diagram|. Next, let us observe that it follows immediately from
the various definitions involved that if we write f: Y — X for the con-
nected finite étale Galois covering of X corresponding to N C IIy, then
the right-hand square of the above diagram arises from a commutative
diagram of schemes

(Y xp X)\ Iy —225 X

l H

Y xp X = —2s X

— where we write I'y C Y x;, X for the graph of f, and the left-hand
vertical arrow is the natural open immersion. Thus, it follows imme-
diately from a similar argument to the argument used in the proof of
Lemma 1.1, (i) [cf. also [Hsh], Proposition 1.4, (i)], that F, N are
naturally isomorphic to the maximal pro-X quotients of the étale fun-
damental groups of geometric fibers of the families of hyperbolic curves
Y xp X\ Ty, Y x X 22 X over X, respectively. Therefore, by the
well-known structure of the maximal pro- quotient of the fundamental
group of a smooth curve over an algebraically closed field of character-
istic € X, we conclude — by considering the natural action of II; on the
set of cusps of the family of hyperbolic curves Y x;, X \ T’y e x
that the resulting action p¥ : II; — Aut(Vy) factors as the composite
II; — II; /N — Aut(Vy), and that if X is affine (respectively, proper),
then for any [ € X, the resulting representation II; /N — Aut(Vy®55 Qi)
is isomorphic to

the regular representation of 11y /N over Q; (respec-

tively, the quotient of the regular representation of

I, /N over Q; by the trivial subrepresentation [of di-

mension 1]).

In particular, as is well-known, the homomorphism IT; /N — Aut(Vy®zx
Qy), hence also the homomorphism IT; /N — Aut(Vy), is injective. This
completes the proof of the claim (x3).
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Next, let us observe that since & is F-admissible, it follows imme-
diately from the definition of “p%” that the automorphism & induces a
commutative diagram

\%
H1 p—N> Aut(VN)

&2l2 l?
\%
Pa1(N)

1, ——= Aut(Val (N))

— where the vertical arrows are isomorphisms that are induced by a.
Thus, by considering the kernels of pk;, pl{l( N)» one concludes from the
claim (o) that a*(N) = a?(N). This completes the proof of (*;), hence
also of assertion (i).

Assertion (ii) follows immediately from Theorem 1.8, (iv) [cf. also
Remark 1.4.1]. This completes the proof of Corollary 1.9. Q.E.D.

Remark 1.9.1. The discrete versions of Theorem 1.8, Corollary 1.9
will be discussed in a sequel to the present paper.

§2. Various operations on semi-graphs of anabelioids of PSC-
type

In the present §, we study various operations on semi-graphs of
anabelioids of PSC-type. These operations include the following:

(Opl) the operation of restriction to a sub-semi-graph [satistying cer-
tain conditions| of the underlying semi-graph [cf. Definition 2.2,
(ii); Fig. 2 below],

(Op2) the operation of partial compactification [cf. Definition 2.4, (ii);
Fig. 3 below],

(Op3) the operation of resolution of a given set [satisfying certain
conditions| of nodes [cf. Definition 2.5, (ii); Fig. 4 below], and

(Op4) the operation of generization [cf. Definition 2.8; Fig. 5 below].
A basic reference for the theory of semi-graphs of anabelioids of PSC-

type is [CmbGC]. We shall use the terms “semi-graph of anabelioids of
PSC-type”, “PSC-fundamental group of a semi-graph of anabelioids of
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PSC-type”, “finite étale covering of semi-graphs of anabelioids of PSC-
type”, “vertex”, “edge’, “cusp”, “node”, “verticial subgroup”, “edge-like
subgroup”, “nodal subgroup”, “cuspidal subgroup”, and “sturdy’ as they
are defined in [CmbGC], Definition 1.1. Also, we shall apply the vari-
ous notational conventions established in [NodNon|, Definition 1.1, and
refer to the “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type” simply as the “fundamental group” [of the semi-graph of an-
abelioids of PSC-type]. That is to say, we shall refer to the maximal
pro-X quotient of the fundamental group of a semi-graph of anabelioids
of pro-3 PSC-type [as a semi-graph of anabelioids!] as the “fundamental
group of the semi-graph of anabelioids of PSC-type”.

Let ¥ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-X PSC-type. Write G for the underlying semi-graph
of G, Ilg for the [pro-X] fundamental group of G, and G — G for the
universal covering of G corresponding to IIg. Then since the fundamental
group llg of G is topologically finitely generated, the profinite topology
of TIg induces [profinite] topologies on Aut(Ilg) and Out(Ilg) [cf. the
discussion entitled “Topological groups” in §0]. If, moreover, we write

Aut(G)

for the automorphism group of G, then by the discussion preceding
[CmbGC], Lemma 2.1, the natural homomorphism

Aut(G) — Out(Ilg)

is an injection with closed image. [Here, we recall that an automorphism
of a semi-graph of anabelioids consists of an automorphism of the un-
derlying semi-graph, together with a compatible system of isomorphisms
between the various anabelioids at each of the vertices and edges of the
underlying semi-graph which are compatible with the various morphisms
of anabelioids associated to the branches of the underlying semi-graph
— cf. [SemiAn|, Definition 2.1; [SemiAn|, Remark 2.4.2.] Thus, by
equipping Aut(G) with the topology induced via this homomorphism by
the topology of Out(Ilg), we may regard Aut(G) as being equipped with
the structure of a profinite group.

Definition 2.1.

(i) For z € VCN(G) such that z € Vert(G) (respectively, z €
Edge(G)), we shall say that a closed subgroup of Ilg is a VCN-
subgroup of Ilg associated to z € VCN(G) if the closed sub-
group is a verticial (respectively, an edge-like) subgroup of
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IIg associated to z € VCN(G). For z € VCN(G) such that
Z € Vert(G) (respectively, z € Edge(G)), we shall say that a
closed subgroup of Ilg is the VCN-subgroup of Ilg associated

to z € VCON(G) if the closed subgroup is the verticial (respec-

tively, edge-like) subgroup of Ilg associated to zZ € VCN(G) [cf.
[NodNon], Definition 1.1, (vi)].

For z € VCN(G), we shall write

g.

for the anabelioid corresponding to z € VCN(G).
For v € Vert(G), we shall write

Gl

for the semi-graph of anabelioids of pro-3 PSC-type defined as
follows [cf. Fig. 1 below]: We take Vert(G|,) to consist of the
single element “v”, Cusp(G|,) to be the set of branches of G
which abut to v, and Node(G|,) to be the empty set. We take
the anabelioid of G|, corresponding to the unique vertex “v”
to be G, [cf. (ii)]. For each edge e € £(v) of G and each branch
b of e that abuts to the vertex v, we take the anabelioid of G|,
corresponding to the branch b to be a copy of the anabelioid
Ge [cf. (ii)]. For each edge e € £(v) of G and each branch b of e
that abuts, relative to G, to the vertex v, we take the morphism
of anabelioids (G|y)e, — (Glv)v of G|, — where we write e for
the cusp of G|, corresponding to b — to be the morphism of
anabelioids G, — G, associated, relative to G, to the branch b.
Thus, one has a natural morphism

Glo, — G

of semi-graphs of anabelioids.

Remark 2.1.1. Let v € Vert(G) be a vertex of G and II, C Ilg
a verticial subgroup of IIg associated to v € Vert(G). Then it follows

immediately from the various definitions involved that the fundamental
group of G|, is naturally isomorphic to IL,, and that we have a natural

identification

Aut(G,) = Out(IL,)
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and a natural injection

Aut(Gl,) < Aut(G,) .

g|v

Figure 1: G|,

Definition 2.2 (cf. the operation (Opl) discussed at the beginning
the present §2).

(1)

Let K be a [not necessarily finite] semi-graph and H a sub-semi-
graph of K [cf. [SemiAn], the discussion following the figure
entitled “A Typical Semi-graph”]. Then we shall say that H is
of PSC-type if the following three conditions are satisfied:

(1) His finite [i.e., the set consisting of vertices and edges of
H is finite] and connected.

(2) M has at least one vertex.

(3) If vis a vertex of H, and e is an edge of K that abuts
to v, then e is an edge of H. [Thus, if e abuts both to a
vertex lying in H and to a vertex not lying in Hl, then the
resulting edge of H is a “cusp”, i.e., an open edge.]

Thus, a sub-semi-graph of PSC-type H is completely deter-
mined by the set of vertices that lie in H.

Let H be a sub-semi-graph of PSC-type [cf. (i)] of G. Then one
may verify easily that the semi-graph of anabelioids obtained
by restricting G to H [cf. the discussion preceding [SemiAn],
Definition 2.2] is of pro-X PSC-type. Here, we recall that the
semi-graph of anabelioids obtained by restricting G to H is the
semi-graph of anabelioids such that the underlying semi-graph
is Hj; for each vertex v (respectively, edge e) of H, the anabe-
lioid corresponding to v (respectively, e) is G, (respectively,
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Ge) [cf. Definition 2.1, (ii)]; for each branch b of an edge e
of H that abuts to a vertex v of H, the morphism associated
to b is the morphism G. — G, associated to the branch of G
corresponding to b. We shall write

Glm

for this semi-graph of anabelioids of pro-X PSC-type and refer
to Glu as the semi-graph of anabelioids of pro-X PSC-type ob-
tained by restricting G to H [cf. Fig. 2 below]. Thus, one has
a natural morphism

Glu—G

of semi-graphs of anabelioids.

H: the sub-semi-graph of PSC-type whose set of vertices = {v}

4

Glm

Figure 2: Restriction
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Definition 2.3. Let (g,r) be a pair of nonnegative integers such
that 2g —24+1r > 0.

(1)

(iii)

We shall say that G is of type (g,r) if G arises from a stable log
curve of type (g,r) over an algebraically closed field of charac-
teristic € X, i.e., Cusp(G) is of cardinality r, and, moreover,

ranks. (TI2°) = 2g + Cusp(G)* — cg

— where

6= 1 if Cusp(G) #0.

[Here, we recall that it follows from the discussion of [CmbGC],
Remark 1.1.3, that Hgb is a free Z¥-module of finite rank.]

Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)].
Then we shall say that H is of type (g,r) if the semi-graph of
anabelioids G|, which is of pro-X PSC-type [cf. Definition 2.2,

(ii)], is of type (g,7) [cf. (I)].

Let v € Vert(G) be a vertex. Then we shall say that v is
of type (g,r) if the semi-graph of anabelioids G|,, which is of
pro-X PSC-type [cf. Definition 2.1, (iii)], is of type (g,7) [cf.
(®)]-

We shall say that G is totally degenerate if each vertex of G is
of type (0,3) [cf. (iii)].

def { 0 if Cusp(G) =0,

One may verify easily that there exists a unique, up to isomor-
phism, semi-graph of anabelioids of pro-3 PSC-type that is of
type (g,7) [cf. (1)] and has no node. We shall write

odel
Gyr

for this semi-graph of anabelioids of pro-X PSC-type.

Remark 2.3.1. It follows immediately from the various definitions
involved that there exists a unique pair (g,r) of nonnegative integers
such that G is of type (g,7) [cf. Definition 2.3, (i)].

Definition 2.4 (cf. the operation (Op2) discussed at the beginning
the present §2).
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We shall say that a subset S C Cusp(G) of Cusp(G) is omit-
table if the following condition is satisfied: For each vertex
v € Vert(G) of G, if v is of type (g,r) [cf. Definition 2.3, (iii);
Remark 2.3.1], then it holds that 2g — 2 + 7 — (£(v) N S)* > 0.

Let S C Cusp(G) be a subset of Cusp(G) which is omittable
[cf. (i)]. Then by eliminating the cusps [i.e., the open edges]
contained in S, and, for each vertex v of G, replacing the an-
abelioid G, corresponding to v by the anabelioid of finite étale
coverings of G, that restrict to a trivial covering over the cusps
contained in S that abut to v, we obtain a semi-graph of an-
abelioids

goS

of pro-¥ PSC-type. We shall refer to Ge as the partial compact-
ification of G with respect to S [cf. Fig. 3 below]. Thus, for each
v € Vert(G) = Vert(Ges), the pro-3 fundamental group of the
anabelioid (Geg), corresponding to v € Vert(G) = Vert(Ges)
may be naturally identified, up to inner automorphism, with
the quotient of a verticial subgroup II, C Ilg of IIg associated
to v € Vert(G) = Vert(Ges) by the subgroup of II, topolog-
ically normally generated by the II, C II, for e € E(v) N S.
If, moreover, we write Ilg, , for the [pro-X] fundamental group
of Ges and Ng C Ilg for the normal closed subgroup of Ilg
topologically normally generated by the cuspidal subgroups of
IIg associated to elements of S, then we have a natural outer
isomorphism

Ilg/Ns — g, -

Remark 2.4.1.

Let S; C Sy C Cusp(G) be subsets of Cusp(G). Then it fol-
lows immediately from the various definitions involved that the
omittability of Sy [cf. Definition 2.4, (i)] implies the omittability
of Sl .

If G is sturdy, then it follows from the various definitions in-
volved that Cusp(G), hence also any subset of Cusp(G) [cf. (i)],
is omittable. Moreover, the partial compactification of G with
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respect to Cusp(G) coincides with the compactification of G |cf.
[CmbGC], Remark 1.1.6; [NodNon], Definition 1.11].

Figure 3: Partial compactification

Definition 2.5 (cf. the operation (Op3) discussed at the beginning
the present §2). Let S C Node(G) be a subset of Node(G).

(1)

We shall say that S is of separating type if the semi-graph
obtained by removing the closed edges corresponding to the
elements of S from G is disconnected. Moreover, for each node
e € Node(G), we shall say that e is of separating type if {e} C
Node(G) is of separating type.

Suppose that S is not of separating type [cf. (i)]. Then one
may define a semi-graph of anabelioids of pro-3 PSC-type as
follows: We take the underlying semi-graph G, g to be the
semi-graph obtained by replacing each node e of G contained
in S such that V(e) = {v1,v2} C Vert(G) — where vy, v9
are not necessarily distinct — by two cusps that abut to vy,
vy € Vert(G), respectively. We take the anabelioid correspond-
ing to a vertex v (respectively, node e) of Gy g to be G, (respec-
tively, G.). [Note that the set of vertices (respectively, nodes)
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of G, g may be naturally identified with Vert(G) (respectively,
Node(G)\ S).] We take the anabelioid corresponding to a cusp
of G, g arising from a cusp e of G to be G.. We take the an-
abelioid corresponding to a cusp of G.g arising from a node
e of G to be G.. For each branch b of G, g that abuts to a
vertex v of a node e (respectively, of a cusp e that does not
arise from a node of G), we take the morphism associated to
b to be the morphism G. — G, associated to the branch of
G corresponding to b. For each branch b of G.g that abuts
to a vertex v of a cusp of Gyg that arises from a node e of
G, we take the morphism associated to b to be the morphism
G. — G, associated to the branch of G corresponding to b. We
shall denote the resulting semi-graph of anabelioids of pro-X
PSC-type by
Grs

and refer to G.g as the semi-graph of anabelioids of pro-%
PSC-type obtained from G by resolving S [cf. Fig. 4 below].
Thus, one has a natural morphism

Gos — G

of semi-graphs of anabelioids.

Remark 2.5.1.

(i)

(i)

Let S1 C Sy € Node(G) be subsets of Node(G). Then it follows
immediately from the various definitions involved that if Sy is
not of separating type [cf. Definition 2.5, (i)], then Sy is not of
separating type.

Let v € Vert(G) be a vertex of G. Then one may verify eas-
ily that there exists a unique sub-semi-graph of PSC-type [cf.
Definition 2.2, (i)] G, of G such that the set of vertices of
G, is equal to {v}. Moreover, one may also verify easily that
Node(G|g, ) [cf. Definition 2.2, (ii)] is not of separating type [cf.
Definition 2.5, (i)], relative to Glg,, and that the semi-graph
of anabelioids of pro-X PSC-type

(Gle, )sNode(Gle,)

[cf. Definition 2.5, (ii)] is naturally isomorphic to G|, [cf. Def-
inition 2.1, (ii)].
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Figure 4: Resolution
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Definition 2.6.

(i) Let S € VCN(G) be a subset of VCN(G). Then we shall denote
by
Aut®(G) C Aut(G)

the [closed] subgroup of Aut(G) consisting of automorphisms «
of G such that the automorphism of the underlying semi-graph
G of G induced by « preserves S and by

Aut!®l(G) € Aut®(G)

the [closed] subgroup of Aut(G) consisting of automorphisms
a of G such that the automorphism of the underlying semi-
graph G of G induced by « preserves and induces the identity
automorphism of S. Moreover, we shall write

Autlehl(g) 2 Ay VON©@I gy |

(i) Let H CIlg be a closed subgroup of IIg. Then we shall denote
by
OutH(Hg) g Out(Hg)

the [closed] subgroup of Out(Ilg) consisting of outomorphisms
[cf. the discussion entitled “Topological groups” in §0] of Ilg
which preserve the Ilg-conjugacy class of H C Ilg. Moreover,
we shall denote by

def

Aut?(G) = Aut(G) N Out (11g) .

(iii) Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)]
of G. Then VCN(G|m) [cf. Definition 2.2, (ii)] may be regarded
as a subset of VCN(G). We shall write

Aut‘Hl(g) def Aut\VCN(g\H)I(g)
c  Aut?(g) e AutVONEIa) (g)
— AutVert(gh.I)(g) )

Proposition 2.7 (Subgroups determined by sets of compo-
nents). Let S C VCN(G) be a nonempty subset of VCN(G). Then:
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(i) It holds that

Aut’®l(G) = [ Aut™(9)

z€S

— where we use the notation 11, to denote a VCN-subgroup
[¢f. Definition 2.1, (i)] of Tlg associated to z € VCN(G).

(ii) It holds that

AutEP(G) = (] Out'(Ilg)
2EVCN(G)

— where we use the notation 11, to denote a VCN-subgroup of
IIg associated to z € VCN(G).

(iii)  The closed subgroups Aut'l(G), Aut®(G) C Aut(G) are open
in Aut(G). Moreover, the closed subgroup Aut!®1(G) C Aut®(G)
is normal in Aut®(G). In particular, Aut/®P"(G) C Aut(G)
is normal in Aut(G).

Proof.  Assertion (i) follows immediately from [CmbGC], Proposi-
tion 1.2, (i). Next, we verify assertion (ii). It follows immediately from
[CmbGC], Proposition 1.5, (ii), that the right-hand side of the equality
in the statement of assertion (ii) is contained in Aut(G). Thus, asser-
tion (i) follows immediately from assertion (i). Assertion (iii) follows
immediately from the finiteness of the semi-graph G, together with the
various definitions involved. Q.E.D.

Definition 2.8 (cf. the operation (Op4) discussed at the beginning
the present §2). Let S C Node(G) be a subset of Node(G). Then we
define the semi-graph of anabelioids of pro-3 PSC-type

Gs
as follows:
(i) We take Cusp(G..s) %ef Cusp(G).

(ii) We take Node(G..s) %ef Node(g) \ S.

(iii) We take Vert(G..s) to be the set of connected components of
the semi-graph obtained from G by omitting the edges e €
Edge(G) \ S. Alternatively, one may take Vert(G..s) to be
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the set of equivalence classes of elements of Vert(G) with re-
spect to the equivalence relation “~” defined as follows: for v,
w € Vert(G), v ~ w if either v = w or there exist n elements

e, - e, € Sof Sand n+ 1 vertices vg, vy, -+ , v, € Vert(G)

of G such that vg def v, Up def w, and, for 1 < i < n, it holds

that V(@i) = {vi_l,vi}.

For each branch b of an edge e € Edge(G..s) (= Edge(G) \ S
—cf. (i), (ii)) and each vertex v € Vert(G..g) of G..g, b abuts,
relative to G..g, to v if b abuts, relative to G, to an element of
the equivalence class v [cf. (iii)].

For each edge e € Edge(G..s) (= Edge(G) \ S — cf. (i), (ii))
of G..g, we take the anabelioid of G..g corresponding to e €
Edge(G..s) to be G, [cf. Definition 2.1, (ii)].

Let v € Vert(G..s) be a vertex of G..g. Then one verifies
easily that there exists a unique sub-semi-graph of PSC-type
[cf. Definition 2.2, (i)] H, of G such that the set of vertices of
H., consists of the elements of the equivalence class v [cf. (iii)].
Write

T, def Node(G

m,) \ (SN Node(G

H,))

[cf. Definition 2.2, (ii)]. Then we take the anabelioid of G..g
corresponding to v € Vert(G..s) to be the anabelioid deter-
mined by the finite étale coverings of

(G
[cf. Definition 2.5, (ii)] of degree a product of primes € X.

Let b be a branch of an edge e € Edge(G..s) (= Edge(G)\ S —
cf. (i), (ii)) that abuts to a vertex v € Vert(G..s). Then since b
abuts to v, one verifies easily that there exists a unique vertex w
of G which belongs to the equivalent class v [cf. (iii)] such that b
abuts to w relative to G. We take the morphism of anabelioids
associated to b, relative to G.. g, to be the morphism naturally
determined by the morphism of anabelioids

Ge = Gu

H,)=T,

corresponding to the branch b relative to G and the morphism
of semi-graphs of anabelioids of pro-3 PSC-type

Glw — (G

H, )T,
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[cf. (vi); Definition 2.1, (iii)]. Here, we recall that the anabe-
lioid obtained by considering the connected finite étale cov-
erings of G|, may be naturally identified with G, [cf. Re-
mark 2.1.1].

We shall refer to this semi-graph of anabelioids of pro-3 PSC-type G.. g
as the generization of G with respect to S [cf. Fig. 5 below].

Gorfe)

Figure 5: Generization

Remark 2.8.1. It follows immediately from the various definitions
involved that if G is of type (g,r) [cf. Definition 2.3, (i)], then the
generization G_.Node(g) Of G with respect to Node(G) is isomorphic to
ggjgdel [cf. Definition 2.3, (v)].

Proposition 2.9 (Specialization outer isomorphisms). Let S
C Node(G) be a subset of Node(G). Write Ilg_, for the [pro-X] funda-
mental group of the generization G..s of G with respect to S [cf. Defi-
nition 2.8]. Then the following hold:
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There exists o natural outer isomorphism of profinite
groups

q)gws : ngs — Hg

which satisfies the following three conditions:

(1)

(2)

D¢, induces a bijection between the set of cuspidal sub-
groups of Ilg_ . and the set of cuspidal subgroups of Ilg.

Dg_ . induces a bijection between the set of nodal sub-
groups of Ilg_ ; and the set of nodal subgroups of Ilg as-
sociated to the elements of Node(G) \ S.

Let v € Vert(G..g) be a vertex of Gog; H,, T, as in
Definition 2.8, (vi). Then ®g_ , induces a bijection be-
tween the llg_ . -conjugacy class of any verticial subgroup
IT, Cllg_, of Ug_ . associated to v € Vert(G..s) and the
Ig-conjugacy class of subgroups determined by the image
of the outer homomorphism

Hgy)or, — g

induced by the natural morphism (Glu,)~1, — G [cf. Def-
initions 2.2, (ii); 2.5, (ii)] of semi-graphs of anabelioids
of pro-% PSC-type.

Moreover, any two outer isomorphisms llg_, — g that sat-
isfy the above three conditions differ by composition with a
graphic [c¢f. [CmbGC], Definition 1.4, (i)] outomorphism [cf.
the discussion entitled “Topological groups” in §0] of Ug__ ..

The isomorphism

Out(Ilg) = Out(Tlg_, )

induced by the natural outer isomorphism of (i) determines an
mgection

Aut®(G) — Aut(G..g)

[cf. Definition 2.6, (i)].

Proof. First, we verify assertion (i). An outer isomorphism that
satisfies the three conditions of assertion (i) may be obtained by ob-
serving that, after sorting through the various definitions involved, a
finite étale covering of G..s amounts to the same data as a finite étale
covering of G. The final portion of assertion (i) follows immediately,
in light of the three conditions in the statement of assertion (i), from
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[CmbGC], Proposition 1.5, (ii). This completes the proof of assertion
(i). Assertion (ii) follows immediately from [CmbGC], Proposition 1.5,
(ii), together with the three conditions in the statement of assertion (i).
This completes the proof of Proposition 2.9. Q.E.D.

Definition 2.10. Let S C Node(G) be a subset of Node(G). Write
IIg_ . for the [pro-X] fundamental group of the generization G..g of G
with respect to S [cf. Definition 2.8]. Then we shall refer to the natural
outer isomorphism

g s:1llg s — g

obtained in Proposition 2.9, (i), as the specialization outer isomorphism
with respect to S.

Proposition 2.11 (Commensurable terminality of closed
subgroups determined by certain semi-graphs). Let H be a
sub-semi-graph of PSC-type [cf. Definition 2.2, (i)] of G and S C
Node(Glm) [cf. Definition 2.2, (ii)] a subset of Node(G|x) that is not of
separating type [cf. Definition 2.5, (i)]. Then the natural morphism
(Glu)=s — G [¢f. Definitions 2.2, (ii); 2.5, (ii)] of semi-graphs of an-
abelioids of pro-X PSC-type determines an outer injection of profinite
groups

H(Gls),s = g

Moreover, the image of this outer injection is commensurably termi-
nal in Ig [cf. the discussion entitled “Topological groups” in §0].

Proof. Write H e (Glu)ss and T e Node(G|x) \ S. Note that it
follows from the definition of G| that 7' may be regarded as the subset
of Node(G) determined by Node(H); for simplicity, we shall identify T
with Node(#). Now it follows immediately from the definition of “G..p”
that the composite

-1
[

P ~
Iy —S g = Tg_,

factors through a verticial subgroup 1L, C IIg_ . of IIg_ . associated to
a vertex v € Vert(G..r), and that the composite

Iy — H(ng)lv

of the resulting outer homomorphism II3; — II,, [which is well-defined in
light of the commensurable terminality of 11, in g_, — cf. [CmbGC],
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Proposition 1.2, (ii)] and the natural outer isomorphism My, =~ 1Ig_ .y,
[cf. Remark 2.1.1] may be identified with “®3," ” [cf. Definition 2.10].
Thus, Proposition 2.11 follows immediately from the fact that ®y .

is an outer isomorphism, together with the fact that II, C Ilg . is
commensurably terminal in Mg_, [cf. [CmbGC], Proposition 1.2, (ii)].
This completes the proof of Proposition 2.11. Q.E.D.

Lemma 2.12 (Restrictions of outomorphisms). Let H C Ilg
be a closed subgroup of Ilg which is normally terminal [cf. the discus-
sion entitled “Topological groups” in §0] and o € Out™ (Ilg) [cf. Defini-
tion 2.6, (ii)]. Then the following hold:

(i) There exists a lifting o € Aut(Ilg) of a such that & preserves
the closed subgroup H C Ilg. Moreover, such a lifting o is
uniquely determined up to composition with an H-inner
automorphism of Ilg.

(il)  Write ar for the outomorphism [cf. the discussion entitled
“Topological groups” in §0] of H determined by the restriction
of a lifting & as obtained in (i) to the closed subgroup H C Ilg.
Then the map

Out™ (Ig) — Out(H)
given by assigning « — ay is ¢« homomorphism.
(iii)  The homomorphism
Out? (Ilg) — Out(H)

obtained in (ii) depends only on the conjugacy class of the
closed subgroup H C llg, i.e., if we write HY def v-H -~y for
v € llg, then the diagram

Out?(Ilg) —— Out(H)

H I

Out?’ (Ilg) —— Out(H")

— where the upper (respectively, lower) horizontal arrow is the
homomorphism given by mapping o — apy (respectively, o —
ap~ ), and the right-hand vertical arrow is the isomorphism
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obtained by mapping ¢ € Out(H) to

— commutes.

Proof. Assertion (i) follows immediately from the normal termi-
nality of H in IIg. Assertion (ii) follows immediately from assertion
(i). Assertion (iii) follows immediately from the various definitions in-
volved. Q.E.D.

Definition 2.13. Let H C IlIg be a [closed] subgroup of IIg which
is normally terminal [cf. the discussion entitled “Topological groups’ in
§0]. Then we shall write

Out!l(115) € Out* (115)

for the closed subgroup of Out” (Ilg) consisting of outomorphisms [cf.
the discussion entitled “Topological groups” in §0] « of IIg such that the
image oy of o via the homomorphism Out? (G) — Out(H) obtained in
Lemma 2.12, (ii), is trivial. Also, we shall write

Aut? (@) & outl(11g) N Aut(G) .

Definition 2.14.

(i) Let T C Cusp(G) be an omittable [cf. Definition 2.4, (i)] sub-
set of Cusp(G). Write Ilg,,. for the [pro-X] fundamental group
of Ger [cf. Definition 2.4, (ii)] and Ny C IIg for the nor-
mal closed subgroup of Ilg topologically normally generated
by the cuspidal subgroups of Ilg associated to elements of T
Then one verifies easily that the natural outer isomorphism
lg /N7 = Tlg,, [cf. Definition 2.4, (ii)] induces a homomor-
phism Out™ (Ilg) — Out(Ilg,,.) that fits into a commutative
diagram

Aut™(G) —— Aut(Ger)

| I

OutNT(Hg) —— Out(Ilg,,)
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— where the vertical arrows are the natural injections. For
a € Out™NT (Ilg), we shall write

Qg,r € OUt(HQ-T )

for the image of « via the lower horizontal arrow in the above
commutative diagram. If, moreover, o € Aut’ (G), then, in
light of the injectivity of the right-hand vertical arrow in the
above diagram, we shall write [by abuse of notation]

Qg € Aut(goT)

for the image of « via the upper horizontal arrow in the above
commutative diagram.

Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)]
of G and S C Node(G|m) [cf. Definition 2.2, (ii)] a subset of
Node(G|m) that is not of separating type [cf. Definition 2.5, (i)].
Write II(g,), s for the [pro-¥] fundamental group of (Glu)xs
[cf. Definition 2.5, (ii)]. Then the natural outer homomor-
phism Il(g,), , — Ilg is an outer injection whose image is
commensurably terminal [cf. Proposition 2.11]. Thus, it fol-
lows from Lemma 2.12, (iii), that we have a homomorphism
Out@)-s (Ig) — Out(Il(g},), s) that fits into a commuta-
tive diagram

Aut®$(G) % Aut™ () N Aut”(G) —— Aut((Gl)-s)

| l

Outlohn s (TTg) —— Out(Ilg,), )

— where the vertical arrows are the natural injections. For
o € Out'@-s (Ilg), we shall write

AGlw)ss € Out(Igly), o)

for the image of « via the lower horizontal arrow in the above
commutative diagram. If, moreover, a € Aut™""%(G), then, in
light of the injectivity of the right-hand vertical arrow in the
above diagram, we shall write [by abuse of notation]

(gl s € Aut((Glu)-s)

for the image of « via the upper horizontal arrow in the above
commutative diagram. Finally, if T C Cusp((G|m).s) is an
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omittable subset of Cusp((Glu)ss), then we shall write
AutH>SOT(g) C AutH>S(g)

for the inverse image of the closed subgroup Aut” ((G|m)ss) C
Aut((Glu)ss) of Aut((Gla)ss) in Aut™(G) via the upper
horizontal arrow Aut™ %(G) — Aut((Gly)ss) of the above
commutative diagram; thus, we have a natural homomorphism

[ef. ()]

At TGy — Aut(((Glr)ss)er)

@ = Q(Glu)»s)er -

(iii) Let z € VCN(G) be an element of VCN(G) and II, C Ilg
a VCN-subgroup of IIg associated to z € VCN(G). Then it
follows from [CmbGC], Proposition 1.2, (ii), that the closed
subgroup II, C Ilg is commensurably terminal. Thus, it fol-
lows from Lemma 2.12, (iii), that we obtain a homomorphism
Out™ (IIg) — Out(Il,) that fits into a commutative diagram

Aut??(G) —— Aut(G.)

| L

Out™ (Tg) —— Out(IL,)

— where the left-hand vertical arrow is injective, and the right-
hand vertical arrow is an isomorphism. For a € Out'*(Ilg),
we shall write

a, € Out(Il,)

for the image of «a via the lower horizontal arrow in the above
commutative diagram.

83. Synchronization of cyclotomes

In the present §, we introduce and study the notion of the second
cohomology group with compact supports of a semi-graph of anabelioids
of PSC-type [cf. Definition 3.1, (ii), (iii) below]. In particular, we show
that such cohomology groups are compatible with graph-theoretic lo-
calization [cf. Definition 3.4, Lemma 3.5 below]. This leads naturally
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to a discussion of the phenomenon of synchronization among the vari-
ous cyclotomes [cf. Definition 3.8 below| arising from a semi-graph of
anabelioids of PSC-type [cf. Corollary 3.9 below].

Let ¥ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-X PSC-type. Write G for the underlying semi-graph
of G, Ilg for the [pro-Y| fundamental group of G, and G — G for the
universal covering of G corresponding to Ilg.

Definition 3.1. Let M be a finitely generated Z®-module and v €
Vert(G) a vertex of G.

(i)

We shall write

H(G, M) = H(Ilg, M)
— where we regard M as being equipped with the trivial action

of IIg — and refer to H?(G, M) as the second cohomology group
of G.

Let s be a section of the natural surjection Cusp(G) —
Cusp(G). Given a central extension of profinite groups

1— M —F—1lg —1,

and a cusp e € Cusp(G), we shall refer to a section of this
extension over the edge-like subgroup Il) C Ilg of Ilg deter-

mined by s(e) € Cusp(G) as a trivialization of this extension
at the cusp e. We shall write

HZ(G, M)
for the set of equivalence classes

[E7 (Le: Hs(e) - E)eECusp(g)]

of collections of data (E, (te: e) = E)ecccusp(g)) as follows:
(a) F is a central extension of profinite groups

1l— M —F —1Ilg —1,;

(b) for each e € Cusp(G), ¢ is a trivialization of this extension
at the cusp e. The equivalence relation “~” is then defined as
follows: for two collections of data (FE, (¢.)) and (E’,(.))), we

€

shall write (E, (¢e)) ~ (E’,(¢})) if there exists an isomorphism
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of profinite groups a: E = E’ over IIg which induces the iden-
tity automorphism of M, and, moreover, for each e € Cusp(G),
maps t. to .. We shall refer to H2(G, M) as the second coho-
mology group with compact supports of G.

We shall write

HZ (0, M) € HZ (G|, M)
[cf. (ii); Definition 2.1, (iii)] and refer to HZ(v, M) as the
second cohomology group with compact supports of v.

The set H2(G, M) is equipped with a natural structure of 7%
module defined as follows:

o Let [E, ()], [E,(iL)] € H*(G,M). Then the fiber prod-
uct E xp, E' of the surjections E — Ilg, E' — Ilg is
an extension of IIg by M x M. Thus, the quotient S of
E xp, E' by the image of the composite

M — MxM < Exu,F
m —  (m,—m)

is an extension of IIg by M. On the other hand, it follows
from the definition of S that for each e € Cusp(G), the sec-
tions ¢, and ¢/, naturally determine a section ¢ : Mgy — S
over Ily). Thus, we define

B, (1)) + [E', ()] =[S, (:5))].

Here, one may verify easily that the equivalence class
[S, (9] depends only on the equivalence classes [E, (t.)],
[E',(¢)], and that this definition of “4” determines a
module structure on H2(G, M).

o Let [E, ()] € H2(G, M) be an element of H2(G, M) and

a € Z®. Now the composite £ x M NE IIg deter-
mines an extension of IIg by M x M. Thus, the quotient
P of E x M by the image of the composite

M < MxM < ExM
m —  (m,—am)

is an extension of Ilg by M. On the other hand, it follows
from the definition of P that for each e € Cusp(G), the
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section ¢e and the zero homomorphism Il — M natu-
rally determine a section Lf: [y — P over IL;). Thus,
we define
def
a-[B, ()] = [P, ()]

€

Here, one may verify easily that the equivalence class
[P, (:F)] depends only on the equivalence class [E, (z.)]
and a € 227 and that this definition of “” determines a
Z®-module structure on H2(G, M).
Finally, we note that it follows from Lemma 3.2 below that
the Z=-module “H2(G,M)” does not depend on the choice of
the section s. More precisely, the Z=-module “H2(G,M)” is
uniquely determined by G and M up to the natural isomorphism
obtained in Lemma 3.2.

Lemma 3.2 (Independence of the choice of section). Let M
be a finitely generated 7% -module and s, s’ sections of the natural sur-
jection Cusp(G) — Cusp(G). Write H2(G, M, s), H2(G,M,s') for the
7= -modules “H2(G,M)” defined in Definition 3.1 by means of the sec-
tions s, s', respectively. Then there erists a natural isomorphism of
7= -modules

HZ(G,M,s) = H}(G, M,s) .

Proof. Let [E,(1.)] € H2(G, M, s) be an element of H2(G, M, s).
Now it follows from the various definitions involved that, for each e €
Cusp(G), there exists an element . € Ilg such that [Ty ey = 7e - Uy -
v- 1. For each e € Cusp(G), fix a lifting 5. € E of 4. € Ilg and write

tg: Iy ey = E for the section given by
Hs/(e) =TYe- Hs(e) : ’ye_l — _ E~
’Yeafye_l = ’VCLe(a)’ye_l :

Then it follows immediately from the fact that M C FE is contained in
the center Z(F) of E that this section ¢/, does not depend on the choice of
the lifting ¥, € E of v, € llg. Moreover, it follows immediately from the
various definitions involved that the assignment “[E, (i.)] — [E, (¢.)]”
determines an isomorphism of 7= -modules

H2(G,M,s) — H*(G,M,s).

This completes the proof of Lemma 3.2. Q.E.D.
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Lemma 3.3 (Exactness of certain sequences). Let M be a
finitely generated 7= -module. Suppose that Cusp(G) # 0. Then the
natural inclusions I, < Ilg — where e ranges over the cusps of G, and,
for each cusp e € Cusp(G), we use the notation Il to denote an edge-like
subgroup of llg associated to the cusp e — determine an exact sequence
of Z= modules

Homgy, (I, M) — P Homgy (I, M) — H2(G, M) — 0.
e€Cusp(G)

Proof. Let s be a section of the natural surjection Cusp(G) —
Cusp(G). Then given an element

((Z)ei I, — M)eeNode(g) S @ Homiz (Hev M) )
eeCusp(9)

one may construct an element

pr
[M X Hg (_3 Hg), (['e: Hs(e) — M x Hg)eeNode(g)]

— where we write . I,y — M x Ilg for the section determined by
¢e: Ilge) — M and the natural inclusion Il < IIg — of H2(G, M).
ecCusp(G) HOsz (H€7 M) - Hc2 (g’ M):
which, as is easily verified, is a homomorphism of 7% -modules. Now the
exactness of the sequence in question follows immediately from the fact
that Ig is free pro-X [cf. [CmbGC], Remark 1.1.3]. This completes the
proof of Lemma 3.3. Q.E.D.

In particular, we obtain a map €

Definition 3.4. Let M be a finitely generated Z=-module.

(i) Let € be a semi-graph of anabelioids. Denote by VCN(E) the
set of components of £ [i.e., the set of vertices and edges of &|
and, for each z € VCN(&), by Ilg_ the fundamental group of
the anabelioid &, of £ corresponding to z € VCN(E). Then we
define a central extension of G by M to be a collection of data

(E,a=(z: M = g ).evenie): B: E/a = G)

as follows:

(a) For each z € VON(E), a,: M — Ilg, is an injective ho-
momorphism of profinite groups whose image is contained
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in the center Z(Il¢,) of Ilg_. [Thus, the image of «, is a
normal closed subgroup of Ilg_.]

For each branch b of an edge e that abuts to a vertex v of
&, we assume that the outer homomorphism Ilg, — Ilg,
associated to b is injective and fits into a commutative
diagram of [outer] homomorphisms of profinite groups

M:M

o | [

ng —_— Hg“

— i.e., where the lower horizontal arrow is the outer in-
jection associated to b.

Write £€/a for the semi-graph of anabelioids defined as
follows: We take the underlying semi-graph of £/« to be
the underlying semi-graph of &; for each z € VCN(E), we
take the anabelioid (£/a), of £/a corresponding to z €
VCN(E) to be the anabelioid determined by the profinite
group Ilg_/Im(c,) [cf. condition (a)]; for each branch b
of an edge e that abuts to a vertex v of &£, we take the
associated morphism of anabelioids (£/a). — (£/a), to
be the morphism of anabelioids naturally determined by
the morphism &£, — &, associated, relative to &, to b [cf.
condition (b)].

B:&/a = G is an isomorphism of semi-graphs of anabe-
lioids.

There is an evident notion of isomorphisms of central exten-
sions of G by M. Also, given a central extension of G by M,

and a section s of the natural surjection Cusp(G) — Cusp(G),
there is an evident notion of trivialization of the given cen-
tral extension of G by M at a cusp of G [cf. the discussion of
Definition 3.1, (ii), (iv)].

Let

1— M —FE —1Ilg —1

be a central extension of Ilg by M. Then we shall define a
semi-graph of anabelioids

)
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— which we shall refer to as the semi-graph of anabelioids
associated to the central extension E — as follows: We take the
underlying semi-graph of Gg to be the underlying semi-graph of
G. We take the anabelioid of G corresponding to z € VCN(G)
to be the anabelioid determined by the fiber product £ x, I,
of the surjection ' — Ilg and a natural inclusion II, — IIg —
where we use the notation II, C Ilg to denote a VCN-subgroup
[cf. Definition 2.1, (i)] of IIg associated to z € VCN(G); for
each branch b of an edge e that abuts to a vertex v of G, if
we write (Gg)y, (Gr)e for the anabelioids of Gg corresponding
to v, e, respectively, then we take the morphism of anabelioids
(Gr)e — (GE)» associated to the branch b to be the morphism
naturally determined by the morphism of anabelioids G, — G,
associated, relative to G, to b.

(iii) In the notation of (ii), one may verify easily that the semi-
graph of anabelioids Gp associated to the central extension F
is equipped with a natural structure of central extension of G
by M. More precisely, for each z € VCN(G), if we denote
by a,: M — Ilg,), = E Xy, II, the homomorphism deter-
mined by the natural inclusion M — E and the trivial homo-
morphism M — II., then there exists a natural isomorphism
B: Gg/(:).evenig) — G such that the collection of data

(GE, (a2):even(g), B)

forms a central extension of G by M, which we shall refer to
as the central extension of G by M associated to the central
extension E.

Lemma 3.5 (Graph-theoretic localizability of central exten-

sions of fundamental groups). Let M be a finitely generated Z=-
module. Then the following hold:

(i) (Exactness and centrality) Let

(E,a=(0z: M = ¢ ).evene), B: E/a=G) (1))
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be a central extension of G by M [cf. Definition 3.4, (i)].

Write le for the pro-X fundamental group of €, i.e., the mazx-

imal pro-% quotient of the fundamental group of € [cf. the dis-

cussion preceding [SemiAn], Definition 2.2]. Then the compos-
B

ite £ — £/a = G determines an exact sequence of profinite

groups

1—M—1Ilg —1llg —1 (19)
which is central.

(Natural isomorphism I) In the notation of (i), the central
extension of G by M associated to the central extension (1) [cf.
Definition 3.4, (iii)] is naturally isomorphic, as a central
extension of G by M, to (1).

(Natural isomorphism II) Let
l—M —F —1Ilg —1

be a central extension of llg by M. Then the pro-X fun-
damental group of the semi-graph of anabelioids Gg associated
to the central extension E [cf. Definition 3.4, (ii)] — i.e., the
mazximal pro-X quotient of the fundamental group of Gy — is
naturally isomorphic, over Ilg, to E.

(Equivalence of categories) The correspondences of (i), (ii),
(iii) determine a natural equivalence of categories between
the category of central extensions of G by M and the category of
central extensions of llg by M. [Here, we take the morphisms
i both categories to be the isomorphisms of central exten-
sions of the sort under consideration.] Moreover, this equiva-
lence extends to a similar natural equivalence of categories
between categories of central extensions equipped with trivial-
izations at the cusps of G [¢f. Definitions 3.1, (ii); 3.4,

()]

Proof. First, we verify assertion (i). If Node(G) = (), then assertion
(i) is immediate; thus, suppose that Node(G) # (). For each connected
finite étale covering &' — &£ of £, denote by Ilg/ the pro-X fundamental
group of &', by VCN(&’) the set of components of £ [i.e., the set of
vertices and edges of £'], and by Vert(£’) the set of vertices of &’; for
each z € VCN(&’), denote by &, the anabelioid of & corresponding to
z € VCN(&') and by Ilg, the fundamental group of £.. Now we claim
that
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(x1): the composite in question & — £/a = G in-
duces an isomorphism between the underlying semi-
graphs, as well as an outer surjection Ilg — Ilg.

Indeed, the fact that the composite in question determines an isomor-
phism between the underlying semi-graphs follows from conditions (c),
(d) of Definition 3.4, (i). In particular, we obtain a bijection VON(E) =
VCN(G). Now for each z € VCN(E) = VCN(G), again by conditions
(c), (d) of Definition 3.4, (i), the composite & — &£/a = G induces
an outer surjection Ilg, — II,, where we use the notation II, C Ilg
to denote a VCN-subgroup [cf. Definition 2.1, (i)] of IIg associated to
z € VCN(G). Therefore, in light of the isomorphism verified above be-
tween the semi-graphs of £ and G, one may verify easily that the natural
outer homomorphism IIg — Ilg is surjective. This completes the proof
of the claim (x1).

For each vertex v € Vert(€) = Vert(G) [cf. claim (x1)], it follows
from the assumption that Node(G) # 0 that any verticial subgroup
II, C IlIg of IIg associated to a vertex v € Vert(G) is a free pro-%
group [cf. [CmbGC], Remark 1.1.3]; thus, there exists a section of the
natural surjection IIg, — II,. Now for each vertex v € Vert(G), let
us fix such a section of the natural surjection Ilg, — II,, hence also
— since the extension Ilg, of IL, by M is central [cf. condition (a) of
Definition 3.4, (i)] — an isomorphism t,: M x I, = g, . Let G; — G
be a connected finite étale Galois covering of G and write &; def E Xg
Gi. Then it follows from the claim (1) that & is connected; moreover,
one may verify easily that the structure of central extension of G by
M on &€ naturally determines a structure of central extension of G; by
M on &, and that for each vertex v € Vert(£) = Vert(G) and each
vertex w € Vert(€) = Vert(Gy) that lies over v, the normal closed
subgroup Me,, <€ Ilg, corresponds to M x II,, € M x II, relative
to the isomorphism ¢,: M x II, = Ilg, fixed above, i.e., we obtain an
isomorphism t,,: M x I, = Mgy, -

Now for a finite quotient M — @ of M and a connected finite étale
Galois covering G; — G of G, we shall say that a connected finite étale
covering & — & of € satisfies the condition (g g,) if the following two
conditions are satisfied:

(T}&Gl) & — & factors through & def € xg G1 — &, the resulting
covering & — &1 is Galois, and for each vertex v € VCN(&y),
the composite

M = g, — g — Ilg, /Tlg,
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is surjective, with kernel equal to the kernel of M — Q.

(ng,gl) &y — & is Galois.

Then we claim that

(#2): for any finite quotient M — @ of M and any
connected finite étale Galois covering Gy — G, there
exists — after possibly replacing G; — G by a con-
nected finite étale Galois covering of G that factors
through G; — G — a connected finite étale covering
of & which satisfies the condition (f¢ g,)-

Indeed, let M — @ be a finite quotient of M, G; — G a connected finite

étale Galois covering of G, and & def E Xg Gi. For each vertex v €
Vert(£,) = Vert(Gy) [cf. the above discussion], denote by Ig)), — Q.
the quotient of II¢,), obtained by forming the composite

ty

Mee,), & M x T, 5 M - Q.

Thus, we have a natural isomorphism @ = Q,. Next, let e be a node of
E1; b, b/ the two distinct branches of e; v, v' the [not necessarily distinct]
vertices of £ to which b, b’ abut. Then since the quotient @ [~ Q, ~
Q.] is finite, one may verify easily that — after possibly replacing G; —
G by a connected finite étale Galois covering of G that factors through
g1 — G — the kernels of the two composites Il(g)), < I, — Qu,
H(&)e — H(&)v/ e Qv’ — where H(&)e — H(gl)v, H(51)e — H(51)U/
are the natural outer injections corresponding to b, b’, respectively —
coincide. Moreover, if we write N C Ilg), for this kernel, then it
follows immediately from condition (b) of Definition 3.4, (i), that the
actions of @ induced by the natural isomorphisms Q = Q,, < ¢, /N,
Q5 Qp & Mg, /N, on the connected finite étale Galois covering
of (€1) corresponding to N, C Il(¢,), coincide. Therefore, since the
underlying semi-graph of &; is finite, by applying this argument to the
various nodes of & and then gluing the connected finite étale Galois
coverings of the various (€1),’s corresponding to the quotients IT(¢,), —
@, to one another by means of Q-equivariant isomorphisms, we obtain
a connected finite étale Galois covering & — &; which satisfies the
condition (Tlegl)'

Write £ — & for the Galois closure of the connected finite étale
covering & — &; thus, since & is Galois over £, we have connected
finite étale Galois coverings £y — & — & of &. Now it follows
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immediately from the condition (Té,gl) that & — & induces an iso-
morphism between the underlying semi-graphs. In particular, it fol-
lows from Lemma 3.6 below, in light of the claim (1), that the natural
outer homomorphisms Ilg, — Ilg, — Ilg, induce outer isomorphisms
g, /I 5 Mg, /It 5 Tlg, /IE ~ m°P(G1)®, where we write
“Hz’ir)t C II_y” for the normal closed subgroup of “II(_)” topologically
normally generated by the verticial subgroups and 7T§°p((G}1)Z for the
pro-% completion of the [discrete] topological fundamental group of the
underlying semi-graph G of G;. On the other hand, since for each ver-
tex v € Vert(£) = Vert(G) and each vertex w € Vert(£;) = Vert(G;)
that lies over v, the isomorphism t,,: M x I, = g,y arises from the

isomorphism t,: M x 1L, = Ilg , one may verify easily that the closed
subgroup Il(g,), C Ig, is normal. [Here, we regard w € Vert(€;) as
an element of Vert(€y) by the bijection Vert(£y) — Vert(&;) induced
by & — &1.] In particular, it follows immediately that the connected
finite étale Galois covering £ — & arises from a normal open sub-
group of the quotient Ilg, — Ilg, /ILE™ = m(G1)”. Therefore, there
exists a connected finite étale Galois covering G; — G that factors
through G; — G [and arises from a normal open subgroup of the quo-
tient Tlg, — 7,°°(G;)”] such that the connected finite étale covering
&y xg, G1 of € is Galois. Now it follows immediately from the fact that
Ey — & satisfies the condition (Té’gl) that & xg, Gf — & satisfies both
conditions (T%Q’gi) and (Té,gi), as desired. This completes the proof of
the claim (x3).
Next, we claim that
(*3): the composite & — £/a = G, together with the
composites
M — Hg,u — Hg

for v € Vert(&), determine an exact sequence of profi-
nite groups

11— M —1lg —1Ilg —1.

Indeed, it follows immediately from the claim (x3) — by arguing as in
the final portion of the proof of (x2) — that any connected finite étale
Galois covering of £ is a subcovering of a covering of £ which satisfies
the condition (fg g,) for some finite quotient M — @Q of M and some
connected finite étale Galois covering Gy of G. Therefore, the exactness of
the sequence in question follows immediately from the various definitions
involved, together with the claim (*;1). This completes the proof of the
claim (x3).
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Finally, we claim that

(#4): the exact sequence of profinite groups
1l — M —1Ilg —1lg —1

of (x3) is central, i.e., if we write p: IlIg — Aut(M)
for the representation of IIg on M determined by this
extension Ilg, then p is trivial.

Indeed, it follows immediately from condition (a) of Definition 3.4, (i),
that IIF™* C Ker(p), where we write IIF™ C Ilg for the normal closed
subgroup of Ilg topologically normally generated by the verticial sub-
groups of IIg. On the other hand, it follows immediately from con-
dition (b) of Definition 3.4, (i), by “parallel transporting” along loops
on G, that the restriction to 7;°°(G) C 7}°°(G)” of the representa-
tion [[Ig — Hg/IIE™ 3] 7°P(G)® — Aut(M) [cf. Lemma 3.6 below]
induced by p — where we write 7,°°(G) for the [discrete] topological
fundamental group of the semi-graph G and T;OP(G)Z for the pro-X
completion of WEOP(G) — is trivial. In particular, since the subgroup
T P(G) C 7i°P(G)® is dense, the representation p is trivial, as desired.
This completes the proof of the claim (x4), hence also the proof of as-
sertion (i).

Assertion (ii) follows immediately from the various definitions in-
volved. Next, we verify assertion (iii). It follows immediately from
assertion (i), together with Definition 3.4, (iii), that if we write Ilg,
for the pro-X fundamental group of Gg, then we have a natural exact
sequence of profinite groups

1— M —l1lg, — IIg — 1.

On the other hand, it follows immediately from the definition of Gg
that one may construct a tautological profinite covering of Gg [i.e., a
pro-object of the category B(Gg) that appears in the discussion fol-
lowing [SemiAn], Definition 2.1] equipped with a tautological action by
E. In particular, one obtains an outer surjection IIg, — FE that is
compatible with the respective outer surjections to IIg. Thus, one con-
cludes from the “Five Lemma” that this outer surjection Ilg, — E is
an outer isomorphism, as desired. This completes the proof of assertion
(iii). Assertion (iv) follows immediately, in light of assertions (i), (ii),
(iii), from the various definitions involved. This completes the proof of
Lemma 3.5. Q.E.D.
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Lemma 3.6 (Quotients by verticial subgroups). Let H be a
semi-graph of anabelioids. Write Ily for the pro-X fundamental group of
H [i.e., the pro-X quotient of the fundamental group of H] and IIY™ C
114, for the normal closed subgroup of 11y topologically normally gen-
erated by the wverticial subgroups of Ily. Then the natural injection
I < Iy determines an exact sequence of profinite groups

1 — I — Ty, — m°P(H)® — 1

— where we write w°P(H)> for the pro-¥ completion of the [discrete]
topological fundamental group W'{OP(H) of the underlying semi-graph H
of H.

Proof. This follows immediately from the various definitions in-
volved. Q.E.D.

Theorem 3.7 (Properties of the second cohomology group
with compact supports). Let ¥ be a nonempty set of prime num-
bers, G a semi-graph of anabelioids of pro-X PSC-type, and M a finitely
generated 7= -module. Then the following hold:

(i) (Change of coefficients) There erists a natural isomor-
phism of Z>-modules

H2(G, M) s H2(G,Z%) @5 M

that is functorial with respect to isomorphisms of the pair
(G, M). If, moreover, Cusp(G) = 0, then there exists a natu-
ral isomorphism of Z>-modules

HZ(G, M) = H*(G, M)
that is functorial with respect to isomorphisms of the pair
(G, M).

(ii)  (Structure as an abstract profinite group) The second co-
homology group with compact supports H*(G, M) of G is [non-
canonically] isomorphic to M.

(iii) (Synchronization with respect to generization) Let S C
Node(G) be a subset of Node(G). Then the specialization
outer isomorphism ®g_ . : lg_, = Ilg with respect to S [cf.
Definition 2.10] determines a natural isomorphism



62

Yuichiro Hoshi and Shinichi Mochizuki

that is functorial with respect to isomorphisms of the triple
(G, 5, M).

(Synchronization with respect to “surgery”) Let H be
a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)] of G,
S C Node(G|u) [cf. Definition 2.2, (ii)] a subset of Node(G|m)
that is not of separating type /cf. Definition 2.5, (i)], and
T C Cusp((Glm)ss) [¢f. Definition 2.5, (ii)] an omittable [cf.
Definition 2.4, (i)] subset of Cusp((Glm)ss). Then there exists
a natural isomorphism — given by “extension by zero”

HZ(((Gl)-s)er M) — HE(G, M)

[cf. Definition 2.4, (it)] that is functorial with respect to iso-
morphisms of the quintuple (G,H, S, T, M). In particular, for
each vertex v € Vert(G) of G, there exists a natural isomor-
phism of 7= -modules

H?*(v, M) =5 H*(G, M)

[¢f. Remark 2.5.1, (ii)] that is functorial with respect to iso-
morphisms of the triple (G,v, M).

(Homomorphisms induced by finite étale coverings) Let
H — G be a connected finite étale covering of G. Then the
image of the natural homomorphism

H2(G,M) — HZ(H, M)
1s given by

Mg : y] - HZ(H, M).

Proof. Assertion (iii) follows immediately from condition (1) of
Proposition 2.9, (i).

Next, we verify assertions (i), (i) in the case where Cusp(G) # 0.
The existence of a natural isomorphism H2(G, M) = H2(G, ZE) ®ze M
follows immediately from Lemma 3.3. On the other hand, the fact that
HZ2(G, M) is [noncanonically] isomorphic to M follows immediately from
Lemma 3.3, together with the following well-known facts [cf. [CmbGC],
Remark 1.1.3]:

(A) Mg is a free pro-% group.
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(B) For any cusp eg € Cusp(G) of G, the natural homomorphism
of Z*-modules

b m—uy
e€Cusp(9)\{eo}

is a split injection of free 7= -modules [cf. the discussion entitled
“Topological groups’ in §0], and its image contains the image
of Il in Hgb.

This completes the proof of assertions (i), (ii) in the case where
Cusp(G) # 0.

Next, we verify assertions (i), (ii) in the case where Cusp(G) = 0.
The existence of a natural isomorphism H2(G, M) = H?(G, M) is well-
known [cf., e.g., [NSW], Theorem 2.7.7]. Now it follows from assertion
(iii) that to verify assertions (i), (ii) in the case where Cusp(G) = 0, we
may assume without loss of generality — by replacing G by G._.node(g)
— that Node(G) = 0. Then the existence of a natural isomorphism
H2(G, M) & H2(G,Z%) ®ss M and the fact that HZ(G, M) is [non-
canonically] isomorphic to M follow immediately from the existence of
a natural isomorphism H2(G, M) = H?*(G,M) and the fact that any
compact Riemann surface of genus # 0 is a “K(, 1)” space [i.e., its uni-
versal covering is contractible], together with the well-known structure
of the second cohomology group of a compact Riemann surface. This
completes the proof of assertions (i), (ii) in the case where Cusp(G) = 0.

Next, we verify assertion (iv) in the case where H = G and S = 0,
ie., ((Glu)-s)er = Gor. Thus, suppose that H = G and S = (). Now

define a homomorphism of Z*-modules
Hc2(g'T7 M) - Hc2(g7 M)

as follows: Let §.T — Ger be a universal covering of G which is
compatible [in the evident sense] with the universal covering 5 — g
of G, s* a section of the natural surjection Cusp(_C’j.T) — Cusp(Ger),
and [E®, (12 ooy = E*)cccusp(@er)) € HZ(Gor, M) an element of
H2(Ger, M). Write E for the fiber product of the surjection E® — Ilg, .
and the natural surjection IIg — Ilg,,. [arising from the compatibility
of the respective universal coverings]. Next, we introduce notation as
follows:

o for ¢ € Cusp(Ger) (= Cusp(G) \ T C Cusp(G)), denote by
te: 1l — E — where we use the notation II, C Ilg to de-
note an edge-like subgroup of IIg associated to e such that the
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composite 1, — IIg — Ilg,, determines an isomorphism of
Ile with ITe () C Ilg,, — the section over II. naturally deter-
mined by the composite

I, 5 M) < E®,

and

o for e € Cusp(G) \ Cusp(Ger) (= T C Cusp(G)), denote by
te: Il = E — where we use the notation I, C Ilg to denote an
edge-like subgroup of Ilg associated to e — the section over I,
naturally determined by the trivial homomorphism I, — E*°.

Then it follows immediately from the various definitions involved that
the assignment “[E°, (¢2)cecusp(@or)] = (E, (te)eccusp(g))” determines a

homomorphism of 7= -modules
HCQ(goTyM) — Hz(gyM)7

as desired.

Next, we verify that this homomorphism H2(Ger, M) — HZ2(G, M)
is an isomorphism. First, let us observe that it follows from assertion (ii)
that, to verify that the homomorphism in question is an isomorphism, it
suffices to verify that it is surjective. The rest of the proof of assertion
(iv) in the case where H = G and S = 0 is devoted to verifying this
surjectivity. To verify the desired surjectivity, by induction on the car-
dinality T* of the finite set T', we may assume without loss of generality
that 7% = 1, i.e., T = {eo} for some ey € Cusp(G).

To verify the desired surjectivity, let [E, (tc)eccusp(g)] € H2(G,M)
be an element of H2(G, M). Then since Ilg is a free pro- group, there
exists a continuous section Ilg — F of the surjection ' — Ilg, hence also
— since the extension E of Ilg is central — an isomorphism M xIIg — E.
Write IIg — II for the mazimal cuspidally central quotient [cf. [AbsCsp],
Definition 1.1, (i)] relative to the surjection IIg — Ilg,,., Fn for the
quotient of E by the normal closed subgroup of E corresponding to
{1} x Ker(Ilg — II) € M x Ilg [thus, Ey < M x II], and N C Ey for
the image of the composite

My(eq) 3 E — Epr.

Now we claim that N C Ery is contained in the center Z(Er) of Eny,
hence also normal in Er. Indeed, since the composite

Hs(eo) — Hg — 11
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is injective, and its image coincides with the kernel of the natural sur-
jection II — Ilg, .., it holds that the image of the composite

Ma(eg) 3 B — By & M x 11

is contained in M x Ker(Il — Ilg,,). On the other hand, since the
extension F of Ilg is central, it follows from the definition of the quotient
IT of TIg that the image of M x Ker(Il — Ilg,,.) in B via M xIT = Ep
is contained in the center Z(Ey) of Er. This completes the proof of the
above claim.

Now it follows from the definition of N C Fy, together with the
above claim, that we obtain a commutative diagram of profinite groups

1 M E — g —— 1
1 M Eq/N —— 1g,, —— 1

— where the horizontal sequences are ezact, and the vertical arrows are
surjective. In particular, we obtain an extension Ey/N of Ig,,. by M,
which is central since the extension E is central. For e € Cusp(Ger) =
Cusp(G) \ {eo}, write II? C Tlg,, for the edge-like subgroup of Ilg,..
[associated to e € Cusp(Ger)] determined by the image of 1L,y C Ilg
and ¢ for the section II$ — Er/N over II¢ determined by ¢, : Iy — E.
Then it follows immediately from the various definitions involved that
the image of

[EH/Na (L;)e'eCusp(g.T)] S Hg(Q.T: M)

in H2(G, M) is [E, (te)eccusp(g)] € HZ(G, M). This completes the proof
of the desired surjectivity and hence of assertion (iv) in the case where
H=G and S = 0.

Next, to complete the proof of assertion (iv) in the general case,
one verifies immediately that it suffices to verify assertion (iv) in the
case where T' = (), i.e., (Glm)=s)er = (Glm)~s. Thus, suppose that
T = 0. Write H % (Glu)ss. To define a natural homomorphism of Z>-
modules H2(H, M) — H2(G, M), let H — H be a universal covering of
H which is compatible [in the evident sense] with the universal covering
G — G of G, sy a section of the natural surjection Cusp(#) —» Cusp(H),
and [E™, (W2t o) = EM™)eccuspiny] € HZ(H,M) an element of
H2(H,M). Since the extension E™ of IIy by M is central, the sec-

tion LZ{: s, e) = E™ naturally determines an isomorphism

M x HSH(e) l} EH XHH HSH(G)
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of the direct product M x 1y, (. with the fiber product E* xp, Iy, (o)
of the surjection E™* — Il and the natural inclusion g, () — .
Write Gpw for the semi-graph of anabelioids associated to the central
extension E7 [cf. Definition 3.4, (ii)]. Then one may define a central
extension of G by M

(&, a,B: E]a ™ G)

[cf. Definition 3.4, (i)] whose restriction to H, relative to the isomor-
phism B: £/a = G, is isomorphic to the semi-graph of anabelioids
Grn as follows: We take the underlying semi-graph of £ to be the
underlying semi-graph of G; for each vertex v € Vert(G|y), we take
the anabelioid &, of & corresponding to the vertex v € Vert(G|m) to
be the anabelioid (Ggwu), of Ggwn corresponding to the vertex v; for
each vertex v € Vert(G) \ Vert(G|g), we take the anabelioid &, of &
corresponding to v € Vert(G) \ Vert(G|u) to be the anabelioid associ-
ated to the profinite group M x II,. Then the above isomorphisms
M x 1, (e 5 EM xq,, II,, ey induced by the various 1?'s naturally
determine the remaining data [i.e., consisting of anabelioids associated
to edges and morphisms of anabelioids associated to branches] necessary
to define a semi-graph of anabelioids £ which is naturally equipped with
a structure of central extension of G by M whose restriction to H is
naturally isomorphic to the semi-graph of anabelioids Gg#, as desired.

Now it follows from Lemma 3.5, (i), that if we denote by Il¢ the
pro-X fundamental group of & — i.e., the maximal pro-X quotient of the
fundamental group of £ — then Il¢ is a central extension of Ilg by M.
Thus, it follows from the equivalences of categories of Lemma 3.5, (iv),
that the sections 17t — where e ranges over the cusps of G that abut to a
vertex of G|l — and the tautological sections Ilor < M x e =g, —
where e’ ranges over the cusps of G that do not abut to a vertex of Gl —
naturally determine an equivalence class [Il¢, (tc)eecusp(g)] € H2(G, M).
In particular, we obtain a map

HZ(H, M) — HZ(G, M)

by assigning [E™, (Lff)eecusp(m] + [, (te)eecusp(g)]- Moreover, it fol-
lows immediately from the various definitions involved that this map is
a homomorphism of iz-modules, as desired.

Next, we verify that this homomorphism HZ(H, M) — HZ(G, M)
is an isomorphism. Since, for any vertex v € Vert(G|y), the natural
morphism G|, — G factors through (Glm)-s = H — G, by replacing H
by G|, [cf. Remark 2.5.1, (ii)], we may assume without loss of generality
that H = G|,. Moreover, if Node(G) = 0, then assertion (iv) in the
case where T = () is immediate; thus, we may assume without loss
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of generality that Node(G) # 0. On the other hand, it follows from
assertion (ii) that to verify that the homomorphism in question is an
isomorphism, it suffices to verify that it is surjective. The rest of the
proof of assertion (iv) in the case where T = ) is devoted to verifying
the surjectivity of the homomorphism H?(v, M) — H?(G, M).

Let J be a semi-graph of anabelioids of pro-X PSC-type such that
there exist a vertex w € Vert(J) and an “omittable” cusp e € C(w)
i.e., a cusp that abuts to w such that {e} is omittable] such that Je(cy
is isomorphic to G, and, moreover, the isomorphism J,(c) 5 G induces
an isomorphism of (J|w)e{ey — Glo. [Note that one may verify easily
that such a semi-graph of anabelioids of pro-X PSC type always exists.]
Then it follows immediately from assertion (iv) in the case where H = G
and S = (), together with the various definitions involved, that we have
a commutative diagram

HZ (v, M) —— HZ((T|w)efey, M) —— HZ(w, M)

l l

Hg(g’M) —— Hg(j-{e}vM) —— Hg(jaM)

— where the left-hand horizontal arrows are isomorphisms induced by
the isomorphisms (7w )efe} = Gl Jefe} 5 G, respectively, and the
right-hand horizontal arrows are isomorphisms obtained by applying as-
sertion (iv) in the case where H = G and S = (). In particular, to verify
the desired surjectivity of the homomorphism HZ2(v, M) — H2(G, M),
by replacing G (respectively, v) by J (respectively, w), we may assume
without loss of generality that C(v) # 0.

To verify the desired surjectivity of the homomorphism HZ2 (v, M) —
HZ(G, M) in the case where C(v) # 0, let [E, (te)eccusp(g)] € H2(G, M)
be an element of H2(G, M). Now it follows from Lemma 3.3, together
with the assumption that C(v) # 0, that we have two exact sequences
of Z®-modules

Homg (>, M) — € Homyy (1l M) — HZ(G, M) — 0;
e€Cusp(G)

Homys (1), M) — € Homyy (I, M) — H (v, M) — 0.
e€Cusp(G|v)

Let ey € C(v) be a cusp of G that abuts to v. Here, note that it fol-

lows immediately from the definition of G|, that ey may be regarded

as a cusp of G|,. Then it follows immediately from the facts (A), (B)

used in the proof of assertions (i), (ii) in the case where Cusp(G) # 0
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that there exists a lifting (¢e)eccusp(g) € Deecusp(g) Homgs (e, M)
of [E, (te)eccuspg)] € HZ(G,M) [with respect to the first exact se-
quence of the above display] such that if e # e, then ¢, = 0. Write
(Ye)eccusp(gl,) € GBEGCusp(gh,) Homgy, (II., M) for the element such that
Yey = Gy, Ve = 0 for e # ey. Then it follows immediately from
the definitions of the above exact sequences and the homomorphism
HZ(v, M) — HZ2(G,M) in question that the image of (V¢)eecusp(gl,) €
D.ccusp(gl,) Homgs (Lle, M) in HZ (v, M) is mapped to [E, (te)ceCusp(g)]
€ H2(G, M) via the homomorphism H2(v, M) — H2(G, M) in question.
This completes the proof of assertion (iv) in the case where T' = ), hence
also of assertion (iv) in the general case.

Finally, we verify assertion (v). If Cusp(G) = 0, then it follows im-
mediately from a similar argument to the argument used in the proof
of assertions (i), (ii) in the case where Cusp(G) = 0, together with the
well-known structure of the second cohomology group of a compact Rie-
mann surface, that assertion (v) holds. Next, suppose that Cusp(G) # 0.
Write G® for the double of G [cf. [CmbGC], Proposition 2.2, (i)] — i.e.,
the analogue in the theory of semi-graphs of anabelioids of pro-¥ PSC-
type to the well-known “double” of a Riemann surface with boundary.
Write H® for the double of H. Then it follows from the various defini-
tions involved that the connected finite étale covering H — G determines
a connected finite étale covering H® — G© of degree [IIg : ITy]. Next,
let us observe G (respectively, ) may be naturally identified with the
restriction [cf. Definition 2.2, (ii)] of G® (respectively, H®) to a suit-
able sub-semi-graph of PSC-type of the underlying semi-graph of G®
(respectively, H®). Thus, it follows from assertion (iv) that we have a
commutative diagram of Z=-modules

HE(G, M) —— HZ(G®, M)

| |

HE(MH, M) —— HZ(H®, M)

— where the horizontal arrows are the isomorphisms of assertion (iv),
and the vertical arrows are the homomorphisms induced by the con-
nected finite étale coverings H — G, H® — G, respectively — and
hence that assertion (v) in the case where Cusp(G) # 0 follows immedi-
ately from assertion (v) in the case where Cusp(G) = §). This completes
the proof of assertion (v). Q.E.D.
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Definition 3.8.
(i) We shall write

Ag Y Hom,, (H2(G,27),2%)

and refer to Ag as the cyclotome associated to G. For a vertex
v € Vert(G) of G, we shall write

Ay ¥ Homs,, (H2 (v, 27), Z7)

c

and refer to A, as the cyclotome associated to v € Vert(G).
Note that it follows from Theorem 3.7, (ii), that the cyclotomes

Ag and A, are free 7= -modules of rank 1.

(ii) We shall write
Yo : Aut(G) — Aut(Ag) ~ (Z%)*

for the natural homomorphism induced by the natural action of
Aut(G) on H?(G,7Z*) and refer to xg as the pro-X cyclotomic
character of G. For a vertex v € Vert(G) of G, we shall write

Yo & Xg), + Aut(Gl,) — Aut(,) ~ (2%)°

and refer to y, as the pro-3 cyclotomic character of v.

Remark 3.8.1. One verifies easily that if [ € 3, then the composite
Aut(G) X8 (Z5) > 7;

coincides with the pro-I cyclotomic character of Aut(G) defined in the
statement of [CmbGC], Lemma 2.1.

Corollary 3.9 (Synchronization of cyclotomes). Let ¥ be a
nonempty set of prime numbers and G a semi-graph of anabelioids of
pro-% PSC-type. Then the following hold:

(i) (Synchronization with respect to generization) Let S C
Node(G) be a subset of Node(G). Then the specialization outer
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isomorphism ®¢g_ . : llg_ . — g with respect to S [cf. Defini-
tion 2.10] determines a natural isomorphism

Ag_, — Ag

that is functorial with respect to isomorphisms of the pair
(G,9).

(Synchronization with respect to “surgery”) Let H be
a sub-semi-graph of PSC-type [c¢f. Definition 2.2, (i)] of G,
S C Node(G|u) [cf. Definition 2.2, (ii)] a subset of Node(G|m)
that is not of separating type [cf. Definition 2.5, (i)], and
T C Cusp((Glm)ss) [¢f. Definition 2.5, (ii)] an omittable [cf.
Definition 2.4, (i)] subset of Cusp((Glm)ss). Then there exists
a natural isomorphism — given by “extension by zero”

Glu)s5)eT

[¢f. Definition 2.4, (ii)] that is functorial with respect to iso-
morphisms of the quadruple (G, H, S, T). In particular, [by tak-
ing the inverse of this isomorphism] we obtain, for each vertex
v € Vert(G) of G, a natural isomorphism of 7= -modules

shn,: A, — Ag

that is functorial with respect to isomorphisms of the pair

(G,0).

(Synchronization with respect to finite étale coverings)
Let H — G be a connected finite étale covering of G. Then there
erists a natural isomorphism

Ay — Ag

that is functorial with respect to isomorphisms of the pair

(G, H).

(Synchronization of cyclotomic characters) Let v €
Vert(G) be a vertez of G and o € Autt*}(G) [cf. Definition 2.6,
(i)]. Then it holds that

xg(@) = xv(agy,)

[¢f. Definitions 2.14, (ii); 3.8, (ii); Remark 2.5.1, (ii)].
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(v) (Synchronization associated to branches) Let e €
Edge(G) be an edge of G, b a branch of e that abuts to a vertex
veV(e), and I, CIlg an edge-like subgroup of Tlg associated
to e € Edge(G). Then there exists a natural isomorphism

syny: I, — A,

that is functorial with respect to isomorphisms of the quadru-
ple (G,b,e,v).

(vi) (Difference between two synchronizations associated
to the two branches of a node) Let ¢ € Node(G) be a
node of G with branches by # by that abut to vertices vy, vy €
Vert(G), respectively. Then the two composites

ELLS DL SHN g, SON 4y

. — Ay, — Ag; II. = A,, — Ag

differ by the automorphism of Ag given by multiplication by
-1eZ*.

Proof. Assertion (i) (respectively, (ii)) follows immediately from
Theorem 3.7, (iii) (respectively, Theorem 3.7, (iv)). Assertion (iv) fol-
lows immediately from assertion (ii).

Next, we verify assertion (iii). It follows immediately from Theo-
rem 3.7, (v), that the homomorphism of Z=-modules Ay — Ag obtained
by applying the functor “Homss (—, 22)” to the induced homomorphism
H2(G,Z%) — H*(H,Z%) and dividing by the index [IIg : Ilz] is an iso-
morphism. This completes the proof of assertion (iii).

Next, we verify assertion (v). First, we observe that to verify as-
sertion (v), by replacing G by G|, and e € Edge(G) by the cusp of
G|, corresponding to b, we may assume without loss of generality that
e € Cusp(G). Then we have homomorphisms of Z>-modules

Homgy, (ILe, IIe) = EBe/eCusp(g) Homss, (IL/, 11,

~

- H2(G,11.) =5 Homyy, (Ag, I1.)

— where the first arrow is the natural inclusion into the component
indexed by e, and the second arrow is the surjection appearing in the
exact sequence of Lemma 3.3 in the case where M = II,. Here, we note
that it follows immediately from the facts (A), (B) used in the proof of
Theorem 3.7, (i), (ii), that the composite of these homomorphisms is an
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isomorphism. Therefore, we obtain a natural isomorphism
song: [T, = Ag

by forming the inverse of the image of the identity automorphism of
II. via the composite of the homomorphisms of the above display. This
completes the proof of assertion (v).

Finally, we verify assertion (vi). First, we observe that one may
verify easily that there exist

e a semi-graph of anabelioids of pro-¥ PSC-type HT,

e a sub-semi-graph of PSC-type K of the underlying semi-graph
of HT,

e an omittable subset ST C Cusp((H')|+), and

e an isomorphism
(HN)|xt)est — G

such that the node eys € Node(H') of H corresponding, relative to
the isomorphism ((H)|kt)egt — G, to the node e € Node(G) is not of
separating type. [Note that it follows immediately from the various def-
initions involved that Node(G) < Node(((H)|k+)egt) may be regarded
as a subset of Node(#).] Thus, it follows immediately from assertions
(i), (i) — by replacing G (respectively, €) by (H')..Node(i)\ (e} (Te-
spectively, eq+) — that to verify assertion (vi), we may assume without
loss of generality that Node(G) = {e}, and that e is not of separating
type.

Next, we observe that one may verify easily that there exists a semi-
graph of anabelioids of pro-¥. PSC-type H* such that

Node(#*) consists of precisely two elements egi, €},

V(eq) consists of precisely one element vyt of type (0,3) [cf.
Definition 2.3, (iii)].

e’Hi is of separating type;

('Hi)w{e;{i} is isomorphic to G.

Thus, if we write K* for the unique sub-semi-graph of PSC-type of the
underlying semi-graph of H* whose set of vertices = {vy:}, then it fol-
lows immediately from assertions (i), (ii) — by replacing G (respectively,
e) by H¥|g+ (respectively, e4:) — that to verify assertion (vi), we may
assume without loss of generality that Node(G) = {e}, that e is not of
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separating type [so Vert(G) consists of precisely one element], and that
G is of type (1,1).

Write v € Vert(G) for the unique vertex of G. Note that it follows
immediately from the various assumptions on G that G|, is of type (0, 3).
Write e1, eo € Cusp(G|,) for the cusps of G|, corresponding, respectively,
to the two branches by, by of the node e; write e5 € Cusp(G|,) for the
unique element of Cusp(G|,) \ {e1,e2}. Then since G|, is of type (0, 3),
there exists a graphic isomorphism of G|, with the semi-graph of an-
abelioids of pro-3 PSC-type [without nodes| determined by the tripod
[cf. the discussion entitled “Curves” in §0] P} \ {0,1,00} over an alge-
braically closed field k of characteristic & 3 such that the cusps ey, es of
G|, correspond to the cusps 0, oo of Pi \ {0, 1,00}, respectively, relative
to the graphic isomorphism. Thus, by considering the automorphism of
P1\ {0,1,00} over k given by “t + 1/t”, we obtain an automorphism
T, € Aut(Gl,) of G|, that maps e; — ea, ea — e;. Moreover, since
this automorphism of P}, \ {0,1,00} induces an automorphism of the
stable log curve of type (1,1) obtained by identifying the cusps 0 and
oo of P} \ {0,1,00}, we also obtain an automorphism 7g € Aut(g) of
G. Note that it follows immediately from the definition of 7,, together
with the well-known structure of the étale fundamental group of the
tripod Pt \ {0,1,00}, that the automorphism 7, induces the identity
automorphism of the anabeloid (G|, )., corresponding to es.

Next, let us observe that it follows immediately from the definition
of G|,, together with the proof of assertion (v), that for i = 1, 2, there
exists a natural isomorphism II, = II., — where we use the notations
IL;, 1L, to denote edge-like subgroups of Ilg, Ilg|, associated to e, e;,
respectively — such that the composite

SOy syn
~

He L) He. — Av [: Ag|v] L) Ag

i

— where we write b} for the [unique] branch of e; — coincides with the
composite in question

spny, SPN 4,
. — Ay, — Ag.

Next, let us observe that it follows immediately from the functori-
ality portion of assertion (v) that the automorphisms 7,, 7¢ induce a
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commutative diagram of Z=-modules

~ syn gy

1, 1, Ay [: Ag\v] R Ag

I i i

syn 5/2
IL.,

Ay [=Ag),] 2 Ag

— where the vertical arrows are the isomorphisms induced by the au-
tomorphisms 7,, 7g. Now by considering the well-known local structure
of a stable log curve in a neighborhood of a node, one may verify easily
that the left-hand vertical arrow in the above diagram is the automor-
phism of Il given by multiplication by —1 € 7=, Thus, to complete the
verification of assertion (vi), it suffices, in light of the commutativity
of the above diagram, to verify that 7, € Aut(G|,) induces the identity
automorphism of Ag|, = A,. On the other hand, this follows immedi-
ately from assertion (v), applied to the cusp es, together with the fact
that the automorphism 7, induces the identity automorphism of (G|,)e,.
This completes the proof of assertion (vi). Q.E.D.

84. Profinite Dehn multi-twists

In the present §, we introduce and discuss the notion of a profinite
Dehn multi-twist. Although our definition of this notion [cf. Defini-
tion 4.4 below] is entirely group-theoretic in nature, our main result
concerning this notion [cf. Theorem 4.8 below] asserts, in effect, that
this group-theoretic notion coincides with the usual geometric notion of
a “Dehn multi-twist”.

Let ¥ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-X PSC-type. Write G for the underlying semi-graph
of G, Ilg for the [pro-X] fundamental group of G, and G — G for the
universal covering of G corresponding to Ilg.

Definition 4.1. We shall say that G is cyclically primitive (respec-
tively, noncyclically primitive) if Node(G)? = 1, and the unique node
of G is not of separating type (respectively, is of separating type) [cf.
Definition 2.5, (i)].
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Remark 4.1.1. If G is cyclically primitive (respectively, noncycli-
cally primitive), then Vert(G)* = 1 (respectively, 2), and the [discrete]
topological fundamental group W;OP(G) of the underlying semi-graph G
of G is noncanonically isomorphic to Z (respectively, is trivial).

Lemma 4.2 (Structure of the fundamental group of a non-
cyclically primitive semi-graph of anabelioids of PSC-type).
Suppose that G is noncyclically primitive [cf. Definition 4.1]. Let
v, w € Vert(G) be the two distinct vertices of G [cf. Remark 4.1.1];
¢, v, W € VCN(G) elements of VCN(G) such that 7(G) = v, W(G) = w,
and, moreover, € € N (v) N N'(w). Then the natural inclusions 11z, 115,
[Iz < Ilg determine an isomorphism of pro-% groups

hﬂ(ng — Hg — Hg,) L> Hg
— where the inductive limit is taken in the category of pro-X groups.

Proof. This may be thought of as a consequence of the “van Kam-
pen Theorem” in elementary algebraic topology. At a more combinato-
rial level, one may reason as follows: It follows immediately from the
simple structure of the underlying semi-graph G that there is a natural
equivalence of categories between

e the category of finite sets with continuous Ilg-action [and IIg-
equivariant morphisms| and

e the category of finite sets with continuous actions of I, II;

which restrict to the same action on IIz [and II;-,
IIz-equivariant morphisms].

The isomorphism between IIg and the inductive limit appearing in the

statement of Lemma 4.2 now follows formally from this equivalence of

categories. Q.E.D.

Lemma 4.3 (Infinite cyclic tempered covering of a cyclically
primitive semi-graph of anabelioids of PSC-type). Suppose that
G is cyclically primitive [cf. Definition 4.1]. Denote by 7} (G) the
tempered fundamental group of G [cf. the discussion preceding [SemiAn],
Proposition 3.6], by m°°(G) [~ Z — cf. Remark 4.1.1] the [discrete]
topological fundamental group of the underlying semi-graph G of G, and
by Goo — G the connected tempered covering of G corresponding to the
natural surjection """ (G) — 7\°P(G) [where we refer to [SemiAn], §3,
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concerning tempered coverings of a semi-graph of anabelioids|. Then the
following hold:

(i)

(i)

(iii)

(Exact sequence) The natural morphism Goo — G induces
an exact sequence

1 — w}emp(goo) — w}emp(g) — wi"p(G) — 1.

Moreover, the subgroup 7P (Goo) C m™P(G) of ©i*™P(G) is

characteristic.

(Automorphism groups) There ezxist natural injective ho-
momorphisms

Aut‘grph‘(g) — Autlgrphl(goo) ; ﬂop(G) — Aut(Geo)

— where we write Autlgrphl(goo) for the group of automor-
phisms of Gso that induce the identity automorphism of the
underlying semi-graph of Go,. Moreover, the centralizer of
TP(G) in Autl#PP(G) satisfies the equality

Z ptlsonl (.o (T3P (G)) = Aut/&M(G).

(Action of the fundamental group of the underlying
semi-graph) Let 7o, € m°°(G) C Aut(Goo) [cf. (ii)] be a
generator of mi°?(G) ~ Z. Write Vert(G), Node(G), and
Cusp(Goo) for the sets of vertices, nodes [i.e., closed edges],
and cusps [i.e., open edges| of G, respectively. Then there
exist bijections

V:Z s Vert(Gs) , N :Z — Node(Goo),

C : Z x Cusp(G) — Cusp(Gso)
such that, for each a € Z,

o the set of edges that abut to the vertex V(a) is equal to
the disjoint union of {N(a), N(a+ 1)} and {C(a,z)|z €
Cusp(9)};

o the automorphism of Vert(Goo) (respectively, Node(Guo);
Cusp(Goo) ) induced by Yoo € Aut(Goo) maps V(a) (respec-
tively, N(a); C(a,2)) to V(a+1) (respectively, N(a+1);
Cla+1,z)).
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(iv) (Restriction to a finite sub-semi-graph) Let a <b € Z be
integers. Denote by G,y the funiquely determined/ sub-
semi-graph of PSC-type [cf. Definition 2.2, (i)] of the under-
lying semi-graph of Goo such that the set of vertices of Giqp)
is equal to {V(a),V(a + 1),---,V(b)} [¢f. (iii)]; denote by
Gla,p) the semi-graph of anabelioids obtained by restricting Goo
to Giap) [cf. the discussion preceding [SemiAn], Definition 2.2].
Then Gjq ) is a semi-graph of anabelioids of pro-3 PSC-
type. Moreover, G4 q41] s noncyclically primitive.

(v) (Restriction to a sub-semi-graph having precisely one
vertex) Let a < ¢ < b € Z be integers. Then the natural mor-
phism of semi-graphs of anabelioids Gi.c) — Giap) [cf. (v)] de-
termines an isomorphism Gi. ¢ = Gla,b) \V(c) — where we regard
V(c) € Vert(Goo) as a vertex of Giap). Moreover, if we write
v € Vert(G) for the unique vertex of G [¢f. Remark 4.1.1],
then the composite of natural morphisms of semi-graphs of an-
abelioids Ge.c) = Goo — G determines an isomorphism of Gj. g
with Gl .

(vi) (Natural isomorphisms between restrictions to finite
sub-semi-graphs) Let a < b € Z be integers and Yoo €
T P(G) C Aut(Go) the automorphism of Goo appearing in

(iii). Then vso determines an isomorphism Giq p) = Glat1,b41]-

Proof. First, we verify assertion (i). To show that the natural
morphism G, — G induces an exact sequence

1 — 1" (Goo) — m™P(G) — mP(G) — 1,

it suffices to verify that every tempered covering of G, determines, via
the morphism G,, — G, a tempered covering of G. But this follows
immediately, in light of the definition of a tempered covering, from the
finiteness of the underlying semi-graph G and the topologically finitely
generated nature of the verticial subgroups of the tempered fundamental
group ;P (Goo) of Goo. On the other hand, the fact that the subgroup
TP (G) C m°™P(G) is characteristic follows immediately from the
observation that the quotient ;" (G) — 71*"P(G)/7*"P(Go) may be
characterized as the mazimal discrete free quotient of 7;°™P(G) [cf. the
argument of [André], Lemma 6.1.1]. This completes the proof of asser-
tion (i).

Next, we verify assertion (ii). The existence of a natural injec-

tion 7°°(G) < Aut(Gs) follows immediately from the definition of
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the connected tempered covering G., — G, together with the fact that
7°P(G) is abelian. On the other hand, it follows immediately from
assertion (i), together with the various definitions involved, that any
clement of Aut/®™P"(G) determines — up to composition with an el-
ement of mi°?(G) C Aut(Gs) — an automorphism of G... There-
fore, by composing with a suitable element of 7'°P(G) C Aut(Gs), one
obtains a uniquely determined element of Aut/®P"(G..), hence also a
natural injective homomorphism Aut/®P"(G) — Aut/s™P(G). Next,
to verify the equality Z Aut|gmh|(goo)(7ri°p(G)) = Autl#PP(G), observe
that 7P (G ) is center-free [cf. [SemiAn], Example 2.10; [SemiAn],
Proposition 3.6, (iv)]; this implies that we have a natural isomorphism
TP(G) ~ 1P (Go) % 7°P(G) [cf. the discussion entitled “Topo-
logical groups” in §0]. Thus, in light of the [easily verified] inclusion
AutlePl(g) C 7 Aut\grpm(goo)(ﬂ‘)p(G)), the desired equality follows im-
mediately from [CmbGC], Proposition 1.5, (ii). This completes the proof
of assertion (ii).

Assertions (iii), (iv), (v), and (vi) follow immediately from the defi-
nition of the connected tempered covering G, — G. Q.E.D.

Definition 4.4. We shall write

def

Dehn(G) < {a € Aut/#Ph(g) | ag), = idg), for any v € Vert(G) }

— where we refer to Definitions 2.1, (iii); 2.14, (ii); Remark 2.5.1, (ii),
concerning “ag,”. We shall refer to an element of Dehn(G) as a profinite
Dehn multi-twist of G.

Proposition 4.5 (Equalities concerning the group of profi-
nite Dehn multi-twists). It holds that

Dehn(G) = nvEVert(g)AUt‘Hu‘(g) - ﬂzeVCN(g)AUt‘HZI(g)

N.eveng Out™/(Ilg) < Autlehl ()

[¢f. Definitions 2.15; 2.6, (i); [CmbGC], Proposition 1.2, (ii)] — where
we use the notation “Il_y” to denote a VCN-subgroup [cf. Defini-
tion 2.1, (i)] of llg associated to “(—)” € VCN(G).

Proof. The first equality follows immediately from the various def-
initions involved [cf. also [CmbGC], Proposition 1.2, (i)]. The second
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equality follows immediately from the fact that any edge-like subgroup
is contained in a verticial subgroup. The third equality follows imme-
diately from Proposition 2.7, (ii). This completes the proof of Proposi-
tion 4.5. Q.E.D.

Lemma 4.6 (Construction of certain homomorphisms). Let

€ € Node(G), e o €(G) € Node(G). Then the following hold:
(i) Let a € Dehn(G) be a profinite Dehn multi-twist of G and

o € V(&) C Vert(G). Write @ for the unique element of the
complement V(€) \ {v} [c¢f. [NodNon|, Remark 1.2.1, (iii)].
Then there exists a unique lifting a[v] € Aut(Ilg) of a which
preserves the verticial subgroup 1y C Ilg of g associated to
o € Vert(G) and induces the identity automorphism of IT;.
Moreover, this lifting a[v] preserves the verticial subgroup
Iy C g of g associated to w € Vert(G), and there exists
a unique element dz 5 € Ilg of the edge-like subgroup 1lz C Ilg
of Ilg associated to & € Node(G) such that the restriction of
a[v] to I is the inner automorphism determined by §z 5 € 1l

(g ILZ)

(ii) Forv € V(e), denote by Dz 5: Dehn(G) — Ag the composite of
the map
Dehn(G) — Il

given by assigning a — 0z 5 € Iz [cf. (i)] and the isomorphism

synp 59N,

M, =5 Ay =5 Ag

[ef. Corollary 3.9, (ii), (v)] — where we write v ef v(G) and
b for the branch of e determined by the unique branch of €
which abuts to v. Then the map Dz 5: Dehn(G) — Ag is a
homomorphism of profinite groups which does not depend
on the choice of the element v € V(€), i.e., if w € V(€) \
{v}, then Dz5 = Deu. Moreover, the homomorphism Dg 5
(= ©z,5) depends only on e € Node(G), t.e., it does not

depend on the choice of the element € € Node(G) such that
e(G) =e.

Proof. First, we verify assertion (i). The fact that there exists a
unique lifting «[v] € Aut(Ilg) of o which preserves Iy and induces the



80 Yuichiro Hoshi and Shinichi Mochizuki

identity automorphism of 11; follows immediately, in light of the slimness
of I [cf. [CmbGC]|, Remark 1.1.3] and the commensurable terminality
of Il in IIg [cf. [CmbGC], Proposition 1.2, (ii)], from the fact that
a € Ouwt™!(Ig) [cf. Proposition 4.5]. The fact that «[d] preserves
IT; follows immediately, in light of the graphicity of a[v], from the fact
that Il is the unique verticial subgroup H of Ilg such that H # Il
and IIz C H [cf. [NodNon], Remark 1.2.1, (iii); [NodNon], Lemma 1.7],
together with the fact that «[v] preserves I, IIz C IIg. The fact that
there exists a unique element dz5 € Ilz of 1lz such that the restriction
of a[v] to Ilg is the inner automorphism determined by dz 5 follows
immediately, in light of the slimness of Il [cf. [CmbGC], Remark 1.1.3]
and the commensurable terminality of Iz [cf. [CmbGC], Proposition
1.2, (ii)], from the fact that a € Out!™@l(Ilg) [cf. Proposition 4.5].
This completes the proof of assertion (i). Next, we verify assertion (ii).
The fact that the map Dz is a homomorphism follows immediately
from the various uniqueness properties discussed in assertion (i). The
fact that the map Dz 5 does not depend on the choice of the element
v € V(e) follows immediately from Corollary 3.9, (vi). The fact that
the homomorphism Dz z does not depend on the choice of the element

¢ € Node(G) such that €(G) = e follows immediately from the definition
of the map D¢ ;. This completes the proof of assertion (ii). Q.E.D.

Definition 4.7. For each node e € Node(G) of G, we shall write

De déf @;;5: Dehn(g) — Ag

for the homomorphism obtained in Lemma 4.6, (ii). [Note that it follows
from Lemma 4.6, (ii), that this homomorphism depends only on e €
Node(G).] We shall write

9 P D.:Dehn(@) — P Ag.

e€Node(G) Node(G)

Theorem 4.8 (Properties of profinite Dehn multi-twists).
Let ¥ be a nonempty set of prime numbers and G a semi-graph of an-
abelioids of pro-3 PSC-type. Then the following hold:

(i) (Normality) Dehn(G) is normal in Aut(G).
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(Compatibility with generization) Let S C Node(G).
Then — relative to the inclusion Aut®(G) C Aut(G..g) [cf.
Definition 2.8] induced by the specialization outer isomorphism
lg = Tlg_ , with respect to S [cf. Proposition 2.9, (ii)] — we
have a diagram of inclusions

Dehn(G) <> Dehn(G..s)
N N
Aut(G) —  Aut(G.s).

Moreover, if we regard Node(G..s) as a subset of Node(G),
then the above inclusion Dehn(G..s) — Dehn(G) fits into a
commutative diagram of profinite groups

Dehn(G..s) ——  Dehn(G)

’Dgwsl lgg

@Node(gws) Ag — @Node(g) Ag

— where the lower horizontal arrow is the natural inclusion
determined by the inclusion Node(G..s) — Node(G) and the
natural isomorphism Ag_ . — Ag [cf. Corollary 3.9, (i)].
(Compatibility with “surgery”) Let H be a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of G, S C Node(G|u) [cf.
Definition 2.2, (ii)] a subset of Node(G|u) that is not of sepa-
rating type [cf. Definition 2.5, (i)], and T C Cusp((Glu)ss)
[¢f. Definition 2.5, (i1)] an omittable [cf. Definition 2.4, (i)]
subset of Cusp((Glm)~s). Then the natural homomorphism

AutH>—S-T(g) —  Aut(((Glu)ws)er)
a — Q((Glu)»s)er

[cf. Definitions 2.4, (ii); 2.14, (ii)] induces a homomorphism
Dehn(G) —» Dehn(((Gli)» s)ar)

Moreover, if we regard Node(((Glm)~s)er) as a sub-
set of Node(G), then the above homomorphism Dehn(G) —
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Dehn(((Glu)s-s)er) fits into a commutative diagram of profi-
nite groups

Dehn(G) ——— Dehn(((G|m)ss)er)
zgl li’«gm»s)m
Drode) 26— Dxode((G1), )or) NG

— where the lower horizontal arrow is the natural projection,
and we apply the natural isomorphism Ag — A(Glw)ss)er [Cf-
Corollary 3.9, (ii)].

(iv) (Structure of the group of profinite Dehn multi-twists)
The homomorphism defined in Definition 4.7

Dg: Dehn(G) — @ Ag
Node(G)

is an isomorphism of profinite groups that is functorial,
n G, with respect to isomorphisms of semi-graphs of anabe-
lioids of pro-X PSC-type. In particular, Dehn(G) is a finitely
generated free 7=-module of rank Node(g)”. We shall
refer to a nontrivial profinite Dehn multi-twist whose image
€ @rode(g) Ag lies in a direct summand [i.e., in a single “Ag”]
as a profinite Dehn twist.

(v) (Conjugation action on the group of profinite Dehn
multi-twists) The action of Aut(G) on Py,ae(g) Ao

Aut(G) — Aut(Dehn(G)) > Aut( € Ag)
Node(G)

determined by conjugation by elements of Aut(G) [cf. (i1)] and
the isomorphism of (iv) coincides with the action of Aut(G) on
©Onode(g) Mg determined by the action xg of Aut(G) on Ag
and the natural action of Aut(G) on the finite set Node(G).

Proof.  Assertions (i), (ii), and (iii) follow immediately from the
various definitions involved. Next, we verify assertion (iv). The functo-
riality of the homomorphism ®¢ follows immediately from the various
definitions involved. The rest of the proof of assertion (iv) is devoted
to verifying that the homomorphism ®g is an isomorphism. First, we
claim that
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(#1): if G is noncyclically primitive [cf. Definition 4.1],
then the homomorphism Dg is injective.

Indeed, this follows immediately from Lemma 4.2, together with the
definition of the homomorphism ®g. This completes the proof of the
above claim (x1).

Next, we claim that

(x2): if G is cyclically primitive [cf. Definition 4.1],
then the homomorphism Dg is injective.

Indeed, let a € Ker(Dg) C Out(Ilg) be an element of Ker(®g). Since
we are in the situation of Lemma 4.3, we shall apply the notational con-
ventions established in Lemma 4.3. Denote by as € Aut/®P2(G) the
automorphism of G, determined by « [cf. Lemma 4.3, (ii)]; for integers
a < b€ Z, denote by oy, 5 € Aut'grpm(g[a,b]) the automorphism of Gy, )
obtained by restricting as, € Aut/®P*(G..). Then since « is a profinite
Dehn multi-twist, one may verify easily that a,) is a profinite Dehn
multi-twist of Gjq ). Thus, since Gq q41) is noncyclically primitive [cf.
Lemma 4.3, (iv)], it follows immediately from the fact that a € Ker(®g),
together with the claim (1), that Q[q,q+1] 18 trivial. Moreover, for any
a < b€ Z,it follows — by applying induction on b — a and considering,
in light of the claim (1), the various generizations [cf. assertion (ii)] of
Gla,p) With respect to sets of the form “Node(Gja.4)) \ {€}” — that the
profinite Dehn multi-twist o, ), hence also the automorphism o, is
trivial. In particular, it holds that « is trivial [cf. Lemma 4.3, (ii)], as
desired. This completes the proof of the above claim (x3).
Next, we claim that

(*3): for arbitrary G, the homomorphism Dg is injec-
tive.

We verify this claim (x3) by induction on Node(G)*. If Node(G)? < 1,
then the claim (x3) follows formally from the claims (x1) and (%3). Now
suppose that Node(G)# > 1, and that the induction hypothesis is in force.
Let e € Node(G) be a node of G. Write H for the unigue sub-semi-graph
of PSC-type of G whose set of vertices is V(e). Then one may verify

easily that S et Node(Glm) \ {e} is not of separating type as a subset
of Node(G|g). Thus, since (G|u)ss has precisely one node, it follows
immediately from assertion (iii), together with the claims (*;) and (x2),
that the profinite Dehn multi-twist a(g,), s of (G|r)-s determined by
a € Dehn(G) is trivial. In particular, it follows immediately from the def-
inition of a generization [cf., especially, the definition of the anabelioids
corresponding to the vertices of a generization given in Definition 2.8,
(vi)], together with the definition of a profinite Dehn multi-twist, that
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the automorphism ag_ ., of the generization G..(.) determined by «
[cf. Proposition 2.9, (ii)] is a profinite Dehn multi-twist. Therefore,
since Node(G... (1) < Node(G)*, it follows immediately from assertion
(ii), together with the induction hypothesis, that ag_ ., € Ker(9g__,,),
hence also a € Ker(®g), is trivial. This completes the proof of the claim
(3).
Next, we claim that
(4): if G is noncyclically primitive [cf. Definition 4.1],
then the homomorphism D¢ is surjective.
Indeed, this follows immediately from Lemma 4.2, together with the
various definitions involved. This completes the proof of the claim (x4).
Next, we claim that
(x5): if G is cyclically primitive [cf. Definition 4.1],
then the homomorphism Dg is surjective.
Indeed, let A € Ag be an element of Ag. Since we are in the situation
of Lemma 4.3, we shall apply the notational conventions established
in Lemma 4.3. Then it follows immediately from Corollary 3.9, (ii),
together with Lemma 4.3, (v), that for any integers a < 0 < b € Z,
the natural morphisms Gio g — Gjap) and Gjoo) — Goo — G induce
isomorphisms Ag, & Mg 5 Ag. By abuse of notation, write \ €
Ag,, for the element of Ag_ , corresponding to A € Ag. Now since
Glo,1] is noncyclically primitive [cf. Lemma 4.3, (iv)], it follows from the
claims (1), (*4) that there exists a unique profinite Dehn multi-twist
)\[0’1] S Dehn(g[owl]) such that :Dg[o,l] ()\[0’1]) =\
Next, we claim that

(t) : for any a < 0 < b € Z, there exists a [necessarily
unique — cf. claim (*3)] profinite Dehn multi-twist
Ala,p] € Dehn(Gpg p)) such that D (A[4,5) = A for every
node e € Node(Gjq,p))-

We verify this claim (1) by induction onb—a. If b—a = 1, or equivalently,
[a,b] = [0,1], then we have already shown the existence of a profinite
Dehn multi-twist A1) € Dehn(Gjo 1)) of the desired type. Now suppose
that 1 < b—a, and that for I € {[a,b—1],[a+ 1, ]}, there exists a profi-
nite Dehn multi-twist A\; € Dehn(Gr) such that ©.(A;) = A for every

node e € Node(Gr). Then one may verify easily that Node(G;) may be

regarded as a subset of Node(Gjq,p)), that Hi, ) o (Gla,b])~Node(g;) 18

noncyclically primitive, and that, if one allows v to range over the [two]
vertices of Hj, ), then the resulting semi-graphs of anabelioids (H{4 s)) /o

are naturally isomorphic to H; def (G1)Node(gy) and Gig; ¢,], where we
write ¢y for b (respectively, a) if I = [a,b—1] (respectively, I = [a+1,b]).
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Let II., C IIy, be a cuspidal subgroup of Ily, corresponding to the
cusp ey determined by the unique node of H, p; Il¢ -

g
crierl — [erier]
a cuspidal subgroup of Ilg corresponding to the cusp e, ., de-

erierl
termined by the unique node of Hjqy); Al € Aut(Ily,) a lifting of the
outomorphism of Iy, determined by A\; € Dehn(G;) < Aut(H;) [cf.
Proposition 2.9, (ii)] which preserves II., and induces the identity au-
tomorphism of II.,. [Note that since A\; € Dehn(G;), one may verify
casily that such a lifting A\; € Aut(IIy, ) exists.] Then for any element
delle, . ofll |, it follows immediately from Lemma 4.2 that by

crier Cler,er
gluing — by means of the natural isomorphism II., — He[%c[] — the
automorphism A€ Aut(IIy, ) to the inner automorphism of g, ., by

6 € I, ., we obtain an outomorphism A,y [0] of %, ,, which —
in light of [CmbGC], Proposition 1.5, (ii), together with the fact that
Ar € Dehn(Gy) — is contained in

Dehn(Gja,1)) € Aut®P (G, 4) — AutlE (3, ) € Out(Ily, )

[cf. Proposition 2.9, (ii)]. Now it follows immediately from the definition
of the homomorphism “®,.” that the assignment 6 — QEQ[M] (Aap[0]) —
where we write eg, , for the node of Gla,p) corresponding to the unique
node of Hqp — determines a bijection He[%m 5 Ag. Thus, since
D.(Ar) = X for every node e € Node(Gy), we conclude that there exists
a unique element ¢ € Il of Il such that Dc(Aj,p)[d]) = A for
every node e € Node(Gj,5)). This completes the proof of the claim (f).

Write A\ € Aut'gfph'(goo) for the automorphism of G, determined
by the App)’s of the claim (f). Now since D.(A[q5) = A for arbitrary
a < b e Z and e € Node(G, ), one may verify easily, by applying
the claim (*3), that the automorphism A commutes with the natural
action of 7\°?(G) ~ Z on G,. Thus, the automorphism A, determines
an automorphism Ag € Aut/®P"!(G) of G [cf. Lemma 4.3, (ii)]. Moreover,
it follows immediately from the definition of Ag, together with the fact
that ®¢(App)) = A for arbitrary a < b € Z and e € Node(Gjq), that
Ag is a profinite Dehn multi-twist such that Dg(Ag) = A € Ag. This
completes the proof of the claim (x35).

Finally, we claim that

(#6): for arbitrary G, the homomorphism Dg is sur-
jective.
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For each node e € Node(G) of G, it follows from assertion (ii) that we
have a commutative diagram of profinite groups

Dehn(G..node(g)\{e})) —  Dehn(G)

Dngode(g)\{e}J ng
Ag — @e/eNode(g) Ag

— where the lower horizontal arrow is the natural inclusion into the
component indexed by e. Now since Node(ngode(g)\{e})n =1, it follows
from the claims (*4), (*5) that the left-hand vertical arrow Dg_ 4.0\ oy
in the above commutative diagram is surjective. Therefore, by allowing
“e” to wary among the elements of Node(G), we conclude that Dg is
surjective. This completes the proof of the claim (xg) — hence also, in
light of the claim (x3) — of assertion (iv).

Finally, assertion (v) follows immediately from the various defini-
tions involved, together with assertion (iv). This completes the proof of
Theorem 4.8. Q.E.D.

Remark 4.8.1. In the notation of Theorem 4.8, denote by

temp

w1 P(G) the tempered fundamental group of G [cf. the discussion pre-
ceding [SemiAn], Proposition 3.6], by 7}°°(G) the [discrete] topological
fundamental group of the underlying semi-graph G of G, by Goo — G
the connected tempered covering of G corresponding to the natural sur-
jection 7,°"P(G) — 7\°P(G) [where we refer to [SemiAn], §3, concerning
tempered coverings of a semi-graph of anabelioids|, by Autlerebl (Goo) the
group of automorphisms of G, that induce the identity automorphism
of the underlying semi-graph of G, and by Dehn(G..) C Aut/eehb (Goo)
the group of “profinite Dehn multi-twists’ of G, — i.e., automorphisms
of G which induce the identity automorphism on the underlying semi-
graph of G, as well as on the anabelioids of G, corresponding to the
vertices of Go.. Then the following hold:

(i) The natural morphism G, — G induces an exact sequence
1 — 7 (Gy) — TP(G) — TP(G) — 1.

Moreover, the subgroup ™" (Goo) C 7iP(G) of ©1™P(G) is
characteristic.

(ii) There exist natural injections

Autle™l(G) < AutlEPP(G ) | Dehn(G) < Dehn(Go) |



Combinatorial anabelian topics 1 87

TP(G) — Aut(Goo)

— where the third injection is determined up to composition
with a 7}°"(G)-inner automorphism — which satisfy the equal-

ities
Zputsron (6. (M (G)) = Auti#P(G)
Dehn(G) = Aut/®P2(G) N Dehn(Goo) .
(ili) There exists a natural isomorphism

Dehn(G.) = H Ag .

Node(Goo)

Indeed, assertion (i) (respectively, (ii)) follows immediately from a simi-
lar argument to the argument used in the proof of Lemma 4.3, (i) (respec-
tively, Lemma 4.3, (ii)), together with the various definitions involved.
On the other hand, the existence of the natural isomorphism asserted
in assertion (iii) follows immediately from the fact that the various ho-
momorphisms D g_ ), — where H ranges over the sub-semi-graphs of
PSC-type [cf. Definition 2.2, (i)] of the underlying semi-graph of G,
and we write (Goo)|m for the semi-graph of anabelioids obtained by re-
stricting Goo to H [cf. the discussion preceding [SemiAn], Definition 2.2],
which [as is easily verified] is of pro-¥ PSC-type — are isomorphisms.
[Note that since (Goo)|m is of pro-¥ PSC-type, the fact that D g_ ), is an
isomorphism is a consequence of Theorem 4.8, (iv). However, since H is
a tree, it follows from the simple structure of H that one may verify that
D (G..)|x is an isomorphism in a fairly direct fashion, by arguing as in the
proofs of the claims (x1), (*4) that appear in the proof of Theorem 4.8,
(iv).

In particular, it follows immediately from assertions (ii), (iii) that
one may recover the natural isomorphism

Dehn(G) = ZHNode(goc) Ag (WEOP(G)) = H Ag
Node(G)

of Theorem 4.8, (iv).

Definition 4.9. We shall write
Glu(G)c [ Aut®=*"(gl,)

veVert(G)
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for the [closed] subgroup of “glueable” collections of outomorphisms
of the direct product [],ever(q) Autle™(G],) consisting of clements
(@t )vevert(g) such that x, (a) = xw(aw) [cf. Definition 3.8, (ii)] for any
v, w € Vert(G).

Proposition 4.10 (Properties of automorphisms that fix the
underlying semi-graph).

(i)

(iii)

(Factorization) The natural homomorphism

AutEP(G) T, cvers(g) Aut®P (G],)
« — (ag|v)v€Vert(g)

[cf. Definition 2.14, (ii); Remark 2.5.1, (ii)] factors through
the closed subgroup Glu(G) C [],evert(q) AutlEPR(G),).

(Exact sequence relating profinite Dehn multi-twists
and glueable outomorphisms) The resulting homomor-
phism pgert: Aut!EPP(G) = Glu(G) [of. (i)] fits into an exact
sequence of profinite groups

1 —» Dehn(G) —» Autle®l () 2N Glu(G) — 1.

(Surjectivity of cyclotomic characters) The restriction of
the pro-X cyclotomic character xg of G [cf. Definition 3.8,
(ii)] to Aut®PPl(G) C Aut(G)

X9|Aut\grph\(g): Aut|grph|(g) N (22)*

— hence also xg — is surjective.

(Liftability of automorphisms) Let H be a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of G and S C Node(G|g)
[¢f. Definition 2.2, (ii)] a subset of Node(G|y) that is not of

separating type [cf. Definition 2.5, (i)]. Then the homo-
morphism

AutEP(G) 5 AutEP((Glu)es)
« — A(Gly) s

[¢f. Definitions 2.5, (ii); 2.14, (it)] is surjective.
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Proof.  Assertion (i) follows immediately from Corollary 3.9, (iv).
Next, we verify assertion (ii). It follows immediately from the various
definitions involved that Ker(py®™*) = Dehn(G) C Autle™(G). Thus,
to complete the proof of assertion (ii), it suffices to verify that the ho-
momorphism p¥et is surjective.

Now we claim that

(*1): if G is noncyclically primitive [cf. Definition 4.1],

then the homomorphism p\g/ert is surjective.

Indeed, this follows immediately from Corollary 3.9, (v); Lemma 4.2,
together with the various definitions involved. This completes the proof
of the claim (x1).

Next, we claim that

(#2): if G is cyclically primitive [cf. Definition 4.1],

then the homomorphism p\g/ert is surjective.

Indeed, since we are in the situation of Lemma 4.3, we shall apply the
notational conventions established in Lemma 4.3. Then it follows im-
mediately from the fact that Vert(G)* = 1 [cf. Remark 4.1.1], together
with Lemma 4.3, (v), that the composite of natural morphisms Gjo o) —
Goo — G determines a natural identification Glu(G) Aut‘grph‘(g[o’o]).
Let @ = ap o) € Glu(G) = Aut!®P"(Gjy ) be an element of Glu(g) =
Aut'grph‘(g[om). For each a € Z, denote by a[qq) € Aut(G,,q)) the au-
tomorphism of G, ,) determined by conjugating the automorphism «a of
Gjo,0) by the isomorphism 7% : Gio.0) = Gla,q [cf. Lemma 4.3, (iii), (vi)].
Then for any ¢ < b € Z, it follows from the various definitions involved
that the various apq,q)’s satisfy the gluing condition necessary to apply
the claim (1), hence that we may glue them together [cf. the proof of
the claim (x3) below for more details concerning this sort of gluing argu-
ment] to obtain a(n) [not necessarily unique] element of Aut/&P (Gle.p))-
Thus, by allowing ¢ < b € Z to vary, we obtain a(n) [not necessarily
unique] element o, € Aut®PP (G ) of Aut/®PM(G ). Now it follows
immediately from the definition of a., that for any v € 7i°°(G), the

automorphism [av, 7] 2 oo Y - al 7! of Gy is a “profinite Dehn

multi-twist” of G, i.e., [aso, 7] € Dehn(Goo) [cf. Remark 4.8.1]. More-
over, one may verify easily that the assignment v — [ao, 7] determines
a 1-cocycle 7,°°(G) — Dehn(Go, ). Thus, by Remark 4.8.1, (iii), together
with the [easily verified] fact that

H'(2,][ 2% = {0}
7
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— where we take the action of Z on [, Z> to be the action determined
by the trivial action of Z on 7= and the action of Z on the index set
7 given by addition — we conclude that there exists an element 5 €
Dehn (G0 ) such that the automorphism f o ao commutes with the nat-
ural action of W;OP(G) on Go. In particular, it follows from Lemma 4.3,
(ii), that Soas, determines an element ag € Aut/®P(G) of Aut/®Ph(g).
Now since € Dehn(Go), it follows immediately from the various def-
initions involved that p§™*(ag) = a € Glu(g) = Aut‘grph‘(g[o,o]). This
completes the proof of the claim (x3).

Finally, we claim that

(#3): for arbitrary G, the homomorphism p\g/e“ is sur-

Jjective.
We verify this claim (3) by induction on Node(G)*. If Node(G)F < 1,
then this follows immediately from the claims (1), (x2). Now sup-
pose that Node(G)* > 1, and that the induction hypothesis is in force.
Let e € Node(G) be a node of G. Write H for the unigue sub-semi-
graph of PSC-type of G whose set of vertices is V(e). Then one may
verify easily that S def Node(G|m) \ {e} is not of separating type as
a subset of Node(G|y). Thus, since (Glm).s has precisely one node,
and (ay)yep(e) may be regarded as an element of Glu((G|u)-s), it fol-
lows from the claims (1), (*2) that there exists an automorphism g €

Aut#PM ((Gl) ) of (Glu)ws such that piE (B) = (w)uev(e) €
Glu((Glu)ss). Write By € Aut!®P(((Glu)ss)wiey) for the auto-
morphism of ((G|u)ss).{e} determined by 3 € Aut'®P (Glg)eg) [ef.
Proposition 2.9, (ii)]. Then it follows immediately from Corollary 3.9,
(i), together with the definition of a generization [cf., especially, the def-
inition of the anabelioids corresponding to the vertices of a generization
given in Definition 2.8, (vi)], that the element
def
= . (5->{e}7 (av)vél}(e)) .
€ AutEP(((Gli)ws)m(e}) X [Loguie) Aut®P(G],)

may be regarded as an element of Glu(gw{e}). Now since Node(gw{e})ﬁ
< Node(G)*, it follows from the induction hypothesis that there ex-
ists an automorphism a.,} € Aut'gfph'(gw{e}) of G_.fey such that

p\g/fffe}(aw{e}) = 7 € Glu(G.fe})- On the other hand, since S, (e}

arises from an element § of Aut/®P2((G|y)s ), it follows immediately
from [CmbGC], Proposition 1.5, (ii), that a..je} € Autlgrphl(gw{e}) is
contained in the image of Aut/®P(G) — Aut/sPhl (Gsgey) lcf. Proposi-

tion 2.9, (ii)]. Moreover, since p}fgeﬁ)”(ﬁ) = (aw)vev(e) € Glu((Glu)-s),
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it follows immediately from our original characterization of a., .y that
P (e er) = (i) vevers(g) € Glu(G). Thus, we conclude that pg™* is
surjective, as desired. This completes the proof of the claim (x3), hence
also of assertion (ii).

Next, we verify assertion (iii). First, let us observe that one may
verify easily that there exist a semi-graph of anabelioids of pro-> PSC-
type H that is totally degenerate [cf. Definition 2.3, (iv)], a subset S C
Node(H), and an isomorphism of semi-graphs of anabelioids H..5 ¢
G. Now since we have a natural injection Aut/®P® (%) —
AutlEP(71 ) S Aut®BPP(G) [ef.  Proposition 2.9, (ii)], it follows
immediately from Corollary 3.9, (i), that to verify assertion (iii), by
replacing G by H, we may assume without loss of generality that G is
totally degenerate. On the other hand, it follows immediately from as-
sertion (ii), together with Corollary 3.9, (ii), that to verify assertion (iii),
it suffices to verify the surjectivity of xg|, for each v € Vert(G). Thus, to
verify assertion (iii), by replacing G by G|,, we may assume without loss
of generality that G is of type (0, 3) [cf. Definition 2.3, (i)]. But assertion
(iil) in the case where G is of type (0,3) follows immediately by consid-
ering the natural outer action of the absolute Galois group Gal(Q/Q)
of the field of rational numbers Q — where we use the notation Q to
denote an algebraic closure of  — on the semi-graph of anabelioids of
pro-% PSC-type associated to the tripod ]P’}@\ {0,1,00} over Q. This
completes the proof of assertion (iii).

Finally, we verify assertion (iv). Write H o (Glm)s-s- Then it
follows immediately from assertion (ii), together with Theorem 4.8, (iii),
that the homomorphism Aut®P2(G) — Aut/®P2(7() in question fits
into a commutative diagram of profinite groups

Vert

1 — Dehn(G) —— Aut#?(g) 22 Glu(G) —— 1

l l l

Vert
P

1 —— Dehn(H) —— Aut#P(3) 2 Glu(H) —— 1

— where the horizontal sequences are exact. Now since the left-hand ver-
tical arrow is surjective [cf. Theorem 4.8, (iii), (iv)], to verify assertion
(iv), it suffices to verify the surjectivity of the right-hand vertical arrow.
But this follows immediately from assertion (iii), together with the defi-
nition of “Glu(—)”. This completes the proof of assertion (iv). Q.E.D.
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85. Comparison with scheme theory

In the present §, we discuss [cf. Proposition 5.6; Theorem 5.7; Corol-
laries 5.9, 5.10 below] the relationship between intrinsic, group-theoretic
properties of profinite Dehn multi-twists [such as length, nondegener-
acy, and positive definiteness — cf. Definitions 5.1; 5.8, (ii), (iii) below]
and scheme-theoretic characterizations of properties of outer representa-
tions of pro-X PSC-type [such as length, strict nodal nondegeneracy, and
IPSC-ness — cf. Definition 5.3, (ii) below; [NodNon], Definition 2.4, (i),
(iii)]. The resulting theory leads naturally to a proof of the graphicity
of C-admissible outomorphisms contained in the commensurator of the
group of profinite Dehn multi-twists [cf. Theorem 5.14 below].

Let ¥ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-X PSC-type. Write G for the underlying semi-graph
of G, Ilg for the [pro-X] fundamental group of G, and G — G for the
universal covering of G corresponding to Ilg.

Definition 5.1. Let p: I — Aut(G) (C Out(Ilg)) be an outer rep-
resentation of pro-X PSC-type [cf. [NodNon|, Definition 2.1, (i)] which

is of NN-type [cf. [NodNon|, Definition 2.4, (iii)] and ¢ € Node(G) an

ot e out . . .
element of Node(G). Write II; def IIg x I [cf. the discussion entitled

“Topological groups” in §0]; v, w € Vert(G) for the two distinct elements
of Vert(G) such that V(&) = {o, @} [cf. [NodNon], Remark 1.2.1, (iii)];
Iz, Iz, Iy C IIj for the inertia subgroups of II; associated to ¢, v, w,
respectively, i.e., the centralizers of 11z, I3, Il C Iy in I, respectively
[cf. [NodNon], Definition 2.2]. Then it follows from condition (3) of
[NodNon]|, Definition 2.4, that the natural homomorphism I3 X Iz — I
is an open injection. Write

IngG (&, p) < [ : I; x Ig]
for the index of I x I in Iz; we shall refer to lngg('é, p) as the X-length
of € with respect to p. Note that it follows immediately from the various

definitions involved that the Y-length of € with respect to p depends only

one® ¢(G) € Node(G) and p. Write

def ~
Ingg (e, p) = Ingg (€, p);

we shall refer to lngg(e,p) as the X-length of e € Node(G) with respect
to p.
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Lemma 5.2 (Outer representations of SVA-type and profi-
nite Dehn multi-twists). Let p: I — Aut(G) (C Out(Ilg)) be an outer
representation of pro-X PSC-type which is of SVA-type [cf. [NodNon],
Definition 2.4, (ii)] and € € Node(G) an element of Node(G). Write

e out . . . . .
Iy def Mg > I~[cf. the discussion entitled “Topologzca{groups” mn
§0/; v, w € Vert(G) for the two distinct elements of Vert(G) such that
V(e) = {v,w} [¢f. [NodNon], Remark 1.2.1, (iii)]; Is, Iy, Iz C Iy for
the inertia subgroups of 111 associated to €, v, w, respectively; e def e(9);
def ~

v = v(G). Then the following hold:

(i) (Outer representations of SVA-type and profinite Dehn
multi-twists) The outer representation p factors through the
closed subgroup Dehn(G) C Aut(G). By abuse of notation,
write p for the resulting homomorphism I — Dehn(G).

(ii) (Outer representations of SVA-type and homomor-
phisms of Dehn coordinates) The natural inclusions I,
I — Iz and the composite Iz — Il — I determine a diagram
of profinite groups

]ﬁ X I@

l

1 Iz I 1 1

— where the lower horizontal sequence is exact, and the closed
subgroups Iy, Iy C Iz determine sections of the surjection
Iz — I, respectively — hence also homomorphisms

SO b s,

I&Iﬁ%[g/[@(zﬂgzne = A, = Ag

— where the first “~” denotes the isomorphism given by the
composite Iz — Il — I, and by denotes the branch of e deter-
mined by the [unique] branch of € that abuts to v. Moreover,
the composite of these homomorphisms

I — Ag
coincides with the composite
I -2 Dehn(G) 25 Ag

[ef. (i); Definition 4.7]. In particular, if p is of SNN-type
[¢f. [NodNon|, Definition 2.4, (iii)], then the image of the
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composite I % Dehn(G) 2 Ag coincides with Ingg (e, p) - Ag C
Ag.

(iii) (Centralizers and cyclotomic characters) Suppose that p
is of SNN-type [cf. [NodNon], Definition 2.4, (iii)]. Let
e € Node(G) be a node of G. Then xg(a) = 1 [¢f. Defini-
tion 3.8, (i)] for any a € Z e (g)(Im(p)) € Autt®(G) [ef.
Definition 2.6, (i)].

Proof.  Assertion (i) follows immediately from condition (2) of
[NodNon|, Definition 2.4. Next, we verify assertion (ii). The fact that
the natural inclusions I, I — Iz and the composite Iz — II; — I give
rise to the diagram and homomorphisms of the first and second displays
in the statement of assertion (ii) follows immediately from [NodNon],
Lemma 2.5, (iv); condition (2) of [NodNon], Definition 2.4. On the
other hand, it follows immediately from the various definitions involved
that the image of each § € I via the composite of I < I; with the
action Iz — Aut(Ilg) given by conjugation coincides with the “a[v]” of
Lemma 4.6, (i), in the case where one takes “a” to be p(3). Thus, it
follows immediately from the definition of I that the image of g € [
via the composite I < Iz — Iz/I5 — Il coincides with the “Oz " of
Lemma 4.6, (i), in the case where one takes “a” to be p(5). Therefore, it
follows immediately from the definition of ©, that the homomorphisms
of the final two displays of assertion (ii) coincide. Thus, the final portion
of assertion (ii) concerning p of SNN-type follows immediately from the
definition of Y-length. This completes the proof of assertion (ii). To ver-
ify assertion (iii), let us first observe that, by Theorem 4.8, (v), the con-
jugation action of a € Aut{®}(G) on the Ag C Drodeg) Mg < Dehn(G)
indexed by e € Node(G) is given by multiplication by xg(«). On the
other hand, since N 3 lngg(e, p) # 0, it follows from the final portion of
assertion (ii) that the projection of Im(p) to the coordinate indexed by
e is open. Thus, the fact that o lies in the centralizer Z ey g)(Im(p))
implies that xg(a) = 1, as desired. This completes the proof of assertion
(ii). Q.E.D.

Definition 5.3. Let R be a complete discrete valuation ring whose
residue field is separably closed of characteristic ¢ ¥; m# € R a prime
element of R; vp the discrete valuation of R such that vg(w) = 1;

S8 the log scheme obtained by equipping S def Spec R with the log
structure defined by the maximal ideal (7) C R of R; s'°% the log scheme
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obtained by equipping the spectrum s of the residue field of R with
the log structure induced by the log structure of S'°% via the natural
closed immersion s — S; X% a stable log curve over Slos. G yios the

semi-graph of anabelioids of pro-3 PSC-type determined by the special

fiber Xog % ylog (.. slosof the stable log curve X1°8 [cf. [CmbGC],

Example 2.5]; Igos (=~ 22) the maximal pro-Y completion of the log
fundamental group 7 (5'°2) of S'°s.

(i) One may verify easily that the natural outer representation
Isis — Aut(Gy.,) associated to the stable log curve X'°&
over S'°8 factors through Dehn(Gy1.,) € Aut(G 1, ). We shall
write

pXLOg : ISlog — Dehn(gxlog)

for the resulting homomorphism.

(ii) It follows from the well-known local structure of a stable log
curve in a neighborhood of a node that for each node e of the
special fiber of X!°8, there exists a nonzero element a. # 0 of
the maximal ideal (w) C R such that the completion (5X~,€ of
the local ring Ox . at e is isomorphic to R[[s1, s2]]/(s152 — ae)
— where s, so denote indeterminates. Write

Ing vi0z (€) Lef vg(ae); Ingxis(e) Lef [Zz 2 Ing vioe (€) ZZ]
We shall refer to Ing yios (€) as the length of e and to Ingxo (€)
as the X-length of e. One verifies easily that Ing yi.: (€), hence

also lngilog(e), depends only on e, i.e., is independent of the
choice of the isomorphism Ox . =~ R[[s1, s2]]/ (5152 — ae).

Lemma 5.4 (Local geometric universal outer representa-
tions). In the notation of Definition 5.3, suppose that Gy.., is of type
(g9,7) [cf. Definition 2.3, (i); Remark 2.5.1]. Write N def Node(G y 1o, )*

—log

and 0'°%: S'°% — (M, )5 [cf. the discussion entitled “Curves” in §0]

for the classifying morphism of the stable log curve X'°% over S'°8. Then
the following hold:

(i) (Local structure of the moduli stack of pointed sta-
ble curves) Write O for the completion of the local ring of



96

(iii)

Yuichiro Hoshi and Shinichi Mochizuki
(My.r)s at the image of the closed point of S via the underly-
ing (1-)morphism of stacks o of 0'°8 and T'°% for the
[fs] log scheme obtained by equipping T def Spec@ with the log
structure induced by the log structure of (ﬂ;of)s [Thus, we
have a tautological strict [cf. [Ilu], 1.2] (1-)morphism T'°& —

(ﬂlgoﬁ)s./ Then there exists an isomorphism of R-algebras

R[[t1, - s tag—3+r]] = O such that the following hold:

o The log structure of the log scheme T'°% is given by the
following chart:

@eeNode(gXlog) Ne — R[[tla o at3g—3+r]] :> O
(Teys s ey ) = t?el'“t;ﬁ/’e]\]
— where we write N for the copy of N indezed by e €
Node(G yiog)-

e [Forl<i< N, the homomorphism of R-algebras O R
induced by the morphism o maps t; to ae, [c¢f. Defini-
tion 5.3, (ii)].

(Log-scheme-theoretic description of log fundamental
groups) Write Ipiog for the mazimal pro-X quotient of the

log fundamental group w1 (T'°8) of T'°8. Then we have natural
1somorphisms

Ig10e = Hom (ng, 22(1)) ;

Ipos = Hom(@eeNode(gxlog)ng,zz(1)>
= Deenode(s )Hom(ng,ZE(l)) )

and the homomorphism Igios — Ipos induced by the classify-
ing morphism o'°8% is the homomorphism obtained by applying
the functor “Homgy ((—)&P,Z*(1))” to the homomorphism of
monoids

Xxlog

N, — N
xlog)

(n€17 e 7n€N) — Zivzl Te; lngXlog (67)

@eGNode(g

(Local geometric universal outer representations) The
natural outer representation Ipos — Aut(Gy,,) associ-
ated to the stable log curve over T'8 determined
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by the tautological strict morphism T'°% — (ﬂlgo’%)s factors
through Dehn(G v, ) € Aut(G 1. ); thus, we have a homomor-
phism Ipos — Dehn(Gy..,). Moreover, the homomorphism
pxtos: Lgios — Dehn(G v, ) factors as the composite of the ho-
momorphism Igios — Iz induced by '8 and this homomor-
phism Ipes — Dehn(G i, )

Proof.  Assertion (i) follows immediately from the well-known local

structure of the log stack (ﬂ;oi) s [cf. [Knud], Theorem 2.7]. Assertion
(ii) follows immediately from assertion (i), together with the well-known
structure of the log fundamental groups of S°8 and T'°8. Assertion (iii)

follows immediately from the various definitions involved. Q.E.D.

Definition 5.5. In the notation of Definition 5.3, Lemma 5.4, we
shall write t'°8 for the log scheme obtained by equipping the closed point
t of T with the log structure naturally induced by the log structure of

Tos, Xiog for the stable log curve over t'°% corresponding to the natural

strict morphism #°8 (< T'°8) — (m;f)s;

panlf)‘; : Ipios — Dehn(G o)

for the homomorphism obtained in Lemma 5.4, (iii).

Proposition 5.6 (Outer representations arising from stable
log curves). In the notation of Definition 5.3, Lemma 5.4, the following
hold:

(i) (Compatibility of 3X-lengths) For each node e €
Node(Gyiog) 0f G yiog, it holds that

lnggxlog (e,pxiox) = Ingyoe (€)

[cf. Definitions 5.1; 5.3, (ii)].

(i)  (Isomorphicity of local geometric universal outer rep-
resentations) The homomorphism

univ

Pilos Iti0s — Dehn(G yioz)

[¢f. Definition 5.5] is an isomorphism of profinite groups.
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(Compatibility with generization) Let @ C Node(Gy.,)
be a subset of Node(G 1, ). Then there exist a stable log curve
Y8 over S'°8 and an isomorphism of semi-graphs of anabe-
lioids (G 1)@ = Gyog that fit into a commutative diagram
of profinite groups

univ

/)Ytlog
ITIYOg —— Dehn(Gy..,)

! !

IT;,g e Dehn(G y1o,)

— where we write Los, Loz for the “Imos 7 associated to Xlog,
X Y

Yo' respectively; the right-hand vertical arrow is the natural
inclusion induced, via the isomorphism (G i) —qQ — Gyrog, bY
the natural inclusion of Theorem 4.8, (ii); the left-hand vertical
arrow is the injection induced, via the [relevant] isomorphism
of Lemma 5.4, (it), by the natural projection of monoids

b N> PpH N

e€Node(G e€Node(G

slog) yviog)

[Note that it follows immediately from the various definitions
involved that Node(Gy 1, ) <~ Node((G yix)~-0) may be regarded
as a subset of Node(G )./

(Compatibility with specialization) Let H be a semi-graph
of anabelioids of pro-X PSC-type, Q C Node(H), and H..q —
Gy an isomorphism of semi-graphs of anabelioids. Then
there exist a stable log curve Y'°8 over S'°% and an isomor-
phism of semi-graphs of anabelioids H = Gyoe that fit into a
commutative diagram of profinite groups

L

| |
IT;/og o, Dehn(gylog )

— where we write Lpios, Lpios for the “Ipos ” associated to Xlog,
X Y

Yo8  respectively; the right-hand vertical arrow is the natural
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inclusion induced, via the isomorphisms H..qg = Gyiox and
H S Gy, by the natural inclusion of Theorem 4.8, (ii); the
left-hand vertical arrow is the injection induced, via the [rele-
vant] isomorphism of Lemma 5.4, (ii), by the natural projection
of monoids

b N P N

eENode(gylog) eENode(gxlog)

[Note that it follows immediately from the various definitions
involved that Node(G .., ) < Node(H..q) may be regarded as

a subset of Node(Gy1, ) <~ Node(H)./

(Input compatibility with “surgery”) Let H be a sub-
semi-graph of PSC-type [cf. Definition 2.2, (i)] of the un-
derlying semi-graph of Gyios, @ € Node((G g )|m) [cf. Def-
inition 2.2, (i)] a subset of Node((Gyioe)|m) that is not of
separating type [cf. Definition 2.5, (i)], and U C
Cusp(((G yioe)|m)-q) [cf- Definition 2.5, (ii)] an omittable
[cf. Definition 2.4, (i)] subset of Cusp(((Gyoe)|u)~q). Then
there exist a stable log curve Y% over S'°% and an isomor-
phism (((Gyiox) 1) =Q)et = Gyog [cf. Definition 2.4, (ii)] that
fit into a commutative diagram of profinite groups

univ

P log
X
Islog —_— IT;?g, —t> Dehn(gxlog)

| | l

Islog —_— ITlog Y—Y> Dehn(gylog)

t
Y

»”

— where we write Lpos, Ipos for the “Ipos” associated to
X Y

X'og ylog respectively; the left-hand horizontal arrows are the
homomorphisms induced by the classifying morphisms associ-
ated to X%, Y198 respectively; the right-hand vertical arrow
1s the mnatural surjection induced, wvia the isomorphism
((Gx100)|E) =@) ot = Gyriogs by the natural surjection of The-
orem 4.8, (ii); the middle vertical arrow is the surjection in-
duced, via the [relevant] isomorphism of Lemma 5.4, (i), by
the natural inclusion of monoids

@ N, — @ N, .

eENode(ngg) eENode(gxlog)
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[Note that it follows immediately from the various definitions
involved that Node(Gy1,, ) <~ Node((((Gyiox)|H)=q)ev) may be
regarded as a subset of Node(G v, )./

(Output compatibility with “surgery”) Let H be a semi-
graph of anabelioids of pro-% PSC-type, K a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of the underlying semi-
graph of H, @ C Node(H|k) [¢f. Definition 2.2, (ii)] a subset
of Node(H|k) that is not of separating type [cf. Defini-
tion 2.5, (i)], U C Cusp((H|x)-q) [cf. Definition 2.5, (ii)] an
omittable [cf. Definition 2.4, (i)] subset of Cusp((H|x)s-q),
and (H|)»qQ)ev =+ Gyog [¢f. Definition 2.4, (ii)] an isomor-
phism of semi-graphs of anabelioids. Then there exist a stable
log curve Y18 over S'°8 and an isomorphism of semi-graphs of
anabelioids H = G that fit into a commutative diagram of
profinite groups

Ylog

Islog —_— IT)I/og Y—t> Dehn(gylug)

ISlog —_— IT;?g —t> Dehn(gxlog)

— where we write Lpos, Lpos for the “Ipos” associated to
X Y

X'log ylo'  respectively; the left-hand horizontal arrows are
the homomorphisms induced by the classifying morphisms as-
sociated to Y'°8, X198 respectively; the right-hand vertical ar-
row s the natural surjection induced, via the isomorphisms
(HIg)s-Q)e =+ Gyrog and H =5 Gyioy, by the natural surjec-
tion of Theorem 4.8, (iii); the middle vertical arrow is the sur-
jection induced, via the [relevant] isomorphism of Lemma 5.4,
(ii), by the natural inclusion of monoids

@ N, < @ N,.

eENode(gxlog) eENode(gylog)

[Note that it follows immediately from the various definitions
involved that Node(G ;) < Node(((H|k)s-0)err) may be re-
garded as a subset of Node(Gy,, ) < Node(H).]

Proof. Assertion (i) follows immediately from the well-known lo-
cal structure of a stable log curve in a neighborhood of a node. Next,
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we verify assertion (ii). By allowing “pXéog” to wary among the natu-
ral outer representations Igis — Dehn(Gy.,,) associated to stable log
curves “X'°8” over S'°% whose classifying morphisms “o” coincide with
the given o on the closed point s of S, one concludes that the surjec-
tivity of p;‘;}{,‘; follows immediately from the final portion of Lemma 5.2,
(i), concerning p of SNN-type [cf. also assertion (i); Theorem 4.8, (iv)].
[Here, we recall that pyies is of IPSC-type [cf. [NodNon], Definition
2.4, ()], hence also of SNN-type [cf. [NodNon], Remark 2.4.2].] On the
other hand, since both Dehn(G,,) and Igis are free 7% -modules of
rank Node(G 1., )* [cf. Theorem 4.8, (iv); Lemma 5.4, (ii)], assertion (ii)
follows immediately from this surjectivity of p‘)l(nilofz. This completes the
proof of assertion (ii).

Assertion (iii) (respectively, (iv)) follows immediately, in light of

the well-known structure of (m;ﬁ)s [cf. also the discussion entitled

“The Etale Fundamental Group of a Log Scheme” in [CmbCsp], §0,
concerning the specialization isomorphism on fundamental groups, as
well as Remark 5.6.1 below], by considering a lifting to S'°% of a sta-
ble log curve over s'°% obtained by deforming the nodes of the special

fiber Xlog def xlog X gl 518 corresponding to the nodes contained in
Q (respectively, degenerating the moduli of X°® so as to obtain nodes
corresponding to the nodes contained in Q) [cf. also Proposition 4.10,
(iii)].

Next, we verify assertion (v). First, we observe that one may verify
easily that if H is the underlying semi-graph of Gy,,,, and @ = (), then
the stable log curve Y'°8 over S'°% obtained by omitting the cusps of X'°8
contained in U and the resulting natural isomorphism (G Xlng).U =5 Gytoe
satisfy the conditions given in the statement of assertion (v). Thus, one
verifies immediately that to verify assertion (v), we may assume without
loss of generality that U = ().

Write H % (G yroe)|5) 0 and V = Vert(Gy1o,) \ Vert((G yuoe )|m) €
Vert(G 1o, ). Denote by (g34,73) the type of H, and, for each v € V, by
(gu,Tv) the type of v [cf. Definition 2.3, (i), (iii); Remark 2.3.1]. Then
it follows immediately from the general theory of stable log curves that
there exists a “clutching (1-)morphism” corresponding to the operations
“(=)m” and “(—)wq" [i-e., obtained by forming appropriate composites
of the clutching morphisms discussed in [Knud], Definition 3.6]

./\/'déf (ﬂgnﬂ"u)s Xs ( H (Mg”’r”)s> - (mg7r)s

veV
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— where the fiber product “[],.,” is taken over s — that satisfies

the following condition: write A’ 18 for the log stack obtained by equip-
ping the stack A/ with the log structure induced by the log structure

-1 . . . .
of (M;E)s via the above clutching morphism; then there exists an s'°%-

valued point aﬁg e N'8(sl°g) of A°% such that the image of U'l,\()/g via
. . - .. .
the natural strict (1-)morphism N'°8 — (M gcjf)s coincides with the s'°8-
— Jog
valued point of (M ;i

—1 .
oloe ¢ (M;E)S(Slog) of X8 to s°8. If, moreover, we write Y°% for the

stable log curve over s'°% corresponding to the image of J}f}g eN 1Og(slog)
via the composite of (1-)morphisms

)s obtained by restricting the classifying morphism

aor s e ek (T Maere) 258 (R ),

GHTH GHTH
veV

— where the first arrow is the (1-)morphism of log stacks obtained by
“forgetting” the portion of the log structure of A''°% that arises from [the
portion of the log structure of (ﬂ?f)s determined by]| the irreducible

components of the divisor (Mg ,)s \ (Mg ,)s which contain the image of
N — (M,,)s — then one verifies immediately that, for any stable log
curve Y'°% over S'°8 that lifts Y°2, there exists a natural identification
isomorphism H = ((Gx100)|H) =@ —* Gyrto-

Next, let us observe that by applying the various definitions in-
volved, together with the fact that the (1-)morphism N'°% — (ﬂff) s
is strict, one may verify easily that the restrictions of the natural (1-
)morphisms of log stacks

—1 e ——log
(M2, )s & N8 N8 (M%),

to a suitable étale neighborhood of the underlying morphism of stacks
of O"]/S[g € N'°8(s'°¢) induce the following morphisms between the charts

of (Mi]oj,’rﬂ)sa Nlog’ Mloga and (ﬂ;f)s determined by the chart of
“(720,%,-.);’ given in Lemma 5.4, (i):

@eeNodc(H) Ne = (@eENodc(H) Ne) & {0}

€

— @eeNode(gxlog) Ne — @eENode(g

xlog)

— where we use the notation N, to denote a copy of the monoid N
indexed by e, and the “—” is the natural inclusion determined by the
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natural inclusion Node(#H) < Node(G). Thus, by applying the func-

tor “Homgy, ((—)8P,Z*(1))” to the homomorphism D.enodery Ne =

®eeNode(g 1 )Ne obtained by composing the morphisms of the above
xlog

display and considering the [relevant] isomorphism of Lemma 5.4, (ii),
we obtain a homomorphism IT;?g — IT’l/og, which makes the left-hand

square of the diagram in the statement of assertion (v) commute.

On the other hand, to verify the commutativity of the right-hand
square of the diagram in the statement of assertion (v), let us observe
that by Theorem 4.8, (iv), it suffices to verify that for any node e €
Node(Gy 1) of Gyriog, the two composites

univ

PX1

8 QE ~
I, log —t> Dehn(gxlog) 4 Agxlog — Ag )

Tx ylog

univ

p

vio® 2.
IT;?g — 1, — Dehn(Gyios) —> Ag

T;fg ylog

— where we write ex for the node of G, corresponding to the node
e € Node(Gy 1) via the natural inclusion Node(Gy.,) < Node(G y1o,)
— coincide. But this follows immediately by comparing the natural
action of IT;?g on the portion of G, corresponding to {ex} U V(ex)
with the natural action of IT)l/og on the portion of G, corresponding to

{e} UV(e). This completes the proof of assertion (v).

Finally, we verify assertion (vi). First, we observe that one may
verify easily that if K is the underlying semi-graph of H, and Q = 0,
then the stable log curve Y198 over S'°8 obtained by equipping X'°8 with
suitable cusps satisfies, for a suitable choice of isomorphism H = Gytoss
the conditions given in the statement of assertion (vi). Thus, one verifies
immediately that to verify assertion (vi), we may assume without loss
of generality that U = .

Write V' &' Vert(H) \ Vert(H|x) € Vert(H). Denote by (gu,7m)
the type of H, and, for each v € V, by (g,,7,) the type of v. Then
it follows immediately from the general theory of stable log curves that
there exists a clutching “(1-)morphism” corresponding to the operations
“(9)|x” and “(—)»q” [i-e., obtained by forming appropriate composites
of the clutching morphisms discussed in [Knud], Definition 3.6]

N (Mo % (TT Mouir)s) — M)

veV

— where the fiber product “[],.,” is taken over s — that satisfies

the following condition: write A’ 18 for the log stack obtained by equip-
ping the stack A/ with the log structure induced by the log structure
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-1 . . . .
of (./\/lgof . )s Via the above clutching morphism; then there exists an
s'8_valued point o) € N'°5(s1°8) of N'°% such that the image of 0¥ €
N'°8(5°2) via the composite of (1-)morphisms

s — s (. e, (T (Myr)e) 5 (329,

g,r g,r
veV

— where the first arrow is the (1-)morphism of log stacks obtained by
“forgetting” the portion of the log structure of A'°® that arises from

[the portion of the log structure of (ﬂlg‘fm)s determined by] the irre-
ducible components of the divisor (Mg,, 14 )s \ (Mg,,.ry)s Which con-

tain the image of N — (My,, 1y, )s — coincides with the s'°-valued
-1
point of (M ;E)S obtained by restricting the classifying morphism ¢'°¢ €

—1 .
78)5(598) of X8 to s'°8. If, moreover, we write Y18 for the stable

(Mg,r

. . 1 .
log curve over s'°¢ corresponding to the image of o\f € A 108 (glog) i

. ) -
the natural strict (1-)morphism A'°8 — (M;im

immediately that, for any stable log curve Y'°2 over S'°% that lifts Y,
there exist a sub-semi-graph of PSC-type K’ of the underlying semi-graph
of Gy, a subset Q" C Node((Gyo,)|x), and an isomorphism of semi-
graphs of anabelioids H = G

)s, then one verifies

vz that satisty the following conditions:

(@) ((Gyios)|x’)>qr may be naturally identified with G,

(b) The isomorphism H = Gy, induces an isomorphism K = K’
and a bijection Q = Q’, hence also an isomorphism (H|g )~ —

((Gyros) |7 ) -

(¢) The automorphism of G determined by the composite

Xlog
gXlog <L (H|K)>Q % ((gylog)‘K,)>Ql L> gXlog

— where the first arrow is the isomorphism given in the state-
ment of assertion (vi); the second arrow is the isomorphism of
(b); the third arrow is the natural isomorphism arising from the
natural identification of (a) — is contained in Aut/®"P"/ (G oz )
and, moreover, the automorphism of Agxlog induced by this au-
tomorphism of G, is the identity automorphism [cf. Propo-
sition 4.10, (iii)].

Thus, by applying a similar argument to the argument used in the proof
of assertion (v), one verifies easily that the stable log curve Y'°8 and the
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isomorphism H = Gy 1o satisfy the conditions given in the statement of
assertion (vi). This completes the proof of assertion (vi). Q.E.D.

Remark 5.6.1. Here, we take the opportunity to correct a minor
misprint in the discussion entitled “The Etale Fundamental Group of a
Log Scheme” in [CmbCsp], §0. In the third paragraph of this discussion,
the field K should be defined as a mazimal algebraic extension of K,
among those extensions which are unramified over Ug, [i.e., but not
necessarily over R].

Theorem 5.7 (Compatibility of scheme-theoretic and ab-
stract combinatorial cyclotomic synchronizations). Let (g,7) be a
pair of nonnegative integers such that 2g—24+r > 0; ¥ a nonempty set of
prime numbers; R a complete discrete valuation ring whose residue field
is separably closed of characteristic € X; S'°8 the log scheme obtained by
equipping S def Spec R with the log structure defined by its closed point;
X8 ¢ stable log curve of type (g,r) over S°8; Gy the semi-graph
of anabelioids of pro-X PSC-type determined by the special fiber of the
stable log curve X% [cf. [CmbGC)], Ezample 2.5]; O the completion of
the local ring of (My.)s [cf. the discussion entitled “Curves” in §0] at
the image of the closed point of S wvia the underlying (1-)morphism of
stacks 0: S — (My.)s of the classifying morphism of X'°8; T'°¢ for
the log scheme obtained by equipping T def Spec@ with the log struc-
ture induced by the log structure of (ﬂ;"f)s [cf. the discussion entitled
“Curves” in §0]; I the mazimal pro-X quotient of the log fundamental
group 71 (T'°8) of T'°¢. Then there exists an isomorphism

synyies : A < Hom(N# 27 (1)) =5 Ag

xlog
[¢f. Definition 3.8, (i)] such that the composite
Irioe = @eeNode(gxlog) A>[e]
@ 5\’)nX10g :Dgxlog
— @eENode(QXIOg) Agxlog — Dehn(gXIOg)

[cf. Definitions 4.4; 4.7] — where we use the notation A*[e] to denote
a copy of A* indexed by e € Node(Gyiog), and the first arrow is the
[relevant] isomorphism of Lemma 5.4, (i) — coincides with the outer

representation p‘;(“fo‘;: Ios = Dehn(G ., ) [cf. Definition 5.5] associated
t
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to the stable log curve over T'°% corresponding to the tautological strict

(1-)morphism T'& — (ml;f)s.

Proof. 1In light of Theorem 4.8, (ii), (iv); Proposition 5.6, (ii), by
applying Proposition 5.6, (iii), to the various generizations of the form
“(gxlog)wNode(gxlog)\{e}”, it follows immediately that for each node e €

Node(G y10s ), there exists a(n) [necessarily unique] isomorphism

syn yiox €] A¥[e] —— Agx10g

— where A¥[¢] is a copy of A* indexed by e € Node(G y.,,) — such that
the composite

~ )
Iriog — @eENode(gxlog) AZ[e]
@D. svnyiogle] nglog
— @eENOde(gxlog) Agxlog < Dehn(gxlog)

— where the first “5” is the [relevant] isomorphism of Lemma 5.4, (ii)
— coincides with p‘;(nlio‘;.

Thus, to complette the proof of Theorem 5.7, it suffices to verify that
this isomorphism shnxus[e] is independent of the choice of e. Now if
Node(G Xlog)jj < 1, then this independence is immediate. Thus, suppose
that Node(G 1., )* > 1 and fix two distinct nodes e, ez € Node(G 1.,
of Gyios- The rest of the proof of Theorem 5.7 is devoted to verifying
that

(1): the two isomorphisms

SYN y1o0g [€1] SYN y1o0g [€2]

Az[eﬂ — Ag 7AZ[€2} = Ag

xlog xlog

coincide.
Next, let us observe that one may verify easily that there exist
e a semi-graph of anabelioids of pro-X PSC-type H*,

e a sub-semi-graph of PSC-type K* of the underlying semi-graph
of H*,

an omittable subset @* C Cusp((H*)|k~), and

e an isomorphism

((H")

K* )QQ* ; gXlog
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such that the subset U* C Node(H*) corresponding, relative to the iso-
morphism ((H*)|k+)eq* — Gyiog, to the subset {e1, ez} € Node(G o)
is not of separating type. Thus, it follows immediately from Propo-
sition 5.6, (vi) — i.e., by replacing X'°¢ (respectively, e, e) by the
stable log curve “Y'°8” obtained by applying Proposition 5.6, (vi), to
the isomorphism ((7*)|k+)eq* —+ Gyis (respectively, by the two nodes
€ Node(Gy 1, ) corresponding to the two nodes € U*) — that to verify
the above (1), we may assume without loss of generality that the subset
{e1,e2} € Node(G 1o, ) is not of separating type.

Thus, it follows immediately from Proposition 5.6, (iii) — i.e., by
replacing X'°% (respectively, e1, es) by the stable log curve “Y'°8” ob-
tained by applying Proposition 5.6, (iii), to (gXlog)WNode(gxmg)\{eheﬂ
(respectively, by the two nodes € Node(Gy..,) corresponding to ey, e)
— that to verify the above (1), we may assume without loss of general-
ity that Node(Gy1.,) = {e1, €2}, and that Node(G ., ) = {e1,e2} is not
of separating type. One verifies easily that these hypotheses imply that
Vert(G i )* = 1.

Next, let us observe that one may verify easily that there exist [cf.
Fig. 6 below]

e a semi-graph of anabelioids of pro-2 PSC-type #1,
e two distinct cusps ¢, ¢} € Cusp(H1) of #T,
three distinct nodes ff, fQT, f;f € Node(H') of HT, and

e an isomorphism

(H

w{ff,fg,fg})%ciﬂi} — Gxos

such that
o Vert(H!) = {ULU;U;UB;

e for i € {1,2}, if we write ¢! € Node(#) for the node corre-
sponding, relative to the isomorphism (H

~

/
w{ff,f;fg})%clc%} -

G iox> t0 €; € Node(G o, ), then it holds that Vel = {v};
® V(f;r) = {’ULU;}W V(fg) = {U%,U%L V(f?ir) = {’U;,Ul};
o Vieh) = V(eh) = (ol
e forie {1,2,3}, v is of type (0,3) [cf. Definition 2.3, (iii)].
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Figure 6: The underlying semi-graph of

One verifies easily that these hypotheses imply that (N (v]) N
N@H)E = (N(vl) N N(vh))! = 1. Thus, it follows immediately from
Proposition 5.6, (iv), (vi) — i.e., by replacing X'°8 (respectively, e, e3)
by the stable log curve “Y'°8” obtained by applying Proposition 5.6, (iv),

(vi), to the isomorphism (H 1 5 Gy (respectively, by

! t ety )efel
{130y o lene
the two nodes € Node(Gy1,,) corresponding to the two nodes e{, e;) —
that to verify the above (1), we may assume without loss of generality
that there exist vertices vy, v, vz of G, such that

e forie {1,2}, V(e;) = {uvi};
e for i € {1,2,3}, v; is of type (0,3);

° (N(Ul) QN(Ug))ﬁ = (N(UQ) m./\/'(”t}g))ﬁ =1.
Write H for the sub-semi-graph of PSC-type of the underlying semi-
graph of G ..., whose set of vertices = {v1,v2,v3}. Then one verifies eas-
ily that these hypotheses imply that Node((Gyioq)|m) = {e1, €2, f1, fo},
where we write {f1} = N (v1) NN (vs), {f2} = N(v2) NN (v3).

Thus, it follows immediately from Proposition 5.6, (v) — i.e., by
replacing X'°8 (respectively, e;, e2) by the stable log curve “Y'°8” oh-
tained by applying Proposition 5.6, (v), to (Gyuw,)m (respectively, by
the two nodes € Node(G,,,) corresponding to ey, ez) — that to verify
the above (I), we may assume without loss of generality that there exist

three distinct vertices v1, va, v3 of Gy, such that

o for i e {1,2}, V(e;) = {v;};
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e for i € {1,2,3}, v; is of type (0,3);

e Node(G 1) = {e1, €2, f1, fo}, where we write {f1} = (N (v1)N
N(v3)), {f2} = (N (v2) NN (v3)).
One verifies easily that these hypotheses imply that there exists a cusp
c of Gy such that Cusp(G i) = {c} = C(v3).

Then it follows immediately from the explicit structure of G y,, that
there exists an automorphism 7 of X;°¢ [cf. Definition 5.5] such that the
automorphism of Node(G ;) = {e1,e2, f1, f2} (respectively, Iy =
Homyy ((Ne, ®N, ®Ny, BNy, )2P, 7Z2(1)) [cf. Lemma 5.4, (ii)]) induced by
7 is given by mapping e; > e, e > e1, f1 — fa, fo — f1, (respectively,
by the corresponding permutation of factors of N., & N, & Ny, & Ny,),
and, moreover, 7 preserves the cusp corresponding to c. Now it follows
immediately from Corollary 3.9, (v), together with the fact that the
automorphism of the anabelioid (Gyios)e corresponding to the cusp ¢
induced by 7 is the identity automorphism [cf. the argument used in the
final portion of the proof of Corollary 3.9, (vi)], that the automorphism
of Agxlog induced by 7 is the identity automorphism. Thus, by applying
uX“iL‘é
automorphism of G, induced by 7, one concludes immediately from
the above description of 7, together with Theorem 4.8, (v), that the
assertion (1) holds. This completes the proof of Theorem 5.7. Q.E.D.

the evident functoriality of the homomorphism p with respect to the

Definition 5.8. Let oo € Dehn(G) be a profinite Dehn multi-twist
of G and u € Ag a topological generator of Ag.

(i) Let e € Node(G) be a node of G. Then since Ag is a free Z=-
module of rank 1 [cf. Definition 3.8, (i)], there exists a unique
element a, € 7% of Z% such that D.(a) = acu. We shall refer
to ae € Z% as the Dehn coordinate of a indexed by e with
respect to u.

(ii) We shall say that a profinite Dehn multi-twist « € Dehn(G) is
nondegenerate if, for each node e € Node(G) of G, the Dehn
coordinate of «a indexed by e with respect to u [cf. (i)] topo-
logically generates an open subgroup of ZT. Note that it is
immediate that if « is nondegenerate, then the Dehn coordi-
nate (€ 25 5 [Lics Zit € [ljexy Qi) of @ indexed by e with
respect to u is contained in [[,.y, Q7.
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(iii) We shall say that a profinite Dehn multi-twist o € Dehn(G) is
positive definite if o is nondegenerate [cf. (ii)], and, moreover,
the following condition is satisfied: For each node e € Node(G)
of G, denote by a. € Z= the Dehn coordinate of o indexed by
e with respect to u [cf. (i)]. [Thus, ac € [];cy, Q@ — cf. (ii)]
Then for any e, ¢’ € Node(G), a./a. is contained in the image

of the diagonal map Q- ef {aeQla>0} =[x Q7.

Remark 5.8.1. One may verify easily that the notions defined in
Definition 5.8, (ii), (iii), are independent of the choice of the topological
generator u of Ag.

Corollary 5.9 (Properties of outer representations of PSC—
type and profinite Dehn multi-twists). Let 3 be a nonempty set
of prime numbers and p: I — Aut(G) an outer representation of pro-3
PSC-type [cf. [NodNon|, Definition 2.1, (i)]. Suppose that I is isomor-
phic to ZE. Then the following hold:

(i) (Outer representations of SVA-type and profinite Dehn
multi-twists) The following three conditions are equivalent:

(i-1)  p is of SVA-type [cf. [NodNon], Definition 2.4, (ii)].

(i-2)  The image of any topological generator of I is a profinite
Dehn multi-twist [c¢f. Definition 4.4].

(i-3)  There exists a topological generator of I whose image via
p is a profinite Dehn multi-twist.

(i) (Outer representations of SNN-type and nondegener-
ate profinite Dehn multi-twists) The following three con-
ditions are equivalent [cf. the related discussion of [NodNon],
Remark 2.14.1]:

(ii-1)  p is of SNN-type [cf. [NodNon|, Definition 2.4, (iii)].

(ii-2)  The image of any topological generator of I is a non-
degenerate [cf. Definition 5.8, (ii)] profinite Dehn
multi-twist.

(ii-3)  There exists a topological generator of I whose image via
p is a nondegenerate profinite Dehn multi-twist.
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(iii) (Outer representations of IPSC-type and positive defi-
nite profinite Dehn multi-twists) The following three con-
ditions are equivalent [cf. Remark 5.10.1 below; the related
discussion of [NodNon], Remark 2.14.1]:

(iii-1)  p is of IPSC-type [cf. [NodNon], Definition 2.4, (i)].

(iii-2)  The image of any topological generator of I is a posi-
tive definite /[cf. Definition 5.8, (iii)] profinite Dehn
multi-twist.

(iii-3)  There exists a topological generator of I whose image via
p is a positive definite profinite Dehn multi-twist.

(iv) (Synchronization associated to outer representations
of IPSC-type) Suppose that p is of IPSC-type. Write

(Zz)Jr C (ZZ)*

for the intersection of the images of the diagonal map Q¢ def
{a € Qla > 0} = [[,cx Qi and the composite of natural
morphisms (ZE)* < 7= 5 [Lies Zi € Tljes; Q. [Thus, when
S = Primes, it holds that (Z=)* = {1}.] Then there ezists a
natural (ZZ)T-orbit of isomorphisms of Z=-modules

sy 0 I — Ag

that is functorial, in p, with respect to isomorphisms of outer
representations of PSC-type [cf. [NodNon], Definition 2.1,

(v) (Compatibility of synchronizations with finite étale

def out

coverings) In the situation of (iv), let 1 CII; = g x I [cf.
the discussion entitled “Topological groups” in §0] be an open
subgroup of I1; such that if we write H — G for the connected
finite étale covering of G corresponding to II N Tlg [so Ty =
II N Ilg/, then the outer representation pr: J et II/1Iy —
Out(Ily) is of IPSC-type. Then the diagram of 7= -modules

DL

J —— Ay

Lol

spn ,
I Ag
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— where the left-hand vertical arrow is the natural inclusion;
the right-hand vertical arrow is the isomorphism of Corol-
lary 3.9, (iii)) — commutes up to multiplication by an el-
ement € Qsg.

Proof.  Assertion (i) follows immediately from condition (2') of
[NodNon], Definition 2.4. Next, we verify assertions (ii) and (iii). The
implication

(ii-1) = (ii-2) , (respectively, (iii-1) = (iii-2))

follows immediately from the final portion of Lemma 5.2, (ii), concern-
ing p of SNN-type (respectively, Lemma 5.4, (ii); Theorem 5.7). The
implications

(ii-2) = (ii-3) , (iii-2) = (iii-3)

are immediate.
Next, we verify the implication

(ii-3) = (ii-1)..

It follows from the implication (i-3) = (i-1) that p is of SVA-type. Thus,
to show the implication in question, it suffices to verify that p satisfies
condition (3) of [NodNon], Definition 2.4. Let € € Node(G) be an ele-

ment of Node(G); TI; def Iig NI [cf. the discussion entitled “Topological
groups” in §0]; U, @ € Vert(G) the two distinct elements of Vert(G) such
that V(€) = {v,w} [cf. [NodNon|, Remark 1.2.1, (iii)]; Iz, I3, Iz C II;
the inertia subgroups of II; associated to e, v, w, respectively. Then
since the homomorphisms of the final two displays of Lemma 5.2, (ii),
coincide, and Agxlog and [; are free 7= -modules of rank 1 [cf. Defi-
nition 3.8, (i); [NodNon|, Lemma 2.5, (i)], it follows immediately from
the definition of nondegeneracy that the composite of the second display
of Lemma 5.2, (ii), is an open injection. Thus, it follows immediately
that the natural homomorphism Iz x I'; — Iz has open image, and that
I; NIz = {1}, ie., that I3 x Iz — Iy is injective. That is to say, p
satisfies condition (3) of [NodNon], Definition 2.4. This completes the
proof of the implication in question.

Next, we verify the implication

(iii-3) => (iii-1) .

Let u € Ag be a topological generator of Ag. Then it follows immediately
from Lemma 5.4, (i), (ii), and Theorem 5.7 — by considering the stable
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log curve over S'°% corresponding to a suitable homomorphism of R-
algebras O ~ R][ty, - -- ,t3g—g+r]] = R [cf. Lemma 5.4, (i)] — that to
complete the proof of the implication in question, it suffices to verify
that there exists a topological generator a € I of I which satisfies the
following condition (x):

(*): The Dehn coordinates of p(«) with respect to u
def

[cf. Definition 5.8, (i)] € Ny = N\ {0}.

To this end, let « € I be a topological generator of I such that p(a) is
a positive definite profinite Dehn multi-twist of G [cf. condition (iii-3)].
For each node e € Node(G) of G, denote by a, € 7= the Dehn coordinate
of p() indexed by e with respect to u. Now since p(«) is nondegenerate,
it follows immediately from the definition of nondegeneracy that for each
node e € Node(G) of G, it holds that a. € N - (Z=)*. Thus, it follows
immediately that for a given node f € Node(G) of G, by replacing «
by a suitable topological generator of I, we may assume without loss of
generality that ay € Ng. In particular, it follows immediately from the
definition of positive definiteness that there exists an element a € N
such that for each node e € Node(G) of G, it holds that a - a. € Nq.
Moreover, again by replacing « by a suitable topological generator of
I, we may assume that every prime number dividing a belongs to X.
But then it follows from the fact that a, € Z* N (L. Nyo) that a. is
a positive rational number that is integral at every element of JPrimes,
i.e., that a. € N4o, as desired. In particular, the topological generator
a € I of I satisfies the above condition (x). This completes the proof of
the implication in question, hence also of assertions (ii) and (iii).

Next, we verify assertion (iv). It follows immediately from the fi-
nal portion of Lemma 5.2, (ii), concerning p of SNN-type that for each
e € Node(G), the homomorphism syn,: I — Ag obtained by dividing

the composite I % Dehn(G) 2 Ag by Ingg(e,p) is an isomorphism.
Moreover, by “translating into group theory” the scheme-theoretic con-
tent of Lemma 5.4, (ii), by means of the correspondence between group-
theoretic and scheme-theoretic notions given in Proposition 5.6, (i); The-
orem 5.7, one concludes that shn , is independent — up to multiplication
by an element of (Z=)+ — of the choice of the node e € Node(G). Now
the functoriality of syn, follows immediately from the functoriality of
the homomorphism @, [cf. Theorem 4.8, (iv)], together with the group-
theoreticity of 1ng§(e, p). This completes the proof of assertion (iv).
Finally, assertion (v) follows immediately, in light of the group-
theoretic construction of “syn,” given in the proof of assertion (iv),
from the various definitions involved. Q.E.D.
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Remark 5.9.1.

(i)

(i)

Corollary 5.9, (iv), may be regarded as a sort of abstract com-

binatorial analogue of the cyclotomic synchronization given in
[GalSct], Theorem 4.3 [cf. also [AbsHyp|, Lemma 2.5, (ii)].

It follows from Theorem 5.7 that one may think of the isomor-
phisms of Corollary 5.9, (iv), as a sort of abstract combinato-
rial construction of the various identification isomorphisms be-
tween the various copies of “22(1)” that appear in Lemma 5.4,
(ii). Such identification isomorphisms are typically “taken for
granted” in conventional discussions of scheme theory.

Remark 5.9.2.

(i)

Consider the exact sequence of free Z=-modules
0 — MF™t — Mg € TP — ME™ € Mg /MF™* — 0

— where we write Mg*'* € Mg for the Z=-submodule of Mg
topologically generated by the images of the verticial subgroups
of Ilg [cf. [CmbGC], Remark 1.1.4]. Then one verifies easily
that any profinite Dehn multi-twist e € Dehn(G) preserves and
induces the identity automorphism on M&’e”, Méomb. In par-
ticular, the homomorphism Mg — Mg obtained by considering
the difference of the automorphism of Mg induced by a and
the identity automorphism on Mg naturally determines [and
is determined by!] a homomorphism

acomb,vert . Méomb Mg\;/ert )

Write Mgdge C Mgt for the 7=-submodule topologically gen-
erated by the image of the edge-like subgroups of IIg. Then
the following two facts are well-known:

e If Cusp(G) = 0, then Poincaré duality Mg =
Homyy. (Mg, Ag) determines an isomorphism Mgdge ~
HomzZ(Méomb’Ag) [cf. [CmbGC], Proposition 1.3].

e The natural homomorphism
Dehn(G) — Homg, (Méomb’ Mgert>

given by mapping a — a°™mPvert factors through the sub-
module Homzx (Méomb, Mgdge) C Homgs ( ]Méomb7 Méert)_



(i)

(iii)
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[Indeed, this may be verified, for instance, by applying
a similar argument to the argument used in the proof of
[CmbGC], Proposition 1.3, involving weights.]

Thus, if Cusp(G) = (), then we obtain a homomorphism
Qg: Dehn(G) — M @5y MG @5y Homgy (Ag, Z7)

that is manifestly functorial, in G, with respect to isomor-
phisms of semi-graphs of anabelioids of pro-¥ PSC-type. The
matrices that appear in the image of this homomorphism (g
are often referred to as period matrices.

Now let us recall that [CmbGC], Proposition 2.6, plays a key
role in the proof of the combinatorial version of the
Grothendieck conjecture given in [CmbGC], Corollary 2.7, (iii).
Moreover, the proof of [CmbGC], Proposition 2.6, is essentially
a formal consequence of the nondegeneracy of the period matriz
associated to a positive definite profinite Dehn multi-twist —
i.e., of the injectivity of the homomorphism

OZcomb ,vert . Méomb Mézert

of (i) in the case where a € Dehn(G) is positive definite [cf.
Corollary 5.9, (iii)].

In general, the period matrix associated to a profinite Dehn
multi-twist may fail to be nondegenerate even if the profinite
Dehn multi-twist is nondegenerate. Indeed, suppose that %f =
1, that G is the double [cf. [CmbGC], Proposition 2.2, (i)] of a
semi-graph of anabelioids of pro-¥ PSC-type H such that

(Vert(H)*, Node(H)*, Cusp(H)*) = (1,0,2).

Suppose, moreover, that H admits an automorphism which
permutes the two cusps of H and extends to an automorphism
¢ of G. [One verifies easily that such data exist.] Then one may
verify easily that Node(G)? = 2, that Cusp(G)* = 0, and that
the free Z=-module Mg™P  hence also Médge ®s5s Mgdge 55

Homsy (Ag, 7%) [cf. (1)], is of rank 1. Now let us recall that the
period matrix associated to a positive definite profinite Dehn
multi-twist is necessarily nondegenerate [cf. Corollary 5.9, (iii);
the proof of [CmbGC], Proposition 2.6]. Thus, since ¥* = 1, it
follows immediately from the functoriality of Qg [cf. (i)] and
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Dg [cf. Theorem 4.8, (iv)] with respect to ¢ that the kernel of
the composite of natural homomorphisms

Dg ~
€D Ag +~ Dehn(G) % M w,s ME @, Homyy (Ag, 2%)
Node(G)

is a free Z=-submodule of @Node(g) Ag of rank 1 that is stabi-
lized by ¢. On the other hand, since profinite Dehn multi-twists
of the form (u,u) € @yoae(g) Ag: Where u € Ag, are [mani-
festly!] positive definite, we thus conclude that the kernel in
question is equal to

{(u,—u) € @ AglueAg}.

Node(G)

In particular, any nonzero element of this kernel yields an ex-
ample of a nondegenerate profinite Dehn multi-twist whose as-
sociated period matrix fails to be nondegenerate.

Corollary 5.10 (Combinatorial/group-theoretic nature of
scheme-theoreticity Let (g,r) be a pair of nonnegative integers such
that 29 — 2+ r > 0; ¥ a nonempty set of prime numbers; R a complete
discrete valuation ring whose residue field k is separably closed of charac-

teristic ¢ 3; S1°8 the log scheme obtained by equipping S ef Spec R with

the log structure determined by the maximal ideal of R; z € (M,)s(k)

a k-valued point of the moduli stack of curves (M, ,)g of type (g,r)

~

over S [cf. the discussion entitled “Curves” in 80). ; O the completion of
the local ring of (Mg, )s at the image of x; T'°% the log scheme obtained

by equipping T et Spec O with the log structure induced by the log struc-
ture of (ﬂlgcji)s [ef. the discussion entitled “Curves” in §0]; t1°¢ the log
scheme obtained by equipping the closed point of T with the log struc-
ture induced by the log structure of T'°%; thog the stable log curve over
t°8 corresponding to the natural strict (1-)morphism t'°8 — (ﬂ;f)s;
Ipies the mazimal pro-Y. quotient of the log fundamental group m (T'°8)
of T'8; Iqix the mazimal pro-Y. quotient of the log fundamental group
T1(S'98) of S'8; G .., the semi-graph of anabelioids of pro-% PSC-type
determined by the stable log curve X,°¢ [cf. [CmbGC], Ezample 2.5];

univ .

Piios - Ipios — Aut(G 1o, ) the natural outer representation associated to
t

Xiog [cf. Definition 5.5[; I a profinite group; p: I — Aut(Gy.,.) an
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outer representation of pro-X PSC-type [cf. [NodNon], Definition 2.1,
(i)]. Then the following conditions are equivalent:

(i)

(iii)

p 1s of IPSC-type.

There exist a morphism of log schemes ¢'°8: S'°8 — T8 oper
S and an isomorphism of outer representations of pro-3
PSC-type p = p‘;(“igvg o Iyos [cf. [NodNon], Definition 2.1, (i)]
— where we write 1oz Igios — Ipios for the homomorphism
induced by ¢'°% — i.e., there exist an automorphism 3 of

G e and an isomorphism a: I = Igog such that the diagram

I —>p AUt(gxlog )

o I

P ylog ol ylog

Islog — ? AUt(gXlog)

— where the right-hand vertical arrow is the automorphism of
Aut(G y1o,) induced by B — commutes.

There exist a morphism of log schemes ¢'°8: S'°8 — T8 oper
S and an isomorphism a: I = Igog such that p = puX“i})‘g ol yios0
a — where we write Iyos : Igi0s — Ipios for the homomorphism
induced by ¢'°¢ — i.e., the automorphism “B” of (ii) may be

taken to be the identity.

Proof. The equivalence (i) < (ii) follows from the definition of the
term “IPSC-type” [cf. [NodNon], Definition 2.4, (i)]. The implication
(iii) = (ii) is immediate. The implication (ii) = (iii) follows immedi-
ately, in light of the functoriality asserted in Theorem 4.8, (iv), from
Lemma 5.4, (i), (i), and Theorem 5.7. Q.E.D.

Remark 5.10.1.

(i)

The equivalence of Corollary 5.10 essentially amounts to the
equivalence

“IPSC-type <= positive definite”

which was discussed in [HM], Remark 2.14.1, without proof.
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One way to understand the equivalence of Corollary 5.10 is as
the statement that the property that an outer representation
of PSC-type be of scheme-theoretic origin may be formulated
purely in terms of combinatorics/group theory.

In the final portion of the present §5, we apply the theory devel-
oped so far [i.e., in particular, the equivalences of Corollary 5.9, (ii),
(iii)] to derive results [cf. Theorem 5.14] concerning normalizers and
commensurators of groups of profinite Dehn multi-twists.

Definition 5.11. Let M C H C Out(Ilg) be closed subgroups of
Out(Ilg). Suppose further that M is an abelian pro-X group [such as
Dehn(G) — cf. Theorem 4.8, (iv)].

(1)

(i)

We shall write
N3 (M) € Ny(M) C H

for the [closed] subgroup of H consisting of & € H satisfying the
following condition: o € Ny (M), and, moreover, the action of
« on M by conjugation coincides with the automorphism of M
given by multiplication by an element of (22)* We shall refer
to N3¢al(M) as the scalar-normalizer of M in H.

We shall write
C (M) € Cu(M) C H

for the subgroup of H consisting of o € H satisfying the fol-
lowing condition: there exists an open ZZ-submodule M, LCM
of M [possibly depending on «] such that the action of a on
H by conjugation determines an automorphism of M/ given
by multiplication by an element of (Z=)*. We shall refer to
C33 (M) as the scalar-commensurator of M in H.

Lemma 5.12 (Scalar-normalizers and scalar-commensura-
tors). Let M C H C Out(Ilg) be closed subgroups of Out(Ilg). Suppose
further that M is an abelian pro-X group. Then:
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(i) It holds that

M C Zg(M) < Nyi(M) < CEYM).

(i) If M’ C M is a Z=-submodule of M, then
Ny (M) € N O (M) € O ().
If, moreover, M’ C M is open in M, then

C35(M) = O (M)

Proof. These assertions follow immediately from the various defi-
nitions involved. Q.E.D.

Definition 5.13. Let H C Out(Ilg) be a closed subgroup of
Out(Ilg). Then we shall say that H is IPSC-ample (respectively, NN-
ample) if H contains a positive definite (respectively, nondegenerate) [cf.
Definition 5.8] profinite Dehn multi-twist € Dehn(G).

Remark 5.13.1. It follows immediately from Theorem 4.8, (iv),
that any open subgroup of Dehn(G) is IPSC-ample, hence also NN-ample
[cf. Definition 5.13].

Theorem 5.14 (Normalizers and commensurators of groups
of profinite Dehn multi-twists). Let ¥ be a nonempty set of prime
numbers, G a semi-graph of anabelioids of pro-% PSC-type, OutC(Hg)
the group of group-theoretically cuspidal [cf. [CmbGC], Definition
1.4, ()] outomorphisms of Ilg, and M C Out®(Ilg) a closed subgroup
of Out®(Ilg) which is abelian pro-X. Then the following hold:

(i)  Suppose that one of the following two conditions is satisfied:
(1) M is IPSC-ample [cf. Definition 5.13].
(2) M is NN-ample [cf. Definition 5.13], and Cusp(G) # 0.
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Then it holds that
N 11y (M) € O (M) € Aut(G)

[¢f. Definition 5.11]. If, moreover, M C Dehn(G) [cf. Defini-
tion 4.4/, then

AutNede@l(g) NBCI?SC(HQ)(M) < C?)CI?:C(HQ)(M) C Aut(9)

[¢f. Definition 2.6, (i)]. In particular,
Ngcjéc(ng)(M)y Csocfio(ng)(M) C Aut(9)

are open subgroups of Aut(G).
(ii) If M is an open subgroup of Dehn(G), then it holds that

Aut(G) = Coue gy (M) -
If, moreover, Node(G) # 0, then
AutNd9N(G) N Ker(xg) = Zowe g (M)

[cf. Definition 3.8, (ii)].
(iii) It holds that

Aut(G) = Noyee (1) (Dehn(G)) = Couio gy (Dehn(G)) .

Proof. First, we verify the inclusion C52, (Hg)(M ) C Aut(G) as-

serted in assertion (i). Suppose that condition (1) (respectively, (2)) is
satisfied. Let a € C’(S)Cjtlc(ng)(M). Then since « € C’(S)Cic(ng)(M), and
M is IPSC-ample (respectively, NN-ample), it follows immediately that
there exists an element 3 € M of M such that both 8 and afa™! = g,
where \ € (22)*7 are positive definite (respectively, nondegenerate) profi-
nite Dehn multi-twists. Thus, the graphicity of « follows immediately
from [NodNon], Remark 4.2.1, together with Corollary 5.9, (iii) (respec-
tively, from [NodNon], Theorem A, together with Corollary 5.9, (ii)).

This completes the proof of the inclusion Cgcj‘tlc(ng) (M) C Aut(G), hence

also, by Lemma 5.12, (i), of the two inclusions in the first display of as-
sertion (i).
If, moreover, M C Dehn(G), then the inclusion Aut™N°d@l(g) c

N(S)C‘?tlc (Hg)(M ) follows immediately from Theorem 4.8, (v). Thus, since
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AutNode@N(G) is an open subgroup of Aut(G) [cf. Proposition 2.7, (iii)],
it follows immediately that N (Hg)(M ), hence also C&21 (Hg)(M ), is
an open subgroup of Aut(G). This completes the proof of assertion (i).

Next, we verify the equality Aut(G) = Coyo(r,)(M) in the first
display of assertion (ii). It follows immediately from Theorem 4.8, (i),
that Aut(G) C Noyiorg)(Dehn(G)) € Coypomg)(M). Thus, to verify
the equality Aut(G) = Coyieqg) (M), it suffices to verify the inclusion
Coue gy (M) € Aut(G). To this end, let a € Coyo(g)(M). Then it
follows from Lemma 5.12, (ii), that

scal scal scal

Cme gy (M) = C&iicqgy (@ M -a™h) = a- O, (M) -a™,
ie, a € NOutc(Hg)(CSOCSth(Hg)(M)). Thus, since CSOCSéC(Hg)(M) is an
open subgroup of Aut(G) [cf. assertion (i); Remark 5.13.1], we conclude
that a € Coyoqmg)(Aut(G)). Thus, the fact that a € Aut(G) follows
from the commensurable terminality of Aut(G) in Out(Ilg), i.e., the
equality Aut(G) = Cout(mg) (Aut(G)) [cf. [CmbGC], Corollary 2.7, (iv)].
This completes the proof of the equality Aut(G) = Coyio gy (M)

Next, we verify the equality

Aut|Node(g)|(g) N Ker(xg) = ZOutC(HQ)(M)

in the second display of assertion (ii). Now it follows immediately from
Theorem 4.8, (v), that Aut™°¥@N(G) N Ker(yg) C Zowe 11g)(M).
Thus, to show the equality in question, it suffices to verify the inclu-
sion Zg e gy (M) C AutNoe @ (G) N Ker(xg). To this end, let us
observe that since Aut(G) = Coyeomg)(M) [cf. the preceding para-
graph], it holds that Zg o) (M) € Aut(G). Thus, since the action
of ZoutC(Hg)(M) on M by conjugation preserves and induces the iden-

tity automorphism on the intersection of M with each direct summand
Dg

of D.enode(gy Ag ¢ Dehn(G) [i.e., each “Ag”], it follows immediately
from Theorem 4.8, (v), in light of our assumption that Node(G) # 0,
that Zouio1g) (M) C AutNo@(G) N Ker(xg). This completes the
proof of assertion (ii).

Assertion (iii) follows immediately from assertion (ii), together with
Theorem 4.8, (i). This completes the proof of Theorem 5.14.  Q.E.D.

Remark 5.14.1. In the notation of Theorem 5.14, (i) (respectively,
Theorem 5.14, (ii)), in general, the inclusion

Cg)cftlc(ng)(M) € Aut(9)
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[hence, a fortiori, by the inclusions of the first display of Theorem 5.14,
(i), the inclusion N(S)Cjtlc(ng)(M) C Aut(G)] (respectively, in general, the
inclusion

Nowe(1ig) (M) € Aut(G))

is strict. Indeed, suppose that there exist a node e € Node(G) and an
automorphism «a € Aut(G) of G such that a does not stabilize e, and
Xg(a) = 1. [For example, in the notation of the final paragraph of the
proof of Theorem 5.7, the node e; and the automorphism induced by 7
of G 1., satisfy these conditions.] Now fix a prime number | € X; write

D
M (Ag). @ (@ Ag) c P A 2 Deln(0)
f#e f€Node(G)

— where we use the notation (Ag). to denote a copy of Ag indexed by
e € Node(G). Then M is an open subgroup of Dehn(G), hence also IPSC-
ample [cf. Remark 5.13.1], but it follows immediately from Theorem 4.8,

(v), that a & Cécftlc(ng)(M) (respectively, & & Noyiomg)(M)).

§6. Centralizers of geometric monodromy

In the present §, we study the centralizer of the image of certain
geometric monodromy groups. As an application, we prove a “geometric
version of the Grothendieck conjecture” for the universal curve over the
moduli stack of pointed smooth curves [cf. Theorem 6.13 below].

Definition 6.1. Let X be a nonempty set of prime numbers and II
a pro-% surface group [cf. [MT], Definition 1.2]. Then we shall write

Out®(IT) = Out™™ (11) = Out™ °(11)

for the group of outomorphisms of II which induce bijections on the
set of cuspidal inertia subgroups of II. We shall refer to an element of
Out®(I1) = Out™ (1) = Out™*°(I1) as a C-, FC-, or PFC-admissible
outomorphism of II.

Remark 6.1.1. In the notation of Definition 6.1, suppose that ei-
ther ¥ = 1 or ¥ = Primes. Then it follows from the various def-
initions involved that II is equipped with a natural structure of pro-
Y configuration space group [cf. [MT], Definition 2.3, (i)]. Thus, the
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terms “C-/FC-/PFC-admissible outomorphism of II” and the notation
“Out®(I) = Out™(I1)” have already been defined in [CmbCsp], Defini-
tion 1.1, (ii), and Definition 1.4, (iii), of the present paper. In this case,
however, one may verify easily that these definitions coincide.

Lemma 6.2 (Extensions arising from log configuration
spaces). Let (g,r) be a pair of nonnegative integers such that 2g—2+r >
0; 0 < m < n positive integers; Xp C Xp nonempty sets of prime
numbers; k an algebraically closed field of characteristic zero; (Spec k)1°®
the log scheme obtained by equipping Spec k with the log structure given
by the fs chart N — k that maps 1 — 0; X'°5 = X|° 4 stable log
curve of type (g,7) over (Speck)'°8. Suppose that Xp C X satisfy one
of the following two conditions:

(1) XF and Xp determine PT-formations fi.e., are either of car-
dinality one or equal to PBrimes — c¢f. [MT], Definition 1.1,
(2) n—m=1 and g = Primes.

Write
X;’og , Xlog

m

for the n-th, m-th log configuration spaces of the stable log curve X%
def

[cf. the discussion entitled “Curves” in §0], respectively; I1,,, Iy = II,,
for the respective mazximal pro-3p quotients of the kernels of the natu-
ral surjections 71 (X1°8) — 71 ((Spec k)'°8), w1 (X198) — 7 ((Spec k)°8);
I,/ € 1L, for the kernel of the surjection 11, — g = Il,, induced
by the projection X'°8 — X982 obtained by forgetting the last (n — m)
factors; Iy for the maximal pro-Xg quotient of 1L, /p,; Il for the quo-
tient of 11,, by the kernel of the natural surjection 11, ,,, — Ilg. Thus,
we have a natural exact sequence of profinite groups

1—1lp — Iy —IIg — 1,
which determines an outer representation
Prjm s 1Ig — Out(Ilp) .
Then the following hold:
(i)  The isomorphism class of the exact sequence of profinite groups

1—1Ilp — Iy —IIg —1
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depends only on (g,7) and the pair (¥p, %), ie., if 1 —
Iy — IIT — IIy — 1 s the exact sequence “1 — Ilp —
It — g — 17 associated, with respect to the same (X, Xp),
to another stable log curve of type (g,r) over (Spec k)8, then
there exists a commutative diagram of profinite groups

1 Iy Ty I 1
IR |
1 I, I, 11, 1

— where the vertical arrows are isomorphisms which may be
chosen to arise scheme-theoretically.

The profinite group Ilg is equipped with a natural structure
of pro-Yp configuration space group [cf. [MT], Definition
2.3, (i)]. If, moreover, ¥y C Xp satisfies condition (1) (re-
spectively, (2)), then the profinite group Iy is equipped with a
natural structure of pro-Xr configuration space group (re-
spectively, surface group [cf. [MT], Definition 1.2]).

The outer representation py, /y, : Iz — Out(Ilg) factors through
the closed subgroup Out®(Ilg) C Out(Ilg) [¢f. Definition 6.1;
[CmbCsp], Definition 1.1, (ii)].

Proof. Assertion (i) follows immediately by considering a suitable
specialization isomorphism [cf. the discussion preceding [CmbCsp], Def-
inition 2.1, as well as Remark 5.6.1 of the present paper]. Assertion (ii)
follows immediately from assertion (i), together with the various def-
initions involved. Assertion (iii) follows immediately from the various
definitions involved. This completes the proof of Lemma 6.2. Q.E.D.

Definition 6.3. In the notation of Lemma 6.2 in the case where

(m,yn,Xp) = (1,2, Primes),

let 2 € X (k) be a k-valued point of the underlying scheme X of X'°&.

(i)

We shall denote by
g

the semi-graph of anabelioids of pro-Primes PSC-type deter-
mined by the stable log curve X'°¢; by

Gu
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the semi-graph of anabelioids of pro-Xp PSC-type determined
by the geometric fiber of X3 — X% over z'°8 ef 2 x x XTog;
by Ilg, I, the [pro-Primes, pro-Lr| fundamental groups of G,
G, respectively. Thus, we have a natural outer isomorphism

Iy — g

and a natural Im(py/1) (€ Out(Ilp))-torsor of outer isomor-
phisms
Iy — g, .

Let us fiz isomorphisms IIg — Ilg, IIy = Ilg, that belong to
these collections of isomorphisms.

(i) Denote by
Cgiag,w € Cusp(giv)

the cusp of G, [i.e., the cusp of the geometric fiber of X3¢ —
X8 over x'°%] determined by the diagonal divisor of X%,
For v € Vert(G) (respectively, ¢ € Cusp(G)) [i.e., which cor-
responds to an irreducible component (respectively, a cusp) of
X'°g] denote by

vE € Vert(G,) (respectively, ¢t € Cusp(G,))

the vertex (respectively, cusp) of G, that corresponds naturally
to v € Vert(G) (respectively, ¢ € Cusp(G)).

(iii) Let e € Edge(G), v € Vert(G), S € VCN(G), and z € VCN(G).
Then we shall say that x lies on e if the image of x is the cusp
or node corresponding to e € Edge(G). We shall say that z lies
on v if x does not lie on any edge of G, and, moreover, the image
of = is contained in the irreducible component corresponding
to v € Vert(G). We shall write x ~ S if z lies on some s € S.
We shall write  ~ z if  ~ {z}.

Lemma 6.4 (Cusps and vertices of fibers). In the notation
of Definition 6.3, let x, ' € X (k) be k-valued points of X. Then the
following hold:

(i)  Theisomorphism g, = Ilg , obtained by forming the compos-
ite of the isomorphisms lg, < g = g , [cf. Definition 6.3,
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(i)] is group-theoretically cuspidal [¢f. [CmbGC]|, Defini-
tion 1.4, (iv)].

The injection Cusp(G) — Cusp(G,) given by mapping c + c&
determines a bijection

Cusp(g> = Cusp(g't) \ {Cgiag,m}

[¢f. Definition 6.3, (ii)]. Moreover, if we regard Cusp(G) as a
subset of each of the sets Cusp(G.), Cusp(G.r) by means of the
above injections, then the bijection Cusp(G,) — Cusp(G,) de-
termined by the group-theoretically cuspidal isomorphism
Mg, = Mg, of (i) maps cliuy, = Chiagar and induces the
identity automorphism on Cusp(G). Thus, in the remain-
der of the present §, we shall omit the subscript “x” from the

: @ B « F 2
notation “c;” and g, .7

The injection Vert(G) — Vert(G,) given by mapping v — v
[¢f. Definition 6.3, (ii)] is bijective if and only if x ~ Vert(G)
[¢f. Definition 6.3, (iii)]. If © ~ Edge(G), then the comple-
ment of the image of Vert(G) in Vert(G,) is of cardinality one;
i this case, we shall write

vl . € Vert(G,) \ Vert(G)

new,r

for the unique element of Vert(G,) \ Vert(G).

Suppose that © ~ Cusp(G) (respectively, Node(G)). Then
it holds that cfy,, € C(vne,,) [cf. (iii)], and (C(VE .2,
N (0f ey 2)f) = (2,1) (respectively, = (1,2)). Moreover, for any

element et € N'(vE,, ), it holds that V(eF)# = 2.

new,x

Proof. These assertions follow immediately from the various defi-
nitions involved. Q.E.D.

Definition 6.5. In the notation of Definition 6.3:

(i)

Write
Cusp® (G) = Cusp(G) U {cag}
[cf. Definition 6.3, (ii); Lemma 6.4, (ii)].
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Let a € Out®(ITr) be an C-admissible outomorphism of Iy [cf.
Definition 6.1; Lemma 6.2, (ii)]. Then it follows immediately
from Lemma 6.4, (ii), that for any k-valued point z € X(k)
of X, the automorphism of Cusp®(G) [cf. (i)] obtained by
conjugating the natural action of @ on Cusp(G, ) by the natural
bijection Cusp® (G) =+ Cusp(G,) implicit in Lemma 6.4, (i),
does not depend on the choice of x. We shall refer to this
automorphism of Cusp® (G) as the automorphism of Cusp® (G)
determined by «. Thus, we have a natural homomorphism
Out®(ITr) — Aut(Cusp® (G)).

For ¢ € Cusp® (G) [cf. (i)], we shall refer to a closed subgroup
of Il obtained as the image — via the isomorphism Ilg, < I
[cf. Definition 6.3, (i)] for some k-valued point z € X (k) —
of a cuspidal subgroup of Ilg, associated to the cusp of G,
corresponding to ¢ € Cusp’ (G) as a cuspidal subgroup of I
associated to ¢ € Cusp' (G). Note that it follows immediately
from Lemma 6.4, (ii), that the IIp-conjugacy class of a cuspidal
subgroup of IIx associated to ¢ € CuspF(g) depends only on
c e CuspF(Q)7 i.e., does not depend on the choice of x or on
the choices of isomorphisms made in Definition 6.3, (i).

Lemma 6.6 (Images of VCN-subgroups of fibers). In the no-
tation of Definition 6.3, let Hcgiag C Ilg be a cuspidal subgroup of Ilg
associated to ¢y, € Cusp' (G) [c¢f. Definition 6.5, (i), (iii)], x € X (k)
a k-valued point of X, 2¥ € VCN(G,) \ {cgiag}, and Il,r C1lg, a VCN-
subgroup of llg, associated to 2F. Write Naiag € Ilg for the normal
closed subgroup of Iy topologically normally generated by Hcgiag' [Note

that it follows immediately from Lemma 6.4, (i), that Naiag is normal
in 1./ Then the following hold:

(i)

Write G¥¥ for the semi-graph of anabelioids of pro-Xp PSC-
type obtained by forming the pro-Xg completion of G [cf.
[SemiAn]|, Definition 2.9, (ii)]. Then there exists a natural
outer isomorphism IIp/Ngjag — Ilgsr that satisfies the fol-
lowing conditions:

e Suppose that © ~ Vert(G) [cf. Definition 6.3, (iii)]. Then
the llgsg -conjugacy class of the image of the composite

HZF — ng & Iy — HF/Ndiag = HgEF
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coincides with the lgsg -conjugacy class of any VCN-sub-
group of lgsy associated to the element of VCN(G¥F) =
VCN(G) naturally determined by = .

o Suppose that x ~ e € Edge(G), and that 25 & {vf., ,} U

g(vgew,x) (T’espectively, ZF € {vgew,m} U 5(Ur€ew,z)) /Cf
Lemma 6.4, (iii)]. Then the Ilg=q -conjugacy class of the
image of the composite

HZF — ng (1 HF — HF/Ndiag :> ngF

coincides with the lgs -conjugacy class of any VCN-sub-
group of Igsy associated to the element of VCN(G¥F) =
VCN(G) natural determined by z¥ (respectively, associated
to e € Edge(G>F) = Edge(G)).

(ii)  The image of the composite
HZF — ng <: HF —» HF/Ndiag

1s commensurably terminal.
(iii)  Suppose that either
o 2 e Edge(G.),
or
o 2 =0 forv e Vert(G) such that x does not lie on v.

Then the composite
HZF — ng <: HF —» HF/Ndiag
1s injective.

(iv)  Let Iy C Ig, be a VCN-subgroup of llg, associated to an
element (2')F € VCN(G,) \ {cgiag}. Suppose that either

o v Vert(G),

or

e 2~ Edge(G), and 2¥, (2)F ¢ {vgcw,z} U E(UECW@).

Then if the Ilp /Naiag-conjugacy classes of the images of 11r,
e CIlg, via the composite

g, < I — IIr /Ndiag
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coincide, then z¥ = (2/)F.

Proof.  Assertion (i) follows immediately from the various defini-
tions involved. Assertion (ii) follows immediately from [CmbGC], Propo-
sition 1.2, (ii), and assertion (i), together with the various definitions
involved. Assertion (iii) follows immediately from assertion (i), together
with the various definitions involved. Assertion (iv) follows immediately
from [CmbGC], Proposition 1.2, (i), and assertion (i), together with the
various definitions involved. Q.E.D.

Lemma 6.7 (Outomorphisms preserving the diagonal). In
the notation of Definition 6.3, let H C Ilg be an open subgroup of 1lg,
a an automorphism of |y def It X, H over H, ap € Out(Ilg) the
outomorphism of Iy determined by the restriction &|m, of & to Iy C
IIt|g, and Hcg. C IIg a cuspidal subgroup of llg associated to cgiag S

iag

Cusp®(G) [c¢f. Definition 6.5, (i), (iii)]. Then the following hold:

(i)  Suppose that & preserves Hcg;ag_ C IIg. Then the automorphism
of g /Niag [where we refer to the statement of Lemma 6.6
concerning Naiag] induced by & is the identity automor-
phism. If, moreover, ar is C-admissible [cf. Definition 6.1;
Lemma 6.2, (ii)], then the automorphism of Cusp" (G) induced
by ap [cf. Definition 6.5, (ii)] is the identity automor-
phism.

(il) Let e € Edge(G), = € X (k) be such that x ~ e. Suppose
that ap is C-admissible, and that Edge(G) = {e} U Cusp(G).
Then it holds that ap € Aut(G,) (C Out(Ilg,) < Out(Ilg)).
If, moreover, a preserves Hcgiag C Ilg, then ap € Aut/®?!

(Gz) (€ Aut(Gz))-

Proof. First, we verify assertion (i). Now let us observe that it
follows immediately from a similar argument to the argument used in
the proof of [CmbCsp], Proposition 1.2, (iii) — i.e., by considering the
action of & on the decomposition subgroup D C Ilt|p of IlT| associated
to the diagonal divisor of X3¢ such that I < D, and applying the
fact that D = NHTIH(Hc}ng
tomorphism on some normal open subgroup J C HF/Ndiag of HF/Ndiag.
Thus, it follows immediately from the slimness [cf. [CmbGC]|, Remark

) C IIt|g — that & induces the identity au-
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1.1.3] of gz, & Hp/Naiag — Aut(J) that a induces the identity au-
tomorphism on Ilp /Ngiag. This completes the proof of the fact that &
induces the identity automorphism of IIp /Ngijag. On the other hand, if,
moreover, ap is C-admissible, then since & induces the identity automor-
phism of Il /Ngiag, it follows immediately from [CmbGC], Proposition
1.2, (i), applied to the cuspidal inertia subgroups of IIp /Ngiag — Hgsp
[cf. Lemma 6.6, (i)] that the automorphism of Cusp® (G) induced by ap
is the identity automorphism. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let II, C Ilg < Ilg be an edge-
like subgroup associated to the edge e € Edge(G). By abuse of nota-
tion, we shall write H N II, C Ilg for the intersection of H with the
image of II, in IIg. Now since ap is C-admissible, and a is an au-
tomorphism of Ity over H, it holds that arp € Zguo(my)(p2/1(H))
[cf. the discussion entitled “Topological groups” in §0], hence also that
ar € Zowe g (p2/1(H N1le)). On the other hand, in light of the
well-known structure of X'° in a neighborhood of the cusp or node cor-
responding to e, one verifies easily — by applying [NodNon], Proposition
2.14, together with our assumption that Edge(G) = {e} U Cusp(G) —
that the image of the composite

I, — Ilg &g p2—/>1 Out(ITg) = Out(Ig,),

hence also the image po /1 (HNIL:) C Out(Ily) = Out(Ilg, ), is NN-ample
[cf. Definition 5.13; Theorem 5.9, (ii)]. Thus, since cy;,, € Cusp(G.) #
(), it follows immediately from Theorem 5.14, (i), that ar € Aut(G,).
This completes the proof of the fact that ap € Aut(G,). Now suppose,
moreover, that a preserves HC(F“ag C IIy. Then it follows from assertion

(i) that ap fixes the cusps of G,, hence that it fixes vf., ,. On the
other hand, since & induces the identity automorphism of Ilg /Ngiag [cf.
assertion (i)], it follows from Lemma 6.6, (iii), (iv), that ap fixes the
vertices of G, that are # vk, ., as well as [cf. [CmbGC], Proposition

1.2, (i)] the branches of nodes of G, that abut to such vertices. Thus,

ap € Au‘c‘grph‘(ggj)7 as desired. This completes the proof of assertion
(ii). Q.E.D.

Lemma 6.8 (Triviality of certain outomorphisms). In the no-

tation of Definition 6.3, let Hcg_ C IIg be a cuspidal subgroup of g
iag

associated to cf,, € Cusp® (G) [c¢f. Definition 6.5, (i), (iii)], H C I an

open subgroup of My, and a € Zgyiemy,)(p2/1(H)) [cf. Definition 6.1;
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Lemma 6.2, (ii)]. Suppose that o preserves the Ilp-conjugacy class of
Hcg, C IIg. Then « is the identity outomorphism.
iag

Proof. The following argument is essentially the same as the argu-
ment applied in [CmbCsp]|, [NodNon] to prove [CmbCsp], Corollary 2.3,
(ii); [NodNon], Corollary 5.3.

Let Iy % Tt xpp, H and @ € Auty(Ilt|g) a lifting of a €

Zowe(ie) (P21 (H)) € Zouyre) (p2/1(H)) < Auty (It|s) /Ian(ITp) [cf.

the discussion entitled “Topological groups’ in §0]. Since we have as-

sumed that « preserves the IIgp-conjugacy class of Hcg, C Ilg, it fol-
iag

lows from Lemma 6.7, (i), (ii), that by replacing & by a suitable IIg-
conjugate of @, we may assume without loss of generality that a pre-
serves Hcg. C Ilg, and, moreover, that

iag

(a) the automorphism of IIp/Ngiag induced by a is the identity
automorphism,

(b) for e € Edge(G), © € X (k) such that x ~ e, if Edge( ) = {e}
U Cusp(G), then a € Aut/®P(G,) (C Out(Ilg,) & Out(Ilp)).

Next, we claim that

(*1): if (g,7) = (0, 3), then « is the identity outomor-

phism.
Indeed, write ¢1, ¢a, cg € Cusp(G) for the three distinct cusps of G;
v € Vert(G) for the unique vertex of G. For i € {1,2,3}, let x; € X(k)
be such that z; ~ ¢;. Next, let us observe that since our assumption
that (g,r) = (0,3) implies that Node(G) = 0, it follows immediately
from (b) that for i € {1,2,3}, the outomorphism « of Ilg, & g is
€ Aut/#Phl(G, ) (C Out(Ilg, ) < Out(Ig)). Next, let us fix a verticial
subgroup Il,r C1lg, & HF associated to v € Vert(G,,) [cf. Defini-
tion 6.3, (ii)]. Then since a € Aut®(G,.), it follows immediately from
the commensurable terminality of the image of the composite va2 —
g, & Hp —» g /Ngiag [cf. Lemma 6.6, (ii)], together with (a), that
there exists an Ngjag-conjugate 3 of & such that E(HUEQ) = HvEQ' Thus,
since the composite HU52 — llg,, & Mg —» IIg /Naiag is injective [cf.
Lemma 6.6, (iii)], it follows immediately from (a) that § induces the
identity automorphism on HU£2 Cllg,, & IIg. Next, let Her C I be a

cuspidal subgroup of Il associated to ¢; € Cusp® (G) [cf. Definition 6.5,
(iii)] which is contained in Il,r C Ilg, S Ilp; O C Iig,, & 1y a
L T
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verticial subgroup associated to vgg € Vert(Gy,) that contains [I.r C Ilp.
Then since § induces the identity automorphism on Hv52 Cllg,, &y,
it follows from the inclusion Il r C vaz that 3(ILr) = Il r. Thus, since
the verticial subgroup HDE,S C llg,, & IIp is the unique verticial sub-

group of Ilg, < Iy associated to v}, € Vert(G,,) which contains H.r
[cf. [CmbGC], Proposition 1.5, (i)], it follows immediately from the fact
that a € Autlgrphl(gxs) that E(va ) = I, . In particular, since the
composite Ilyr < Ilp — Iy /Ndiag is mjecti%e [cf. Lemma 6.6, (iii)], it

follows immediately from (a) that E induces the identity automorphism
on I,y C Ig, & IIp. On the other hand, since I is topologically
T3 s

generated by IT,r C1lg,, & Ilg and I,y Clg,, & g [cf. [CmbCsp],

Lemma 1.13], this implies that E induces the identity automorphism on
IIg. This completes the proof of the claim (x1).
Next, we claim that

(%2): for arbitrary (g,7), « is the identity outomor-
phism.

Indeed, we verify the claim (*2) by induction on 3g—3+r. If 3¢—3+r =
0, i.e., (g,7) = (0,3), then the claim (x2) amounts to the claim (x1). Now
suppose that 3g—3+r > 1, and that the induction hypothesis is in force.
Since 3g — 3 + r > 1, one verifies easily that there exists a stable log
curve Y8 of type (g,7) over (Spec k)!°8 such that Y'°¢ has precisely one
node. Thus, it follows immediately from Lemma 6.2, (i), that to verify
the claim (%), by replacing X'°¢ by Y'°8 we may assume without loss
of generality that Node(G)! = 1. Let e be the unique node of G and
x € X (k) such that x ~ e. Now let us observe that since Node(G)* =
1, and e € Node(G), it follows from (b) that a € Aut’®Ph(G,) (C
Out(Ilg,) < Out(Ily)). Write {e},e5} = N (vjey.,) [cf. Lemma 6.4,
(iv)]. Also, for i € {1,2}, denote by v; € Vert(G) the vertex of G
such that (v;)} € Vert(G;) is the unique element of V(ef) \ {vfoy .}

[cf. Lemma 6.4, (iv)]; by H; the sub-semi-graph of PSC-type of the
underlying semi-graph G, of G, whose set of vertices = {v}, (vi)E;

and by §; Node((Gz)|m,) \ {ef'} € Node((G.)|u;) the complement
of {ef'}. [Thus, if G is noncyclically primitive (respectively, cyclically
primitive) [cf. Definition 4.1], then H; # G, and S; = 0 (respectively,
H; = G, and S; = {ef_.}). In particular, S; C Node((G.)|u,) is not of
separating type.]

Next, let us observe that to complete the proof of the above claim
(%2), it suffices to verify that
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(t): @ € Dehn(G,), and, moreover, for i € {1,2}, «
is contained in the kernel of the natural surjection
Dehn(G,) — Dehn(((Gx)|m;)ss;) [cf. Theorem 4.8,
(iii), (iv)].
Indeed, since [as is easily verified] Node(Gy) = N (vh,,, ) = {e]. €5}, it

follows immediately from Theorem 4.8, (iii), (iv), that

e

Ker(Dehn(G,) —» Dehn(((Ga)li,)»-s,)) = {1}

i=1

In particular, the implication (1) = (*2) holds. The remainder of the
proof of the claim (x3) is devoted to verifying the above (f).

For i € {1,2}, let Il(,yr C g, < g be a verticial subgroup of
Ilg, < Il associated to the vertex (v;)h € V(ef') \ {vfoy .} Then

since o € Aut‘grph‘(ggﬂ), it follows that a preserves the Ilp-conjugacy
class of II(,,)r C Ilg, & IIp. Thus, since the image of the composite
H(vi)g — IIp — Ilp/Naiag is commensurably terminal [cf. Lemma 6.6,
(ii)], it follows immediately from (a) that there exists an Ngjag-conjugate
Bi [which may depend on i € {1,2}!] of & such that Ei(H(Ui)I;) = IL(y,)e-
Therefore, since the composite H(vi)_l; — Iy — IIp/Naiag is injective
[cf. Lemma 6.6, (iii)], it follows from (a) that j; induces the identity
automorphism of I, yr.

Next, let Hef C II(,,)r be a nodal subgroup of Ilg, & Iy associated

to e; € Node(G,) that is contained in Il e i C g, & My
a verticial subgroup [which may depend on i € {1,2}!] associated to
vl » € Vert(G,) which contains I r:

new,x

M o 2Mr Cllyr C Mg, & Ilp.
Then since 51 preserves and induces the identity automorphismon I, yr,
it follows from the inclusion Il C II(,,)r that BZ-(HeiF) = IL.r. More-
over, since Il,r ; is the unique verticial subgroup of Ilg, & Iy
associated to UEE;N)Q: which contains Ilr [cf. [CmbGC], Proposition
1.5, (i)], it follows immediately from the fact that a € Aut/®"?"(g,)
that Bi(nvﬁew,m%i) = e . Thus, Bi preserves the closed subgroup
IIg, C Il of Il obtained by forming the image of the natural homo-
morphism

lig (I, o T < s ) — T
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— where the inductive limit is taken in the category of pro-Xg groups.
Now one may verify easily that the Ilg-conjugacy class of Ily, C Il
coincides with the Ilp-conjugacy class of the image of the natural outer
injection H((gz)lﬂi%si < Mg, < IIp discussed in Proposition 2.11; in
particular, Ilg, is commensurably terminal in g [cf. Proposition 2.11].
Moreover, by applying a similar argument to the argument used in
[CmbCsp], Definition 2.1, (iii), (vi), or [NodNon], Definition 5.1, (ix),
(x) [i-e., by considering the portion of the underlying scheme X5 of Xéog
corresponding to the underlying scheme (X,,)2 of the 2-nd log configu-

ration space (Xvi)lzOg of the stable log curve Xlljjg determined by G

’Ui]7
one concludes that there exists a verticial subgroup II,, C Ilg & 1

associated to v; € Vert(G) such that the outer representation of II,, on

1Ty determined by the composite II,, < IIg =S Out(Ilp) preserves the

IIp-conjugacy class of IIy, C IIr [so we obtain a natural outer repre-
sentation II,, — Out(Ilp,) — cf. Lemma 2.12, (iii)], and, moreover,

6
that if we write Ilr, def Iy, % IT,, (C IIt) [cf. the discussion enti-
tled “Topological groups” in §0], then IIp, is naturally isomorphic to the
“IIp” obtained by taking “G” to be G|,,.

Now since f;(Ilp,) = Ip,, and a € Zgyo(,)(p2/1(H)), one may

verify easily that the outomorphism of Ilg, determined by Ei|HFi [cf.
Lemma 2.12, (iii)] is € ZoutC(HFi)(pg/l(H N1L,,)) — where, by abuse
of notation, we write H NIL,, C llg for the intersection of H with
the image of IL,, in IIg. Therefore, since the quantity “3g — 3 + r”
associated to G|, is < 3g — 3 + r, by considering a similar diagram to
the diagram in [CmbCsp]|, Definition 2.1, (vi), or [NodNon], Definition
5.1, (x), and applying the induction hypothesis, we conclude that Ei|HF7.
is a Ilg, -inner automorphism. In particular, it follows immediately [by
allowing i € {1,2} to vary] that the outomorphism « is € Dehn(g, ), and,
moreover — by considering the natural identification outer isomorphism
g, = H((G,)s,))~s, — that a is contained in the kernel of the natural
surjection Dehn(G,) — Dehn(((Gy)|m,))ss,), as desired. This completes
the proof of (1), hence also of Lemma 6.8. Q.E.D.

Definition 6.9. In the notation of Definition 6.3:

(i) Suppose that 2g —2+7r > 1, i.e., (g,7) € {(0,3),(1,1)}. Then
we shall write

Ay def {1} C Aut(CuspF(g))
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[cf. Definition 6.5, (i)].
Suppose that (g,7) = (1,1). Then we shall write

(Z)2Z ~) Ay, Lof Aut(Cusp™ (G)) .

Suppose that (g,7) = (0,3). Then we shall write
()22 x Z/27. ~) A, C Aut(Cusp" (G))

for the subgroup of Aut(Cusp®(G)) obtained as the image of
the subgroup of the symmetric group on 4 letters

{id, (12)(34),(13)(24), (14)(23)} € &4

via the isomorphism &, = Aut(Cusp® (G)) arising from a bijec-
tion {1,2,3,4} = Cusp"(G). [Note that since the above sub-
group of &, is normal, the subgroup A,, C Aut(Cusp”(G))
does not depend on the choice of the bijection {1,2,3,4} =
Cusp® (G).]

Lemma 6.10 (Permutations of cusps arising from certain
C-admissible outomorphisms). In the notation of Definition 6.3,
let H C IIg be an open subgroup of Ilg. Then the following hold:

(i)

The composite
Zouse (g (P21 (H)) < Out®(Ip) — Aut(Cusp® (G))

[cf. Definition 6.5, (ii)] factors through the subgroup Ay, C
Aut(Cusp®(G)) [cf. Definition 6.9], hence determines a homo-
morphism

Zowee mp)Im(p2/1)) — Ag .

The composite
Aut yios (Xéog) — ZOutC(HF)(Im(pZ/l)) — Agr
of the natural homomorphism

Aut xios (X 6) —> Zoue (11p) (Im(p2/1))
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with the homomorphism of (i) is an isomorphism. In par-
ticular, the homomorphism Zo o,y (Im(pa/1)) = Agr of (i)
is a split surjection [cf. the discussion entitled “Topological
groups” in §0].

Proof. First, we verify assertion (i). If (g,r) = (1,1), then since
A, = Aut(Cusp® (G)), assertion (i) is immediate. On the other hand, if
r = 0, then since Cusp® (G)f = 1, assertion (i) is immediate. Thus, in the
remainder of the proof of assertion (i), we suppose that (g,r) # (1,1),
r>1.

Now we verify assertion (i) in the case where r = 1. Let us observe
that it follows immediately from Lemma 6.2, (i), that by replacing X'°®
by a suitable stable log curve of type (g,7) over (Speck)!°8, we may as-
sume without loss of generality [cf. our assumption that » = 1, which im-
plies that (g,7) # (0,3)] that G is cyclically primitive [cf. Definition 4.1].
Let ¢ € Cusp(G) be the unique cusp of G, e € Node(G) the unique node
of G, x € X(k) such that x ~ e, and a € Zgyeo(m,)(p2/1(H)). Then
let us observe that it follows immediately from our assumption that G is
cyclically primitive of type (g,7) # (1,1) (respectively, the various defi-
nitions involved) that the vertex of G, to which ¢ (respectively, cgiag)
abuts is not of type (0,3) (respectively, is of type (0,3)). Moreover, it
follows immediately from Lemma 6.7, (ii), that the outomorphism « of
g, < I is € Aut(G,). Thus, we conclude that the automorphism of
Cusp' (G) induced by «a is the identity automorphism. This completes
the proof of assertion (i) in the case where r = 1.

Next, we verify assertion (i) in the case where r > 1. Let us observe
that it follows immediately from Lemma 6.2, (i), that by replacing X'°®
by a suitable stable log curve of type (g,7) over (Speck)®, we may
assume without loss of generality that Node(G) = 0. Let v € Vert(G)
be the unique vertex of G [cf. our assumption that Node(G) = (] and
@ € Zoyie ) (p2/1(H)). Now let us observe that for any ¢ € Cusp(G),
xz € X(k) such that z ~ ¢, it follows immediately from the various def-
initions involved that Vert(G,) = {0}, vk o} C(vhey ) = {cF,cgiag};
C(vY) = Cusp(G.)\{c", cgiag}; vE is of type (g, 7); vﬁcw is of type (0, 3).
Moreover, it follows immediately from Lemma 6.7, (ii), that the outo-
morphism « of Ilg, < Iy is € Aut(G,). Thus, if (g,7) # (0,3), then
since v} is of type (g,r), and vl , is of type (0,3), it follows imme-
diately that « induces the identity automorphism on Vert(G,), hence
that « preserves the subset {c, cgiag} C Cusp"(G) corresponding to
CVhewn) = {cF,cgiag}. In particular, if (g,7) # (0,3), (respectively,
(g,7) = (0,3)), then — by allowing “¢” to vary among the elements of
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Cusp(G) — one may verify easily that the automorphism of Cusp® (G)
induced by « is the identity automorphism (respectively, satisfies the
condition that

for any subset S € Cusp" (G) of cardinality 2, the au-
tomorphism of Cusp®(G) induced by o determines

an automorphism of the set {S,Cusp"(G) \ S} C
9Cusp(9)

hence, by Lemma 6.11 below, is contained in A,, C Aut(Cusp" (G))).
This completes the proof of assertion (i) in the case where r > 1, hence
also of assertion (i).

Next, we verify assertion (ii). One verifies easily that the composite
of natural homomorphisms

Aut s (X3%) = Autqr, (It) /Inn(IT) = Zout(tp)(Im(p2/1))

[cf. the discussion entitled “Topological groups” in §0] factors through
Zoute (i) (Im(p2/1)) € Zous(y)(Im(pz1)). In particular, we obtain a
natural homomorphism Aut yis (X5%) — Zoute ) (Im(pa/1)). Now the
fact that the composite

Aut yios (X55) — Zowe (1) (Im(p2/1)) = Out®(Ilg) — Aut(Cusp” (G))
determines a surjection Autyis (Xy8) — A, is well-known and easily
verified. To verify that this surjection is injective, observe that an el-
ement of the kernel of this surjection determines an automorphism of
the trivial family X'°8 X (Spec k)log X'log 5 Xog gyer X198 that preserves
the image of the diagonal. On the other hand, since the relative tangent
bundle of this trivial family has no monzero global sections, one con-
cludes immediately that such an automorphism is constant, i.e., arises
from a single automorphism of the fiber X'°8 over (Speck)'°® that is
compatible with the diagonal, hence [as is easily verified| equal to the

identity automorphism, as desired. This completes the proof of asser-
tion (ii). Q.E.D.

Lemma 6.11 (A subgroup of the symmetric group on 4 let-
ters). Write G C &, for the subgroup of the symmetric group on 4
letters &4 consisting of g € &4 such that

(*): for any subset S C {1,2,3,4} of cardinality 2,
the automorphism g of {1,2,3,4} determines an au-
tomorphism of the set {S,{1,2,3,4}\ S} C 2{1:2:34}
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Then
G ={id, (12)(34),(13)(24),(14)(23)}.

Proof. First, let us observe that one may verify easily that
{id, (12)(34), (13)(24), (14)(23)} € G

Thus, to verify Lemma 6.11, it suffices to verify that G¥ = 4. Next, let
us observe that it follows immediately from the condition (x) that for
any element g € G, it holds that ¢* = id; in particular, by the Sylow
Theorem, together with the fact that 651 = 23.3, we conclude that G is
a 2-group. Thus, to verify Lemma 6.11, it suffices to verify that G # 8.
Next, let us observe that it follows immediately from the condition (x)
that G C & is normal. Thus, if G = 8, then since 691 =23.3, and
(12) € &4 is of order 2, again by the Sylow Theorem, we conclude that
(12) € G, in contradiction to the fact that (12) does not satisfy the
condition (). This completes the proof of Lemma 6.11. Q.E.D.

Theorem 6.12 (Centralizers of geometric monodromy
groups arising from configuration spaces). Let (g,7) be a pair of
nonnegative integers such that 29 — 2 +r > 0; 0 < m < n positive
integers; Sy C Y nonempty sets of prime numbers; k an algebraically
closed field of characteristic zero; (Speck)'°® the log scheme obtained
by equipping Speck with the log structure given by the fs chart N — k
that maps 1 +— 0; X'°8 = Xiog a stable log curve of type (g,r) over
(Speck)°e.  Suppose that Xp C Yp satisfy one of the following two
conditions:

(1) Xf and Xy determine PT-formations fi.e., are either of car-
dinality one or equal to Primes — ¢f. [MT], Definition 1.1,
(2) n—m=1 and ¥p = Primes.

Write

log log
X5, X

for the n-th, m-th log configuration spaces of the stable log curve X%

[cf. the discussion entitled “Curves” in §0], respectively; 11,,, Il def 1L,

for the respective mazimal pro-Xg quotients of the kernels of the natu-
ral surjections 7 (X1°8) — 71 ((Speck)'°8), w1 (X1°8) — 71 ((Spec k)'°8);
M,/ € 1L, for the kernel of the surjection 11, — g = Il,, induced
by the projection X8 — X2 obtained by forgetting the last (n — m)
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factors; Il for the maximal pro-Xg quotient of 1L, /p,; Il for the quo-
tient of 11,, by the kernel of the natural surjection I1,,,, — Ilg. Thus,
we have a natural exact sequence of profinite groups

1 —Ilg — Iy — IIg — 1,

which determines an outer representation

Pr/m* Iy — Out(Ilg) .

Then the following hold:

(i)

Let H C Ilg be an open subgroup of Ilg. Recall that X1 —
X8 may be regarded as the (n —m)-th log configuration space
of the family of stable log curves Xiff;_l — X8 gper Xlos,
Then the composite of natural homomorphisms

Autt o6 (X,0%) — At yios (XI°5) — Autyy, (ITr) /Inn(ITx)

= Zous(p) (Mm(pn/m)) € Zous(rte) (Pn/m(H))
— where the first arrow is the homomorphism arising from the
functoriality of the construction of the log configuration space;
the third arrow is the isomorphism appearing in the discussion
entitled “Topological groups” in §0 — determines an isomor-
phism

AutXizg (X}’s,il) L) ZOutFC(HF) (pn/m (H))

— where we write Out¥ (Ily) for the group of FC-admissible
[cf. Definition 6.1; [CmbCsp], Definition 1.1, (ii)] outomor-
phisms of Iy [cf. Lemma 6.2, (ii)]. Here, we recall that the
automorphism group Autxlgg (X};zil) 1s isomorphic to

Z]27. x 7.]27 if (g,r,m) = (0,3,1);
7.)27. if (g,r,m) = (1,1,1);
{1} if (g,r,m) €{(0,3,1), (1, 1,1)}.

The isomorphism of (i) and the natural inclusion &,_,, —
ZoutPro (11) (Pnym (H)) — where we write Out™ C(Ilg) for the
group of PFC-admissible [cf. Definitions 1.4, (ii); 6.1] out-
omorphisms of g [cf. Lemma 6.2, (ii)] — determine an iso-
morphism

AUtxi,?g (leoil) X Gpom — ZOutPFC(HF)(IOn/m(H))~
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(iii) Let H be a closed subgroup of Out™ °(Ily) that contains an
open subgroup of Im(py,/m) € Out(Ilg). Then H is almost
slim [cf. the discussion entitled “Topological groups” in §0]. If,
moreover, H C Out™°(Ilg), and (g,7,m) ¢ {(0,3,1),(1,1,1)},
then H is slim [cf. the discussion entitled “Topological groups”

in §0].

Proof. First, we verify assertion (i). We begin by observing that
the description of the automorphism group Aut Xlos (X:Zil) given in the
statement of assertion (i) follows immediately from Lemma 6.10, (ii).
Next, let us observe that

(*1): to verify assertion (i), it suffices to verify asser-
tion (i) in the case where ¥p = Primes.

Indeed, this follows immediately from the various definitions involved.
Thus, in the remainder of the proof of assertion (i), we suppose that
g = Primes.
Next, we claim that
(%2): the composite homomorphism of assertion (i)
determines an injection

Autx}f;g (X:Sil) — ZOutFC(HF)(pn/m(H)) .

Indeed, one verifies easily that the composite as in assertion (i) factors
through Zg e 1) (Pn/m(H)). On the other hand, by considering the

action of Aut Xlos (leoil) on the set of conjugacy classes of cuspidal
inertia subgroups of suitable subquotients [arising from fiber subgroups]
of I, it follows immediately that the composite as in assertion (i) is
injective [cf. Lemma 6.10, (ii)]. This completes the proof of the claim
(*2).
Next, we claim that
(*3): the injection of (x2) is an isomorphism.

Indeed, it follows immediately from the various definitions involved that
if Ng C IlIg is a fiber subgroup of IIg of length 1 [cf. Lemma 6.2,
(ii); [MT], Definition 2.3, (iii)], then the natural surjection IIp X,
Np — Np may be regarded as the “IIt — IIg” obtained by taking
“(g,r,m,n)” to be (g,r + m — 1,1,n — m + 1). Thus, by applying
the inclusion Zg e,y (Pn/m(H)) € Zowre qig) (Pn/m(H N Np)) and
replacing Il — IIg by It X1, Ng — Np, we may assume without
loss of generality that m = 1. On the other hand, it follows immediately
from the various definitions involved that if Ny C Il is a fiber subgroup
of Iy of length n — 2, then the natural surjection IIt/Ny — Il may
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be regarded as the “Ily — IIg” obtained by taking “(g,r,m,n)” to
be (g,7,1,2). Thus, since the natural homomorphism OutFC(HF) —
Out™(ITp /Ng) is injective [cf. [NodNon], Theorem B], by replacing
IIt — Il by IIt/Np — IIp, we may assume without loss of generality
that (m,n) = (1,2). In particular — in light of our assumption that
Yp = Primes [cf. (*1)] — we are in the situation of Definition 6.3.

Let @ € Zoyre iy (Pn/m(H)). Then it follows immediately from
Lemma 6.10, (ii), that there exists an element 5 of the image of the
injection of (x2) such that a o 8 € Zoyre ) (Pn/m(H)) induces the
identity automorphism of Cusp® (G) [cf. Definition 6.5, (i), (ii)]. In par-
ticular, « o 3 preserves the Ilgp-conjugacy class of a cuspidal subgroup
Hcgiag C Il of IIy associated to cgiag € CuspF(g) [cf. Definition 6.5,
(iii)]. Thus, it follows from Lemma 6.8 that o § is the identity outo-
morphism of IIp. In particular, we conclude that the injection of (k2)
is surjective. This completes the proof of the claim (x3), hence also of
assertion (i).

Next, we verify assertion (ii). First, let us observe that by consider-
ing the action of Zgrro (i1, (Pn/m(H)) on the set of fiber subgroups of
IIr of length 1, we obtain an exact sequence of profinite groups

11— ZOutFC(HF)(pn/m(H)) — ZOutPFC(HF)(pn/m(H)) — Gpom .

Now by considering the action of &,,_,,, on X! over X°¢ obtained by
permuting the first n — m factors of X!°8, we obtain a section &,,_,, —
ZoutPro (1) (Pn/m (H)) of the third arrow in the above exact sequence;
in particular, the third arrow is surjective. On the other hand, it follows
from [NodNon], Theorem B, that the image of the section &,_,, —
Zoutrre (1) (Prym (H)) commutes with Zoywre ) (prym (H)). Thus, the
composite of natural homomorphisms

AUtX;‘;g (Xrl:zil) = ZOutFC(HF)(pn/m(H)) — ZOutFPC(HF)(pn/m(H))

[cf. assertion (i)] and the section &, — Zoyrre 1) (Pn/m(H)) de-
termine an isomorphism as in the statement of assertion (ii). This com-
pletes the proof of assertion (ii).  Assertion (iii) follows immediately
from assertions, (i), (ii). This completes the proof of Theorem 6.12.

Q.E.D.

Remark 6.12.1. By considering a suitable specialization isomor-
phism, one may replace the expression “k an algebraically closed field of
characteristic zero” in the statement of Theorem 6.12 by the expression
“k an algebraically closed field of characteristic € Xg”.
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Theorem 6.13 (Centralizers of geometric monodromy
groups arising from moduli stacks of pointed curves). Let (g,r)
be a pair of nonnegative integers such that 2g —2+r > 0; X a nonempty

set of prime numbers; k an algebraically closed field of characteristic

zero. Write Tlng, def m1 (Mg, )i) for the étale fundamental group of

the moduli stack (Mg, )i [cf. the discussion entitled “Curves” in §0];
1L, . for the maximal pro-X quotient of the kernel Ng ,. of the natural sur-
jection 1 ((Cy,r)k) = T ((Mgr)r) = Ila,,, [cf. the discussion entitled
“Curves” in §0f; le, = for the quotient of the étale fundamental group
m1((Cg.r)i) 0f (Cyr )i by the kernel of the natural surjection Ny, — Iy .
Thus, we have a natural exact sequence of profinite groups

1 — 1y, — e, — pm,, — 1,
which determines an outer representation
pg.r: U, , — Out(Ily,,).
Then the following hold:

(i)  The profinite group Il , is equipped with a natural structure of
pro-Y. surface group [cf. [MT], Definition 1.2].

(i) Let H CIln, , be an open subgroup of n, . Suppose that

29—24r>1, e, (g,7) €{(0,3),(1,1)}.
Then the composite of natural homomorphisms

Auta, ), (Cor i) — Autmy,, (e, ) /Tnn(Tly, )

— Zow,.,)(Im(pg.+)) € Zow,.,)(Pg.r(H))

[cf. the discussion entitled “Topological groups” in §0] deter-
mines an isomorphism

Aut(Mg,r)k ((CQ,T)k) == ZOutC(Hg,T) (pg,r(H>)

[¢f. (i); Definition 6.1]. Here, we recall that the automorphism
group Aut(n, ), ((Cy.r)k) is isomorphic to

Z/27 x Z/2Z if (g,7)
7/27 if (g,7)
{1} if (g.7)
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(iti) Let H C Out®(Il,,) be a closed subgroup of Out®(Il, ) that
contains an open subgroup of Im(pg,) C Out(Ily,). Suppose
that

29g—24r>1, e, (g,7) € {(0,3),(1,1)}.
Then H is almost slim [cf. the discussion entitled “Topolog-
ical groups” in §0]. If, moreover,

29 =247 >2, e, (9,7) €{(0,3),(0,4),(1,1),(1,2),(2,0)},

then H is slim [cf. the discussion entitled “Topological groups”
in §0].

Proof. Assertion (i) follows immediately from the various defini-
tions involved. Next, we verify assertion (ii). First, we recall that the
description of the automorphism group Aut(u, ), ((Cg,r)x) given in the
statement of assertion (ii) is well-known [cf., e.g., [CorHyp], Theorem B,
if2g—2+7r>2ie, (g,7) ¢ {(0,4),(1,2),(2,0)}]. Next, we claim that

(*1): the composite homomorphism of assertion (ii)
determines an injection

Autm, ), ((Cor)i) = Zoue, ) (Pg,r(H)) -

Indeed, one verifies easily that the composite as in assertion (ii) factors
through Zo o, ) (pg,r(H)). Thus, the claim (x1) follows immediately
from the well-known fact that any nontrivial automorphism of a hyper-
bolic curve over an algebraically closed field of characteristic € ¥ induces
a nontrivial outomorphism of the maximal pro-> quotient of the étale
fundamental group of the hyperbolic curve [cf., e.g., [LocAn], the proof
of Theorem 14.1]. This completes the proof of the claim (7).
Next, we claim that

(#2): if 7 > 0, then the injection of (1) is an isomor-
phism.

Indeed, write N C Ilnq,, for the kernel of the surjection Haq, , —
m1((Mg,r—1)k) determined by the (1-)morphism (Mg, ) — (Mg r—1)k
obtained by forgetting the last section. Then it follows immediately from
the various definitions involved that there exists a commutative diagram
of profinite groups

1 —— I, E N 1

| L

1 —— g It g 1




144 Yuichiro Hoshi and Shinichi Mochizuki

— where the upper sequence is the exact sequence obtained by pulling
back the exact sequence 1 — II,, — Il¢,, — Ilrp,, — 1 by the
natural inclusion N < IIpq, ,; the lower sequence is the exact sequence
“l = Iy — Il — IIg — 1”7 obtained by applying the procedure given
in the statement of Theorem 6.12 in the case where (m,n,Xp,¥Xg5) =
(1,2, %, Primes) to a stable log curve of type (g, — 1) over (Spec k)'8;
the vertical arrows are isomorphisms. Thus, it follows immediately from
Theorem 6.12, (i), that Zgyo, ,)(Pg,(H N N)) is isomorphic to the
automorphism group Aut yies (X5°¢) for the stable log curve X8 over
(Spec k)°8 of type (g,r — 1). In particular, by the claim (x;), we obtain
that
Autar, ), (Cor)k) = Zowem,,)(Pg,r(H))

€ Zouequ,,,) (Pgr(H O N)) < Autxios (Xéog) :

Thus, by comparing (Aut(u, ), ((Cg.r)i))? with Aut xiee (X2%)f [cf. The-
orem 6.12, (i)], we conclude that the injection of the claim (x1) is an
isomorphism. This completes the proof of the claim (x3). Moreover, it
follows immediately from the proof of the claim (x2) that
(*3): if & € Zouie (g ) (Po.a(H)) induces the identity
automorphism on the set of conjugacy classes of cus-
pidal inertia subgroups of Il 4, then a is the identity
outomorphism of Ilg 4.
In light of the claim (x3), in the remainder of the proof of assertion
(ii), we assume that

r = 0, hence also that g > 2.

For z € (Mg 0)i(k), write
Ga

for the semi-graph of anabelioids of pro-> PSC-type associated to the

geometric fiber of (Elgoﬁ)k - (mlgo,%)k over 7108 & 5 X (M, o) (ﬂlgﬁ%)k;
thus, we have a natural Im(p, o) (C Out(Ily))-torsor of outer isomor-
phisms II, o 5 Ilg, . Let us fiz an isomorphism Iy 0 5 Ilg, that belongs
to this collection of isomorphisms. Moreover, for € (M, )k (k), we

shall say that x satisfies the condition () if
(t1) Vert(G,) = {v1,v2}; Node(G,) = {e1, €2, ,eg11}s
(t2) N(v1) = N(v2) = Node(Gy);
(t3) vy and vy are of type (0,9 + 1);



Combinatorial anabelian topics 1 145

we shall say that z satisfies the condition (i) if
(11) Vert(G:) = {vf, v3,w*}; Node(G,) = {ef, €5, ,eg 1, [}

(12) N(UT) = {efveév"' 7e;+1}; N(U;) = {6;,6;,”' 762—17f*};
N(w*) ={eg,egi1, [}

(13) vy is of type (0,9 + 1), v3 is of type (0, g), and w* is of type
(0,3).

Let us observe that one may verify easily that there exists a k-valued

point & € (Mg 0)r(k) that satisfies (1); if, moreover, g > 2, then there

exists a k-valued point x € (My0)x (k) that satisfies (f).

Let z € (Mg0)x(k) be a k-valued point. Then we claim that

(x4): if x satisfies (T), and, relative to the isomor-
phism I, o = Ilg, fized above,

o€ ZOutC(ng,o)(Pg,o(H))

determines an element of Aut®P"(G,) (C Out(Ilg, )
< Out(Il, o)), then for any e € Node(G,), the image
. of a via the natural inclusion Aut!®P(G,) —
Aut‘grph‘((gx)w{e}) [cf. Proposition 2.9, (ii)] satisfies

e € Dehn((Gz)sgey) -

Indeed, let e € Node(G,) and y € (M 0)r(k) a k-valued point such that
Gy corresponds to (G;)..e} [cf. the special fibers of the stable log curves
over “S'°&” that appear in Proposition 5.6, (iii)]. Write v € Vert(G,)
for the unique vertex of G,. [Note that it follows from the definition
of the condition (f) that Vert(G,)* = 1.] Then it follows immediately
from the general theory of stable log curves that there exist a “clutching
(1-)morphism” corresponding to the operation of resolving the nodes of
G, [i-e., obtained by forming appropriate composites of the clutching
morphisms discussed in [Knud], Definition 3.6]

(Mo,zg)k — (Mg,o)k

and a k-valued point § € (Mg 24)r(k) such that the image of y via the
above clutching morphism coincides with y, and, moreover, Gy is natu-
rally isomorphic to (Gy)|,. Write (Mg’% ;)i for the log stack obtained by
equipping (Mo 24)r with the log structure induced by the log structure

1 . . . . .
of (Mgo’%)k via the above clutching morphism. Then one verifies easily
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that the composite

def o, -1 ~ Pg,
M, ,, = m1(Mg§,)e) — m(Myo)k) < Iy, , 223 Out(Il,,)

— where the first arrow is the outer homomorphism induced by the
above clutching morphism, and the second arrow is the outer isomor-
phism obtained by applying the “log purity theorem” to the natural
(1-)morphism (Mg o)r — (Mlgfﬁ)k [cf. [ExtFam], Theorem B] — fac-
tors through Aut/#"P?!(G,) C Out(Ilg,) < Out(Ily ). Moreover, the

resulting homomorphism Iy, — Autlgrphl(gy) fits into a commuta-
tive diagram of profinite groups

HMOYQQ HMO,Zg

I !

Vert

Autlgrphl(gy) pg—y> Glu(gy) = Aut‘grph‘((gy”v)

[cf. Definition 4.9; Proposition 4.10, (ii)] — where the upper hori-
zontal arrow is the outer homomorphism induced by the (1-)morphism
(M%f%g)k — (Mo 24)k obtained by forgetting the log structure. More-
over, one verifies easily that there exists a natural outer isomorphism
Ig,), — o 24 such that the homomorphism ILx, ,, — Out(Ily24) ob-
tained by conjugating the outer action implicit in the right-hand vertical
arrow of the above diagram Iy, ,, — AutleEPl((G)),) € Out(Ig,),)
by the outer isomorphism (g y, = o2y coincides with pgag. Thus,
by considering the image in Il ,, of the inverse image of H C Iln, ,
in g, [cf. the diagrams of the above displays], it follows immedi-
ately from the claims (x2) [in the case where “(g,r)”= (0,2g)] and (x3)
[in the case where g = 2], together with the various definitions involved,
that if & € Zoyo, 4)(Pg,0(H)) determines an element of Autlehl(g)

(C Out(Ilg,) <~ Out(Il,)), then the image of o via

AutlEPl(Gg) < Autlgrphl((gm)w{e}) ~ Autlgrphl(gy)

Vert
Pgy

% Glu(g,) = Aut®P((G,)],)

[cf. Proposition 2.9, (ii)] is trivial. In particular, it follows from Propo-
sition 4.10, (ii), that the image . of o via Aut®Ph(G,) <
Aut'grphl((gi)w{e}) satisfies a. € Dehn((Gy)-.qey). This completes the
proof of the claim (x4).

Next, we claim that
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(¥5): if o satisfies (T), and @ € Zoyoq, ) (Pg,0(H))
determines an element of Aut/®P"(G,) (C Out(Ilg, )
< Out(Il,p)), then « is the identity outomorphism
of Hg70.

Indeed, it follows from the claim (x4) that

a € n Im (Dehn((gm)w{e}) — Dehn(gac))

ecNode(Gy)

[cf. Theorem 4.8, (ii)]. On the other hand, it follows immediately from
Theorem 4.8, (ii), (iv), that the right-hand intersection is = {1}. This
completes the proof of the claim (x5).

Next, we claim that

(#6): we have
ZOutC(Hg,O)(pg,O(H)) - AUthOde(gw)‘(gz) (C Out(Ilg,) < Out(Ily0));
if, moreover, x satisfies (1), then

Zowe, o) (Pg0(H)) C AutlE™ (G, ).

Indeed, it follows immediately from Proposition 5.6, (ii), together with

——1
the definition of #'°8 = x X (M (Mgcjg)k; that the composite

9,0)k
71'1(1;1033) — Wl((ﬂ;%)k) — M, Pag Out(I1,,0)

— where the second arrow is the outer isomorphism obtained by apply-
ing the “log purity theorem” to the natural (1-)morphism (M, o)r —

(ﬂ?’%)k [cf. [ExtFam], Theorem B] — determines a surjection m;(x'°%)
— Dehn(G,) (C Out(Ilg,) < Out(Il,)) [i-e., which induces an iso-
morphism between the respective maximal pro-X quotients]. Thus, it
follows immediately from the various definitions involved that there ex-
ists an open subgroup M C Dehn(g;) such that Zo o, ) (pg,0(H)) €
Zoue (11, ) (M) relative to the identification Out®(Il, o) = Out®(Ilg,)
arising from our choice of an isomorphism II,o — IIg . Therefore,
the inclusion Zgc 1, o) (pg,0(H)) € Aut/Node@)l(G ) follows immedi-
ately from Theorem 5.14, (ii). This completes the proof of the inclusion
Zouse(11,.0)(Pg,0(H)) C Aut/Nede@)l(G ). On the other hand, if, more-
over, = satisfies (1), then it follows immediately from the definition of
the condition (1) that Autl®™h(G,) = AutNode@)l(G ). In particular,
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we obtain that Zouo, ) (pg0(H)) C Aut!#™l(G). This completes
the proof of the claim (*g).
Next, we claim that

(x7): if x satisfies (f), then for any « €

Zouwe(11,.0)(Pg,0(H)), there exists an element 3 of the

image of the injection of (#1) such that the outo-

morphism o 8 of I, o = Tlg, is € Aut/#P(G,)

(C Out(Ilg,) < Out(Il,)).
Indeed, suppose that g > 2. Then by the definitions of (1), (1), one
may verify easily that there exist y € (Mgo)x(k) and f € Node(G,)
such that y satisfies (1), and, moreover, G, corresponds to (G ).y} [cf.
Proposition 5.6, (iv)]. Thus, it follows immediately from the claim (*¢)
that Zoyee(, o) (Pg,0(H)) C Aut/#P(G) 5 AutEP(G,) [cf. Proposi-
tion 2.9, (ii)], i.e., so we may take S to be the identity outomorphism.
This completes the proof of the claim (x7) in the case where g > 2.

Next, suppose that g = 2. Write G, for the underlying semi-graph

of G, and AuthOdel(Gm) for the group of automorphisms of G, which
induce the identity automorphism of the set of nodes of G,. Then one
may verify easily from the explicit structure of G, [cf. the definition of
the condition (1)] that Aut/N°4l(G, ) is isomorphic to Z/2Z. Thus, since
the automorphism group Aut(a, ), ((C2,0)x) is isomorphic to Z/2Z, it
follows immediately from the claim (x¢), together with the various defi-
nitions involved, that — to complete the proof of the claim (*7) in the
case where g = 2 — it suffices to verify that the composite of natural
homomorphisms

Aut(Mz,o)k((CQ,O)k) — AUt(gg) — Aut(Gz)

factors through Aut'~°4°l(G,) C Aut(G,) and is injective. Now the
fact that the composite in question factors through AuthOdel(Gr) C
Aut(G,) follows immediately from the claim (xg), applied to elements
of the image of the injection of (x1). On the other hand, the injectivity
of the composite in question follows immediately from the injectivity
of the natural homomorphism Aut(aq, ), ((C2,0)x) — Aut(G,) [cf. the
proof of the claim (*1)] and the claim (x5). This completes the proof
of the claim (x7) in the case where g = 2, hence also — in light of the
above proof of the claim (x7) in the case where g > 2 — of the claim
(#7). Thus, the surjectivity of the injection of (%) follows immediately
from the claims (x5) and (x7). This completes the proof of assertion (ii).
Assertion (iii) follows immediately from assertion (ii). This completes
the proof of Theorem 6.13. Q.E.D.
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Remark 6.13.1. In the notation of Theorem 6.13, since g, , =
{1}, it is immediate that a similar result to the results stated in Theo-
rem 6.13, (ii), (iii), does not hold in the case where (g,r) = (0,3). On
the other hand, it is not clear to the authors at the time of writing
whether or not a similar result to the results stated in Theorem 6.13,
(ii), (iil), holds in the case where (g,r) = (1,1). Nevertheless, we are able
to obtain a conditional result concerning the centralizer of the geometric
monodromy group in the case where (g,r) = (1,1) [cf. Theorem 6.14,
(iii), (iv) below].

Theorem 6.14 (Centralizers of geometric monodromy
groups arising from moduli stacks of punctured semi-ellptic
curves). In the notation of Theorem 6.13, write (Cffl)k for the stack-
theoretic quotient of (C1,1)x by the natural action of Aut(aq, 1), ((C1,1)x)
over the moduli stack (My1)gk; H1i,1 for the maximal pro-¥ quotient
of the kernel Nfl Lof Ker(m((Cfl)k) = T (Mi1)k) = Ilam,,) of the
natural surjection Wl((Cfl)k) = T ((Mi1)k) = Oy s s for the
quotient of the étale fundamental group Wl((Cfl)k) of the stack (Cfl)k

by the kernel of the natural surjection Nfl —» Hfl, Thus, we have a
natural exact sequence of profinite groups

+
L— Iy — s — T, , — 1,

which determines an outer representation
+ +
P ay, — Out(Ily,).

Write Out® (H1i,1) for the group of outomorphisms of H1i,1 which induce
bijections on the set of cuspidal inertia subgroups of Hfl. Suppose that
2eX.

Then the following hold:

(i) The profinite group H1i,1 is slim [cf. the discussion entitled
“Topological groups” in §0].

(i) Let H C I, , be an open subgroup of Ilaq, . Then the com-
posite of natural homomorphisms

Aty ), (CE)E) — Autiny, | (Tex ) /Inn(IT )

— ZOut(Hfl)(Im(pit,l)) c ZOut(Hfl)(pit,l(H))
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(iv)
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[ef. (i); the discussion entitled “Topological groups” in §0] de-
termines an isomorphism

AUt(Ml,l)k((Cli,l)k) - ZoutC(nfl)(Pf1(H))~

Here, we recall that AUt(Ml,l)k((Cfl)k) ={1}.

Let H C 1lnq,, be an open subgroup of Uaq, ,. Then the com-
posite of natural homomorphisms

Autag, 1), (Cr)k) — Autny,, | (e, ;) /Inn(Il 1)

= Zowsry.)(Am(p1,1)) € Zowsry ) (P11 (H))

[cf.  Theorem 6.13, (i); the discussion entitled “Topological
groups” in §0] determines an injection

Autam, ), ((Cr1)k) = Zowe 1) (p1,1(H)) -

Moreover, the image of this injection is centrally terminal
in Zowe, ) (p1,1(H)) [cf. the discussion entitled “Topologi-
cal groups” in §0]. Here, we recall that Aut(ng, ,y, ((C1,1)k) =~
7)27.

The composite of natural homomorphisms

Autn ), ((Cr)e)  —> Autny,, | (e, ,)/Inn(Il 1)

L> ZOut(HLl)(Im(pl,l))

[¢f. Theorem 6.13, (i); the discussion entitled “Topological
groups” in §0] determines an isomorphism

Aut g, ), ((C10)k) — Zowear, ) (Im(p11)) .

Proof.  Assertion (i) follows immediately from a similar argument to
the argument used in the proof of [MT], Proposition 1.4. This completes
the proof of assertion (i).

Next, we verify assertion (ii). First, let us recall that the description
of the automorphism group AUt(Ml,l)k((Cli,l)k) given in the statement
of assertion (ii) is well-known and easily verified. Write &€ — (M1.1)x
for the family of elliptic curves determined by the family of hyperbolic
curves (C11)r — (My 1)k of type (1,1); U — (C1,1)x for the restriction
of the finite étale covering & — & over (My1); given by multiplica-
tion by 2 to (C1,1)r € €. Then one verifies easily that the action of
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Aut (g, ), ((Cra)k) on (Ci1)k lifts naturally to an action [i.e., given by
“multiplication by £17] on U over (Mj1),. Write P for the stack-
theoretic quotient of & by the action of Aut s, .y, ((C1,1)x) onU; Ilp/py

for the maximal pro-X quotient of the kernel of the natural surjection
m1(P) = T ((Mi)r);

pp/m: I, , — Out(Ilp)aq)

for the natural pro-X outer representation arising from the family of
hyperbolic curves P — (Mj1),. Thus, since 2 € X, one verifies easily
that [Ip,r¢ may be regarded as a normal open subgroup of Hfl. Now
let us observe that one verifies easily that

(¥1): P — (M1,1)g is a family of hyperbolic curves of

type (0,4). If, moreover, we denote by T — (M1 1)k

the connected finite étale covering that trivializes the

finite étale covering determined by the four cusps

of P — (M 1)k, then the classifying (1-)morphism

T — (Moa)k of P X(aq, ), T — T [which is well-

defined up to the natural action of &4 on (Mg 4)g] is

dominant.

Now we claim that

(%2): every element of Out® (Hfl) preserves the nor-

mal open subgroup Ilp, g C Hfl.
Indeed, let us observe that one verifies easily that the natural surjections
H1i,1 — Hli’l/HLl, Hfl/HP/M determine an isomorphism

(H%@)ab ®zs Z/2Z - (Hli,l/Hl,l) X (Hli,l/H"P/M) .

Moreover, it follows immediately from the various definitions involved
that the natural action of (Hfl)ab ®zx Z/27 on the set of conjugacy
classes of cuspidal inertia subgroups of the kernel of the natural surjec-
tion H1i,1 — (Hfl)ab ®gs Z/27 [which is equipped with a natural struc-
ture of pro-X surface group of type (1,4)] factors through (Hfl)ab Qs
7.)27, = (Hfl/ﬂ1,1) X (H::lt’l/]:['p/M) 72 (Hfl/HP/M), and that the re-
sulting action of (l'[ff1 /Tp/pm) is faithful. Thus, we conclude that every
element of OutC(Hfl) preserves the normal open subgroup Ilp,nq C
ITE,. This completes the proof of the claim (*3).

" To verify assertion (ii), take an element a* € ZOutC(Hfl)(pit,l(H))'
Then it follows from the claim (*2) that a® naturally determines an ele-
ment ap € Aut(Hp/M)/Inn(Hfl). Let us fix a lifting 8 € Out® (Mp/m)
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of ap. Next, let us observe that since Hfl/HP/M is finite, to ver-
ify assertion (ii), by replacing H by an open subgroup of I, , con-
tained in H, we may assume without loss of generality that 5 com-
mutes with pp/am(H) € Out(Ilp/ ), Le., B € Zoweny, ) (PP/m(H)).
Then it follows immediately from Theorem 6.13, (ii), in the case where
(g,7) = (0,4), together with (%), that S is contained in the image of the
natural injection Hfl/Hp/M < Out(Ilp, () obtained by conjugation.
Thus, ap, hence also — by the manifest injectivity [cf. assertion (i)]
of the homomorphism Outc(l'[fl) — Aut(Hp/M)/Inn(Hfl) implicit in
the content of the claim (¥2) — a™, is trivial. This completes the proof
of assertion (ii).

Next, we verify assertion (iii). First, recall that the description of
Aut (g, 1), ((C1,1)k) given in the statement of assertion (iii) is well-known
and easily verified. Next, let us observe that the fact that the composite
in the statement of assertion (iii) determines an injection

AUt(Ml,l)k ((Cl7l)k) — ZOutc(H1,1) (pl,l(H))

follows immediately from a similar argument to the argument used in the
proof of the claim (1) in the proof of Theorem 6.13, (ii), together with
the various definitions involved. Next, let us observe that by applying

~ out
the natural outer isomorphism Hfl — 1 x Aut(Mlyl)k((CLl)k), we
obtain an exact sequence of profinite groups

I — Autiag, ), (Ci0)k) — Zowar, ) (Autiag 1), ((C11)k))
— Out(Hfl)

— where we regard Aut g, ,), ((C1,1)x) as a closed subgroup of Out(I1; 1)
by means of the injection “—" of the above display. Thus, the central
terminality asserted in the statement of assertion (iii) follows immedi-
ately, in light of the above exact sequence, from assertion (ii). This
completes the proof of assertion (iii).

Finally, we verify assertion (iv). It follows immediately from asser-
tion (iii) that the image of the homomorphism Aut(ay, .y, ((C1,1)x) —
Zouse .,y (Im(p1,1)) determined by the composite in the statement of
assertion (iv) is centrally terminal. On the other hand, as is well-
known, this image of Aut(ng, ), ((C1,1)x) in Out(Il; ;) is contained in
Im(p1,1) € Out(Il;1). [Indeed, recall that there exists a natural outer
isomorphism SLa(Z)" 5 Il uz, ,, where we write SLa(Z)" for the profi-

nite completion of SLa(Z), such that the image of <_01 01> € SLo(Z)N
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in Out(Il; ;) coincides with the image of the unique nontrivial element
of Aut(aq, 1), ((C11)x) = Z/2Z in Out(Il; ;).] Now assertion (iv) follows
immediately. This completes the proof of assertion (iv). Q.E.D.

Remark 6.14.1. The authors hope to be able to address the issue
of whether or not a similar result to the results stated in Theorem 6.13,
(ii), (iii), holds for other families of pointed curves [e.g., the universal
curves over moduli stacks of hyperelliptic curves or more general Hurwitz
stacks] in a sequel to the present paper.
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