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Abstract.

Let Σ be a nonempty set of prime numbers. In the present pa-
per, we continue our study of the pro-Σ fundamental groups of hyper-
bolic curves and their associated configuration spaces over algebraically
closed fields of characteristic zero. Our first main result asserts, roughly
speaking, that if an F-admissible automorphism [i.e., an automorphism
that preserves the fiber subgroups that arise as kernels associated to the
various natural projections of the configuration space under consider-
ation to configuration spaces of lower dimension] of a configuration
space group arises from an F-admissible automorphism of a configura-
tion space group [arising from a configuration space] of strictly higher
dimension, then it is necessarily FC-admissible, i.e., preserves the cus-
pidal inertia subgroups of the various subquotients corresponding to
surface groups. After discussing various abstract profinite combinato-
rial technical tools involving semi-graphs of anabelioids of PSC-type
that are motivated by the well-known classical theory of topological
surfaces, we proceed to develop a theory of profinite Dehn twists, i.e.,
an abstract profinite combinatorial analogue of classical Dehn twists
associated to cycles on topological surfaces. This theory of profinite
Dehn twists leads naturally to comparison results between the abstract
combinatorial machinery developed in the present paper and more clas-
sical scheme-theoretic constructions. In particular, we obtain a purely
combinatorial description of the Galois action associated to a [scheme-
theoretic!] degenerating family of hyperbolic curves over a complete
equicharacteristic discrete valuation ring of characteristic zero. Finally,
we apply the theory of profinite Dehn twists to prove a “geometric ver-
sion of the Grothendieck Conjecture” for — i.e., put another way, we
compute the centralizer of the geometric monodromy associated to —
the tautological curve over the moduli stack of pointed smooth curves.
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§ Introduction

Let Σ ⊆ Primes be a nonempty subset of the set of prime numbers
Primes. In the present paper, we continue our study [cf. [SemiAn],
[CmbGC], [CmbCsp], [MT], [NodNon]] of the anabelian geometry of
semi-graphs of anabelioids of [pro-Σ] PSC-type, i.e., semi-graphs of an-
abelioids that arise from a pointed stable curve over an algebraically
closed field of characteristic zero. Roughly speaking, such a “semi-
graph of anabelioids” may be thought of as a slightly modified, Galois
category-theoretic formulation of the “graph of profinite groups” asso-
ciated to such a pointed stable curve that takes into account the cusps
[i.e., marked points] of the pointed stable curve, and in which the profi-
nite groups that appear are regarded as being defined only up to inner
automorphism. At a more conceptual level, the notion of a semi-graph of
anabelioids of PSC-type may be thought of as a sort of abstract profi-
nite combinatorial analogue of the notion of a hyperbolic topolog-
ical surface of finite type, i.e., the underlying topological surface of
a hyperbolic Riemann surface of finite type. One central object of study
in this context is the notion of an outer representation of IPSC-type [cf.
[NodNon], Definition 2.4, (i)], which may be thought of as an abstract
profinite combinatorial analogue of the scheme-theoretic notion of a de-
generating family of hyperbolic curves over a complete discrete valuation
ring. In [NodNon], we studied a purely combinatorial generalization of
this notion, namely, the notion of an outer representation of NN-type [cf.
[NodNon], Definition 2.4, (iii)], which may be thought of as an abstract
profinite combinatorial analogue of the topological notion of a family
of hyperbolic topological surfaces of finite type over a circle.
Here, we recall that such families are a central object of study in the
theory of hyperbolic threefolds.

Another central object of study in the combinatorial anabelian ge-
ometry of hyperbolic curves [cf. [CmbCsp], [MT], [NodNon]] is the no-
tion of a configuration space group [cf. [MT], Definition 2.3, (i)], i.e.,
the pro-Σ fundamental group of the configuration space associated to a
hyperbolic curve over an algebraically closed field of characteristic zero,
where Σ is either equal to Primes or of cardinality one. In [MT], it
was shown [cf. [MT], Corollary 6.3] that, if one excludes the case of
hyperbolic curves of type (g, r) ∈ {(0, 3), (1, 1)}, then, up to a permu-
tation of the factors of the configuration space under consideration, any
automorphism of a configuration space group is necessarily F-admissible
[cf. [CmbCsp], Definition 1.1, (ii)], i.e., preserves the fiber subgroups
that arise as kernels associated to the various natural projections of the
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configuration space under consideration to configuration spaces of lower
dimension.

In §1, we prove our first main result [cf. Corollary 1.9], by means of
techniques that extend the techniques of [MT], §4, i.e., techniques that
center around applying the fact that the first Chern class associated
to the diagonal divisor in a product of two copies of a proper hyper-
bolic curve consists, in essence, of the identity matrix [cf. Lemma 1.3,
(iii)]. This result asserts, roughly speaking, that if an F-admissible auto-
morphism of a configuration space group arises from an F-admissible
automorphism of a configuration space group [arising from a configu-
ration space] of strictly higher dimension, then it is necessarily
FC-admissible [cf. [CmbCsp], Definition 1.1, (ii)], i.e., preserves the
cuspidal inertia subgroups of the various subquotients corresponding to
surface groups.

Theorem A (F-admissibility and FC-admissibility). Let Σ be
a set of prime numbers which is either of cardinality one or equal
to the set of all prime numbers; n a positive integer; (g, r) a pair
of nonnegative integers such that 2g − 2 + r > 0; X a hyperbolic curve
of type (g, r) over an algebraically closed field k of characteristic �∈ Σ;
Xn the n-th configuration space of X; Πn the maximal pro-Σ quotient
of the fundamental group of Xn; “OutFC(−)”, “OutF(−)” ⊆ “Out(−)”
the subgroups of FC- and F-admissible [cf. [CmbCsp], Definition 1.1,
(ii)] outomorphisms [cf. the discussion entitled “Topological groups” in
§0] of “(−)”. Then the following hold:

(i) Let α ∈ OutF(Πn+1). Then α induces the same outomor-
phism of Πn relative to the various quotients Πn+1 � Πn by
fiber subgroups of length 1 [cf. [MT], Definition 2.3, (iii)]. In
particular, we obtain a natural homomorphism

OutF(Πn+1) −→ OutF(Πn) .

(ii) The image of the homomorphism

OutF(Πn+1) −→ OutF(Πn)

of (i) is contained in

OutFC(Πn) ⊆ OutF(Πn) .

For the convenience of the reader, we remark that our treatment of
Theorem A in §1 does not require any knowledge of the theory of semi-
graphs of anabelioids. On the other hand, in a sequel to the present pa-
per, we intend to prove a substantial stengthening of Theorem A, whose
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proof makes quite essential use of the theory of [CmbGC], [CmbCsp], and
[NodNon] [i.e., in particular, of the theory of semi-graphs of anabelioids
of PSC-type].

In §2 and §3, we develop various technical tools that will play a cru-
cial role in the subsequent development of the theory of the present pa-
per. In §2, we study various fundamental operations on semi-graphs
of anabelioids of PSC-type. A more detailed description of these opera-
tions may be found in the discussion at the beginning of §2, as well as in
the various illustrations referred to in this discussion. Roughly speaking,
these operations may be thought of as abstract profinite combinatorial
analogues of various well-known operations that occur in the theory of
“surgery” on topological surfaces — i.e.,

• restriction to a subsurface arising from a decomposition, such
as a “pants decomposition”, of the surface or to a [suitably
positioned] cycle;

• partially compactifying the surface by adding “missing
points”;

• cutting a surface along a [suitably positioned] cycle;

• gluing together two surfaces along [suitably positioned] cy-
cles.

Most of §2 is devoted to the abstract combinatorial formulation of these
operations, as well as to the verification of various basic properties in-
volving these operations.

In §3, we develop the local theory of the second cohomology group
with compact supports associated to various sub-semi-graphs and com-
ponents of a semi-graph of anabelioids of PSC-type. Roughly speaking,
this theory may be thought of as a sort of abstract profinite combina-
torial analogue of the local theory of orientations on a topological
surface S, i.e., the theory of the locally defined cohomology modules

(U, x) �→ H2(U,U \ {x};Z) (∼= Z)

— where U ⊆ S is an open subset, x ∈ U . In the abstract profinite
combinatorial context of the present paper, the various locally defined
second cohomology groups with compact supports give rise to cyclo-
tomes, i.e., copies of quotients of the once-Tate-twisted Galois module

Ẑ(1). The main result that we obtain in §3 concerns various canoni-
cal synchronizations of cyclotomes [cf. Corollary 3.9], i.e., canon-
ical isomorphisms between these cyclotomes associated to various local
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portions of the given semi-graph of anabelioids of PSC-type which are
compatible with the various fundamental operations studied in §2.

In §4, we apply the technical tools developed in §2, §3 to define
and study the notion of a profinite Dehn [multi-]twist [cf. Defini-
tion 4.4; Theorem 4.8, (iv)]. This notion is, needless to say, a natural
abstract profinite combinatorial analogue of the usual notion of a Dehn
twist in the theory of topological surfaces. On the other hand, it is de-
fined, in keeping with the spirit of the present paper, in a fashion that
is purely combinatorial, i.e., without resorting to the “crutch” of consid-
ering, for instance, profinite closures of Dehn twists associated to cycles
on topological surfaces. Our main results in §4 [cf. Theorem 4.8, (i),
(iv); Proposition 4.10, (ii)] assert, roughly speaking, that profinite Dehn
twists satisfy a structure theory of the sort that one would expect from
the analogy with the topological case, and that this structure theory is
compatible, in a suitable sense, with the various fundamental operations
studied in §2.

Theorem B (Properties of profinite Dehn multi-twists). Let
Σ be a nonempty set of prime numbers and G a semi-graph of anabelioids
of pro-Σ PSC-type. Write

Aut|grph|(G) ⊆ Aut(G)

for the group of automorphisms of G which induce the identity automor-
phism on the underlying semi-graph of G and

Dehn(G) def
= {α ∈ Aut|grph|(G) |αG|v = idG|v for any v ∈ Vert(G) }

— where we write αG|v for the restriction of α to the semi-graph of
anabelioids G|v of pro-Σ PSC-type determined by v ∈ Vert(G) [cf. Def-
initions 2.1, (iii); 2.14, (ii); Remark 2.5.1, (ii)]; we shall refer to an
element of Dehn(G) as a profinite Dehn multi-twist of G. Then the
following hold:

(i) (Normality) Dehn(G) is normal in Aut(G).
(ii) (Structure of the group of profinite Dehn multi-twists)

Write

ΛG
def
= Hom

ẐΣ(H
2
c (G, ẐΣ), ẐΣ)

for the cyclotome associated to G [cf. Definitions 3.1, (ii),
(iv); 3.8, (i)]. Then there exists a natural isomorphism

DG : Dehn(G) ∼−→
⊕

Node(G)
ΛG
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that is functorial, in G, with respect to isomorphisms of semi-
graphs of anabelioids. In particular, Dehn(G) is a finitely

generated free ẐΣ-module of rank Node(G)�. We shall
refer to a nontrivial profinite Dehn multi-twist whose image
∈ ⊕

Node(G) ΛG lies in a direct summand [i.e., in a single “ΛG”]
as a profinite Dehn twist.

(iii) (Exact sequence relating profinite Dehn multi-twists
and glueable outomorphisms) Write

Glu(G) ⊆
∏

v∈Vert(G)
Aut|grph|(G|v)

for the [closed] subgroup of “glueable” collections of outomor-

phisms of the direct product
∏

v∈Vert(G) Aut|grph|(G|v) consist-

ing of elements (αv)v∈Vert(G) such that χv(αv) = χw(αw) for
any v, w ∈ Vert(G) — where we write G|v for the semi-graph of
anabelioids of pro-Σ PSC-type determined by v ∈ Vert(G) [cf.

Definition 2.1, (iii)] and χv : Aut(G|v) → (ẐΣ)∗ for the pro-
Σ cyclotomic character of v ∈ Vert(G) [cf. Definition 3.8,
(ii)]. Then the natural homomorphism

Aut|grph|(G) −→ ∏
v∈Vert(G) Aut|grph|(G|v)

α �→ (αG|v )v∈Vert(G)

factors through Glu(G) ⊆ ∏
v∈Vert(G) Aut|grph|(G|v), and, more-

over, the resulting homomorphism ρVert
G : Aut|grph|(G) →

Glu(G) [cf. (i)] fits into an exact sequence of profinite groups

1 −→ Dehn(G) −→ Aut|grph|(G) ρVert
G−→ Glu(G) −→ 1 .

The approach of §2, §3, §4 is purely combinatorial in nature. On the
other hand, in §5, we return briefly to the world of [log] schemes in or-
der to compare the purely combinatorial constructions of §2, §3, §4
to analogous constructions from scheme theory. The main techinical
result [cf. Theorem 5.7] of §5 asserts that the purely combinatorial
synchronizations of cyclotomes constructed in §3, §4 for the profinite
Dehn twists associated to the various nodes of the semi-graph of anabe-
lioids of PSC-type under consideration coincide with certain natural
scheme-theoretic synchronizations of cyclotomes. This technical
result is obtained, roughly speaking, by applying the various fundamen-
tal operations of §2 so as to reduce to the case where the semi-graph of
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anabelioids of PSC-type under consideration admits a symmetry that
permutes the nodes [cf. Fig. 6]; the desired coincidence of synchro-
nizations is then obtained by observing that both the combinatorial and
the scheme-theoretic synchronizations are compatible with this symme-
try. One way to understand this fundamental coincidence of synchro-
nizations is as a sort of abstract combinatorial analogue of the cyclotomic
synchronization given in [GalSct], Theorem 4.3; [AbsHyp], Lemma 2.5,
(ii) [cf. Remark 5.9.1, (i)]. Another way to understand this fundamental
coincidence of synchronizations is as a statement to the effect that

the Galois action associated to a [scheme-theoretic!]
degenerating family of hyperbolic curves over a com-
plete equicharacteristic discrete valuation ring of
characteristic zero — i.e., “an outer representation
of IPSC-type” — admits a purely combinatorial
description [cf. Corollary 5.9, (iii)].

That is to say, one central problem in the theory of outer Galois repre-
sentations associated to hyperbolic curves over arithmetic fields is pre-
cisely the problem of giving such a “purely combinatorial description”
of the outer Galois representation. Indeed, this point of view plays a
central role in the theory of the Grothendieck-Teichmüller group. Thus,
although an explicit solution to this problem is well out of reach at
the present time in the case of number fields or mixed-characteristic lo-
cal fields, the theory of §5 yields a solution to this problem in the case
of complete equicharacteristic discrete valuation fields of characteristic
zero. One consequence of this solution is the following criterion for an
outer representation to be of IPSC-type [cf. Corollary 5.10].

Theorem C (Combinatorial/group-theoretic nature of
scheme-theoreticity). Let (g, r) be a pair of nonnegative integers such
that 2g − 2 + r > 0; Σ a nonempty set of prime numbers; R a complete
discrete valuation ring whose residue field k is separably closed of char-

acteristic �∈ Σ; Slog the log scheme obtained by equipping S
def
= SpecR

with the log structure determined by the maximal ideal of R; (Mg,r)S
the moduli stack of r-pointed stable curves of genus g over S whose
r marked points are equipped with an ordering; (Mg,r)S ⊆ (Mg,r)S

the open substack of (Mg,r)S parametrizing smooth curves; (Mlog

g,r)S the

log stack obtained by equipping (Mg,r)S with the log structure associ-

ated to the divisor with normal crossings (Mg,r)S \ (Mg,r)S ⊆ (Mg,r)S;

x ∈ (Mg,r)S(k) a k-valued point of (Mg,r)S; Ô the completion of the

local ring of (Mg,r)S at the image of x; T log the log scheme obtained by
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equipping T
def
= Spec Ô with the log structure induced by the log struc-

ture of (Mlog

g,r)S; t
log the log scheme obtained by equipping the closed

point of T with the log structure induced by the log structure of T log;

X log
t the stable log curve over tlog corresponding to the natural strict (1-

)morphism tlog → (Mlog

g,r)S; IT log the maximal pro-Σ quotient of the log

fundamental group π1(T
log) of T log; ISlog the maximal pro-Σ quotient

of the log fundamental group π1(S
log) of Slog; GXlog the semi-graph of

anabelioids of pro-Σ PSC-type determined by the stable log curve X log
t

[cf. [CmbGC], Example 2.5]; ρuniv
Xlog

t

: IT log → Aut(GXlog) the natural

outer representation associated to X log
t [cf. Definition 5.5]; I a profinite

group; ρ : I → Aut(GXlog) an outer representation of pro-Σ PSC-type
[cf. [NodNon], Definition 2.1, (i)]. Then the following conditions are
equivalent:

(i) ρ is of IPSC-type [cf. [NodNon], Definition 2.4, (i)].

(ii) There exist a morphism of log schemes φlog : Slog → T log over
S and an isomorphism of outer representations of pro-Σ
PSC-type ρ

∼→ ρuniv
Xlog

t

◦ Iφlog [cf. [NodNon], Definition 2.1, (i)]

— where we write Iφlog : ISlog → IT log for the homomorphism

induced by φlog — i.e., there exist an automorphism β of

GXlog and an isomorphism α : I
∼→ I logS such that the diagram

I
ρ−−−−→ Aut(GXlog)

α

⏐⏐��
⏐⏐��

ISlog

ρ
X

log
t

◦I
φlog

−−−−−−−→ Aut(GXlog)

— where the right-hand vertical arrow is the automorphism of
Aut(GXlog) induced by β — commutes.

(iii) There exist a morphism of log schemes φlog : Slog → T log over

S and an isomorphism α : I
∼→ I logS such that ρ = ρuniv

Xlog
t

◦Iφlog◦
α — where we write Iφlog : ISlog → IT log for the homomorphism

induced by φlog — i.e., the automorphism “β” of (ii) may be
taken to be the identity.

Before proceeding, in this context we observe that one fundamen-
tal intrinsic difference between outer representations of IPSC-type and
more general outer representations of NN-type is that, unlike the case
with outer representations of IPSC-type, the period matrices associated
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to outer representations of NN-type may, in general, fail to be nonde-
generate — cf. the discussion of Remark 5.9.2.

Here, we remark in passing that in a sequel to the present paper,
the theory of §5 will play an important role in the proofs of certain
applications to the theory of tempered fundamental groups developed in
[André].

Finally, in §6, we apply the theory of profinite Dehn twists developed
in §4 to prove a “geometric version of the Grothendieck Conjec-
ture” for — i.e., put another way, we compute the centralizer of the
geometric monodromy associated to — the tautological curve over the
moduli stack of pointed smooth curves [cf. Theorems 6.13; 6.14].

Theorem D (Centralizers of geometric monodromy groups
arising from moduli stacks of pointed curves). Let (g, r) be a
pair of nonnegative integers such that 2g − 2 + r > 0; Σ a nonempty
set of prime numbers; k an algebraically closed field of characteristic
zero. Write (Mg,r)k for the moduli stack of r-pointed smooth curves
of genus g over k whose r marked points are equipped with an order-
ing; Cg,r → Mg,r for the tautological curve over Mg,r [cf. the dis-

cussion entitled “Curves” in §0]; ΠMg,r

def
= π1((Mg,r)k) for the étale

fundamental group of the moduli stack (Mg,r)k; Πg,r for the maximal
pro-Σ quotient of the kernel Ng,r of the natural surjection π1((Cg,r)k) �
π1((Mg,r)k) = ΠMg,r ; ΠCg,r for the quotient of the étale fundamen-
tal group π1((Cg,r)k) of (Cg,r)k by the kernel of the natural surjection

Ng,r � Πg,r; OutC(Πg,r) for the group of outomorphisms [cf. the dis-
cussion entitled “Topological groups” in §0] of Πg,r which induce bijec-
tions on the set of cuspidal inertia subgroups of Πg,r. Thus, we have a
natural exact sequence of profinite groups

1 −→ Πg,r −→ ΠCg,r −→ ΠMg,r −→ 1 ,

which determines an outer representation

ρg,r : ΠMg,r −→ Out(Πg,r) .

Then the following hold:

(i) Let H ⊆ ΠMg,r be an open subgroup of ΠMg,r . Suppose that
one of the following two conditions is satisfied:

(a) 2g − 2 + r > 1, i.e., (g, r) �∈ {(0, 3), (1, 1)}.
(b) (g, r) = (1, 1), 2 ∈ Σ, and H = ΠMg,r .



Combinatorial anabelian topics I 11

Then the composite of natural homomorphisms

Aut(Mg,r)k((Cg,r)k) −→ AutΠMg,r
(ΠCg,r )/Inn(Πg,r)

∼−→ ZOut(Πg,r)(Im(ρg,r)) ⊆ ZOut(Πg,r)(ρg,r(H))

[cf. the discussion entitled “Topological groups” in §0] deter-
mines an isomorphism

Aut(Mg,r)k((Cg,r)k)
∼−→ ZOutC(Πg,r)(ρg,r(H)) .

Here, we recall that Aut(Mg,r)k((Cg,r)k) is isomorphic to⎧⎨
⎩

Z/2Z× Z/2Z if (g, r) = (0, 4);
Z/2Z if (g, r) ∈ {(1, 1), (1, 2), (2, 0)};
{1} if (g, r) �∈ {(0, 4), (1, 1), (1, 2), (2, 0)} .

(ii) Let H ⊆ OutC(Πg,r) be a closed subgroup of OutC(Πg,r) that
contains an open subgroup of Im(ρg,r) ⊆ Out(Πg,r). Suppose
that

2g − 2 + r > 1, i.e., (g, r) �∈ {(0, 3), (1, 1)}.
Then H is almost slim [cf. the discussion entitled “Topolog-
ical groups” in §0]. If, moreover,

2g − 2 + r > 2, i.e., (g, r) �∈ {(0, 3), (0, 4), (1, 1), (1, 2), (2, 0)},
then H is slim [cf. the discussion entitled “Topological groups”
in §0].

§0. Notations and Conventions

Sets: If S is a set, then we shall denote by 2S the power set of S and
by S� the cardinality of S.

Numbers: The notation Primes will be used to denote the set of all
prime numbers. The notation N will be used to denote the set or [ad-
ditive] monoid of nonnegative rational integers. The notation Z will be
used to denote the set, group, or ring of rational integers. The notation
Q will be used to denote the set, group, or field of rational numbers.

The notation Ẑ will be used to denote the profinite completion of Z.
If p ∈ Primes, then the notation Zp (respectively, Qp) will be used to
denote the p-adic completion of Z (respectively, Q). If Σ ⊆ Primes, then

the notation ẐΣ will be used to denote the pro-Σ completion of Z.
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Monoids: We shall write Mgp for the groupification of a monoid M .

Topological groups: Let G be a topological group and P a property
of topological groups [e.g., “abelian” or “pro-Σ” for some Σ ⊆ Primes].
Then we shall say that G is almost P if there exists an open subgroup
of G that is P.

Let G be a topological group and H ⊆ G a closed subgroup of
G. Then we shall denote by ZG(H) (respectively, NG(H); CG(H)) the
centralizer (respectively, normalizer; commensurator) of H in G, i.e.,

ZG(H)
def
= { g ∈ G | ghg−1 = h for any h ∈ H } ,

(respectively, NG(H)
def
= { g ∈ G | g ·H · g−1 = H } ;

CG(H)
def
= { g ∈ G | H ∩ g·H·g−1 is of finite index inH and g·H·g−1 } );

we shall refer to Z(G)
def
= ZG(G) as the center of G. It is immediate

from the definitions that

ZG(H) ⊆ NG(H) ⊆ CG(H) ; H ⊆ NG(H) .

We shall say that the closed subgroup H is centrally terminal (respec-
tively, normally terminal; commensurably terminal) in G if H = ZG(H)
(respectively, H = NG(H); H = CG(H)). We shall say that G is slim if
ZG(U) = {1} for any open subgroup U of G.

Let G be a topological group. Then we shall write Gab for the
abelianization of G, i.e., the quotient of G by the closure of the commu-
tator subgroup of G.

Let G be a topological group. Then we shall write Aut(G) for the
group of [continuous] automorphisms of G, Inn(G) ⊆ Aut(G) for the

group of inner automorphisms of G, and Out(G)
def
= Aut(G)/Inn(G).

We shall refer to an element of Out(G) as an outomorphism of G. Now
suppose that G is center-free [i.e., Z(G) = {1}]. Then we have an exact
sequence of groups

1 −→ G (
∼→ Inn(G)) −→ Aut(G) −→ Out(G) −→ 1 .

If J is a group and ρ : J → Out(G) is a homomorphism, then we shall
denote by

G
out
� J

the group obtained by pulling back the above exact sequence of profinite
groups via ρ. Thus, we have a natural exact sequence of groups

1 −→ G −→ G
out
� J −→ J −→ 1 .



Combinatorial anabelian topics I 13

Suppose further that G is profinite and topologically finitely generated.
Then one verifies easily that the topology of G admits a basis of char-
acteristic open subgroups, which thus induces a profinite topology on the
groups Aut(G) and Out(G) with respect to which the above exact se-
quence relating Aut(G) and Out(G) determines an exact sequence of
profinite groups. In particular, one verifies easily that if, moreover, J
is profinite and ρ : J → Out(G) is continuous, then the above exact

sequence involving G
out
� J determines an exact sequence of profinite

groups.
Let G, J be profinite groups. Suppose that G is center-free and

topologically finitely generated. Let ρ : J → Out(G) be a continuous

homomorphism. Write AutJ(G
out
� J) for the group of [continuous]

automorphisms of G
out
� J that preserve and induce the identity auto-

morphism on the quotient J . Then one verifies easily that the operation
of restricting to G determines an isomorphism of profinite groups

AutJ(G
out
� J)/Inn(G)

∼−→ ZOut(G)(Im(ρ)) .

Let G and H be topological groups. Then we shall refer to a homo-
morphism of topological groups φ : G → H as a split injection (respec-
tively, split surjection) if there exists a homomorphism of topological
groups ψ : H → G such that ψ ◦ φ (respectively, φ ◦ ψ) is the identity
automorphism of G (respectively, H).

Log schemes: When a scheme appears in a diagram of log schemes,
the scheme is to be understood as the log scheme obtained by equipping
the scheme with the trivial log structure. If X log is a log scheme, then
we shall refer to the largest open subscheme of the underlying scheme of
X log over which the log structure is trivial as the interior of X log. Fiber
products of fs log schemes are to be understood as fiber products taken
in the category of fs log schemes.

Curves: We shall use the terms “hyperbolic curve”, “cusp”, “stable log
curve”, “smooth log curve”, and “tripod” as they are defined in [CmbGC],
§0; [Hsh], §0. If (g, r) is a pair of nonnegative integers such that 2g −
2 + r > 0, then we shall denote by Mg,r the moduli stack of r-pointed
stable curves of genus g over Z whose r marked points are equipped with
an ordering, by Mg,r ⊆ Mg,r the open substack of Mg,r parametrizing

smooth curves, by Mlog

g,r the log stack obtained by equipping Mg,r with

the log structure associated to the divisor with normal crossings Mg,r \
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Mg,r ⊆ Mg,r, by Cg,r → Mg,r the tautological curve over Mg,r, and

by Dg,r ⊆ Cg,r the corresponding tautological divisor of marked points

of Cg,r → Mg,r. Then the divisor given by the union of Dg,r with the

inverse image in Cg,r of the divisor Mg,r \ Mg,r ⊆ Mg,r determines

a log structure on Cg,r; denote the resulting log stack by Clog

g,r. Thus,

we obtain a (1-)morphism of log stacks Clog

g,r → Mlog

g,r. We shall denote

by Cg,r ⊆ Cg,r the interior of Clog

g,r. Thus, we obtain a (1-)morphism of

stacks Cg,r → Mg,r. Let S be a scheme. Then we shall write (Mg,r)S
def
=

Mg,r ×SpecZ S, (Mg,r)S
def
= Mg,r ×SpecZ S, (M

log

g,r)S
def
= Mlog

g,r ×SpecZ

S, (Cg,r)S
def
= Cg,r ×SpecZ S, (Cg,r)S def

= Cg,r ×SpecZ S, and (Clog

g,r)S
def
=

Clog

g,r ×SpecZ S.

Let n be a positive integer and X log a stable log curve of type (g, r)
over a log scheme Slog. Then we shall refer to the log scheme obtained

by pulling back the (1-)morphism Mlog

g,r+n → Mlog

g,r given by forgetting

the last n points via the classifying (1-)morphism Slog → Mlog

g,r of X log

as the n-th log configuration space of X log.

§1. F-admissibility and FC-admissibility

In the present §, we consider the FC-admissibility [cf. [CmbCsp],
Definition 1.1, (ii)] of F-admissible automorphisms [cf. [CmbCsp], Def-
inition 1.1, (ii)] of configuration space groups [cf. [MT], Definition 2.3,
(i)]. Roughly speaking, we prove that if an F-admissible automorphism
of a configuration space group arises from an F-admissible automor-
phism of a configuration space group [arising from a configuration space]
of strictly higher dimension, then it is necessarily FC-admissible, i.e.,
preserves the cuspidal inertia subgroups of the various subquotients cor-
responding to surface groups [cf. Theorem 1.8, Corollary 1.9 below].

Lemma 1.1 (Representations arising from certain families
of hyperbolic curves). Let (g, r) be a pair of nonnegative integers such
that 2g − 2 + r > 0; l a prime number; k an algebraically closed field
of characteristic �= l; B and C hyperbolic curves over k of type (g, r);
n a positive integer. Suppose that (r, n) �= (0, 1). For i = 1, · · · , n, let
fi : B

∼→ C be an isomorphism over k; si the section of B ×k C
pr1→

B determined by the isomorphism fi. Suppose that, for any i �= j,
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Im(si) ∩ Im(sj) = ∅. Write

Z
def
= B ×k C \

⋃
i=1,··· ,n

Im(si) ⊆ B ×k C

for the complement of the images of the si’s, where i ranges over the

integers such that 1 ≤ i ≤ n; pr for the composite Z ↪→ B ×k C
pr1→ B

[thus, pr: Z → B is a family of hyperbolic curves of type (g, r +
n)]; ΠB (respectively, ΠC ; ΠZ) the maximal pro-l quotient of the étale
fundamental group π1(B) (respectively, π1(C); π1(Z)) of B (respectively,
C; Z); pr: ΠZ � ΠB for the surjection induced by pr; ΠZ/B for the
kernel of pr; ρZ/B : ΠB → Out(ΠZ/B) for the outer representation of
ΠB on ΠZ/B determined by the exact sequence

1 −→ ΠZ/B −→ ΠZ

pr−→ ΠB −→ 1 .

Let b be a geometric point of B and Zb the geometric fiber of pr: Z →
B at b. For i = 1, · · · , n, fix an inertia subgroup [among its various
conjugates] of the étale fundamental group π1(Zb) of Zb associated to
the cusp of Zb determined by the section si and denote by

Isi ⊆ ΠZ/B

the image in ΠZ/B of this inertia subgroup of π1(Zb). Then the following
hold:

(i) (Fundamental groups of fibers) The quotient ΠZ/B of the
étale fundamental group π1(Zb) of the geometric fiber Zb co-
incides with the maximal pro-l quotient of π1(Zb).

(ii) (Abelianizations of the fundamental groups of fibers)
For i = 1, · · · , n, write Jsi ⊆ Πab

Z/B for the image of Isi ⊆ ΠZ/B

in Πab
Z/B. Then the composite Isi ↪→ ΠZ/B � Πab

Z/B determines

an isomorphism Isi
∼→ Jsi ; moreover, the inclusions Jsi ↪→

Πab
Z/B determine an exact sequence

1 −→ (
n⊕

i=1

Jsi)/Jr −→ Πab
Z/B −→ Πab

C −→ 1

— where

Jr ⊆
n⊕

i=1

Jsi
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is a Zl-submodule such that

Jr �
{

Zl if r = 0,
0 if r �= 0,

and, moreover, if r = 0 and i = 1, · · · , n, then the composite

Jr ↪→
n⊕

i=1

Jsi
prsi� Jsi

is an isomorphism.

(iii) (Unipotency of a certain natural representation) The
action of ΠB on Πab

Z/B determined by ρZ/B preserves the exact
sequence

1 −→ (

n⊕
i=1

Jsi)/Jr −→ Πab
Z/B −→ Πab

C −→ 1

[cf. (ii)] and induces the identity automorphisms on the
subquotients (

⊕n
i=1 Jsi)/Jr and Πab

C ; in particular, the nat-
ural homomorphism ΠB → AutZl

(Πab
Z/B) factors through a

uniquely determined homomorphism

ΠB −→ HomZl

(
Πab

C , (

n⊕
i=1

Jsi)/Jr

)
.

Proof. Assertion (i) follows immediately from the [easily verified]
fact that the natural action of π1(B) on π1(Zb)

ab ⊗
Ẑ
Zl is unipotent

— cf., e.g., [Hsh], Proposition 1.4, (i), for more details. [Note that
although [Hsh], Proposition 1.4, (i), is only stated in the case where
the hyperbolic curves corresponding to B and C are proper, the same
proof may be applied to the case where these hyperbolic curves are
affine.] Assertion (ii) follows immediately, in light of our assumption
that (r, n) �= (0, 1), from assertion (i), together with the well-known
structure of the maximal pro-l quotient of the fundamental group of
a smooth curve over an algebraically closed field of characteristic �= l.
Finally, we verify assertion (iii). The fact that the action of ΠB on ΠZ/B

preserves the exact sequence appearing in the statement of assertion (iii)
follows immediately from the fact that the surjection Πab

Z/B � Πab
C is

induced by the open immersion Z ↪→ B ×k C over B. The fact that the
action in question induces the identity automorphism on (

⊕n
i=1 Jsi)/Jr
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(respectively, Πab
C ) follows immediately from the fact that the fi’s are

isomorphisms (respectively, the fact that the surjection Πab
Z/B � Πab

C is

induced by the open immersion Z ↪→ B ×k C over B). Q.E.D.

Lemma 1.2 (Maximal cuspidally central quotients of certain
fundamental groups). In the notation of Lemma 1.1, for i = 1, · · · , n,
write

ΠZ/B � Π(Z/B)[i] (� ΠC)

for the quotient of ΠZ/B by the normal closed subgroup topologically
normally generated by the Isj ’s, where j ranges over the integers such
that 1 ≤ j ≤ n and j �= i;

Π(Z/B)[i] � E(Z/B)[i]

for the maximal cuspidally central quotient [cf. [AbsCsp], Defini-
tion 1.1, (i)] relative to the surjection Π(Z/B)[i] � ΠC determined by the
natural open immersion Z ↪→ B ×k C;

IEsi ⊆ E(Z/B)[i]

for the kernel of the natural surjection E(Z/B)[i] � ΠC ; and

EZ/B
def
= E(Z/B)[1] ×ΠC · · · ×ΠC E(Z/B)[n] .

Then the following hold:

(i) (Cuspidal inertia subgroups) Let 1 ≤ i, j ≤ n be integers.
Then the homomorphism Isi → IEsj determined by the compos-

ite Isi ↪→ ΠZ/B � E(Z/B)[j] is an isomorphism (respectively,
trivial) if i = j (respectively, i �= j).

(ii) (Surjectivity) The homomorphism ΠZ/B → EZ/B determined
by the natural surjections ΠZ/B � E(Z/B)[i] — where i ranges
over the integers such that 1 ≤ i ≤ n — is surjective.

(iii) (Maximal cuspidally central quotients and abelianiza-
tions) The quotient ΠZ/B � EZ/B of ΠZ/B [cf. (ii)] coin-
cides with the maximal cuspidally central quotient [cf.
[AbsCsp], Definition 1.1, (i)] relative to the surjection ΠZ/B �
ΠC determined by the natural open immersion Z ↪→ B ×k C.
In particular, the natural surjection ΠZ/B � Πab

Z/B factors
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through the surjection ΠZ/B � EZ/B, and the resulting sur-

jection EZ/B � Πab
Z/B fits into a commutative diagram

1 −−−−→ ⊕n
i=1 I

E
si −−−−→ EZ/B −−−−→ ΠC −−−−→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −−−−→ (
⊕n

i=1 Jsi)/Jr −−−−→ Πab
Z/B −−−−→ Πab

C −−−−→ 1

— where the horizontal sequences are exact, and the vertical
arrows are surjective. Moreover, the left-hand vertical arrow
coincides with the surjection induced by the natural isomor-
phisms Isi

∼→ Jsi [cf. Lemma 1.1, (ii)] and Isi
∼→ IEsi [cf. (i)].

Finally, if r �= 0, then the right-hand square is cartesian.

Proof. Assertion (i) follows immediately from the definition of the
quotient E(Z/B)[j] of ΠZ/B , together with the well-known structure of the
maximal pro-l quotient of the fundamental group of a smooth curve over
an algebraically closed field of characteristic �= l [cf., e.g., [MT], Lemma
4.2, (iv), (v)]. Assertion (ii) follows immediately from assertion (i).
Assertion (iii) follows immediately from assertions (i), (ii) [cf. [AbsCsp],
Proposition 1.6, (iii)]. Q.E.D.

Lemma 1.3 (The kernels of representations arising from cer-
tain families of hyperbolic curves). In the notation of Lemmas 1.1,
1.2, suppose that r �= 0. Then the following hold:

(i) (Unipotency of a certain natural outer representation)
Consider the action of ΠB on EZ/B determined by the natural
isomorphism

EZ/B
∼−→ Πab

Z/B ×Πab
C

ΠC

[cf. Lemma 1.2, (iii)], together with the natural action of ΠB

on Πab
Z/B induced by ρZ/B and the trivial action of ΠB on ΠC .

Then the outer action of ΠB on EZ/B induced by this ac-
tion coincides with the natural outer action of ΠB on EZ/B

induced by ρZ/B. In particular, relative to the natural identifi-

cation Isi
∼→ IEsi [cf. Lemma 1.2, (i)], the above action of ΠB

on EZ/B factors through the homomorphism

ΠB −→ HomZl

(
ΠC ,

n⊕
i=1

Isi

) ∼−→ HomZl

(
Πab

C ,
n⊕

i=1

Isi

)
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obtained in Lemma 1.1, (iii).

(ii) (Homomorphisms arising from a certain extension) For
i = 1, · · · , n, write φi for the composite

ΠB −→ HomZl

(
Πab

C ,
n⊕

j=1

Isj

)
−→ HomZl

(
Πab

C , Isi

)

— where the first arrow is the homomorphism of (i), and the
second arrow is the homomorphism determined by the projec-
tion pri :

⊕n
j=1 Isj � Isi . Then the homomorphism φi co-

incides with the image of the element of H2(ΠB × ΠC , Isi)
determined by the extension

1 −→ Isi −→ ΠE
Z[i] −→ ΠB ×ΠC −→ 1

— where we write ΠE
Z[i]

def
= ΠZ/Ker(ΠZ/B � EZ/B[i]) — of

ΠB ×ΠC by Isi
∼→ IEsi [cf. Lemma 1.2, (i)] via the composite

H2(ΠB ×ΠC , Isi)
∼→ H1(ΠB , H

1(ΠC , Isi))
∼→ Hom

(
ΠB ,Hom(ΠC , Isi)

)
— where the first arrow is the isomorphism determined by
the Hochschild-Serre spectral sequence relative to the surjection

ΠB ×ΠC

pr1� ΠB.

(iii) (Factorization) Write B (respectively, C) for the compactifi-
cation of C (respectively, B) and ΠB (respectively, ΠC) for the

maximal pro-l quotient of the étale fundamental group π1(B)
(respectively, π1(C)) of B (respectively, C). Then the homo-
morphism φi of (ii) factors as the composite

ΠB � Πab
B

∼→ Πab
C

∼→ HomZl

(
Πab

C
, Isi

)
↪→ HomZl

(
Πab

C , Isi

)
— where the first (respectively, second; fourth) arrow is the

homomorphism induced by B ↪→ B (respectively, fi : B
∼→ C;

C ↪→ C), and the third arrow is the isomorphism determined
by the Poincaré duality isomorphism in étale cohomology, rel-
ative to the natural isomorphism Isi

∼→ Zl(1). [Here, the “(1)”
denotes a “Tate twist”.]

(iv) (Kernel of a certain natural representation) The kernel
of the homomorphism ΠB → AutZl

(Πab
Z/B) determined by ρZ/B

coincides with the kernel of the natural surjection ΠB � Πab
B
.
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Proof. Assertions (i), (ii) follow immediately from the various defi-
nitions involved. Next, we verify assertion (iii). It follows from assertion
(ii), together with [MT], Lemma 4.2, (ii), (v) [cf. also the discussion
surrounding [MT], Lemma 4.2], that, relative to the natural isomor-

phism Isi
∼→ Zl(1), the image of φi ∈ Hom(ΠB ,HomZl

(Πab
C , Isi)) via the

isomorphisms

Hom(ΠB ,HomZl
(Πab

C , Isi))
∼→ Hom(ΠB ,HomZl

(Πab
C ,Zl(1)))

∼← H2(ΠB ×ΠC ,Zl(1))
∼→ H2(B ×k C,Zl(1))

— where the first (respectively, second) isomorphism is the isomor-

phism induced by the above isomorphism Isi
∼→ Zl(1) (respectively, the

Hochschild-Serre spectral sequence relative to the surjection ΠB×ΠC

pr1�
ΠB) — is the first Chern class of the invertible sheaf associated to the
divisor determined by the scheme-theoretic image of si : Bi ↪→ B ×k C.
Thus, since the section si extends uniquely to a section si : B ↪→ B×kC,
whose scheme-theoretic image we denote by Im(si), it follows that the
homomorphism φi ∈ Hom(ΠB ,HomZl

(Πab
C , Isi)) coincides with the im-

age of the first Chern class of the invertible sheaf on B ×k C associated
to the divisor Im(si) via the composite

H2(B ×k C,Zl(1))
∼← H2(B ×k C, Isi) → H2(B ×k C, Isi)

∼← H2(ΠB ×ΠC , Isi)
∼→ Hom

(
ΠB ,HomZl

(ΠC , Isi)
)

—where the first arrow is the isomorphism induced by the above isomor-
phism Isi

∼→ Zl(1), and the second arrow is the homomorphism induced
by the natural open immersion B ×k C ↪→ B ×k C. In particular, as-
sertion (iii) follows immediately from [Mln], Chapter VI, Lemma 12.2
[cf. also the argument used in the proof of [MT], Lemma 4.4]. Finally,
we verify assertion (iv). To this end, we recall that by Lemma 1.1, (iii),
the homomorphism ΠB → AutZl

(Πab
Z/B) factors through the homomor-

phism ΠB → HomZl

(
Πab

C ,
⊕n

i=1 Jsi

)
of assertion (i). Thus, assertion

(iv) follows immediately from assertion (iii). This completes the proof
of assertion (iv). Q.E.D.

Definition 1.4. For � ∈ {◦, •}, let Σ� be a set of prime numbers
which is either of cardinality one or equal to the set of all prime numbers;
(g�, r�) a pair of nonnegative integers such that 2g� − 2 + r� > 0; X�

a hyperbolic curve of type (g�, r�) over an algebraically closed field of
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characteristic �∈ Σ�; d� a positive integer; X�
d� the d�-th configuration

space of X� [cf. [MT], Definition 2.1, (i)]; Π�
d� the pro-Σ� configura-

tion space group [cf. [MT], Definition 2.3, (i)] obtained by forming the
maximal pro-Σ� quotient of the étale fundamental group π1(X

�
d�) of

X�
d� .

(i) We shall say that an isomorphism of profinite groups α : Π◦
d◦

∼→
Π•

d• is PF-admissible [i.e., “permutation-fiber-admissible”] if α
induces a bijection between the set of fiber subgroups [cf. [MT],
Definition 2.3, (iii)] of Π◦

d◦ and the set of fiber subgroups of Π•
d• .

We shall say that an outer isomorphism Π◦
d◦

∼→ Π•
d• is PF-

admissible if it is determined by a PF-admissible isomorphism.

(ii) We shall say that an isomorphism of profinite groups α : Π◦
d◦

∼→
Π•

d• is PC-admissible [i.e., “permutation-cusp-admissible”] if
the following condition is satisfied: Let

{1} = Kd◦ ⊆ Kd◦−1 ⊆ · · · ⊆ Km ⊆ · · · ⊆ K2 ⊆ K1 ⊆ K0 = Π◦
d◦

be the standard fiber filtration of Π◦
d◦ [cf. [CmbCsp], Definition

1.1, (i)]; then for any integer 1 ≤ a ≤ d◦, the image α(Ka) ⊆
Π•

d• is a fiber subgroup of Π•
d• of length d◦ − a [cf. [MT], Defi-

nition 2.3, (iii)], and, moreover, the isomorphism Ka−1/Ka
∼→

α(Ka−1)/α(Ka) determined by α induces a bijection between
the set of cuspidal inertia subgroups of Ka−1/Ka and the set
of cuspidal inertia subgroups of α(Ka−1)/α(Ka). [Note that it
follows immediately from the various definitions involved that
the profinite group Ka−1/Ka (respectively, α(Ka−1)/α(Ka))
is equipped with a natural structure of pro-Σ◦ (respectively,
pro-Σ•) surface group [cf. [MT], Definition 1.2].] We shall say

that an outer isomorphism Π◦
d◦

∼→ Π•
d• is PC-admissible if it is

determined by a PC-admissible isomorphism.

(iii) We shall say that an isomorphism of profinite groups α : Π◦
d◦

∼→
Π•

d• is PFC-admissible [i.e., “permutation-fiber-cusp-admissi-
ble”] if α is PF-admissible and PC-admissible. We shall say

that an outer isomorphism Π◦
d◦

∼→ Π•
d• is PFC-admissible if it

is determined by a PFC-admissible isomorphism.
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(iv) We shall say that an isomorphism of profinite groups α : Π◦
d◦

∼→
Π•

d• is PF-cuspidalizable if there exists a commutative diagram

Π◦
d◦+1

∼−−−−→ Π•
d•+1⏐⏐� ⏐⏐�

Π◦
d◦

∼−−−−→
α

Π•
d•

— where the upper horizontal arrow is a PF-admissible iso-
morphism, and the left-hand (respectively, right-hand) vertical
arrow is the surjection obtained by forming the quotient by a
fiber subgroup of length 1 [cf. [MT], Definition 2.3, (iii)] of
Π◦

d◦+1 (respectively, Π•
d•+1). We shall say that an outer iso-

morphism Π◦
d◦

∼→ Π•
d• is PF-cuspidalizable if it is determined

by a PF-cuspidalizable isomorphism.

Remark 1.4.1. It follows immediately from the various definitions
involved that, in the notation of Definition 1.4, an automorphism α of
Π◦

d◦ is PF-admissible (respectively, PC-admissible; PFC-admissible) if
and only if there exists an automorphism σ of Π◦

d◦ that lifts the outo-
morphism [cf. the discussion entitled “Topological groups” in §0] of Π◦

d◦

naturally determined by a permutation of the d◦ factors of the config-
uration space involved such that the composite α ◦ σ is F-admissible
(respectively, C-admissible; FC-admissible) [cf. [CmbCsp], Definition
1.1, (ii)]. In particular, a(n) F-admissible (respectively, C-admissible;
FC-admissible) automorphism of Π◦

d◦ is PF-admissible (respectively, PC-
admissible; PFC-admissible):

F-admissible ⇐= FC-admissible =⇒ C-admissible

⇓ ⇓ ⇓
PF-admissible ⇐= PFC-admissible =⇒ PC-admissible .

Proposition 1.5 (Properties of PF-admissible isomor-

phisms). In the notation of Definition 1.4, let α : Π◦
d◦

∼→ Π•
d• be an

isomorphism. Then the following hold:

(i) Σ◦ = Σ•.
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(ii) Suppose that the isomorphism α is PF-admissible. Let 1 ≤
n ≤ d◦ be an integer and H ⊆ Π◦

d◦ a fiber subgroup of length
n of Π◦

d◦ . Then the subgroup α(H) ⊆ Π•
d• is a fiber subgroup

of length n of Π•
d• . In particular, it holds that d◦ = d•.

(iii) Write Ξ◦ ⊆ Π◦
d◦ (respectively, Ξ• ⊆ Π•

d•) for the normal closed
subgroup of Π◦

d◦ (respectively, Π•
d•) obtained by taking the in-

tersection of the various fiber subgroups of length d◦ − 1 (re-
spectively, d•−1). Then the isomorphism α is PF-admissible

if and only if α induces an isomorphism Ξ◦ ∼→ Ξ•.

Proof. Assertion (i) follows immediately from the [easily verified]
fact that Σ� may be characterized as the smallest set of primes Σ∗ for
which Π�

d� is pro-Σ∗. Assertion (ii) follows immediately from the various

definitions involved. Finally, we verify assertion (iii). The necessity of
the condition follows immediately from assertion (ii). The sufficiency
of the condition follows immediately from a similar argument to the
argument used in the proof of [CmbCsp], Proposition 1.2, (i). This
completes the proof of assertion (iii). Q.E.D.

Lemma 1.6 (C-admissibility of certain isomorphisms). In the

notation of Definition 1.4, let α2 : Π
◦
2

∼→ Π•
2, α

1
1 : Π

◦
1

∼→ Π•
1, α

2
1 : Π

◦
1

∼→
Π•

1 be isomorphisms of profinite groups which, for i = 1, 2, fit into a
commutative diagram

Π◦
2

α2−−−−→ Π•
2

pr◦{i}

⏐⏐� ⏐⏐�pr•{i}

Π◦
1

αi
1−−−−→ Π•

1

— where the vertical arrow “pr�{i}” is the surjection induced by the pro-

jection “X�2 → X�1 ” obtained by projecting to the i-th factor. Then the
isomorphism α1

1 is C-admissible. In particular, (g◦, r◦) = (g•, r•).

Proof. Write Σ
def
= Σ◦ = Σ• [cf. Proposition 1.5, (i)]. Now it fol-

lows from the well-known structure of the maximal pro-Σ quotient of
the fundamental group of a smooth curve over an algebraically closed
field of characteristic �∈ Σ that Π�1 is a free pro-Σ group if and only if
r� �= 0 [cf. [CmbGC], Remark 1.1.3]. Thus, if r◦ = r• = 0, then it is
immediate that α1

1 is C-admissible; moreover, it follows, by considering
the rank of the abelianization of Π�1 [cf. [CmbGC], Remark 1.1.3], that
g◦ = g•. In particular, to verify Lemma 1.6, we may assume without loss
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of generality that r◦, r• �= 0. Then it follows from [CmbGC], Theorem
1.6, (i), that, to verify Lemma 1.6, it suffices to show that α1

1 is numer-
ically cuspidal [cf. [CmbGC], Definition 1.4, (ii)], i.e., to show that the
following assertion holds:

Let Π◦
Y ⊆ Π◦

1 be an open subgroup of Π◦
1. Write

Π•
Y

def
= α1

1(Π
◦
Y ) ⊆ Π•

1, Y
◦ → X◦ (respectively, Y • →

X•) for the connected finite étale covering of X◦ (re-
spectively, X•) corresponding to the open subgroup
Π◦

Y ⊆ Π◦
1 (respectively, Π•

Y ⊆ Π•
1), and (g◦Y , r

◦
Y ) (re-

spectively, (g•Y , r
•
Y )) for the type of Y ◦ (respectively,

Y •). Then it holds that r◦Y = r•Y .
On the other hand, in the notation of the above assertion, one verifies
easily that for any l ∈ Σ and � ∈ {◦, •}, if Π�Y ′ ⊆ Π�1 is an open

subgroup of Π�1 contained in Π�Y , then the natural inclusion Π�Y ′ ↪→ Π�Y
induces a surjection

Ker((Π�Y ′)ab � (Π�
Y

′)ab)⊗
ẐΣ Ql � Ker((Π�Y )

ab � (Π�
Y
)ab)⊗

ẐΣ Ql

— where we write (Π�
Y
), (Π�

Y
′) for the maximal pro-Σ quotients of the

étale fundamental groups of the compactifications Y , Y
′
of Y , Y ′, re-

spectively. Thus, since any open subgroup of Π◦
1 contains a character-

istic open subgroup of Π◦
1, it follows immediately from the well-known

fact that for � ∈ {◦, •}, (Π�Y )
ab (respectively, (Π�

Y
)ab) is a free ẐΣ-

module of rank 2g�Y + r�Y − 1 (respectively, 2g�Y ) [cf., e.g., [CmbGC],
Remark 1.1.3] that to verify the above assertion, it suffices to ver-
ify that if Π◦

Y ⊆ Π◦
1 in the above assertion is characteristic, then the

isomorphism Π◦
Y

∼→ Π•
Y determined by α1

1 induces an isomorphism of
Ker((Π◦

Y )
ab � (Π◦

Y
)ab)⊗

ẐΣ Ql with Ker((Π•
Y )

ab � (Π•
Y
)ab)⊗

ẐΣ Ql for
some l ∈ Σ.

To this end, for � ∈ {◦, •}, write Π�Z ⊆ Π�2 for the normal open

subgroup of Π�2 obtained by forming the inverse image via the surjection

(pr�{1}, pr
�
{2}) : Π

�
2 � Π�1 ×Π�1

of the image of the natural inclusion Π�Y × Π�Y ↪→ Π�1 × Π�1 ; Z
� →

X�2 for the connected finite étale covering corresponding to this normal
open subgroup Π�Z ⊆ Π�2 ; Π

�
Z/Y for the kernel of the natural surjection

Π�Z � Π�Y induced by the composite Z� → X�2 ↪→ X� ×k X
� pr1→ X�.

Then the natural surjection Π�Z � Π�Y determines a representation

Π�Y −→ Aut((Π�Z/Y )
ab) ;
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moreover, the isomorphisms α2, α
1
1, and α2

1 determine a commutative
diagram

Π◦
Y −−−−→ Aut((Π◦

Z/Y )
ab)⏐⏐� ⏐⏐�

Π•
Y −−−−→ Aut((Π•

Z/Y )
ab)

— where the vertical arrows are isomorphisms. [Here, we note that since
Π•

Y is a characteristic subgroup of Π•
1, and the composite α2

1 ◦ (α1
1)

−1

is an automorphism of Π•
1, it follows that Π•

Y = α2
1(Π

◦
Y ), hence that

α2 induces an isomorphism Π◦
Z

∼→ Π•
Z .] On the other hand, it follows

from the definition of Z� that Z� is isomorphic to the open subscheme
of Y � ×k Y

� obtained by forming the complement of the graphs of the
various elements of Aut(Y �/X�). Thus, it follows from Lemma 1.3, (iv)
— by replacing the various profinite groups involved by their maximal
pro-l quotients for some l ∈ Σ — that the isomorphism Π◦

Y
∼→ Π•

Y

determined by α1
1 induces an isomorphism of Ker((Π◦

Y )
ab � (Π◦

Y
)ab)⊗

ẐΣ

Ql with Ker((Π•
Y )

ab � (Π•
Y
)ab)⊗

ẐΣ Ql for some l ∈ Σ. This completes
the proof of Lemma 1.6. Q.E.D.

Lemma 1.7 (PFC-admissibility of certain PF-admissible iso-

morphisms). In the notation of Definition 1.4, let α : Π◦
d◦

∼→ Π•
d• be

a PF-admissible isomorphism. Then the following condition implies
that the isomorphism α is PFC-admissible:

Let H◦ ⊆ Π◦
d◦ be a fiber subgroup of length 1 [cf.

[MT], Definition 2.3, (iii)]. Write H• def
= α(H◦) ⊆

Π•
d• for the fiber subgroup of length 1 obtained as

the image of H◦ via α [cf. Proposition 1.5, (ii)].
[Thus, it follows immediately from the various defini-
tions involved that H◦ (respectively, H•) is equipped
with a natural structure of pro-Σ◦ (respectively, pro-

Σ•) surface group.] Then the isomorphism H◦ ∼→
H• induced by α is C-admissible.

Proof. Let � ∈ {◦, •}. Then one may verify easily that the follow-
ing fact holds:

Let 1 ≤ a ≤ d� be an integer and F ′ ⊆ F ⊆ Π�
d�

fiber subgroups of Π�
d� such that F is of length a,

and F ′ is of length a − 1. Then there exists a fiber
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subgroup H ⊆ F ⊆ Π�
d� of Π�

d� of length 1 such that
the composite

H ↪→ F � F/F ′

arises from a natural open immersion of a hyperbolic
curve of type (g�, r�+d�−1) into a hyperbolic curve
of type (g�, r� + d� − a). [Note that it follows im-
mediately from the various definitions involved that
H (respectively, F/F ′) is equipped with a natural
structure of pro-Σ� surface group.] In particular, the
composite is a surjection whose kernel is topologically
normally generated by suitable cuspidal inertia sub-
groups of H; moreover, any cuspidal inertia subgroup
of F/F ′ may be obtained as the image of a cuspidal
inertia subgroup of H.

On the other hand, one may verify easily that Lemma 1.7 follows im-
mediately from the above fact. This completes the proof of Lemma 1.7.

Q.E.D.

Theorem 1.8 (PFC-admissibility of certain isomorphisms).
For � ∈ {◦, •}, let Σ� be a set of prime numbers which is either of
cardinality one or equal to the set of all prime numbers; (g�, r�)
a pair of nonnegative integers such that 2g�−2+r� > 0; X� a hyperbolic
curve of type (g�, r�) over an algebraically closed field of characteristic
�∈ Σ�; d� a positive integer; Π�

d� the pro-Σ� configuration space group

[cf. [MT], Definition 2.3, (i)] obtained by forming the maximal pro-Σ�

quotient of the étale fundamental group of the d�-th configuration space
of X�;

α : Π◦
d◦

∼−→ Π•
d•

an isomorphism of [abstract] groups. If

{(g◦, r◦), (g•, r•)} ∩ {(0, 3), (1, 1)} �= ∅ ,

then we suppose further that the isomorphism α is PF-admissible [cf.
Definition 1.4, (i)]. Then the following hold:

(i) Σ◦ = Σ•.

(ii) The isomorphism α is an isomorphism of profinite groups.

(iii) The isomorphism α is PF-admissible. In particular, d◦ = d•.
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(iv) If α is PF-cuspidalizable [cf. Definition 1.4, (iv)], then α
is PFC-admissible [cf. Definition 1.4, (iii)]. In particular,
(g◦, r◦) = (g•, r•).

Proof. Assertion (ii) follows from [NS], Theorem 1.1. In light of
assertion (ii), assertion (i) follows from Proposition 1.5, (i). Assertion
(iii) follows from Proposition 1.5, (ii); [MT], Corollary 6.3, together with
the assumption appearing in the statement of Theorem 1.8. Assertion
(iv) follows immediately from Lemmas 1.6, 1.7. Q.E.D.

Corollary 1.9 (F-admissibility and FC-admissibility). Let Σ
be a set of prime numbers which is either of cardinality one or equal
to the set of all prime numbers; n a positive integer; (g, r) a pair
of nonnegative integers such that 2g − 2 + r > 0; X a hyperbolic curve
of type (g, r) over an algebraically closed field k of characteristic �∈ Σ;
Xn the n-th configuration space of X; Πn the maximal pro-Σ quotient
of the fundamental group of Xn; “OutFC(−)”, “OutF(−)” ⊆ “Out(−)”
the subgroups of FC- and F-admissible [cf. [CmbCsp], Definition 1.1,
(ii)] outomorphisms [cf. the discussion entitled “Topological groups” in
§0] of “(−)”. Then the following hold:

(i) Let α ∈ OutF(Πn+1). Then α induces the same outomor-
phism of Πn relative to the various quotients Πn+1 � Πn by
fiber subgroups of length 1 [cf. [MT], Definition 2.3, (iii)]. In
particular, we obtain a natural homomorphism

OutF(Πn+1) −→ OutF(Πn) .

(ii) The image of the homomorphism

OutF(Πn+1) −→ OutF(Πn)

of (i) is contained in

OutFC(Πn) ⊆ OutF(Πn) .

Proof. First, we verify assertion (i). Let H1, H2 ⊆ Πn+1 be two
distinct fiber subgroups of Πn+1 of length 1. Observe that the normal
closed subgroup H ⊆ Πn+1 of Πn+1 topologically generated by H1 and
H2 is a fiber subgroup of Πn+1 of length 2 [cf. [MT], Proposition 2.4,
(iv)], hence is equipped with a natural structure of pro-Σ configuration
space group, with respect to which Hi ⊆ H may be regarded as a fiber
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subgroup of length 1 [cf. [MT], Proposition 2.4, (ii)]. Moreover, it follows
immediately from the scheme-theoretic definition of the various config-
uration space groups involved that one has natural outer isomorphisms
Πn+1/H

i ∼→ Πn and H/H1 ∼→ H/H2. Thus, since for i ∈ {1, 2}, we
have natural outer isomorphisms

Πn
∼← Πn+1/H

i ∼→ (H/Hi)
out
� Πn+1/H

[cf. the discussion entitled “Topological groups” in §0] which are com-
patible with the various natural outer isomorphisms discussed above,
one verifies easily [cf. the argument given in the first paragraph of the
proof of [CmbCsp], Theorem 4.1] that to complete the proof of assertion
(i), by replacing Πn+1 by H, it suffices to verify assertion (i) in the case
where n = 1. The rest of the proof of assertion (i) is devoted to verifying
assertion (i) in the case where n = 1.

Let α̃ ∈ AutF(Π2) be an F-admissible automorphism of Π2; α̃
1,

α̃2 ∈ Aut(Π1) the automorphisms of Π1 induced by α̃ relative to the

quotients Π2 � Π2/H
1 ∼→ Π1, Π2 � Π2/H

2 ∼→ Π1, respectively. Now
it is immediate that to complete the proof of assertion (i), it suffices to
verify that the difference α̃1 ◦ (α̃2)−1 ∈ Aut(Π1) is Π1-inner. Therefore,
it follows immediately from [JR], Theorem B, that to complete the proof
of assertion (i), it suffices to verify that

(∗1): for any normal open subgroup N ⊆ Π1 of Π1,
it holds that α̃1(N) = α̃2(N).

To this end, let N ⊆ Π1 be a normal open subgroup of Π1. Write

ΠN
def
= Π2 ×Π1 N for the fiber product of Π2 � Π2/H

1 ∼→ Π1 and

N ↪→ Π1 and FN for the kernel of the composite ΠN = Π2 ×Π1 N
pr1
↪→

Π2 � Π2/H
2 ∼→ Π1. Then the surjection ΠN � N ×Π1 determined by

the natural surjection ΠN � ΠN/FN
∼→ Π1 and the second projection

ΠN = Π2 ×Π1 N
pr2� N fits into a commutative diagram of profinite

groups

1 −−−−→ FN −−−−→ ΠN −−−−→ Π1 −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ N −−−−→ N ×Π1

pr2−−−−→ Π1 −−−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are
surjective. Write ρN : Π1 → Aut(F ab

N ) for the natural action determined
by the upper horizontal sequence and VN ⊆ F ab

N for the kernel of the
natural surjection F ab

N � Nab induced by the left-hand vertical arrow.
Now we claim that
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(∗2): the action ρN of Π1 on F ab
N preserves VN ⊆

F ab
N , and, moreover, the resulting action ρVN : Π1 →

Aut(VN ) factors as the composite

Π1 � Π1/N ↪→ Aut(VN )

— where the second arrow is injective.

Indeed, the fact that the action ρN of Π1 on F ab
N preserves VN ⊆ F ab

N

follows immediately from the definition of ρN [cf. also the above com-
mutative diagram]. Next, let us observe that it follows immediately from
the various definitions involved that if we write f : Y → X for the con-
nected finite étale Galois covering of X corresponding to N ⊆ Π1, then
the right-hand square of the above diagram arises from a commutative
diagram of schemes

(Y ×k X) \ Γf
pr2−−−−→ X⏐⏐� ∥∥∥

Y ×k X
pr2−−−−→ X

— where we write Γf ⊆ Y ×k X for the graph of f , and the left-hand
vertical arrow is the natural open immersion. Thus, it follows imme-
diately from a similar argument to the argument used in the proof of
Lemma 1.1, (i) [cf. also [Hsh], Proposition 1.4, (i)], that FN , N are
naturally isomorphic to the maximal pro-Σ quotients of the étale fun-
damental groups of geometric fibers of the families of hyperbolic curves

Y ×k X \ Γf , Y ×k X
pr2→ X over X, respectively. Therefore, by the

well-known structure of the maximal pro-Σ quotient of the fundamental
group of a smooth curve over an algebraically closed field of character-
istic �∈ Σ, we conclude — by considering the natural action of Π1 on the

set of cusps of the family of hyperbolic curves Y ×k X \ Γf
pr2→ X —

that the resulting action ρVN : Π1 → Aut(VN ) factors as the composite
Π1 � Π1/N → Aut(VN ), and that if X is affine (respectively, proper),
then for any l ∈ Σ, the resulting representation Π1/N → Aut(VN⊗

ẐΣQl)
is isomorphic to

the regular representation of Π1/N over Ql (respec-
tively, the quotient of the regular representation of
Π1/N over Ql by the trivial subrepresentation [of di-
mension 1]).

In particular, as is well-known, the homomorphism Π1/N → Aut(VN⊗
ẐΣ

Ql), hence also the homomorphism Π1/N → Aut(VN ), is injective. This
completes the proof of the claim (∗2).
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Next, let us observe that since α̃ is F-admissible, it follows imme-
diately from the definition of “ρVN” that the automorphism α̃ induces a
commutative diagram

Π1
ρV
N−−−−→ Aut(VN )

α̃2

⏐⏐��
⏐⏐��

Π1

ρV
α̃1(N)−−−−→ Aut(Vα̃1(N))

— where the vertical arrows are isomorphisms that are induced by α̃.
Thus, by considering the kernels of ρVN , ρVα̃1(N), one concludes from the

claim (∗2) that α̃1(N) = α̃2(N). This completes the proof of (∗1), hence
also of assertion (i).

Assertion (ii) follows immediately from Theorem 1.8, (iv) [cf. also
Remark 1.4.1]. This completes the proof of Corollary 1.9. Q.E.D.

Remark 1.9.1. The discrete versions of Theorem 1.8, Corollary 1.9
will be discussed in a sequel to the present paper.

§2. Various operations on semi-graphs of anabelioids of PSC-
type

In the present §, we study various operations on semi-graphs of
anabelioids of PSC-type. These operations include the following:

(Op1) the operation of restriction to a sub-semi-graph [satisfying cer-
tain conditions] of the underlying semi-graph [cf. Definition 2.2,
(ii); Fig. 2 below],

(Op2) the operation of partial compactification [cf. Definition 2.4, (ii);
Fig. 3 below],

(Op3) the operation of resolution of a given set [satisfying certain
conditions] of nodes [cf. Definition 2.5, (ii); Fig. 4 below], and

(Op4) the operation of generization [cf. Definition 2.8; Fig. 5 below].

A basic reference for the theory of semi-graphs of anabelioids of PSC-
type is [CmbGC]. We shall use the terms “semi-graph of anabelioids of
PSC-type”, “PSC-fundamental group of a semi-graph of anabelioids of
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PSC-type”, “finite étale covering of semi-graphs of anabelioids of PSC-
type”, “vertex”, “edge”, “cusp”, “node”, “verticial subgroup”, “edge-like
subgroup”, “nodal subgroup”, “cuspidal subgroup”, and “sturdy” as they
are defined in [CmbGC], Definition 1.1. Also, we shall apply the vari-
ous notational conventions established in [NodNon], Definition 1.1, and
refer to the “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type” simply as the “fundamental group” [of the semi-graph of an-
abelioids of PSC-type]. That is to say, we shall refer to the maximal
pro-Σ quotient of the fundamental group of a semi-graph of anabelioids
of pro-Σ PSC-type [as a semi-graph of anabelioids!] as the “fundamental
group of the semi-graph of anabelioids of PSC-type”.

Let Σ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-Σ PSC-type. Write G for the underlying semi-graph

of G, ΠG for the [pro-Σ] fundamental group of G, and G̃ → G for the
universal covering of G corresponding to ΠG . Then since the fundamental
group ΠG of G is topologically finitely generated, the profinite topology
of ΠG induces [profinite] topologies on Aut(ΠG) and Out(ΠG) [cf. the
discussion entitled “Topological groups” in §0]. If, moreover, we write

Aut(G)

for the automorphism group of G, then by the discussion preceding
[CmbGC], Lemma 2.1, the natural homomorphism

Aut(G) −→ Out(ΠG)

is an injection with closed image. [Here, we recall that an automorphism
of a semi-graph of anabelioids consists of an automorphism of the un-
derlying semi-graph, together with a compatible system of isomorphisms
between the various anabelioids at each of the vertices and edges of the
underlying semi-graph which are compatible with the various morphisms
of anabelioids associated to the branches of the underlying semi-graph
— cf. [SemiAn], Definition 2.1; [SemiAn], Remark 2.4.2.] Thus, by
equipping Aut(G) with the topology induced via this homomorphism by
the topology of Out(ΠG), we may regard Aut(G) as being equipped with
the structure of a profinite group.

Definition 2.1.

(i) For z ∈ VCN(G) such that z ∈ Vert(G) (respectively, z ∈
Edge(G)), we shall say that a closed subgroup of ΠG is a VCN-
subgroup of ΠG associated to z ∈ VCN(G) if the closed sub-
group is a verticial (respectively, an edge-like) subgroup of
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ΠG associated to z ∈ VCN(G). For z̃ ∈ VCN(G̃) such that

z̃ ∈ Vert(G̃) (respectively, z̃ ∈ Edge(G̃)), we shall say that a
closed subgroup of ΠG is the VCN-subgroup of ΠG associated

to z̃ ∈ VCN(G̃) if the closed subgroup is the verticial (respec-

tively, edge-like) subgroup of ΠG associated to z̃ ∈ VCN(G̃) [cf.
[NodNon], Definition 1.1, (vi)].

(ii) For z ∈ VCN(G), we shall write

Gz

for the anabelioid corresponding to z ∈ VCN(G).
(iii) For v ∈ Vert(G), we shall write

G|v

for the semi-graph of anabelioids of pro-Σ PSC-type defined as
follows [cf. Fig. 1 below]: We take Vert(G|v) to consist of the
single element “v”, Cusp(G|v) to be the set of branches of G
which abut to v, and Node(G|v) to be the empty set. We take
the anabelioid of G|v corresponding to the unique vertex “v”
to be Gv [cf. (ii)]. For each edge e ∈ E(v) of G and each branch
b of e that abuts to the vertex v, we take the anabelioid of G|v
corresponding to the branch b to be a copy of the anabelioid
Ge [cf. (ii)]. For each edge e ∈ E(v) of G and each branch b of e
that abuts, relative to G, to the vertex v, we take the morphism
of anabelioids (G|v)eb → (G|v)v of G|v — where we write eb for
the cusp of G|v corresponding to b — to be the morphism of
anabelioids Ge → Gv associated, relative to G, to the branch b.
Thus, one has a natural morphism

G|v −→ G

of semi-graphs of anabelioids.

Remark 2.1.1. Let v ∈ Vert(G) be a vertex of G and Πv ⊆ ΠG
a verticial subgroup of ΠG associated to v ∈ Vert(G). Then it follows
immediately from the various definitions involved that the fundamental
group of G|v is naturally isomorphic to Πv, and that we have a natural
identification

Aut(Gv) � Out(Πv)
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and a natural injection

Aut(G|v) ↪→ Aut(Gv) .

Figure 1: G|v

G

v

⇒•

◦

• G|v

•

◦

◦

◦

◦

Definition 2.2 (cf. the operation (Op1) discussed at the beginning
the present §2).

(i) Let K be a [not necessarily finite] semi-graph and H a sub-semi-
graph of K [cf. [SemiAn], the discussion following the figure
entitled “A Typical Semi-graph”]. Then we shall say that H is
of PSC-type if the following three conditions are satisfied:

(1) H is finite [i.e., the set consisting of vertices and edges of
H is finite] and connected.

(2) H has at least one vertex.

(3) If v is a vertex of H, and e is an edge of K that abuts
to v, then e is an edge of H. [Thus, if e abuts both to a
vertex lying in H and to a vertex not lying in H, then the
resulting edge of H is a “cusp”, i.e., an open edge.]

Thus, a sub-semi-graph of PSC-type H is completely deter-
mined by the set of vertices that lie in H.

(ii) Let H be a sub-semi-graph of PSC-type [cf. (i)] of G. Then one
may verify easily that the semi-graph of anabelioids obtained
by restricting G to H [cf. the discussion preceding [SemiAn],
Definition 2.2] is of pro-Σ PSC-type. Here, we recall that the
semi-graph of anabelioids obtained by restricting G to H is the
semi-graph of anabelioids such that the underlying semi-graph
is H; for each vertex v (respectively, edge e) of H, the anabe-
lioid corresponding to v (respectively, e) is Gv (respectively,
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Ge) [cf. Definition 2.1, (ii)]; for each branch b of an edge e
of H that abuts to a vertex v of H, the morphism associated
to b is the morphism Ge → Gv associated to the branch of G
corresponding to b. We shall write

G|H

for this semi-graph of anabelioids of pro-Σ PSC-type and refer
to G|H as the semi-graph of anabelioids of pro-Σ PSC-type ob-
tained by restricting G to H [cf. Fig. 2 below]. Thus, one has
a natural morphism

G|H −→ G

of semi-graphs of anabelioids.

Figure 2: Restriction

H: the sub-semi-graph of PSC-type whose set of vertices = {v}

G

v

⇓

G|H

×

×

×

×
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Definition 2.3. Let (g, r) be a pair of nonnegative integers such
that 2g − 2 + r > 0.

(i) We shall say that G is of type (g, r) if G arises from a stable log
curve of type (g, r) over an algebraically closed field of charac-
teristic �∈ Σ, i.e., Cusp(G) is of cardinality r, and, moreover,

rank
ẐΣ(Π

ab
G ) = 2g +Cusp(G)� − cG

— where

cG
def
=

{
0 if Cusp(G) = ∅,
1 if Cusp(G) �= ∅.

[Here, we recall that it follows from the discussion of [CmbGC],

Remark 1.1.3, that Πab
G is a free ẐΣ-module of finite rank.]

(ii) Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)].
Then we shall say that H is of type (g, r) if the semi-graph of
anabelioids G|H, which is of pro-Σ PSC-type [cf. Definition 2.2,
(ii)], is of type (g, r) [cf. (i)].

(iii) Let v ∈ Vert(G) be a vertex. Then we shall say that v is
of type (g, r) if the semi-graph of anabelioids G|v, which is of
pro-Σ PSC-type [cf. Definition 2.1, (iii)], is of type (g, r) [cf.
(i)].

(iv) We shall say that G is totally degenerate if each vertex of G is
of type (0, 3) [cf. (iii)].

(v) One may verify easily that there exists a unique, up to isomor-
phism, semi-graph of anabelioids of pro-Σ PSC-type that is of
type (g, r) [cf. (i)] and has no node. We shall write

Gmodel
g,r

for this semi-graph of anabelioids of pro-Σ PSC-type.

Remark 2.3.1. It follows immediately from the various definitions
involved that there exists a unique pair (g, r) of nonnegative integers
such that G is of type (g, r) [cf. Definition 2.3, (i)].

Definition 2.4 (cf. the operation (Op2) discussed at the beginning
the present §2).
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(i) We shall say that a subset S ⊆ Cusp(G) of Cusp(G) is omit-
table if the following condition is satisfied: For each vertex
v ∈ Vert(G) of G, if v is of type (g, r) [cf. Definition 2.3, (iii);
Remark 2.3.1], then it holds that 2g − 2 + r− (E(v)∩ S)� > 0.

(ii) Let S ⊆ Cusp(G) be a subset of Cusp(G) which is omittable
[cf. (i)]. Then by eliminating the cusps [i.e., the open edges]
contained in S, and, for each vertex v of G, replacing the an-
abelioid Gv corresponding to v by the anabelioid of finite étale
coverings of Gv that restrict to a trivial covering over the cusps
contained in S that abut to v, we obtain a semi-graph of an-
abelioids

G•S

of pro-Σ PSC-type. We shall refer to G•S as the partial compact-
ification of G with respect to S [cf. Fig. 3 below]. Thus, for each
v ∈ Vert(G) = Vert(G•S), the pro-Σ fundamental group of the
anabelioid (G•S)v corresponding to v ∈ Vert(G) = Vert(G•S)
may be naturally identified, up to inner automorphism, with
the quotient of a verticial subgroup Πv ⊆ ΠG of ΠG associated
to v ∈ Vert(G) = Vert(G•S) by the subgroup of Πv topolog-
ically normally generated by the Πe ⊆ Πv for e ∈ E(v) ∩ S.
If, moreover, we write ΠG•S for the [pro-Σ] fundamental group
of G•S and NS ⊆ ΠG for the normal closed subgroup of ΠG
topologically normally generated by the cuspidal subgroups of
ΠG associated to elements of S, then we have a natural outer
isomorphism

ΠG/NS
∼−→ ΠG•S .

Remark 2.4.1.

(i) Let S1 ⊆ S2 ⊆ Cusp(G) be subsets of Cusp(G). Then it fol-
lows immediately from the various definitions involved that the
omittability of S2 [cf. Definition 2.4, (i)] implies the omittability
of S1.

(ii) If G is sturdy, then it follows from the various definitions in-
volved that Cusp(G), hence also any subset of Cusp(G) [cf. (i)],
is omittable. Moreover, the partial compactification of G with
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respect to Cusp(G) coincides with the compactification of G [cf.
[CmbGC], Remark 1.1.6; [NodNon], Definition 1.11].

Figure 3: Partial compactification

G

× × ×
c1 c2

⇓

G•{c1,c2}

×

Definition 2.5 (cf. the operation (Op3) discussed at the beginning
the present §2). Let S ⊆ Node(G) be a subset of Node(G).

(i) We shall say that S is of separating type if the semi-graph
obtained by removing the closed edges corresponding to the
elements of S from G is disconnected. Moreover, for each node
e ∈ Node(G), we shall say that e is of separating type if {e} ⊆
Node(G) is of separating type.

(ii) Suppose that S is not of separating type [cf. (i)]. Then one
may define a semi-graph of anabelioids of pro-Σ PSC-type as
follows: We take the underlying semi-graph G�S to be the
semi-graph obtained by replacing each node e of G contained
in S such that V(e) = {v1, v2} ⊆ Vert(G) — where v1, v2
are not necessarily distinct — by two cusps that abut to v1,
v2 ∈ Vert(G), respectively. We take the anabelioid correspond-
ing to a vertex v (respectively, node e) of G�S to be Gv (respec-
tively, Ge). [Note that the set of vertices (respectively, nodes)
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of G�S may be naturally identified with Vert(G) (respectively,
Node(G)\S).] We take the anabelioid corresponding to a cusp
of G�S arising from a cusp e of G to be Ge. We take the an-
abelioid corresponding to a cusp of G�S arising from a node
e of G to be Ge. For each branch b of G�S that abuts to a
vertex v of a node e (respectively, of a cusp e that does not
arise from a node of G), we take the morphism associated to
b to be the morphism Ge → Gv associated to the branch of
G corresponding to b. For each branch b of G�S that abuts
to a vertex v of a cusp of G�S that arises from a node e of
G, we take the morphism associated to b to be the morphism
Ge → Gv associated to the branch of G corresponding to b. We
shall denote the resulting semi-graph of anabelioids of pro-Σ
PSC-type by

G�S

and refer to G�S as the semi-graph of anabelioids of pro-Σ
PSC-type obtained from G by resolving S [cf. Fig. 4 below].
Thus, one has a natural morphism

G�S −→ G

of semi-graphs of anabelioids.

Remark 2.5.1.

(i) Let S1 ⊆ S2 ⊆ Node(G) be subsets of Node(G). Then it follows
immediately from the various definitions involved that if S2 is
not of separating type [cf. Definition 2.5, (i)], then S1 is not of
separating type.

(ii) Let v ∈ Vert(G) be a vertex of G. Then one may verify eas-
ily that there exists a unique sub-semi-graph of PSC-type [cf.
Definition 2.2, (i)] Gv of G such that the set of vertices of
Gv is equal to {v}. Moreover, one may also verify easily that
Node(G|Gv ) [cf. Definition 2.2, (ii)] is not of separating type [cf.
Definition 2.5, (i)], relative to G|Gv , and that the semi-graph
of anabelioids of pro-Σ PSC-type

(G|Gv )�Node(G|Gv )

[cf. Definition 2.5, (ii)] is naturally isomorphic to G|v [cf. Def-
inition 2.1, (iii)].
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Figure 4: Resolution

G e

×

×

×

×

⇓

G�{e}

×
×
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Definition 2.6.

(i) Let S ⊆ VCN(G) be a subset of VCN(G). Then we shall denote
by

AutS(G) ⊆ Aut(G)
the [closed] subgroup of Aut(G) consisting of automorphisms α
of G such that the automorphism of the underlying semi-graph
G of G induced by α preserves S and by

Aut|S|(G) ⊆ AutS(G)

the [closed] subgroup of Aut(G) consisting of automorphisms
α of G such that the automorphism of the underlying semi-
graph G of G induced by α preserves and induces the identity
automorphism of S. Moreover, we shall write

Aut|grph|(G) def
= Aut|VCN(G)|(G) .

(ii) Let H ⊆ ΠG be a closed subgroup of ΠG . Then we shall denote
by

OutH(ΠG) ⊆ Out(ΠG)

the [closed] subgroup of Out(ΠG) consisting of outomorphisms
[cf. the discussion entitled “Topological groups” in §0] of ΠG
which preserve the ΠG-conjugacy class of H ⊆ ΠG . Moreover,
we shall denote by

AutH(G) def
= Aut(G) ∩OutH(ΠG) .

(iii) Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)]
of G. Then VCN(G|H) [cf. Definition 2.2, (ii)] may be regarded
as a subset of VCN(G). We shall write

Aut|H|(G) def
= Aut|VCN(G|H)|(G)
⊆ AutH(G) def

= AutVCN(G|H)(G)
= AutVert(G|H)(G) .

Proposition 2.7 (Subgroups determined by sets of compo-
nents). Let S ⊆ VCN(G) be a nonempty subset of VCN(G). Then:
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(i) It holds that

Aut|S|(G) =
⋂
z∈S

AutΠz (G)

— where we use the notation Πz to denote a VCN-subgroup
[cf. Definition 2.1, (i)] of ΠG associated to z ∈ VCN(G).

(ii) It holds that

Aut|grph|(G) =
⋂

z∈VCN(G)
OutΠz (ΠG)

— where we use the notation Πz to denote a VCN-subgroup of
ΠG associated to z ∈ VCN(G).

(iii) The closed subgroups Aut|S|(G), AutS(G) ⊆ Aut(G) are open

in Aut(G). Moreover, the closed subgroup Aut|S|(G) ⊆ AutS(G)
is normal in AutS(G). In particular, Aut|grph|(G) ⊆ Aut(G)
is normal in Aut(G).

Proof. Assertion (i) follows immediately from [CmbGC], Proposi-
tion 1.2, (i). Next, we verify assertion (ii). It follows immediately from
[CmbGC], Proposition 1.5, (ii), that the right-hand side of the equality
in the statement of assertion (ii) is contained in Aut(G). Thus, asser-
tion (ii) follows immediately from assertion (i). Assertion (iii) follows
immediately from the finiteness of the semi-graph G, together with the
various definitions involved. Q.E.D.

Definition 2.8 (cf. the operation (Op4) discussed at the beginning
the present §2). Let S ⊆ Node(G) be a subset of Node(G). Then we
define the semi-graph of anabelioids of pro-Σ PSC-type

G�S

as follows:

(i) We take Cusp(G�S)
def
= Cusp(G).

(ii) We take Node(G�S)
def
= Node(G) \ S.

(iii) We take Vert(G�S) to be the set of connected components of
the semi-graph obtained from G by omitting the edges e ∈
Edge(G) \ S. Alternatively, one may take Vert(G�S) to be
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the set of equivalence classes of elements of Vert(G) with re-
spect to the equivalence relation “∼” defined as follows: for v,
w ∈ Vert(G), v ∼ w if either v = w or there exist n elements
e1, · · · , en ∈ S of S and n+ 1 vertices v0, v1, · · · , vn ∈ Vert(G)
of G such that v0

def
= v, vn

def
= w, and, for 1 ≤ i ≤ n, it holds

that V(ei) = {vi−1, vi}.
(iv) For each branch b of an edge e ∈ Edge(G�S) (= Edge(G) \ S

— cf. (i), (ii)) and each vertex v ∈ Vert(G�S) of G�S , b abuts,
relative to G�S, to v if b abuts, relative to G, to an element of
the equivalence class v [cf. (iii)].

(v) For each edge e ∈ Edge(G�S) (= Edge(G) \ S — cf. (i), (ii))
of G�S , we take the anabelioid of G�S corresponding to e ∈
Edge(G�S) to be Ge [cf. Definition 2.1, (ii)].

(vi) Let v ∈ Vert(G�S) be a vertex of G�S . Then one verifies
easily that there exists a unique sub-semi-graph of PSC-type
[cf. Definition 2.2, (i)] Hv of G such that the set of vertices of
Hv consists of the elements of the equivalence class v [cf. (iii)].
Write

Tv
def
= Node(G|Hv ) \ (S ∩Node(G|Hv ))

[cf. Definition 2.2, (ii)]. Then we take the anabelioid of G�S

corresponding to v ∈ Vert(G�S) to be the anabelioid deter-
mined by the finite étale coverings of

(G|Hv )�Tv

[cf. Definition 2.5, (ii)] of degree a product of primes ∈ Σ.

(vii) Let b be a branch of an edge e ∈ Edge(G�S) (= Edge(G)\S —
cf. (i), (ii)) that abuts to a vertex v ∈ Vert(G�S). Then since b
abuts to v, one verifies easily that there exists a unique vertex w
of G which belongs to the equivalent class v [cf. (iii)] such that b
abuts to w relative to G. We take the morphism of anabelioids
associated to b, relative to G�S , to be the morphism naturally
determined by the morphism of anabelioids

Ge → Gw

corresponding to the branch b relative to G and the morphism
of semi-graphs of anabelioids of pro-Σ PSC-type

G|w → (G|Hv
)�Tv



Combinatorial anabelian topics I 43

[cf. (vi); Definition 2.1, (iii)]. Here, we recall that the anabe-
lioid obtained by considering the connected finite étale cov-
erings of G|w may be naturally identified with Gw [cf. Re-
mark 2.1.1].

We shall refer to this semi-graph of anabelioids of pro-Σ PSC-type G�S

as the generization of G with respect to S [cf. Fig. 5 below].

Figure 5: Generization

G

e

⇓

×

×

×

×

G�{e}

Remark 2.8.1. It follows immediately from the various definitions
involved that if G is of type (g, r) [cf. Definition 2.3, (i)], then the
generization G�Node(G) of G with respect to Node(G) is isomorphic to

Gmodel
g,r [cf. Definition 2.3, (v)].

Proposition 2.9 (Specialization outer isomorphisms). Let S
⊆ Node(G) be a subset of Node(G). Write ΠG�S

for the [pro-Σ] funda-
mental group of the generization G�S of G with respect to S [cf. Defi-
nition 2.8]. Then the following hold:
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(i) There exists a natural outer isomorphism of profinite
groups

ΦG�S
: ΠG�S

∼−→ ΠG

which satisfies the following three conditions:

(1) ΦG�S induces a bijection between the set of cuspidal sub-
groups of ΠG�S

and the set of cuspidal subgroups of ΠG.

(2) ΦG�S induces a bijection between the set of nodal sub-
groups of ΠG�S

and the set of nodal subgroups of ΠG as-
sociated to the elements of Node(G) \ S.

(3) Let v ∈ Vert(G�S) be a vertex of G�S; Hv, Tv as in
Definition 2.8, (vi). Then ΦG�S induces a bijection be-
tween the ΠG�S

-conjugacy class of any verticial subgroup
Πv ⊆ ΠG�S of ΠG�S associated to v ∈ Vert(G�S) and the
ΠG-conjugacy class of subgroups determined by the image
of the outer homomorphism

Π(G|Hv )�Tv
−→ ΠG

induced by the natural morphism (G|Hv )�Tv → G [cf. Def-
initions 2.2, (ii); 2.5, (ii)] of semi-graphs of anabelioids
of pro-Σ PSC-type.

Moreover, any two outer isomorphisms ΠG�S

∼→ ΠG that sat-
isfy the above three conditions differ by composition with a
graphic [cf. [CmbGC], Definition 1.4, (i)] outomorphism [cf.
the discussion entitled “Topological groups” in §0] of ΠG�S .

(ii) The isomorphism

Out(ΠG)
∼−→ Out(ΠG�S )

induced by the natural outer isomorphism of (i) determines an
injection

AutS(G) ↪→ Aut(G�S)

[cf. Definition 2.6, (i)].

Proof. First, we verify assertion (i). An outer isomorphism that
satisfies the three conditions of assertion (i) may be obtained by ob-
serving that, after sorting through the various definitions involved, a
finite étale covering of G�S amounts to the same data as a finite étale
covering of G. The final portion of assertion (i) follows immediately,
in light of the three conditions in the statement of assertion (i), from
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[CmbGC], Proposition 1.5, (ii). This completes the proof of assertion
(i). Assertion (ii) follows immediately from [CmbGC], Proposition 1.5,
(ii), together with the three conditions in the statement of assertion (i).
This completes the proof of Proposition 2.9. Q.E.D.

Definition 2.10. Let S ⊆ Node(G) be a subset of Node(G). Write
ΠG�S

for the [pro-Σ] fundamental group of the generization G�S of G
with respect to S [cf. Definition 2.8]. Then we shall refer to the natural
outer isomorphism

ΦG�S : ΠG�S

∼−→ ΠG

obtained in Proposition 2.9, (i), as the specialization outer isomorphism
with respect to S.

Proposition 2.11 (Commensurable terminality of closed
subgroups determined by certain semi-graphs). Let H be a
sub-semi-graph of PSC-type [cf. Definition 2.2, (i)] of G and S ⊆
Node(G|H) [cf. Definition 2.2, (ii)] a subset of Node(G|H) that is not of
separating type [cf. Definition 2.5, (i)]. Then the natural morphism
(G|H)�S → G [cf. Definitions 2.2, (ii); 2.5, (ii)] of semi-graphs of an-
abelioids of pro-Σ PSC-type determines an outer injection of profinite
groups

Π(G|H)�S
↪→ ΠG .

Moreover, the image of this outer injection is commensurably termi-
nal in ΠG [cf. the discussion entitled “Topological groups” in §0].

Proof. Write H def
= (G|H)�S and T

def
= Node(G|H) \ S. Note that it

follows from the definition of G|H that T may be regarded as the subset
of Node(G) determined by Node(H); for simplicity, we shall identify T
with Node(H). Now it follows immediately from the definition of “G�T ”
that the composite

ΠH
ΦH,S−→ ΠG

Φ−1
G�T∼−→ ΠG�T

factors through a verticial subgroup Πv ⊆ ΠG�T
of ΠG�T

associated to
a vertex v ∈ Vert(G�T ), and that the composite

ΠH −→ Π(G�T )|v

of the resulting outer homomorphism ΠH → Πv [which is well-defined in
light of the commensurable terminality of Πv in ΠG�S

— cf. [CmbGC],
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Proposition 1.2, (ii)] and the natural outer isomorphism Πv � Π(G�T )|v
[cf. Remark 2.1.1] may be identified with “Φ−1

H�T
” [cf. Definition 2.10].

Thus, Proposition 2.11 follows immediately from the fact that ΦH�T

is an outer isomorphism, together with the fact that Πv ⊆ ΠG�S is
commensurably terminal in ΠG�S

[cf. [CmbGC], Proposition 1.2, (ii)].
This completes the proof of Proposition 2.11. Q.E.D.

Lemma 2.12 (Restrictions of outomorphisms). Let H ⊆ ΠG
be a closed subgroup of ΠG which is normally terminal [cf. the discus-

sion entitled “Topological groups” in §0] and α ∈ OutH(ΠG) [cf. Defini-
tion 2.6, (ii)]. Then the following hold:

(i) There exists a lifting α̃ ∈ Aut(ΠG) of α such that α̃ preserves
the closed subgroup H ⊆ ΠG. Moreover, such a lifting α̃ is
uniquely determined up to composition with an H-inner
automorphism of ΠG.

(ii) Write αH for the outomorphism [cf. the discussion entitled
“Topological groups” in §0] of H determined by the restriction
of a lifting α̃ as obtained in (i) to the closed subgroup H ⊆ ΠG.
Then the map

OutH(ΠG) −→ Out(H)

given by assigning α �→ αH is a homomorphism.

(iii) The homomorphism

OutH(ΠG) −→ Out(H)

obtained in (ii) depends only on the conjugacy class of the

closed subgroup H ⊆ ΠG, i.e., if we write Hγ def
= γ ·H · γ−1 for

γ ∈ ΠG, then the diagram

OutH(ΠG) −−−−→ Out(H)∥∥∥ ⏐⏐�
OutH

γ

(ΠG) −−−−→ Out(Hγ)

— where the upper (respectively, lower) horizontal arrow is the
homomorphism given by mapping α �→ αH (respectively, α �→
αHγ ), and the right-hand vertical arrow is the isomorphism
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obtained by mapping φ ∈ Out(H) to

Hγ
Inn(γ−1)

∼−→ H
φ
∼−→ H

Inn(γ)
∼−→ Hγ

— commutes.

Proof. Assertion (i) follows immediately from the normal termi-
nality of H in ΠG . Assertion (ii) follows immediately from assertion
(i). Assertion (iii) follows immediately from the various definitions in-
volved. Q.E.D.

Definition 2.13. Let H ⊆ ΠG be a [closed] subgroup of ΠG which
is normally terminal [cf. the discussion entitled “Topological groups” in
§0]. Then we shall write

Out|H|(ΠG) ⊆ OutH(ΠG)

for the closed subgroup of OutH(ΠG) consisting of outomorphisms [cf.
the discussion entitled “Topological groups” in §0] α of ΠG such that the

image αH of α via the homomorphism OutH(G) → Out(H) obtained in
Lemma 2.12, (ii), is trivial. Also, we shall write

Aut|H|(G) def
= Out|H|(ΠG) ∩Aut(G) .

Definition 2.14.

(i) Let T ⊆ Cusp(G) be an omittable [cf. Definition 2.4, (i)] sub-
set of Cusp(G). Write ΠG•T for the [pro-Σ] fundamental group
of G•T [cf. Definition 2.4, (ii)] and NT ⊆ ΠG for the nor-
mal closed subgroup of ΠG topologically normally generated
by the cuspidal subgroups of ΠG associated to elements of T .
Then one verifies easily that the natural outer isomorphism
ΠG/NT

∼→ ΠG•T [cf. Definition 2.4, (ii)] induces a homomor-

phism OutNT (ΠG) → Out(ΠG•T ) that fits into a commutative
diagram

AutT (G) −−−−→ Aut(G•T )⏐⏐� ⏐⏐�
OutNT (ΠG) −−−−→ Out(ΠG•T )
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— where the vertical arrows are the natural injections. For
α ∈ OutNT (ΠG), we shall write

αG•T ∈ Out(ΠG•T )

for the image of α via the lower horizontal arrow in the above
commutative diagram. If, moreover, α ∈ AutT (G), then, in
light of the injectivity of the right-hand vertical arrow in the
above diagram, we shall write [by abuse of notation]

αG•T ∈ Aut(G•T )

for the image of α via the upper horizontal arrow in the above
commutative diagram.

(ii) Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)]
of G and S ⊆ Node(G|H) [cf. Definition 2.2, (ii)] a subset of
Node(G|H) that is not of separating type [cf. Definition 2.5, (i)].
Write Π(G|H)�S

for the [pro-Σ] fundamental group of (G|H)�S

[cf. Definition 2.5, (ii)]. Then the natural outer homomor-
phism Π(G|H)�S

→ ΠG is an outer injection whose image is
commensurably terminal [cf. Proposition 2.11]. Thus, it fol-
lows from Lemma 2.12, (iii), that we have a homomorphism

OutΠ(G|H)�S (ΠG) → Out(Π(G|H)�S
) that fits into a commuta-

tive diagram

AutH�S(G) def
= AutH(G) ∩AutS(G) −−−−→ Aut((G|H)�S)⏐⏐� ⏐⏐�

OutΠ(G|H)�S (ΠG) −−−−→ Out(Π(G|H)�S
)

— where the vertical arrows are the natural injections. For
α ∈ OutΠ(G|H)�S (ΠG), we shall write

α(G|H)�S
∈ Out(Π(G|H)�S

)

for the image of α via the lower horizontal arrow in the above
commutative diagram. If, moreover, α ∈ AutH�S(G), then, in
light of the injectivity of the right-hand vertical arrow in the
above diagram, we shall write [by abuse of notation]

α(G|H)�S
∈ Aut((G|H)�S)

for the image of α via the upper horizontal arrow in the above
commutative diagram. Finally, if T ⊆ Cusp((G|H)�S) is an
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omittable subset of Cusp((G|H)�S), then we shall write

AutH�S•T (G) ⊆ AutH�S(G)

for the inverse image of the closed subgroup AutT ((G|H)�S) ⊆
Aut((G|H)�S) of Aut((G|H)�S) in AutH�S(G) via the upper

horizontal arrow AutH�S(G) → Aut((G|H)�S) of the above
commutative diagram; thus, we have a natural homomorphism
[cf. (i)]

AutH�S•T (G) −→ Aut(((G|H)�S)•T )
α �→ α((G|H)�S)•T .

(iii) Let z ∈ VCN(G) be an element of VCN(G) and Πz ⊆ ΠG
a VCN-subgroup of ΠG associated to z ∈ VCN(G). Then it
follows from [CmbGC], Proposition 1.2, (ii), that the closed
subgroup Πz ⊆ ΠG is commensurably terminal. Thus, it fol-
lows from Lemma 2.12, (iii), that we obtain a homomorphism

OutΠz (ΠG) → Out(Πz) that fits into a commutative diagram

Aut{z}(G) −−−−→ Aut(Gz)⏐⏐� ⏐⏐��

OutΠz (ΠG) −−−−→ Out(Πz)

— where the left-hand vertical arrow is injective, and the right-
hand vertical arrow is an isomorphism. For α ∈ OutΠz (ΠG),
we shall write

αz ∈ Out(Πz)

for the image of α via the lower horizontal arrow in the above
commutative diagram.

§3. Synchronization of cyclotomes

In the present §, we introduce and study the notion of the second
cohomology group with compact supports of a semi-graph of anabelioids
of PSC-type [cf. Definition 3.1, (ii), (iii) below]. In particular, we show
that such cohomology groups are compatible with graph-theoretic lo-
calization [cf. Definition 3.4, Lemma 3.5 below]. This leads naturally
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to a discussion of the phenomenon of synchronization among the vari-
ous cyclotomes [cf. Definition 3.8 below] arising from a semi-graph of
anabelioids of PSC-type [cf. Corollary 3.9 below].

Let Σ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-Σ PSC-type. Write G for the underlying semi-graph

of G, ΠG for the [pro-Σ] fundamental group of G, and G̃ → G for the
universal covering of G corresponding to ΠG .

Definition 3.1. Let M be a finitely generated ẐΣ-module and v ∈
Vert(G) a vertex of G.

(i) We shall write

H2(G,M)
def
= H2(ΠG ,M)

— where we regardM as being equipped with the trivial action
of ΠG — and refer toH2(G,M) as the second cohomology group
of G.

(ii) Let s be a section of the natural surjection Cusp(G̃) �
Cusp(G). Given a central extension of profinite groups

1 −→M −→ E −→ ΠG −→ 1 ,

and a cusp e ∈ Cusp(G), we shall refer to a section of this
extension over the edge-like subgroup Πs(e) ⊆ ΠG of ΠG deter-

mined by s(e) ∈ Cusp(G̃) as a trivialization of this extension
at the cusp e. We shall write

H2
c (G,M)

for the set of equivalence classes

[E, (ιe : Πs(e) → E)e∈Cusp(G)]

of collections of data (E, (ιe : Πs(e) → E)e∈Cusp(G)) as follows:
(a) E is a central extension of profinite groups

1 −→M −→ E −→ ΠG −→ 1 ;

(b) for each e ∈ Cusp(G), ιe is a trivialization of this extension
at the cusp e. The equivalence relation “∼” is then defined as
follows: for two collections of data (E, (ιe)) and (E′, (ι′e)), we
shall write (E, (ιe)) ∼ (E′, (ι′e)) if there exists an isomorphism
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of profinite groups α : E
∼→ E′ over ΠG which induces the iden-

tity automorphism ofM , and, moreover, for each e ∈ Cusp(G),
maps ιe to ι′e. We shall refer to H2

c (G,M) as the second coho-
mology group with compact supports of G.

(iii) We shall write

H2
c (v,M)

def
= H2

c (G|v,M)

[cf. (ii); Definition 2.1, (iii)] and refer to H2
c (v,M) as the

second cohomology group with compact supports of v.

(iv) The set H2
c (G,M) is equipped with a natural structure of ẐΣ-

module defined as follows:

• Let [E, (ιe)], [E
′, (ι′e)] ∈ H2

c (G,M). Then the fiber prod-
uct E ×ΠG E

′ of the surjections E � ΠG , E′ � ΠG is
an extension of ΠG by M ×M . Thus, the quotient S of
E ×ΠG E

′ by the image of the composite

M ↪→ M ×M ↪→ E ×ΠG E
′

m �→ (m,−m)

is an extension of ΠG byM . On the other hand, it follows
from the definition of S that for each e ∈ Cusp(G), the sec-
tions ιe and ι

′
e naturally determine a section ιSe : Πs(e) → S

over Πs(e). Thus, we define

[E, (ιe)] + [E′, (ι′e)]
def
= [S, (ιSe )] .

Here, one may verify easily that the equivalence class
[S, (ιSe )] depends only on the equivalence classes [E, (ιe)],
[E′, (ι′e)], and that this definition of “+” determines a
module structure on H2

c (G,M).

• Let [E, (ιe)] ∈ H2
c (G,M) be an element of H2

c (G,M) and

a ∈ ẐΣ. Now the composite E ×M
pr1� E � ΠG deter-

mines an extension of ΠG by M ×M . Thus, the quotient
P of E ×M by the image of the composite

M ↪→ M ×M ↪→ E ×M
m �→ (m,−am)

is an extension of ΠG byM . On the other hand, it follows
from the definition of P that for each e ∈ Cusp(G), the
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section ιe and the zero homomorphism Πs(e) → M natu-

rally determine a section ιPe : Πs(e) → P over Πs(e). Thus,
we define

a · [E, (ιe)] def= [P, (ιPe )] .

Here, one may verify easily that the equivalence class
[P, (ιPe )] depends only on the equivalence class [E, (ιe)]

and a ∈ ẐΣ, and that this definition of “·” determines a

ẐΣ-module structure on H2
c (G,M).

Finally, we note that it follows from Lemma 3.2 below that

the ẐΣ-module “H2
c (G,M)” does not depend on the choice of

the section s. More precisely, the ẐΣ-module “H2
c (G,M)” is

uniquely determined by G andM up to the natural isomorphism
obtained in Lemma 3.2.

Lemma 3.2 (Independence of the choice of section). Let M

be a finitely generated ẐΣ-module and s, s′ sections of the natural sur-

jection Cusp(G̃) � Cusp(G). Write H2
c (G,M, s), H2

c (G,M, s′) for the

ẐΣ-modules “H2
c (G,M)” defined in Definition 3.1 by means of the sec-

tions s, s′, respectively. Then there exists a natural isomorphism of

ẐΣ-modules
H2

c (G,M, s)
∼−→ H2

c (G,M, s′) .

Proof. Let [E, (ιe)] ∈ H2
c (G,M, s) be an element of H2

c (G,M, s).
Now it follows from the various definitions involved that, for each e ∈
Cusp(G), there exists an element γe ∈ ΠG such that Πs′(e) = γe · Πs(e) ·
γ−1
e . For each e ∈ Cusp(G), fix a lifting γ̃e ∈ E of γe ∈ ΠG and write
ι′e : Πs′(e) → E for the section given by

Πs′(e) = γe ·Πs(e) · γ−1
e −→ E

γeaγ
−1
e �→ γ̃eιe(a)γ̃

−1
e .

Then it follows immediately from the fact that M ⊆ E is contained in
the center Z(E) of E that this section ι′e does not depend on the choice of
the lifting γ̃e ∈ E of γe ∈ ΠG . Moreover, it follows immediately from the
various definitions involved that the assignment “[E, (ιe)] �→ [E, (ι′e)]”
determines an isomorphism of ẐΣ-modules

H2
c (G,M, s)

∼−→ H2
c (G,M, s′) .

This completes the proof of Lemma 3.2. Q.E.D.
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Lemma 3.3 (Exactness of certain sequences). Let M be a

finitely generated ẐΣ-module. Suppose that Cusp(G) �= ∅. Then the
natural inclusions Πe ↪→ ΠG — where e ranges over the cusps of G, and,
for each cusp e ∈ Cusp(G), we use the notation Πe to denote an edge-like
subgroup of ΠG associated to the cusp e — determine an exact sequence

of ẐΣ-modules

Hom
ẐΣ(Π

ab
G ,M) −→

⊕
e∈Cusp(G)

Hom
ẐΣ(Πe,M) −→ H2

c (G,M) −→ 0 .

Proof. Let s be a section of the natural surjection Cusp(G̃) �
Cusp(G). Then given an element

(φe : Πe →M)e∈Node(G) ∈
⊕

e∈Cusp(G)
Hom

ẐΣ(Πe,M) ,

one may construct an element

[M ×ΠG (
pr2� ΠG), (ιe : Πs(e) →M ×ΠG)e∈Node(G)]

— where we write ιe : Πs(e) → M × ΠG for the section determined by

φe : Πs(e) → M and the natural inclusion Πs(e) ↪→ ΠG — of H2
c (G,M).

In particular, we obtain a map
⊕

e∈Cusp(G) HomẐΣ(Πe,M) → H2
c (G,M),

which, as is easily verified, is a homomorphism of ẐΣ-modules. Now the
exactness of the sequence in question follows immediately from the fact
that ΠG is free pro-Σ [cf. [CmbGC], Remark 1.1.3]. This completes the
proof of Lemma 3.3. Q.E.D.

Definition 3.4. Let M be a finitely generated ẐΣ-module.

(i) Let E be a semi-graph of anabelioids. Denote by VCN(E) the
set of components of E [i.e., the set of vertices and edges of E ]
and, for each z ∈ VCN(E), by ΠEz the fundamental group of
the anabelioid Ez of E corresponding to z ∈ VCN(E). Then we
define a central extension of G by M to be a collection of data

(E , α = (αz : M ↪→ ΠEz )z∈VCN(E), β : E/α ∼→ G)

as follows:

(a) For each z ∈ VCN(E), αz : M ↪→ ΠEz is an injective ho-
momorphism of profinite groups whose image is contained
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in the center Z(ΠEz ) of ΠEz . [Thus, the image of αz is a
normal closed subgroup of ΠEz .]

(b) For each branch b of an edge e that abuts to a vertex v of
E , we assume that the outer homomorphism ΠEe → ΠEv

associated to b is injective and fits into a commutative
diagram of [outer] homomorphisms of profinite groups

M M

αe

⏐⏐� ⏐⏐�αv

ΠEe −−−−→ ΠEv

— i.e., where the lower horizontal arrow is the outer in-
jection associated to b.

(c) Write E/α for the semi-graph of anabelioids defined as
follows: We take the underlying semi-graph of E/α to be
the underlying semi-graph of E ; for each z ∈ VCN(E), we
take the anabelioid (E/α)z of E/α corresponding to z ∈
VCN(E) to be the anabelioid determined by the profinite
group ΠEz/Im(αz) [cf. condition (a)]; for each branch b
of an edge e that abuts to a vertex v of E , we take the
associated morphism of anabelioids (E/α)e → (E/α)v to
be the morphism of anabelioids naturally determined by
the morphism Ee → Ev associated, relative to E , to b [cf.
condition (b)].

(d) β : E/α ∼→ G is an isomorphism of semi-graphs of anabe-
lioids.

There is an evident notion of isomorphisms of central exten-
sions of G by M . Also, given a central extension of G by M ,

and a section s of the natural surjection Cusp(G̃) � Cusp(G),
there is an evident notion of trivialization of the given cen-
tral extension of G by M at a cusp of G [cf. the discussion of
Definition 3.1, (ii), (iv)].

(ii) Let

1 −→M −→ E −→ ΠG −→ 1

be a central extension of ΠG by M . Then we shall define a
semi-graph of anabelioids

GE
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— which we shall refer to as the semi-graph of anabelioids
associated to the central extension E — as follows: We take the
underlying semi-graph of GE to be the underlying semi-graph of
G. We take the anabelioid of GE corresponding to z ∈ VCN(G)
to be the anabelioid determined by the fiber product E×ΠG Πz

of the surjection E → ΠG and a natural inclusion Πz ↪→ ΠG —
where we use the notation Πz ⊆ ΠG to denote a VCN-subgroup
[cf. Definition 2.1, (i)] of ΠG associated to z ∈ VCN(G); for
each branch b of an edge e that abuts to a vertex v of G, if
we write (GE)v, (GE)e for the anabelioids of GE corresponding
to v, e, respectively, then we take the morphism of anabelioids
(GE)e → (GE)v associated to the branch b to be the morphism
naturally determined by the morphism of anabelioids Ge → Gv

associated, relative to G, to b.
(iii) In the notation of (ii), one may verify easily that the semi-

graph of anabelioids GE associated to the central extension E
is equipped with a natural structure of central extension of G
by M . More precisely, for each z ∈ VCN(G), if we denote
by αz : M ↪→ Π(GE)z = E ×ΠG Πz the homomorphism deter-
mined by the natural inclusion M ↪→ E and the trivial homo-
morphism M → Πz, then there exists a natural isomorphism
β : GE/(αz)z∈VCN(G)

∼→ G such that the collection of data

(GE , (αz)z∈VCN(G), β)

forms a central extension of G by M , which we shall refer to
as the central extension of G by M associated to the central
extension E.

Lemma 3.5 (Graph-theoretic localizability of central exten-

sions of fundamental groups). Let M be a finitely generated ẐΣ-
module. Then the following hold:

(i) (Exactness and centrality) Let

(E , α = (αz : M ↪→ ΠEz
)z∈VCN(E), β : E/α ∼→ G) (‡1)
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be a central extension of G by M [cf. Definition 3.4, (i)].
Write ΠE for the pro-Σ fundamental group of E, i.e., the max-
imal pro-Σ quotient of the fundamental group of E [cf. the dis-
cussion preceding [SemiAn], Definition 2.2]. Then the compos-

ite E → E/α
β
∼→ G determines an exact sequence of profinite

groups

1 −→M −→ ΠE −→ ΠG −→ 1 (‡2)
which is central.

(ii) (Natural isomorphism I) In the notation of (i), the central
extension of G byM associated to the central extension (‡2) [cf.
Definition 3.4, (iii)] is naturally isomorphic, as a central
extension of G by M , to (‡1).

(iii) (Natural isomorphism II) Let

1 −→M −→ E −→ ΠG −→ 1

be a central extension of ΠG by M . Then the pro-Σ fun-
damental group of the semi-graph of anabelioids GE associated
to the central extension E [cf. Definition 3.4, (ii)] — i.e., the
maximal pro-Σ quotient of the fundamental group of GE — is
naturally isomorphic, over ΠG, to E.

(iv) (Equivalence of categories) The correspondences of (i), (ii),
(iii) determine a natural equivalence of categories between
the category of central extensions of G byM and the category of
central extensions of ΠG by M . [Here, we take the morphisms
in both categories to be the isomorphisms of central exten-
sions of the sort under consideration.] Moreover, this equiva-
lence extends to a similar natural equivalence of categories
between categories of central extensions equipped with trivial-
izations at the cusps of G [cf. Definitions 3.1, (ii); 3.4,
(i)].

Proof. First, we verify assertion (i). If Node(G) = ∅, then assertion
(i) is immediate; thus, suppose that Node(G) �= ∅. For each connected
finite étale covering E ′ → E of E , denote by ΠE′ the pro-Σ fundamental
group of E ′, by VCN(E ′) the set of components of E ′ [i.e., the set of
vertices and edges of E ′], and by Vert(E ′) the set of vertices of E ′; for
each z ∈ VCN(E ′), denote by E ′

z the anabelioid of E ′ corresponding to
z ∈ VCN(E ′) and by ΠE′

z
the fundamental group of E ′

z. Now we claim
that
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(∗1): the composite in question E → E/α ∼→ G in-
duces an isomorphism between the underlying semi-
graphs, as well as an outer surjection ΠE � ΠG .

Indeed, the fact that the composite in question determines an isomor-
phism between the underlying semi-graphs follows from conditions (c),

(d) of Definition 3.4, (i). In particular, we obtain a bijection VCN(E) ∼→
VCN(G). Now for each z ∈ VCN(E) ∼→ VCN(G), again by conditions

(c), (d) of Definition 3.4, (i), the composite E → E/α ∼→ G induces
an outer surjection ΠEz � Πz, where we use the notation Πz ⊆ ΠG
to denote a VCN-subgroup [cf. Definition 2.1, (i)] of ΠG associated to
z ∈ VCN(G). Therefore, in light of the isomorphism verified above be-
tween the semi-graphs of E and G, one may verify easily that the natural
outer homomorphism ΠE → ΠG is surjective. This completes the proof
of the claim (∗1).

For each vertex v ∈ Vert(E) ∼→ Vert(G) [cf. claim (∗1)], it follows
from the assumption that Node(G) �= ∅ that any verticial subgroup
Πv ⊆ ΠG of ΠG associated to a vertex v ∈ Vert(G) is a free pro-Σ
group [cf. [CmbGC], Remark 1.1.3]; thus, there exists a section of the
natural surjection ΠEv � Πv. Now for each vertex v ∈ Vert(G), let
us fix such a section of the natural surjection ΠEv � Πv, hence also
— since the extension ΠEv of Πv by M is central [cf. condition (a) of

Definition 3.4, (i)] — an isomorphism tv : M × Πv
∼→ ΠEv . Let G1 → G

be a connected finite étale Galois covering of G and write E1 def
= E ×G

G1. Then it follows from the claim (∗1) that E1 is connected; moreover,
one may verify easily that the structure of central extension of G by
M on E naturally determines a structure of central extension of G1 by
M on E1, and that for each vertex v ∈ Vert(E) ∼→ Vert(G) and each

vertex w ∈ Vert(E1) ∼→ Vert(G1) that lies over v, the normal closed
subgroup Π(E1)w ⊆ ΠEv corresponds to M × Πw ⊆ M × Πv relative

to the isomorphism tv : M × Πv
∼→ ΠEv fixed above, i.e., we obtain an

isomorphism tw : M ×Πw
∼→ Π(E1)w .

Now for a finite quotient M � Q of M and a connected finite étale
Galois covering G1 → G of G, we shall say that a connected finite étale
covering E2 → E of E satisfies the condition (†Q,G1

) if the following two
conditions are satisfied:

(†1Q,G1
) E2 → E factors through E1 def

= E ×G G1 → E , the resulting
covering E2 → E1 is Galois, and for each vertex v ∈ VCN(E1),
the composite

M ↪→ Π(E1)v → ΠE1
� ΠE1

/ΠE2
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is surjective, with kernel equal to the kernel of M � Q.

(†2Q,G1
) E2 → E is Galois.

Then we claim that

(∗2): for any finite quotient M � Q of M and any
connected finite étale Galois covering G1 → G, there
exists — after possibly replacing G1 → G by a con-
nected finite étale Galois covering of G that factors
through G1 → G — a connected finite étale covering
of E which satisfies the condition (†Q,G1

).

Indeed, let M � Q be a finite quotient of M , G1 → G a connected finite

étale Galois covering of G, and E1 def
= E ×G G1. For each vertex v ∈

Vert(E1) ∼→ Vert(G1) [cf. the above discussion], denote by Π(E1)v � Qv

the quotient of Π(E1)v obtained by forming the composite

Π(E1)v

tv∼←M ×Πv

pr1� M � Q .

Thus, we have a natural isomorphism Q
∼→ Qv. Next, let e be a node of

E1; b, b′ the two distinct branches of e; v, v′ the [not necessarily distinct]
vertices of E1 to which b, b′ abut. Then since the quotient Q [� Qv �
Qv′ ] is finite, one may verify easily that — after possibly replacing G1 →
G by a connected finite étale Galois covering of G that factors through
G1 → G — the kernels of the two composites Π(E1)e ↪→ Π(E1)v � Qv,
Π(E1)e ↪→ Π(E1)v′ � Qv′ — where Π(E1)e ↪→ Π(E1)v , Π(E1)e ↪→ Π(E1)v′
are the natural outer injections corresponding to b, b′, respectively —
coincide. Moreover, if we write Ne ⊆ Π(E1)e for this kernel, then it
follows immediately from condition (b) of Definition 3.4, (i), that the

actions ofQ induced by the natural isomorphismsQ
∼→ Qv

∼← Π(E1)e/Ne,

Q
∼→ Qv′

∼← Π(E1)e/Ne on the connected finite étale Galois covering
of (E1)e corresponding to Ne ⊆ Π(E1)e coincide. Therefore, since the
underlying semi-graph of E1 is finite, by applying this argument to the
various nodes of E1 and then gluing the connected finite étale Galois
coverings of the various (E1)v’s corresponding to the quotients Π(E1)v �
Qv to one another by means of Q-equivariant isomorphisms, we obtain
a connected finite étale Galois covering E2 → E1 which satisfies the
condition (†1Q,G1

).

Write E0
2 → E for the Galois closure of the connected finite étale

covering E2 → E ; thus, since E1 is Galois over E , we have connected
finite étale Galois coverings E0

2 → E2 → E1 of E1. Now it follows
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immediately from the condition (†1Q,G1
) that E2 → E1 induces an iso-

morphism between the underlying semi-graphs. In particular, it fol-
lows from Lemma 3.6 below, in light of the claim (∗1), that the natural
outer homomorphisms ΠE2 ↪→ ΠE1 � ΠG1 induce outer isomorphisms

ΠE2/Π
vert
E2

∼→ ΠE1/Π
vert
E1

∼→ ΠG1/Π
vert
G1

� πtop
1 (G1)

Σ, where we write

“Πvert
(−) ⊆ Π(−)” for the normal closed subgroup of “Π(−)” topologically

normally generated by the verticial subgroups and πtop
1 (G1)

Σ for the
pro-Σ completion of the [discrete] topological fundamental group of the
underlying semi-graph G1 of G1. On the other hand, since for each ver-
tex v ∈ Vert(E) ∼→ Vert(G) and each vertex w ∈ Vert(E1) ∼→ Vert(G1)

that lies over v, the isomorphism tw : M ×Πw
∼→ Π(E1)w arises from the

isomorphism tv : M × Πv
∼→ ΠEv , one may verify easily that the closed

subgroup Π(E2)w ⊆ ΠEv is normal. [Here, we regard w ∈ Vert(E1) as

an element of Vert(E2) by the bijection Vert(E2) ∼→ Vert(E1) induced
by E2 → E1.] In particular, it follows immediately that the connected
finite étale Galois covering E0

2 → E2 arises from a normal open sub-

group of the quotient ΠE2 � ΠE2/Π
vert
E2

∼→ π1(G1)
Σ. Therefore, there

exists a connected finite étale Galois covering G′
1 → G that factors

through G1 → G [and arises from a normal open subgroup of the quo-

tient ΠG1 � πtop
1 (G1)

Σ] such that the connected finite étale covering
E2 ×G1 G′

1 of E is Galois. Now it follows immediately from the fact that
E2 → E satisfies the condition (†1Q,G1

) that E2 ×G1 G′
1 → E satisfies both

conditions (†1Q,G′
1
) and (†2Q,G′

1
), as desired. This completes the proof of

the claim (∗2).
Next, we claim that

(∗3): the composite E → E/α ∼→ G, together with the
composites

M ↪→ ΠEv → ΠE

for v ∈ Vert(E), determine an exact sequence of profi-
nite groups

1 −→M −→ ΠE −→ ΠG −→ 1 .

Indeed, it follows immediately from the claim (∗2) — by arguing as in
the final portion of the proof of (∗2) — that any connected finite étale
Galois covering of E is a subcovering of a covering of E which satisfies
the condition (†Q,G1

) for some finite quotient M � Q of M and some
connected finite étale Galois covering G1 of G. Therefore, the exactness of
the sequence in question follows immediately from the various definitions
involved, together with the claim (∗1). This completes the proof of the
claim (∗3).
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Finally, we claim that

(∗4): the exact sequence of profinite groups

1 −→M −→ ΠE −→ ΠG −→ 1

of (∗3) is central, i.e., if we write ρ : ΠG → Aut(M)
for the representation of ΠG onM determined by this
extension ΠE , then ρ is trivial.

Indeed, it follows immediately from condition (a) of Definition 3.4, (i),
that Πvert

G ⊆ Ker(ρ), where we write Πvert
G ⊆ ΠG for the normal closed

subgroup of ΠG topologically normally generated by the verticial sub-
groups of ΠG . On the other hand, it follows immediately from con-
dition (b) of Definition 3.4, (i), by “parallel transporting” along loops

on G, that the restriction to πtop
1 (G) ⊆ πtop

1 (G)Σ of the representa-

tion [ΠG � ΠG/Πvert
G

∼→] πtop
1 (G)Σ → Aut(M) [cf. Lemma 3.6 below]

induced by ρ — where we write πtop
1 (G) for the [discrete] topological

fundamental group of the semi-graph G and πtop
1 (G)Σ for the pro-Σ

completion of πtop
1 (G) — is trivial. In particular, since the subgroup

πtop
1 (G) ⊆ πtop

1 (G)Σ is dense, the representation ρ is trivial, as desired.
This completes the proof of the claim (∗4), hence also the proof of as-
sertion (i).

Assertion (ii) follows immediately from the various definitions in-
volved. Next, we verify assertion (iii). It follows immediately from
assertion (i), together with Definition 3.4, (iii), that if we write ΠGE

for the pro-Σ fundamental group of GE , then we have a natural exact
sequence of profinite groups

1 −→M −→ ΠGE
−→ ΠG −→ 1 .

On the other hand, it follows immediately from the definition of GE

that one may construct a tautological profinite covering of GE [i.e., a
pro-object of the category B(GE) that appears in the discussion fol-
lowing [SemiAn], Definition 2.1] equipped with a tautological action by
E. In particular, one obtains an outer surjection ΠGE

� E that is
compatible with the respective outer surjections to ΠG . Thus, one con-
cludes from the “Five Lemma” that this outer surjection ΠGE

� E is
an outer isomorphism, as desired. This completes the proof of assertion
(iii). Assertion (iv) follows immediately, in light of assertions (i), (ii),
(iii), from the various definitions involved. This completes the proof of
Lemma 3.5. Q.E.D.
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Lemma 3.6 (Quotients by verticial subgroups). Let H be a
semi-graph of anabelioids. Write ΠH for the pro-Σ fundamental group of
H [i.e., the pro-Σ quotient of the fundamental group of H] and Πvert

H ⊆
ΠH for the normal closed subgroup of ΠH topologically normally gen-
erated by the verticial subgroups of ΠH. Then the natural injection
Πvert

H ↪→ ΠH determines an exact sequence of profinite groups

1 −→ Πvert
H −→ ΠH −→ πtop

1 (H)Σ −→ 1

— where we write πtop
1 (H)Σ for the pro-Σ completion of the [discrete]

topological fundamental group πtop
1 (H) of the underlying semi-graph H

of H.

Proof. This follows immediately from the various definitions in-
volved. Q.E.D.

Theorem 3.7 (Properties of the second cohomology group
with compact supports). Let Σ be a nonempty set of prime num-
bers, G a semi-graph of anabelioids of pro-Σ PSC-type, and M a finitely

generated ẐΣ-module. Then the following hold:

(i) (Change of coefficients) There exists a natural isomor-

phism of ẐΣ-modules

H2
c (G,M)

∼−→ H2
c (G, ẐΣ)⊗

ẐΣ M

that is functorial with respect to isomorphisms of the pair
(G,M). If, moreover, Cusp(G) = ∅, then there exists a natu-

ral isomorphism of ẐΣ-modules

H2
c (G,M)

∼−→ H2(G,M)

that is functorial with respect to isomorphisms of the pair
(G,M).

(ii) (Structure as an abstract profinite group) The second co-
homology group with compact supports H2

c (G,M) of G is [non-
canonically] isomorphic to M .

(iii) (Synchronization with respect to generization) Let S ⊆
Node(G) be a subset of Node(G). Then the specialization

outer isomorphism ΦG�S
: ΠG�S

∼→ ΠG with respect to S [cf.
Definition 2.10] determines a natural isomorphism

H2
c (G,M)

∼−→ H2
c (G�S ,M)
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that is functorial with respect to isomorphisms of the triple
(G, S,M).

(iv) (Synchronization with respect to “surgery”) Let H be
a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)] of G,
S ⊆ Node(G|H) [cf. Definition 2.2, (ii)] a subset of Node(G|H)
that is not of separating type [cf. Definition 2.5, (i)], and
T ⊆ Cusp((G|H)�S) [cf. Definition 2.5, (ii)] an omittable [cf.
Definition 2.4, (i)] subset of Cusp((G|H)�S). Then there exists
a natural isomorphism — given by “extension by zero”
—

H2
c (((G|H)�S)•T ,M)

∼−→ H2
c (G,M)

[cf. Definition 2.4, (ii)] that is functorial with respect to iso-
morphisms of the quintuple (G,H, S, T,M). In particular, for
each vertex v ∈ Vert(G) of G, there exists a natural isomor-

phism of ẐΣ-modules

H2
c (v,M)

∼−→ H2
c (G,M)

[cf. Remark 2.5.1, (ii)] that is functorial with respect to iso-
morphisms of the triple (G, v,M).

(v) (Homomorphisms induced by finite étale coverings) Let
H → G be a connected finite étale covering of G. Then the
image of the natural homomorphism

H2
c (G,M) −→ H2

c (H,M)

is given by

[ΠG : ΠH] ·H2
c (H,M) .

Proof. Assertion (iii) follows immediately from condition (1) of
Proposition 2.9, (i).

Next, we verify assertions (i), (ii) in the case where Cusp(G) �= ∅.
The existence of a natural isomorphism H2

c (G,M)
∼→ H2

c (G, ẐΣ)⊗
ẐΣ M

follows immediately from Lemma 3.3. On the other hand, the fact that
H2

c (G,M) is [noncanonically] isomorphic toM follows immediately from
Lemma 3.3, together with the following well-known facts [cf. [CmbGC],
Remark 1.1.3]:

(A) ΠG is a free pro-Σ group.
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(B) For any cusp e0 ∈ Cusp(G) of G, the natural homomorphism

of ẐΣ-modules ⊕
e∈Cusp(G)\{e0}

Πe −→ Πab
G

is a split injection of free ẐΣ-modules [cf. the discussion entitled
“Topological groups” in §0], and its image contains the image
of Πe0 in Πab

G .

This completes the proof of assertions (i), (ii) in the case where
Cusp(G) �= ∅.

Next, we verify assertions (i), (ii) in the case where Cusp(G) = ∅.
The existence of a natural isomorphism H2

c (G,M)
∼→ H2(G,M) is well-

known [cf., e.g., [NSW], Theorem 2.7.7]. Now it follows from assertion
(iii) that to verify assertions (i), (ii) in the case where Cusp(G) = ∅, we
may assume without loss of generality — by replacing G by G�Node(G)
— that Node(G) = ∅. Then the existence of a natural isomorphism

H2
c (G,M)

∼→ H2
c (G, ẐΣ) ⊗

ẐΣ M and the fact that H2
c (G,M) is [non-

canonically] isomorphic to M follow immediately from the existence of

a natural isomorphism H2
c (G,M)

∼→ H2(G,M) and the fact that any
compact Riemann surface of genus �= 0 is a “K(π, 1)” space [i.e., its uni-
versal covering is contractible], together with the well-known structure
of the second cohomology group of a compact Riemann surface. This
completes the proof of assertions (i), (ii) in the case where Cusp(G) = ∅.

Next, we verify assertion (iv) in the case where H = G and S = ∅,
i.e., ((G|H)�S)•T = G•T . Thus, suppose that H = G and S = ∅. Now

define a homomorphism of ẐΣ-modules

H2
c (G•T ,M) −→ H2

c (G,M)

as follows: Let G̃•T → G•T be a universal covering of G•T which is

compatible [in the evident sense] with the universal covering G̃ → G
of G, s• a section of the natural surjection Cusp(G̃•T ) � Cusp(G•T ),
and [E•, (ι•e : Πs•(e) → E•)e∈Cusp(G•T )] ∈ H2

c (G•T ,M) an element of

H2
c (G•T ,M). Write E for the fiber product of the surjection E• � ΠG•T

and the natural surjection ΠG � ΠG•T [arising from the compatibility
of the respective universal coverings]. Next, we introduce notation as
follows:

• for e ∈ Cusp(G•T ) (= Cusp(G) \ T ⊆ Cusp(G)), denote by
ιe : Πe → E — where we use the notation Πe ⊆ ΠG to de-
note an edge-like subgroup of ΠG associated to e such that the
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composite Πe ↪→ ΠG � ΠG•T determines an isomorphism of
Πe with Πs•(e) ⊆ ΠG•T — the section over Πe naturally deter-
mined by the composite

Πe
∼−→ Πs•(e)

ι•e−→ E• ,

and

• for e ∈ Cusp(G) \ Cusp(G•T ) (= T ⊆ Cusp(G)), denote by
ιe : Πe → E—where we use the notation Πe ⊆ ΠG to denote an
edge-like subgroup of ΠG associated to e— the section over Πe

naturally determined by the trivial homomorphism Πe → E•.

Then it follows immediately from the various definitions involved that
the assignment “[E•, (ι•e)e∈Cusp(G•T )] �→ (E, (ιe)e∈Cusp(G))” determines a

homomorphism of ẐΣ-modules

H2
c (G•T ,M) −→ H2

c (G,M) ,

as desired.
Next, we verify that this homomorphism H2

c (G•T ,M) → H2
c (G,M)

is an isomorphism. First, let us observe that it follows from assertion (ii)
that, to verify that the homomorphism in question is an isomorphism, it
suffices to verify that it is surjective. The rest of the proof of assertion
(iv) in the case where H = G and S = ∅ is devoted to verifying this
surjectivity. To verify the desired surjectivity, by induction on the car-
dinality T � of the finite set T , we may assume without loss of generality
that T � = 1, i.e., T = {e0} for some e0 ∈ Cusp(G).

To verify the desired surjectivity, let [E, (ιe)e∈Cusp(G)] ∈ H2
c (G,M)

be an element of H2
c (G,M). Then since ΠG is a free pro-Σ group, there

exists a continuous section ΠG → E of the surjection E � ΠG , hence also
— since the extension E of ΠG is central— an isomorphismM×ΠG

∼→ E.
Write ΠG � Π for the maximal cuspidally central quotient [cf. [AbsCsp],
Definition 1.1, (i)] relative to the surjection ΠG � ΠG•T , EΠ for the
quotient of E by the normal closed subgroup of E corresponding to
{1} × Ker(ΠG � Π) ⊆ M × ΠG [thus, EΠ

∼← M × Π], and N ⊆ EΠ for
the image of the composite

Πs(e0)

ιe0
↪→ E � EΠ .

Now we claim that N ⊆ EΠ is contained in the center Z(EΠ) of EΠ,
hence also normal in EΠ. Indeed, since the composite

Πs(e0) ↪→ ΠG � Π
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is injective, and its image coincides with the kernel of the natural sur-
jection Π � ΠG•T , it holds that the image of the composite

Πs(e0)

ιe0
↪→ E � EΠ

∼←M ×Π

is contained in M × Ker(Π → ΠG•T ). On the other hand, since the
extension E of ΠG is central, it follows from the definition of the quotient

Π of ΠG that the image of M ×Ker(Π � ΠG•T ) in EΠ via M ×Π
∼→ EΠ

is contained in the center Z(EΠ) of EΠ. This completes the proof of the
above claim.

Now it follows from the definition of N ⊆ EΠ, together with the
above claim, that we obtain a commutative diagram of profinite groups

1 −−−−→ M −−−−→ E −−−−→ ΠG −−−−→ 1∥∥∥ ⏐⏐� ⏐⏐�
1 −−−−→ M −−−−→ EΠ/N −−−−→ ΠG•T −−−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are
surjective. In particular, we obtain an extension EΠ/N of ΠG•T by M ,
which is central since the extension E is central. For e ∈ Cusp(G•T ) =
Cusp(G) \ {e0}, write Π•

e ⊆ ΠG•T for the edge-like subgroup of ΠG•T
[associated to e ∈ Cusp(G•T )] determined by the image of Πs(e) ⊆ ΠG
and ι•e for the section Π•

e → EΠ/N over Π•
e determined by ιe : Πs(e) → E.

Then it follows immediately from the various definitions involved that
the image of

[EΠ/N, (ι
•
e)e′∈Cusp(G•T )] ∈ H2

c (G•T ,M)

in H2
c (G,M) is [E, (ιe)e∈Cusp(G)] ∈ H2

c (G,M). This completes the proof
of the desired surjectivity and hence of assertion (iv) in the case where
H = G and S = ∅.

Next, to complete the proof of assertion (iv) in the general case,
one verifies immediately that it suffices to verify assertion (iv) in the
case where T = ∅, i.e., ((G|H)�S)•T = (G|H)�S . Thus, suppose that

T = ∅. Write H def
= (G|H)�S . To define a natural homomorphism of ẐΣ-

modules H2
c (H,M) → H2

c (G,M), let H̃ → H be a universal covering of
H which is compatible [in the evident sense] with the universal covering

G̃ → G of G, sH a section of the natural surjection Cusp(H̃) � Cusp(H),
and [EH, (ιHe : ΠsH(e) → EH)e∈Cusp(H)] ∈ H2

c (H,M) an element of

H2
c (H,M). Since the extension EH of ΠH by M is central, the sec-

tion ιHe : ΠsH(e) → EH naturally determines an isomorphism

M ×ΠsH(e)
∼−→ EH ×ΠH ΠsH(e)
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of the direct product M ×ΠsH(e) with the fiber product EH×ΠH ΠsH(e)

of the surjection EH � ΠH and the natural inclusion ΠsH(e) ↪→ ΠH.
Write GEH for the semi-graph of anabelioids associated to the central
extension EH [cf. Definition 3.4, (ii)]. Then one may define a central
extension of G by M

(E , α, β : E/α ∼→ G)
[cf. Definition 3.4, (i)] whose restriction to H, relative to the isomor-

phism β : E/α ∼→ G, is isomorphic to the semi-graph of anabelioids
GEH as follows: We take the underlying semi-graph of E to be the
underlying semi-graph of G; for each vertex v ∈ Vert(G|H), we take
the anabelioid Ev of E corresponding to the vertex v ∈ Vert(G|H) to
be the anabelioid (GEH)v of GEH corresponding to the vertex v; for
each vertex v ∈ Vert(G) \ Vert(G|H), we take the anabelioid Ev of E
corresponding to v ∈ Vert(G) \ Vert(G|H) to be the anabelioid associ-
ated to the profinite group M × Πv. Then the above isomorphisms
M × ΠsH(e)

∼→ EH ×ΠH ΠsH(e) induced by the various ιHe ’s naturally
determine the remaining data [i.e., consisting of anabelioids associated
to edges and morphisms of anabelioids associated to branches] necessary
to define a semi-graph of anabelioids E which is naturally equipped with
a structure of central extension of G by M whose restriction to H is
naturally isomorphic to the semi-graph of anabelioids GEH , as desired.

Now it follows from Lemma 3.5, (i), that if we denote by ΠE the
pro-Σ fundamental group of E — i.e., the maximal pro-Σ quotient of the
fundamental group of E — then ΠE is a central extension of ΠG by M .
Thus, it follows from the equivalences of categories of Lemma 3.5, (iv),
that the sections ιHe — where e ranges over the cusps of G that abut to a
vertex of G|H — and the tautological sections Πe′ ↪→M ×Πe′ = ΠEe′ —
where e′ ranges over the cusps of G that do not abut to a vertex of G|H —
naturally determine an equivalence class [ΠE , (ιe)e∈Cusp(G)] ∈ H2

c (G,M).
In particular, we obtain a map

H2
c (H,M) −→ H2

c (G,M)

by assigning [EH, (ιHe )e∈Cusp(H)] �→ [ΠE , (ιe)e∈Cusp(G)]. Moreover, it fol-
lows immediately from the various definitions involved that this map is

a homomorphism of ẐΣ-modules, as desired.
Next, we verify that this homomorphism H2

c (H,M) → H2
c (G,M)

is an isomorphism. Since, for any vertex v ∈ Vert(G|H), the natural
morphism G|v → G factors through (G|H)�S = H → G, by replacing H
by G|v [cf. Remark 2.5.1, (ii)], we may assume without loss of generality
that H = G|v. Moreover, if Node(G) = ∅, then assertion (iv) in the
case where T = ∅ is immediate; thus, we may assume without loss
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of generality that Node(G) �= ∅. On the other hand, it follows from
assertion (ii) that to verify that the homomorphism in question is an
isomorphism, it suffices to verify that it is surjective. The rest of the
proof of assertion (iv) in the case where T = ∅ is devoted to verifying
the surjectivity of the homomorphism H2

c (v,M) → H2
c (G,M).

Let J be a semi-graph of anabelioids of pro-Σ PSC-type such that
there exist a vertex w ∈ Vert(J ) and an “omittable” cusp e ∈ C(w)
[i.e., a cusp that abuts to w such that {e} is omittable] such that J•{e}
is isomorphic to G, and, moreover, the isomorphism J•{e}

∼→ G induces

an isomorphism of (J |w)•{e} ∼→ G|v. [Note that one may verify easily
that such a semi-graph of anabelioids of pro-Σ PSC type always exists.]
Then it follows immediately from assertion (iv) in the case where H = G

and S = ∅, together with the various definitions involved, that we have
a commutative diagram

H2
c (v,M)

∼−−−−→ H2
c ((J |w)•{e},M)

∼−−−−→ H2
c (w,M)⏐⏐� ⏐⏐�

H2
c (G,M)

∼−−−−→ H2
c (J•{e},M)

∼−−−−→ H2
c (J ,M)

— where the left-hand horizontal arrows are isomorphisms induced by
the isomorphisms (J |w)•{e} ∼→ G|v, J•{e}

∼→ G, respectively, and the
right-hand horizontal arrows are isomorphisms obtained by applying as-
sertion (iv) in the case where H = G and S = ∅. In particular, to verify
the desired surjectivity of the homomorphism H2

c (v,M) → H2
c (G,M),

by replacing G (respectively, v) by J (respectively, w), we may assume
without loss of generality that C(v) �= ∅.

To verify the desired surjectivity of the homomorphism H2
c (v,M) →

H2
c (G,M) in the case where C(v) �= ∅, let [E, (ιe)e∈Cusp(G)] ∈ H2

c (G,M)

be an element of H2
c (G,M). Now it follows from Lemma 3.3, together

with the assumption that C(v) �= ∅, that we have two exact sequences

of ẐΣ-modules

Hom
ẐΣ(Π

ab
G ,M) −→

⊕
e∈Cusp(G)

Hom
ẐΣ(Πe,M) −→ H2

c (G,M) −→ 0 ;

Hom
ẐΣ(Π

ab
G|v ,M) −→

⊕
e∈Cusp(G|v)

Hom
ẐΣ(Πe,M) −→ H2

c (v,M) −→ 0 .

Let e0 ∈ C(v) be a cusp of G that abuts to v. Here, note that it fol-
lows immediately from the definition of G|v that e0 may be regarded
as a cusp of G|v. Then it follows immediately from the facts (A), (B)
used in the proof of assertions (i), (ii) in the case where Cusp(G) �= ∅
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that there exists a lifting (φe)e∈Cusp(G) ∈ ⊕
e∈Cusp(G) HomẐΣ(Πe,M)

of [E, (ιe)e∈Cusp(G)] ∈ H2
c (G,M) [with respect to the first exact se-

quence of the above display] such that if e �= e0, then φe = 0. Write
(ψe)e∈Cusp(G|v) ∈

⊕
e∈Cusp(G|v) HomẐΣ(Πe,M) for the element such that

ψe0 = φe0 , ψe = 0 for e �= e0. Then it follows immediately from
the definitions of the above exact sequences and the homomorphism
H2

c (v,M) → H2
c (G,M) in question that the image of (ψe)e∈Cusp(G|v) ∈⊕

e∈Cusp(G|v) HomẐΣ(Πe,M) inH2
c (v,M) is mapped to [E, (ιe)e∈Cusp(G)]

∈ H2
c (G,M) via the homomorphism H2

c (v,M) → H2
c (G,M) in question.

This completes the proof of assertion (iv) in the case where T = ∅, hence
also of assertion (iv) in the general case.

Finally, we verify assertion (v). If Cusp(G) = ∅, then it follows im-
mediately from a similar argument to the argument used in the proof
of assertions (i), (ii) in the case where Cusp(G) = ∅, together with the
well-known structure of the second cohomology group of a compact Rie-
mann surface, that assertion (v) holds. Next, suppose that Cusp(G) �= ∅.
Write G� for the double of G [cf. [CmbGC], Proposition 2.2, (i)] — i.e.,
the analogue in the theory of semi-graphs of anabelioids of pro-Σ PSC-
type to the well-known “double” of a Riemann surface with boundary.
Write H� for the double of H. Then it follows from the various defini-
tions involved that the connected finite étale covering H → G determines
a connected finite étale covering H� → G� of degree [ΠG : ΠH]. Next,
let us observe G (respectively, H) may be naturally identified with the
restriction [cf. Definition 2.2, (ii)] of G� (respectively, H�) to a suit-
able sub-semi-graph of PSC-type of the underlying semi-graph of G�
(respectively, H�). Thus, it follows from assertion (iv) that we have a

commutative diagram of ẐΣ-modules

H2
c (G,M)

∼−−−−→ H2
c (G�,M)⏐⏐� ⏐⏐�

H2
c (H,M)

∼−−−−→ H2
c (H�,M)

— where the horizontal arrows are the isomorphisms of assertion (iv),
and the vertical arrows are the homomorphisms induced by the con-
nected finite étale coverings H → G, H� → G�, respectively — and
hence that assertion (v) in the case where Cusp(G) �= ∅ follows immedi-
ately from assertion (v) in the case where Cusp(G) = ∅. This completes
the proof of assertion (v). Q.E.D.
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Definition 3.8.

(i) We shall write

ΛG
def
= Hom

ẐΣ(H
2
c (G, ẐΣ), ẐΣ)

and refer to ΛG as the cyclotome associated to G. For a vertex
v ∈ Vert(G) of G, we shall write

Λv
def
= Hom

ẐΣ(H
2
c (v, Ẑ

Σ), ẐΣ)

and refer to Λv as the cyclotome associated to v ∈ Vert(G).
Note that it follows from Theorem 3.7, (ii), that the cyclotomes

ΛG and Λv are free ẐΣ-modules of rank 1.

(ii) We shall write

χG : Aut(G) −→ Aut(ΛG) � (ẐΣ)∗

for the natural homomorphism induced by the natural action of

Aut(G) on H2
c (G, ẐΣ) and refer to χG as the pro-Σ cyclotomic

character of G. For a vertex v ∈ Vert(G) of G, we shall write

χv
def
= χG|v : Aut(G|v) −→ Aut(Λv) � (ẐΣ)∗

and refer to χv as the pro-Σ cyclotomic character of v.

Remark 3.8.1. One verifies easily that if l ∈ Σ, then the composite

Aut(G) χG→ (ẐΣ)∗ � Z∗
l

coincides with the pro-l cyclotomic character of Aut(G) defined in the
statement of [CmbGC], Lemma 2.1.

Corollary 3.9 (Synchronization of cyclotomes). Let Σ be a
nonempty set of prime numbers and G a semi-graph of anabelioids of
pro-Σ PSC-type. Then the following hold:

(i) (Synchronization with respect to generization) Let S ⊆
Node(G) be a subset of Node(G). Then the specialization outer
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isomorphism ΦG�S
: ΠG�S

∼→ ΠG with respect to S [cf. Defini-
tion 2.10] determines a natural isomorphism

ΛG�S

∼−→ ΛG

that is functorial with respect to isomorphisms of the pair
(G, S).

(ii) (Synchronization with respect to “surgery”) Let H be
a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)] of G,
S ⊆ Node(G|H) [cf. Definition 2.2, (ii)] a subset of Node(G|H)
that is not of separating type [cf. Definition 2.5, (i)], and
T ⊆ Cusp((G|H)�S) [cf. Definition 2.5, (ii)] an omittable [cf.
Definition 2.4, (i)] subset of Cusp((G|H)�S). Then there exists
a natural isomorphism — given by “extension by zero”
—

ΛG
∼−→ Λ((G|H)�S)•T

[cf. Definition 2.4, (ii)] that is functorial with respect to iso-
morphisms of the quadruple (G,H, S, T ). In particular, [by tak-
ing the inverse of this isomorphism] we obtain, for each vertex

v ∈ Vert(G) of G, a natural isomorphism of ẐΣ-modules

syn v : Λv
∼−→ ΛG

that is functorial with respect to isomorphisms of the pair
(G, v).

(iii) (Synchronization with respect to finite étale coverings)
Let H → G be a connected finite étale covering of G. Then there
exists a natural isomorphism

ΛH
∼−→ ΛG

that is functorial with respect to isomorphisms of the pair
(G,H).

(iv) (Synchronization of cyclotomic characters) Let v ∈
Vert(G) be a vertex of G and α ∈ Aut{v}(G) [cf. Definition 2.6,
(i)]. Then it holds that

χG(α) = χv(αG|v )

[cf. Definitions 2.14, (ii); 3.8, (ii); Remark 2.5.1, (ii)].
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(v) (Synchronization associated to branches) Let e ∈
Edge(G) be an edge of G, b a branch of e that abuts to a vertex
v ∈ V(e), and Πe ⊆ ΠG an edge-like subgroup of ΠG associated
to e ∈ Edge(G). Then there exists a natural isomorphism

syn b : Πe
∼−→ Λv

that is functorial with respect to isomorphisms of the quadru-
ple (G, b, e, v).

(vi) (Difference between two synchronizations associated
to the two branches of a node) Let e ∈ Node(G) be a
node of G with branches b1 �= b2 that abut to vertices v1, v2 ∈
Vert(G), respectively. Then the two composites

Πe

syn b1∼−→ Λv1

syn v1∼−→ ΛG ; Πe

syn b2∼−→ Λv2

syn v2∼−→ ΛG

differ by the automorphism of ΛG given by multiplication by

−1 ∈ ẐΣ.

Proof. Assertion (i) (respectively, (ii)) follows immediately from
Theorem 3.7, (iii) (respectively, Theorem 3.7, (iv)). Assertion (iv) fol-
lows immediately from assertion (ii).

Next, we verify assertion (iii). It follows immediately from Theo-

rem 3.7, (v), that the homomorphism of ẐΣ-modules ΛH → ΛG obtained

by applying the functor “Hom
ẐΣ(−, ẐΣ)” to the induced homomorphism

H2
c (G, ẐΣ) → H2

c (H, ẐΣ) and dividing by the index [ΠG : ΠH] is an iso-
morphism. This completes the proof of assertion (iii).

Next, we verify assertion (v). First, we observe that to verify as-
sertion (v), by replacing G by G|v and e ∈ Edge(G) by the cusp of
G|v corresponding to b, we may assume without loss of generality that

e ∈ Cusp(G). Then we have homomorphisms of ẐΣ-modules

Hom
ẐΣ(Πe,Πe) ↪→ ⊕

e′∈Cusp(G) HomẐΣ(Πe′ ,Πe)

� H2
c (G,Πe)

∼→ Hom
ẐΣ(ΛG ,Πe)

— where the first arrow is the natural inclusion into the component
indexed by e, and the second arrow is the surjection appearing in the
exact sequence of Lemma 3.3 in the case where M = Πe. Here, we note
that it follows immediately from the facts (A), (B) used in the proof of
Theorem 3.7, (i), (ii), that the composite of these homomorphisms is an



72 Yuichiro Hoshi and Shinichi Mochizuki

isomorphism. Therefore, we obtain a natural isomorphism

syn b : Πe
∼−→ ΛG

by forming the inverse of the image of the identity automorphism of
Πe via the composite of the homomorphisms of the above display. This
completes the proof of assertion (v).

Finally, we verify assertion (vi). First, we observe that one may
verify easily that there exist

• a semi-graph of anabelioids of pro-Σ PSC-type H†,

• a sub-semi-graph of PSC-type K† of the underlying semi-graph
of H†,

• an omittable subset S† ⊆ Cusp((H†)|K†), and

• an isomorphism

((H†)|K†)•S†
∼−→ G

such that the node eH† ∈ Node(H†) of H† corresponding, relative to

the isomorphism ((H†)|K†)•S†
∼→ G, to the node e ∈ Node(G) is not of

separating type. [Note that it follows immediately from the various def-

initions involved that Node(G) ∼← Node(((H†)|K†)•S†) may be regarded
as a subset of Node(H†).] Thus, it follows immediately from assertions
(i), (ii) — by replacing G (respectively, e) by (H†)�Node(H†)\{eH†} (re-

spectively, eH†) — that to verify assertion (vi), we may assume without
loss of generality that Node(G) = {e}, and that e is not of separating
type.

Next, we observe that one may verify easily that there exists a semi-
graph of anabelioids of pro-Σ PSC-type H‡ such that

• Node(H‡) consists of precisely two elements eH‡ , e′H‡ ;

• V(eH‡) consists of precisely one element vH‡ of type (0, 3) [cf.
Definition 2.3, (iii)].

• e′H‡ is of separating type;

• (H‡)�{e′H‡} is isomorphic to G.
Thus, if we write K‡ for the unique sub-semi-graph of PSC-type of the
underlying semi-graph of H‡ whose set of vertices = {vH‡}, then it fol-
lows immediately from assertions (i), (ii) — by replacing G (respectively,
e) by H‡|K‡ (respectively, eH‡) — that to verify assertion (vi), we may
assume without loss of generality that Node(G) = {e}, that e is not of
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separating type [so Vert(G) consists of precisely one element], and that
G is of type (1, 1).

Write v ∈ Vert(G) for the unique vertex of G. Note that it follows
immediately from the various assumptions on G that G|v is of type (0, 3).
Write e1, e2 ∈ Cusp(G|v) for the cusps of G|v corresponding, respectively,
to the two branches b1, b2 of the node e; write e3 ∈ Cusp(G|v) for the
unique element of Cusp(G|v) \ {e1, e2}. Then since G|v is of type (0, 3),
there exists a graphic isomorphism of G|v with the semi-graph of an-
abelioids of pro-Σ PSC-type [without nodes] determined by the tripod
[cf. the discussion entitled “Curves” in §0] P1

k \ {0, 1,∞} over an alge-
braically closed field k of characteristic �∈ Σ such that the cusps e1, e2 of
G|v correspond to the cusps 0, ∞ of P1

k \ {0, 1,∞}, respectively, relative
to the graphic isomorphism. Thus, by considering the automorphism of
P1
k \ {0, 1,∞} over k given by “t �→ 1/t”, we obtain an automorphism
τv ∈ Aut(G|v) of G|v that maps e1 �→ e2, e2 �→ e1. Moreover, since
this automorphism of P1

k \ {0, 1,∞} induces an automorphism of the
stable log curve of type (1, 1) obtained by identifying the cusps 0 and
∞ of P1

k \ {0, 1,∞}, we also obtain an automorphism τG ∈ Aut(G) of
G. Note that it follows immediately from the definition of τv, together
with the well-known structure of the étale fundamental group of the
tripod P1

k \ {0, 1,∞}, that the automorphism τv induces the identity
automorphism of the anabeloid (G|v)e3 corresponding to e3.

Next, let us observe that it follows immediately from the definition
of G|v, together with the proof of assertion (v), that for i = 1, 2, there

exists a natural isomorphism Πe
∼→ Πei — where we use the notations

Πe, Πei to denote edge-like subgroups of ΠG , ΠG|v associated to e, ei,
respectively — such that the composite

Πe
∼−→ Πei

syn b′i∼−→ Λv [= ΛG|v ]
syn v∼−→ ΛG

— where we write b′i for the [unique] branch of ei — coincides with the
composite in question

Πe

syn bi∼−→ Λv

syn v∼−→ ΛG .

Next, let us observe that it follows immediately from the functori-
ality portion of assertion (v) that the automorphisms τv, τG induce a
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commutative diagram of ẐΣ-modules

Πe
∼−−−−→ Πe1

syn b′i−−−−→ Λv [= ΛG|v ]
syn v−−−−→ ΛG

�
⏐⏐� �

⏐⏐� ⏐⏐��
⏐⏐��

Πe
∼−−−−→ Πe2

syn b′2−−−−→ Λv [= ΛG|v ]
syn v−−−−→ ΛG

— where the vertical arrows are the isomorphisms induced by the au-
tomorphisms τv, τG . Now by considering the well-known local structure
of a stable log curve in a neighborhood of a node, one may verify easily
that the left-hand vertical arrow in the above diagram is the automor-

phism of Πe given by multiplication by −1 ∈ ẐΣ. Thus, to complete the
verification of assertion (vi), it suffices, in light of the commutativity
of the above diagram, to verify that τv ∈ Aut(G|v) induces the identity
automorphism of ΛG|v = Λv. On the other hand, this follows immedi-
ately from assertion (v), applied to the cusp e3, together with the fact
that the automorphism τv induces the identity automorphism of (G|v)e3 .
This completes the proof of assertion (vi). Q.E.D.

§4. Profinite Dehn multi-twists

In the present §, we introduce and discuss the notion of a profinite
Dehn multi-twist. Although our definition of this notion [cf. Defini-
tion 4.4 below] is entirely group-theoretic in nature, our main result
concerning this notion [cf. Theorem 4.8 below] asserts, in effect, that
this group-theoretic notion coincides with the usual geometric notion of
a “Dehn multi-twist”.

Let Σ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-Σ PSC-type. Write G for the underlying semi-graph

of G, ΠG for the [pro-Σ] fundamental group of G, and G̃ → G for the
universal covering of G corresponding to ΠG .

Definition 4.1. We shall say that G is cyclically primitive (respec-
tively, noncyclically primitive) if Node(G)� = 1, and the unique node
of G is not of separating type (respectively, is of separating type) [cf.
Definition 2.5, (i)].
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Remark 4.1.1. If G is cyclically primitive (respectively, noncycli-
cally primitive), then Vert(G)� = 1 (respectively, 2), and the [discrete]

topological fundamental group πtop
1 (G) of the underlying semi-graph G

of G is noncanonically isomorphic to Z (respectively, is trivial).

Lemma 4.2 (Structure of the fundamental group of a non-
cyclically primitive semi-graph of anabelioids of PSC-type).
Suppose that G is noncyclically primitive [cf. Definition 4.1]. Let
v, w ∈ Vert(G) be the two distinct vertices of G [cf. Remark 4.1.1];

ẽ, ṽ, w̃ ∈ VCN(G̃) elements of VCN(G̃) such that ṽ(G) = v, w̃(G) = w,
and, moreover, ẽ ∈ N (ṽ) ∩ N (w̃). Then the natural inclusions Πẽ, Πṽ,
Πw̃ ↪→ ΠG determine an isomorphism of pro-Σ groups

lim−→(Πṽ ←↩ Πẽ ↪→ Πw̃)
∼−→ ΠG

— where the inductive limit is taken in the category of pro-Σ groups.

Proof. This may be thought of as a consequence of the “van Kam-
pen Theorem” in elementary algebraic topology. At a more combinato-
rial level, one may reason as follows: It follows immediately from the
simple structure of the underlying semi-graph G that there is a natural
equivalence of categories between

• the category of finite sets with continuous ΠG-action [and ΠG-
equivariant morphisms] and

• the category of finite sets with continuous actions of Πṽ, Πw̃

which restrict to the same action on Πẽ [and Πṽ-,
Πw̃-equivariant morphisms].

The isomorphism between ΠG and the inductive limit appearing in the
statement of Lemma 4.2 now follows formally from this equivalence of
categories. Q.E.D.

Lemma 4.3 (Infinite cyclic tempered covering of a cyclically
primitive semi-graph of anabelioids of PSC-type). Suppose that

G is cyclically primitive [cf. Definition 4.1]. Denote by πtemp
1 (G) the

tempered fundamental group of G [cf. the discussion preceding [SemiAn],

Proposition 3.6], by πtop
1 (G) [� Z — cf. Remark 4.1.1] the [discrete]

topological fundamental group of the underlying semi-graph G of G, and
by G∞ → G the connected tempered covering of G corresponding to the
natural surjection πtemp

1 (G) � πtop
1 (G) [where we refer to [SemiAn], §3,
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concerning tempered coverings of a semi-graph of anabelioids]. Then the
following hold:

(i) (Exact sequence) The natural morphism G∞ → G induces
an exact sequence

1 −→ πtemp
1 (G∞) −→ πtemp

1 (G) −→ πtop
1 (G) −→ 1 .

Moreover, the subgroup πtemp
1 (G∞) ⊆ πtemp

1 (G) of πtemp
1 (G) is

characteristic.

(ii) (Automorphism groups) There exist natural injective ho-
momorphisms

Aut|grph|(G) ↪→ Aut|grph|(G∞) , πtop
1 (G) ↪→ Aut(G∞)

— where we write Aut|grph|(G∞) for the group of automor-
phisms of G∞ that induce the identity automorphism of the
underlying semi-graph of G∞. Moreover, the centralizer of

πtop
1 (G) in Aut|grph|(G∞) satisfies the equality

ZAut|grph|(G∞)(π
top
1 (G)) = Aut|grph|(G) .

(iii) (Action of the fundamental group of the underlying

semi-graph) Let γ∞ ∈ πtop
1 (G) ⊆ Aut(G∞) [cf. (ii)] be a

generator of πtop
1 (G) � Z. Write Vert(G∞), Node(G∞), and

Cusp(G∞) for the sets of vertices, nodes [i.e., closed edges],
and cusps [i.e., open edges] of G∞, respectively. Then there
exist bijections

V : Z
∼−→ Vert(G∞) , N : Z

∼−→ Node(G∞) ,

C : Z× Cusp(G) ∼−→ Cusp(G∞)

such that, for each a ∈ Z,

• the set of edges that abut to the vertex V (a) is equal to
the disjoint union of {N(a), N(a+ 1)} and {C(a, z) | z ∈
Cusp(G)};

• the automorphism of Vert(G∞) (respectively, Node(G∞);
Cusp(G∞)) induced by γ∞ ∈ Aut(G∞) maps V (a) (respec-
tively, N(a); C(a, z)) to V (a+1) (respectively, N(a+1);
C(a+ 1, z)).
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(iv) (Restriction to a finite sub-semi-graph) Let a ≤ b ∈ Z be
integers. Denote by G[a,b] the [uniquely determined] sub-
semi-graph of PSC-type [cf. Definition 2.2, (i)] of the under-
lying semi-graph of G∞ such that the set of vertices of G[a,b]

is equal to {V (a), V (a + 1), · · · , V (b)} [cf. (iii)]; denote by
G[a,b] the semi-graph of anabelioids obtained by restricting G∞
to G[a,b] [cf. the discussion preceding [SemiAn], Definition 2.2].
Then G[a,b] is a semi-graph of anabelioids of pro-Σ PSC-
type. Moreover, G[a,a+1] is noncyclically primitive.

(v) (Restriction to a sub-semi-graph having precisely one
vertex) Let a ≤ c ≤ b ∈ Z be integers. Then the natural mor-
phism of semi-graphs of anabelioids G[c,c] → G[a,b] [cf. (iv)] de-

termines an isomorphism G[c,c]
∼→ G[a,b]|V (c) — where we regard

V (c) ∈ Vert(G∞) as a vertex of G[a,b]. Moreover, if we write
v ∈ Vert(G) for the unique vertex of G [cf. Remark 4.1.1],
then the composite of natural morphisms of semi-graphs of an-
abelioids G[c,c] → G∞ → G determines an isomorphism of G[c,c]

with G|v.
(vi) (Natural isomorphisms between restrictions to finite

sub-semi-graphs) Let a ≤ b ∈ Z be integers and γ∞ ∈
πtop
1 (G) ⊆ Aut(G∞) the automorphism of G∞ appearing in

(iii). Then γ∞ determines an isomorphism G[a,b]
∼→ G[a+1,b+1].

Proof. First, we verify assertion (i). To show that the natural
morphism G∞ → G induces an exact sequence

1 −→ πtemp
1 (G∞) −→ πtemp

1 (G) −→ πtop
1 (G) −→ 1 ,

it suffices to verify that every tempered covering of G∞ determines, via
the morphism G∞ → G, a tempered covering of G. But this follows
immediately, in light of the definition of a tempered covering, from the
finiteness of the underlying semi-graph G and the topologically finitely
generated nature of the verticial subgroups of the tempered fundamental
group πtemp

1 (G∞) of G∞. On the other hand, the fact that the subgroup

πtemp
1 (G∞) ⊆ πtemp

1 (G) is characteristic follows immediately from the

observation that the quotient πtemp
1 (G) � πtemp

1 (G)/πtemp
1 (G∞) may be

characterized as the maximal discrete free quotient of πtemp
1 (G) [cf. the

argument of [André], Lemma 6.1.1]. This completes the proof of asser-
tion (i).

Next, we verify assertion (ii). The existence of a natural injec-

tion πtop
1 (G) ↪→ Aut(G∞) follows immediately from the definition of
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the connected tempered covering G∞ → G, together with the fact that
πtop
1 (G) is abelian. On the other hand, it follows immediately from

assertion (i), together with the various definitions involved, that any

element of Aut|grph|(G) determines — up to composition with an el-

ement of πtop
1 (G) ⊆ Aut(G∞) — an automorphism of G∞. There-

fore, by composing with a suitable element of πtop
1 (G) ⊆ Aut(G∞), one

obtains a uniquely determined element of Aut|grph|(G∞), hence also a

natural injective homomorphism Aut|grph|(G) ↪→ Aut|grph|(G∞). Next,

to verify the equality ZAut|grph|(G∞)(π
top
1 (G)) = Aut|grph|(G), observe

that πtemp
1 (G∞) is center-free [cf. [SemiAn], Example 2.10; [SemiAn],

Proposition 3.6, (iv)]; this implies that we have a natural isomorphism

πtemp
1 (G) � πtemp

1 (G∞)
out
� πtop

1 (G) [cf. the discussion entitled “Topo-
logical groups” in §0]. Thus, in light of the [easily verified] inclusion

Aut|grph|(G) ⊆ ZAut|grph|(G∞)(π
top
1 (G)), the desired equality follows im-

mediately from [CmbGC], Proposition 1.5, (ii). This completes the proof
of assertion (ii).

Assertions (iii), (iv), (v), and (vi) follow immediately from the defi-
nition of the connected tempered covering G∞ → G. Q.E.D.

Definition 4.4. We shall write

Dehn(G) def
= {α ∈ Aut|grph|(G) |αG|v = idG|v for any v ∈ Vert(G) }

— where we refer to Definitions 2.1, (iii); 2.14, (ii); Remark 2.5.1, (ii),
concerning “αG|v”. We shall refer to an element of Dehn(G) as a profinite
Dehn multi-twist of G.

Proposition 4.5 (Equalities concerning the group of profi-
nite Dehn multi-twists). It holds that

Dehn(G) =
⋂

v∈Vert(G) Aut|Πv|(G) =
⋂

z∈VCN(G) Aut|Πz|(G)

=
⋂

z∈VCN(G) Out|Πz|(ΠG) ⊆ Aut|grph|(G)

[cf. Definitions 2.13; 2.6, (i); [CmbGC], Proposition 1.2, (ii)] — where
we use the notation “Π(−)” to denote a VCN-subgroup [cf. Defini-
tion 2.1, (i)] of ΠG associated to “(−)” ∈ VCN(G).

Proof. The first equality follows immediately from the various def-
initions involved [cf. also [CmbGC], Proposition 1.2, (i)]. The second
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equality follows immediately from the fact that any edge-like subgroup
is contained in a verticial subgroup. The third equality follows imme-
diately from Proposition 2.7, (ii). This completes the proof of Proposi-
tion 4.5. Q.E.D.

Lemma 4.6 (Construction of certain homomorphisms). Let

ẽ ∈ Node(G̃), e def
= ẽ(G) ∈ Node(G). Then the following hold:

(i) Let α ∈ Dehn(G) be a profinite Dehn multi-twist of G and

ṽ ∈ V(ẽ) ⊆ Vert(G̃). Write w̃ for the unique element of the
complement V(ẽ) \ {ṽ} [cf. [NodNon], Remark 1.2.1, (iii)].
Then there exists a unique lifting α[ṽ] ∈ Aut(ΠG) of α which
preserves the verticial subgroup Πṽ ⊆ ΠG of ΠG associated to

ṽ ∈ Vert(G̃) and induces the identity automorphism of Πṽ.
Moreover, this lifting α[ṽ] preserves the verticial subgroup

Πw̃ ⊆ ΠG of ΠG associated to w̃ ∈ Vert(G̃), and there exists
a unique element δẽ,ṽ ∈ Πẽ of the edge-like subgroup Πẽ ⊆ ΠG
of ΠG associated to ẽ ∈ Node(G̃) such that the restriction of
α[ṽ] to Πw̃ is the inner automorphism determined by δẽ,ṽ ∈ Πẽ

(⊆ Πw̃).

(ii) For ṽ ∈ V(ẽ), denote by Dẽ,ṽ : Dehn(G) → ΛG the composite of
the map

Dehn(G) −→ Πẽ

given by assigning α �→ δẽ,ṽ ∈ Πẽ [cf. (i)] and the isomorphism

Πe

syn b∼−→ Λv

syn v∼−→ ΛG

[cf. Corollary 3.9, (ii), (v)] — where we write v
def
= ṽ(G) and

b for the branch of e determined by the unique branch of ẽ
which abuts to ṽ. Then the map Dẽ,ṽ : Dehn(G) → ΛG is a
homomorphism of profinite groups which does not depend
on the choice of the element ṽ ∈ V(ẽ), i.e., if w̃ ∈ V(ẽ) \
{ṽ}, then Dẽ,ṽ = Dẽ,w̃. Moreover, the homomorphism Dẽ,ṽ

(= Dẽ,w̃) depends only on e ∈ Node(G), i.e., it does not

depend on the choice of the element ẽ ∈ Node(G̃) such that
ẽ(G) = e.

Proof. First, we verify assertion (i). The fact that there exists a
unique lifting α[ṽ] ∈ Aut(ΠG) of α which preserves Πṽ and induces the
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identity automorphism of Πṽ follows immediately, in light of the slimness
of Πṽ [cf. [CmbGC], Remark 1.1.3] and the commensurable terminality
of Πṽ in ΠG [cf. [CmbGC], Proposition 1.2, (ii)], from the fact that

α ∈ Out|Πṽ|(ΠG) [cf. Proposition 4.5]. The fact that α[ṽ] preserves
Πw̃ follows immediately, in light of the graphicity of α[ṽ], from the fact
that Πw̃ is the unique verticial subgroup H of ΠG such that H �= Πṽ

and Πẽ ⊆ H [cf. [NodNon], Remark 1.2.1, (iii); [NodNon], Lemma 1.7],
together with the fact that α[ṽ] preserves Πṽ, Πẽ ⊆ ΠG . The fact that
there exists a unique element δẽ,ṽ ∈ Πẽ of Πẽ such that the restriction
of α[ṽ] to Πw̃ is the inner automorphism determined by δẽ,ṽ follows
immediately, in light of the slimness of Πw̃ [cf. [CmbGC], Remark 1.1.3]
and the commensurable terminality of Πẽ [cf. [CmbGC], Proposition

1.2, (ii)], from the fact that α ∈ Out|Πw̃|(ΠG) [cf. Proposition 4.5].
This completes the proof of assertion (i). Next, we verify assertion (ii).
The fact that the map Dẽ,ṽ is a homomorphism follows immediately
from the various uniqueness properties discussed in assertion (i). The
fact that the map Dẽ,ṽ does not depend on the choice of the element
ṽ ∈ V(ẽ) follows immediately from Corollary 3.9, (vi). The fact that
the homomorphism Dẽ,ṽ does not depend on the choice of the element

ẽ ∈ Node(G̃) such that ẽ(G) = e follows immediately from the definition
of the map Dẽ,ṽ. This completes the proof of assertion (ii). Q.E.D.

Definition 4.7. For each node e ∈ Node(G) of G, we shall write

De
def
= Dẽ,ṽ : Dehn(G) −→ ΛG

for the homomorphism obtained in Lemma 4.6, (ii). [Note that it follows
from Lemma 4.6, (ii), that this homomorphism depends only on e ∈
Node(G).] We shall write

DG
def
=

⊕
e∈Node(G)

De : Dehn(G) −→
⊕

Node(G)
ΛG .

Theorem 4.8 (Properties of profinite Dehn multi-twists).
Let Σ be a nonempty set of prime numbers and G a semi-graph of an-
abelioids of pro-Σ PSC-type. Then the following hold:

(i) (Normality) Dehn(G) is normal in Aut(G).
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(ii) (Compatibility with generization) Let S ⊆ Node(G).
Then — relative to the inclusion AutS(G) ⊆ Aut(G�S) [cf.
Definition 2.8] induced by the specialization outer isomorphism

ΠG
∼→ ΠG�S

with respect to S [cf. Proposition 2.9, (ii)] — we
have a diagram of inclusions

Dehn(G) ←↩ Dehn(G�S)

∩ ∩

AutS(G) ↪→ Aut(G�S) .

Moreover, if we regard Node(G�S) as a subset of Node(G),
then the above inclusion Dehn(G�S) ↪→ Dehn(G) fits into a
commutative diagram of profinite groups

Dehn(G�S) −−−−→ Dehn(G)
DG�S

⏐⏐� ⏐⏐�DG⊕
Node(G�S) ΛG −−−−→ ⊕

Node(G) ΛG

— where the lower horizontal arrow is the natural inclusion
determined by the inclusion Node(G�S) ↪→ Node(G) and the

natural isomorphism ΛG�S

∼→ ΛG [cf. Corollary 3.9, (i)].

(iii) (Compatibility with “surgery”) Let H be a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of G, S ⊆ Node(G|H) [cf.
Definition 2.2, (ii)] a subset of Node(G|H) that is not of sepa-
rating type [cf. Definition 2.5, (i)], and T ⊆ Cusp((G|H)�S)
[cf. Definition 2.5, (ii)] an omittable [cf. Definition 2.4, (i)]
subset of Cusp((G|H)�S). Then the natural homomorphism

AutH�S•T (G) −→ Aut(((G|H)�S)•T )
α �→ α((G|H)�S)•T

[cf. Definitions 2.4, (ii); 2.14, (ii)] induces a homomorphism

Dehn(G) −→ Dehn(((G|H)�S)•T ) .

Moreover, if we regard Node(((G|H)�S)•T ) as a sub-
set of Node(G), then the above homomorphism Dehn(G) →
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Dehn(((G|H)�S)•T ) fits into a commutative diagram of profi-
nite groups

Dehn(G) −−−−→ Dehn(((G|H)�S)•T )

DG

⏐⏐� ⏐⏐�D((G|H)�S)•T⊕
Node(G) ΛG −−−−→ ⊕

Node(((G|H)�S)•T ) ΛG

— where the lower horizontal arrow is the natural projection,
and we apply the natural isomorphism ΛG

∼→ Λ((G|H)�S)•T [cf.
Corollary 3.9, (ii)].

(iv) (Structure of the group of profinite Dehn multi-twists)
The homomorphism defined in Definition 4.7

DG : Dehn(G) −→
⊕

Node(G)
ΛG

is an isomorphism of profinite groups that is functorial,
in G, with respect to isomorphisms of semi-graphs of anabe-
lioids of pro-Σ PSC-type. In particular, Dehn(G) is a finitely

generated free ẐΣ-module of rank Node(G)�. We shall
refer to a nontrivial profinite Dehn multi-twist whose image
∈ ⊕

Node(G) ΛG lies in a direct summand [i.e., in a single “ΛG”]
as a profinite Dehn twist.

(v) (Conjugation action on the group of profinite Dehn
multi-twists) The action of Aut(G) on ⊕

Node(G) ΛG

Aut(G) −→ Aut(Dehn(G)) ∼−→ Aut(
⊕

Node(G)
ΛG)

determined by conjugation by elements of Aut(G) [cf. (i)] and
the isomorphism of (iv) coincides with the action of Aut(G) on⊕

Node(G) ΛG determined by the action χG of Aut(G) on ΛG
and the natural action of Aut(G) on the finite set Node(G).

Proof. Assertions (i), (ii), and (iii) follow immediately from the
various definitions involved. Next, we verify assertion (iv). The functo-
riality of the homomorphism DG follows immediately from the various
definitions involved. The rest of the proof of assertion (iv) is devoted
to verifying that the homomorphism DG is an isomorphism. First, we
claim that
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(∗1): if G is noncyclically primitive [cf. Definition 4.1],
then the homomorphism DG is injective.

Indeed, this follows immediately from Lemma 4.2, together with the
definition of the homomorphism DG . This completes the proof of the
above claim (∗1).

Next, we claim that

(∗2): if G is cyclically primitive [cf. Definition 4.1],
then the homomorphism DG is injective.

Indeed, let α ∈ Ker(DG) ⊆ Out(ΠG) be an element of Ker(DG). Since
we are in the situation of Lemma 4.3, we shall apply the notational con-

ventions established in Lemma 4.3. Denote by α∞ ∈ Aut|grph|(G∞) the
automorphism of G∞ determined by α [cf. Lemma 4.3, (ii)]; for integers

a ≤ b ∈ Z, denote by α[a,b] ∈ Aut|grph|(G[a,b]) the automorphism of G[a,b]

obtained by restricting α∞ ∈ Aut|grph|(G∞). Then since α is a profinite
Dehn multi-twist, one may verify easily that α[a,b] is a profinite Dehn
multi-twist of G[a,b]. Thus, since G[a,a+1] is noncyclically primitive [cf.
Lemma 4.3, (iv)], it follows immediately from the fact that α ∈ Ker(DG),
together with the claim (∗1), that α[a,a+1] is trivial. Moreover, for any
a < b ∈ Z, it follows — by applying induction on b− a and considering,
in light of the claim (∗1), the various generizations [cf. assertion (ii)] of
G[a,b] with respect to sets of the form “Node(G[a.b]) \ {e}” — that the
profinite Dehn multi-twist α[a,b], hence also the automorphism α∞, is
trivial. In particular, it holds that α is trivial [cf. Lemma 4.3, (ii)], as
desired. This completes the proof of the above claim (∗2).

Next, we claim that

(∗3): for arbitrary G, the homomorphism DG is injec-
tive.

We verify this claim (∗3) by induction on Node(G)�. If Node(G)� ≤ 1,
then the claim (∗3) follows formally from the claims (∗1) and (∗2). Now
suppose that Node(G)� > 1, and that the induction hypothesis is in force.
Let e ∈ Node(G) be a node of G. Write H for the unique sub-semi-graph
of PSC-type of G whose set of vertices is V(e). Then one may verify

easily that S
def
= Node(G|H) \ {e} is not of separating type as a subset

of Node(G|H). Thus, since (G|H)�S has precisely one node, it follows
immediately from assertion (iii), together with the claims (∗1) and (∗2),
that the profinite Dehn multi-twist α(G|H)�S

of (G|H)�S determined by
α ∈ Dehn(G) is trivial. In particular, it follows immediately from the def-
inition of a generization [cf., especially, the definition of the anabelioids
corresponding to the vertices of a generization given in Definition 2.8,
(vi)], together with the definition of a profinite Dehn multi-twist, that
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the automorphism αG�{e} of the generization G�{e} determined by α

[cf. Proposition 2.9, (ii)] is a profinite Dehn multi-twist. Therefore,
since Node(G�{e})� < Node(G)�, it follows immediately from assertion
(ii), together with the induction hypothesis, that αG�{e} ∈ Ker(DG�{e}),

hence also α ∈ Ker(DG), is trivial. This completes the proof of the claim
(∗3).

Next, we claim that

(∗4): if G is noncyclically primitive [cf. Definition 4.1],
then the homomorphism DG is surjective.

Indeed, this follows immediately from Lemma 4.2, together with the
various definitions involved. This completes the proof of the claim (∗4).

Next, we claim that

(∗5): if G is cyclically primitive [cf. Definition 4.1],
then the homomorphism DG is surjective.

Indeed, let λ ∈ ΛG be an element of ΛG . Since we are in the situation
of Lemma 4.3, we shall apply the notational conventions established
in Lemma 4.3. Then it follows immediately from Corollary 3.9, (ii),
together with Lemma 4.3, (v), that for any integers a ≤ 0 < b ∈ Z,
the natural morphisms G[0,0] → G[a,b] and G[0,0] → G∞ → G induce

isomorphisms ΛG[a,b]

∼← ΛG[0,0]

∼→ ΛG . By abuse of notation, write λ ∈
ΛG[a,b]

for the element of ΛG[a,b]
corresponding to λ ∈ ΛG . Now since

G[0,1] is noncyclically primitive [cf. Lemma 4.3, (iv)], it follows from the
claims (∗1), (∗4) that there exists a unique profinite Dehn multi-twist
λ[0,1] ∈ Dehn(G[0,1]) such that DG[0,1]

(λ[0,1]) = λ.
Next, we claim that

(†) : for any a ≤ 0 < b ∈ Z, there exists a [necessarily
unique — cf. claim (∗3)] profinite Dehn multi-twist
λ[a,b] ∈ Dehn(G[a,b]) such thatDe(λ[a,b]) = λ for every
node e ∈ Node(G[a,b]).

We verify this claim (†) by induction on b−a. If b−a = 1, or equivalently,
[a, b] = [0, 1], then we have already shown the existence of a profinite
Dehn multi-twist λ[0,1] ∈ Dehn(G[0,1]) of the desired type. Now suppose
that 1 < b−a, and that for I ∈ {[a, b−1], [a+1, b]}, there exists a profi-
nite Dehn multi-twist λI ∈ Dehn(GI) such that De(λI) = λ for every
node e ∈ Node(GI). Then one may verify easily that Node(GI) may be

regarded as a subset of Node(G[a,b]), that H[a,b]
def
= (G[a,b])�Node(GI) is

noncyclically primitive, and that, if one allows v to range over the [two]
vertices of H[a,b], then the resulting semi-graphs of anabelioids (H[a,b])|v
are naturally isomorphic to HI

def
= (GI)�Node(GI) and G[cI ,cI ], where we

write cI for b (respectively, a) if I = [a, b−1] (respectively, I = [a+1, b]).
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Let ΠeI ⊆ ΠHI
be a cuspidal subgroup of ΠHI

corresponding to the
cusp eI determined by the unique node of H[a,b]; Πe[cI ,cI ]

⊆ ΠG[cI ,cI ]

a cuspidal subgroup of ΠG[cI ,cI ]
corresponding to the cusp e[cI ,cI ] de-

termined by the unique node of H[a,b]; λ̃I ∈ Aut(ΠHI
) a lifting of the

outomorphism of ΠHI
determined by λI ∈ Dehn(GI) ↪→ Aut(HI) [cf.

Proposition 2.9, (ii)] which preserves ΠeI and induces the identity au-
tomorphism of ΠeI . [Note that since λI ∈ Dehn(GI), one may verify

easily that such a lifting λ̃I ∈ Aut(ΠHI
) exists.] Then for any element

δ ∈ Πe[cI ,cI ]
of Πe[cI ,cI ]

, it follows immediately from Lemma 4.2 that by

gluing — by means of the natural isomorphism ΠeI
∼→ Πe[cI ,cI ]

— the

automorphism λ̃I ∈ Aut(ΠHI ) to the inner automorphism of ΠG[cI ,cI ]
by

δ ∈ Πe[cI ,cI ]
, we obtain an outomorphism λ[a,b][δ] of ΠH[a,b]

, which —

in light of [CmbGC], Proposition 1.5, (ii), together with the fact that
λI ∈ Dehn(GI) — is contained in

Dehn(G[a,b]) ⊆ Aut|grph|(G[a,b]) ↪→ Aut|grph|(H[a,b]) ⊆ Out(ΠH[a,b]
)

[cf. Proposition 2.9, (ii)]. Now it follows immediately from the definition
of the homomorphism “De” that the assignment δ �→ DeG[a,b]

(λa,b[δ]) —

where we write eG[a,b]
for the node of G[a,b] corresponding to the unique

node of H[a,b] — determines a bijection Πe[cI ,cI ]

∼→ ΛG . Thus, since

De(λI) = λ for every node e ∈ Node(GI), we conclude that there exists
a unique element δ ∈ Πe[cI ,cI ]

of Πe[cI ,cI ]
such that De(λ[a,b][δ]) = λ for

every node e ∈ Node(G[a,b]). This completes the proof of the claim (†).
Write λ∞ ∈ Aut|grph|(G∞) for the automorphism of G∞ determined

by the λ[a,b]’s of the claim (†). Now since De(λ[a,b]) = λ for arbitrary
a < b ∈ Z and e ∈ Node(G[a,b]), one may verify easily, by applying
the claim (∗3), that the automorphism λ∞ commutes with the natural

action of πtop
1 (G) � Z on G∞. Thus, the automorphism λ∞ determines

an automorphism λG ∈ Aut|grph|(G) of G [cf. Lemma 4.3, (ii)]. Moreover,
it follows immediately from the definition of λG , together with the fact
that De(λ[a,b]) = λ for arbitrary a < b ∈ Z and e ∈ Node(G[a,b]), that
λG is a profinite Dehn multi-twist such that DG(λG) = λ ∈ ΛG . This
completes the proof of the claim (∗5).

Finally, we claim that

(∗6): for arbitrary G, the homomorphism DG is sur-
jective.



86 Yuichiro Hoshi and Shinichi Mochizuki

For each node e ∈ Node(G) of G, it follows from assertion (ii) that we
have a commutative diagram of profinite groups

Dehn(G�Node(G)\{e}) −−−−→ Dehn(G)
DG�Node(G)\{e}

⏐⏐� ⏐⏐�DG

ΛG −−−−→ ⊕
e′∈Node(G) ΛG

— where the lower horizontal arrow is the natural inclusion into the
component indexed by e. Now since Node(G�Node(G)\{e})� = 1, it follows
from the claims (∗4), (∗5) that the left-hand vertical arrowDG�Node(G)\{e}
in the above commutative diagram is surjective. Therefore, by allowing
“e” to vary among the elements of Node(G), we conclude that DG is
surjective. This completes the proof of the claim (∗6) — hence also, in
light of the claim (∗3) — of assertion (iv).

Finally, assertion (v) follows immediately from the various defini-
tions involved, together with assertion (iv). This completes the proof of
Theorem 4.8. Q.E.D.

Remark 4.8.1. In the notation of Theorem 4.8, denote by
πtemp
1 (G) the tempered fundamental group of G [cf. the discussion pre-

ceding [SemiAn], Proposition 3.6], by πtop
1 (G) the [discrete] topological

fundamental group of the underlying semi-graph G of G, by G∞ → G
the connected tempered covering of G corresponding to the natural sur-
jection πtemp

1 (G) � πtop
1 (G) [where we refer to [SemiAn], §3, concerning

tempered coverings of a semi-graph of anabelioids], by Aut|grph|(G∞) the
group of automorphisms of G∞ that induce the identity automorphism

of the underlying semi-graph of G∞, and by Dehn(G∞) ⊆ Aut|grph|(G∞)
the group of “profinite Dehn multi-twists” of G∞ — i.e., automorphisms
of G∞ which induce the identity automorphism on the underlying semi-
graph of G∞, as well as on the anabelioids of G∞ corresponding to the
vertices of G∞. Then the following hold:

(i) The natural morphism G∞ → G induces an exact sequence

1 −→ πtemp
1 (G∞) −→ πtemp

1 (G) −→ πtop
1 (G) −→ 1 .

Moreover, the subgroup πtemp
1 (G∞) ⊆ πtemp

1 (G) of πtemp
1 (G) is

characteristic.

(ii) There exist natural injections

Aut|grph|(G) ↪→ Aut|grph|(G∞) , Dehn(G) ↪→ Dehn(G∞) ,
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πtop
1 (G) ↪→ Aut(G∞)

— where the third injection is determined up to composition
with a πtop

1 (G)-inner automorphism — which satisfy the equal-
ities

ZAut|grph|(G∞)(π
top
1 (G)) = Aut|grph|(G) ;

Dehn(G) = Aut|grph|(G) ∩Dehn(G∞) .

(iii) There exists a natural isomorphism

Dehn(G∞)
∼→

∏
Node(G∞)

ΛG .

Indeed, assertion (i) (respectively, (ii)) follows immediately from a simi-
lar argument to the argument used in the proof of Lemma 4.3, (i) (respec-
tively, Lemma 4.3, (ii)), together with the various definitions involved.
On the other hand, the existence of the natural isomorphism asserted
in assertion (iii) follows immediately from the fact that the various ho-
momorphisms D(G∞)|H — where H ranges over the sub-semi-graphs of
PSC-type [cf. Definition 2.2, (i)] of the underlying semi-graph of G∞,
and we write (G∞)|H for the semi-graph of anabelioids obtained by re-
stricting G∞ to H [cf. the discussion preceding [SemiAn], Definition 2.2],
which [as is easily verified] is of pro-Σ PSC-type — are isomorphisms.
[Note that since (G∞)|H is of pro-Σ PSC-type, the fact that D(G∞)|H is an
isomorphism is a consequence of Theorem 4.8, (iv). However, since H is
a tree, it follows from the simple structure of H that one may verify that
D(G∞)|H is an isomorphism in a fairly direct fashion, by arguing as in the
proofs of the claims (∗1), (∗4) that appear in the proof of Theorem 4.8,
(iv).]

In particular, it follows immediately from assertions (ii), (iii) that
one may recover the natural isomorphism

Dehn(G) ∼→ Z∏
Node(G∞) ΛG (π

top
1 (G))

∼→
∏

Node(G)
ΛG

of Theorem 4.8, (iv).

Definition 4.9. We shall write

Glu(G) ⊆
∏

v∈Vert(G)
Aut|grph|(G|v)
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for the [closed] subgroup of “glueable” collections of outomorphisms

of the direct product
∏

v∈Vert(G) Aut|grph|(G|v) consisting of elements

(αv)v∈Vert(G) such that χv(αv) = χw(αw) [cf. Definition 3.8, (ii)] for any
v, w ∈ Vert(G).

Proposition 4.10 (Properties of automorphisms that fix the
underlying semi-graph).

(i) (Factorization) The natural homomorphism

Aut|grph|(G) −→ ∏
v∈Vert(G) Aut|grph|(G|v)

α �→ (αG|v )v∈Vert(G)

[cf. Definition 2.14, (ii); Remark 2.5.1, (ii)] factors through

the closed subgroup Glu(G) ⊆ ∏
v∈Vert(G) Aut|grph|(G|v).

(ii) (Exact sequence relating profinite Dehn multi-twists
and glueable outomorphisms) The resulting homomor-

phism ρVert
G : Aut|grph|(G) → Glu(G) [cf. (i)] fits into an exact

sequence of profinite groups

1 −→ Dehn(G) −→ Aut|grph|(G) ρVert
G−→ Glu(G) −→ 1 .

(iii) (Surjectivity of cyclotomic characters) The restriction of
the pro-Σ cyclotomic character χG of G [cf. Definition 3.8,

(ii)] to Aut|grph|(G) ⊆ Aut(G)

χG |Aut|grph|(G) : Aut
|grph|(G) −→ (ẐΣ)∗

— hence also χG — is surjective.

(iv) (Liftability of automorphisms) Let H be a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of G and S ⊆ Node(G|H)
[cf. Definition 2.2, (ii)] a subset of Node(G|H) that is not of
separating type [cf. Definition 2.5, (i)]. Then the homo-
morphism

Aut|grph|(G) −→ Aut|grph|((G|H)�S)
α �→ α(G|H)�S

[cf. Definitions 2.5, (ii); 2.14, (ii)] is surjective.
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Proof. Assertion (i) follows immediately from Corollary 3.9, (iv).
Next, we verify assertion (ii). It follows immediately from the various

definitions involved that Ker(ρVert
G ) = Dehn(G) ⊆ Aut|grph|(G). Thus,

to complete the proof of assertion (ii), it suffices to verify that the ho-
momorphism ρVert

G is surjective.
Now we claim that

(∗1): if G is noncyclically primitive [cf. Definition 4.1],
then the homomorphism ρVert

G is surjective.

Indeed, this follows immediately from Corollary 3.9, (v); Lemma 4.2,
together with the various definitions involved. This completes the proof
of the claim (∗1).

Next, we claim that

(∗2): if G is cyclically primitive [cf. Definition 4.1],
then the homomorphism ρVert

G is surjective.

Indeed, since we are in the situation of Lemma 4.3, we shall apply the
notational conventions established in Lemma 4.3. Then it follows im-
mediately from the fact that Vert(G)� = 1 [cf. Remark 4.1.1], together
with Lemma 4.3, (v), that the composite of natural morphisms G[0,0] →
G∞ → G determines a natural identification Glu(G) ∼→ Aut|grph|(G[0,0]).

Let α = α[0,0] ∈ Glu(G) ∼→ Aut|grph|(G[0,0]) be an element of Glu(G) ∼→
Aut|grph|(G[0,0]). For each a ∈ Z, denote by α[a,a] ∈ Aut(G[a,a]) the au-
tomorphism of G[a,a] determined by conjugating the automorphism α of

G[0,0] by the isomorphism γa∞ : G[0,0]
∼→ G[a,a] [cf. Lemma 4.3, (iii), (vi)].

Then for any c < b ∈ Z, it follows from the various definitions involved
that the various α[a,a]’s satisfy the gluing condition necessary to apply
the claim (∗1), hence that we may glue them together [cf. the proof of
the claim (∗3) below for more details concerning this sort of gluing argu-

ment] to obtain a(n) [not necessarily unique] element of Aut|grph|(G[c,b]).
Thus, by allowing c < b ∈ Z to vary, we obtain a(n) [not necessarily

unique] element α∞ ∈ Aut|grph|(G∞) of Aut|grph|(G∞). Now it follows

immediately from the definition of α∞ that for any γ ∈ πtop
1 (G), the

automorphism [α∞, γ]
def
= α∞ · γ · α−1

∞ · γ−1 of G∞ is a “profinite Dehn
multi-twist” of G∞, i.e., [α∞, γ] ∈ Dehn(G∞) [cf. Remark 4.8.1]. More-
over, one may verify easily that the assignment γ �→ [α∞, γ] determines

a 1-cocycle πtop
1 (G) → Dehn(G∞). Thus, by Remark 4.8.1, (iii), together

with the [easily verified] fact that

H1(Z,
∏
Z

ẐΣ) = {0}
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— where we take the action of Z on
∏

Z Ẑ
Σ to be the action determined

by the trivial action of Z on ẐΣ and the action of Z on the index set
Z given by addition — we conclude that there exists an element β ∈
Dehn(G∞) such that the automorphism β ◦α∞ commutes with the nat-

ural action of πtop
1 (G) on G∞. In particular, it follows from Lemma 4.3,

(ii), that β◦α∞ determines an element αG ∈ Aut|grph|(G) of Aut|grph|(G).
Now since β ∈ Dehn(G∞), it follows immediately from the various def-

initions involved that ρVert
G (αG) = α ∈ Glu(G) ∼→ Aut|grph|(G[0,0]). This

completes the proof of the claim (∗2).
Finally, we claim that

(∗3): for arbitrary G, the homomorphism ρVert
G is sur-

jective.

We verify this claim (∗3) by induction on Node(G)�. If Node(G)� ≤ 1,
then this follows immediately from the claims (∗1), (∗2). Now sup-
pose that Node(G)� > 1, and that the induction hypothesis is in force.
Let e ∈ Node(G) be a node of G. Write H for the unique sub-semi-
graph of PSC-type of G whose set of vertices is V(e). Then one may

verify easily that S
def
= Node(G|H) \ {e} is not of separating type as

a subset of Node(G|H). Thus, since (G|H)�S has precisely one node,
and (αv)v∈V(e) may be regarded as an element of Glu((G|H)�S), it fol-
lows from the claims (∗1), (∗2) that there exists an automorphism β ∈
Aut|grph|((G|H)�S) of (G|H)�S such that ρVert

(G|H)�S
(β) = (αv)v∈V(e) ∈

Glu((G|H)�S). Write β�{e} ∈ Aut|grph|(((G|H)�S)�{e}) for the auto-

morphism of ((G|H)�S)�{e} determined by β ∈ Aut|grph|((G|H)�S) [cf.
Proposition 2.9, (ii)]. Then it follows immediately from Corollary 3.9,
(i), together with the definition of a generization [cf., especially, the def-
inition of the anabelioids corresponding to the vertices of a generization
given in Definition 2.8, (vi)], that the element

γ
def
= (β�{e}, (αv)v 
∈V(e))

∈ Aut|grph|(((G|H)�S)�{e}) ×∏
v 
∈V(e) Aut|grph|(G|v)

may be regarded as an element of Glu(G�{e}). Now since Node(G�{e})�

< Node(G)�, it follows from the induction hypothesis that there ex-

ists an automorphism α�{e} ∈ Aut|grph|(G�{e}) of G�{e} such that

ρVert
G�{e}(α�{e}) = γ ∈ Glu(G�{e}). On the other hand, since β�{e}

arises from an element β of Aut|grph|((G|H)�S), it follows immediately

from [CmbGC], Proposition 1.5, (ii), that α�{e} ∈ Aut|grph|(G�{e}) is

contained in the image of Aut|grph|(G) ↪→ Aut|grph|(G�{e}) [cf. Proposi-
tion 2.9, (ii)]. Moreover, since ρVert

(G|H)�S
(β) = (αv)v∈V(e) ∈ Glu((G|H)�S),
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it follows immediately from our original characterization of α�{e} that

ρVert
G (α�{e}) = (αv)v∈Vert(G) ∈ Glu(G). Thus, we conclude that ρVert

G is
surjective, as desired. This completes the proof of the claim (∗3), hence
also of assertion (ii).

Next, we verify assertion (iii). First, let us observe that one may
verify easily that there exist a semi-graph of anabelioids of pro-Σ PSC-
type H that is totally degenerate [cf. Definition 2.3, (iv)], a subset S ⊆
Node(H), and an isomorphism of semi-graphs of anabelioids H�S

∼→
G. Now since we have a natural injection Aut|grph|(H) ↪→
Aut|grph|(H�S)

∼→ Aut|grph|(G) [cf. Proposition 2.9, (ii)], it follows
immediately from Corollary 3.9, (i), that to verify assertion (iii), by
replacing G by H, we may assume without loss of generality that G is
totally degenerate. On the other hand, it follows immediately from as-
sertion (ii), together with Corollary 3.9, (ii), that to verify assertion (iii),
it suffices to verify the surjectivity of χG|v for each v ∈ Vert(G). Thus, to
verify assertion (iii), by replacing G by G|v, we may assume without loss
of generality that G is of type (0, 3) [cf. Definition 2.3, (i)]. But assertion
(iii) in the case where G is of type (0, 3) follows immediately by consid-
ering the natural outer action of the absolute Galois group Gal(Q/Q)
of the field of rational numbers Q — where we use the notation Q to
denote an algebraic closure of Q — on the semi-graph of anabelioids of
pro-Σ PSC-type associated to the tripod P1

Q
\ {0, 1,∞} over Q. This

completes the proof of assertion (iii).

Finally, we verify assertion (iv). Write H def
= (G|H)�S . Then it

follows immediately from assertion (ii), together with Theorem 4.8, (iii),

that the homomorphism Aut|grph|(G) → Aut|grph|(H) in question fits
into a commutative diagram of profinite groups

1 −−−−→ Dehn(G) −−−−→ Aut|grph|(G) ρVert
G−−−−→ Glu(G) −−−−→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −−−−→ Dehn(H) −−−−→ Aut|grph|(H)
ρVert
H−−−−→ Glu(H) −−−−→ 1

— where the horizontal sequences are exact. Now since the left-hand ver-
tical arrow is surjective [cf. Theorem 4.8, (iii), (iv)], to verify assertion
(iv), it suffices to verify the surjectivity of the right-hand vertical arrow.
But this follows immediately from assertion (iii), together with the defi-
nition of “Glu(−)”. This completes the proof of assertion (iv). Q.E.D.
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§5. Comparison with scheme theory

In the present §, we discuss [cf. Proposition 5.6; Theorem 5.7; Corol-
laries 5.9, 5.10 below] the relationship between intrinsic, group-theoretic
properties of profinite Dehn multi-twists [such as length, nondegener-
acy, and positive definiteness — cf. Definitions 5.1; 5.8, (ii), (iii) below]
and scheme-theoretic characterizations of properties of outer representa-
tions of pro-Σ PSC-type [such as length, strict nodal nondegeneracy, and
IPSC-ness — cf. Definition 5.3, (ii) below; [NodNon], Definition 2.4, (i),
(iii)]. The resulting theory leads naturally to a proof of the graphicity
of C-admissible outomorphisms contained in the commensurator of the
group of profinite Dehn multi-twists [cf. Theorem 5.14 below].

Let Σ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-Σ PSC-type. Write G for the underlying semi-graph

of G, ΠG for the [pro-Σ] fundamental group of G, and G̃ → G for the
universal covering of G corresponding to ΠG .

Definition 5.1. Let ρ : I → Aut(G) (⊆ Out(ΠG)) be an outer rep-
resentation of pro-Σ PSC-type [cf. [NodNon], Definition 2.1, (i)] which

is of NN-type [cf. [NodNon], Definition 2.4, (iii)] and ẽ ∈ Node(G̃) an

element of Node(G̃). Write ΠI
def
= ΠG

out
� I [cf. the discussion entitled

“Topological groups” in §0]; ṽ, w̃ ∈ Vert(G) for the two distinct elements

of Vert(G̃) such that V(ẽ) = {ṽ, w̃} [cf. [NodNon], Remark 1.2.1, (iii)];
Iẽ, Iṽ, Iw̃ ⊆ ΠI for the inertia subgroups of ΠI associated to ẽ, ṽ, w̃,
respectively, i.e., the centralizers of Πẽ, Πṽ, Πw̃ ⊆ ΠI in ΠI , respectively
[cf. [NodNon], Definition 2.2]. Then it follows from condition (3) of
[NodNon], Definition 2.4, that the natural homomorphism Iṽ × Iw̃ → Iẽ
is an open injection. Write

lngΣG (ẽ, ρ)
def
= [Iẽ : Iṽ × Iw̃]

for the index of Iṽ × Iw̃ in Iẽ; we shall refer to lngΣG (ẽ, ρ) as the Σ-length
of ẽ with respect to ρ. Note that it follows immediately from the various
definitions involved that the Σ-length of ẽ with respect to ρ depends only

on e
def
= ẽ(G) ∈ Node(G) and ρ. Write

lngΣG (e, ρ)
def
= lngΣG (ẽ, ρ) ;

we shall refer to lngΣG (e, ρ) as the Σ-length of e ∈ Node(G) with respect
to ρ.
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Lemma 5.2 (Outer representations of SVA-type and profi-
nite Dehn multi-twists). Let ρ : I → Aut(G) (⊆ Out(ΠG)) be an outer
representation of pro-Σ PSC-type which is of SVA-type [cf. [NodNon],

Definition 2.4, (ii)] and ẽ ∈ Node(G̃) an element of Node(G̃). Write

ΠI
def
= ΠG

out
� I [cf. the discussion entitled “Topological groups” in

§0]; ṽ, w̃ ∈ Vert(G̃) for the two distinct elements of Vert(G̃) such that
V(ẽ) = {ṽ, w̃} [cf. [NodNon], Remark 1.2.1, (iii)]; Iẽ, Iṽ, Iw̃ ⊆ ΠI for

the inertia subgroups of ΠI associated to ẽ, ṽ, w̃, respectively; e
def
= ẽ(G);

v
def
= ṽ(G). Then the following hold:

(i) (Outer representations of SVA-type and profinite Dehn
multi-twists) The outer representation ρ factors through the
closed subgroup Dehn(G) ⊆ Aut(G). By abuse of notation,
write ρ for the resulting homomorphism I → Dehn(G).

(ii) (Outer representations of SVA-type and homomor-
phisms of Dehn coordinates) The natural inclusions Iṽ,
Iw̃ ↪→ Iẽ and the composite Iẽ ↪→ ΠI � I determine a diagram
of profinite groups

Iṽ × Iw̃⏐⏐�
1 −−−−→ Πẽ −−−−→ Iẽ −−−−→ I −−−−→ 1

— where the lower horizontal sequence is exact, and the closed
subgroups Iṽ, Iw̃ ⊆ Iẽ determine sections of the surjection
Iẽ � I, respectively — hence also homomorphisms

I
∼← Iṽ → Iẽ/Iw̃

∼← Πẽ = Πe

syn bṽ∼→ Λv

syn v∼→ ΛG

— where the first “
∼←” denotes the isomorphism given by the

composite Iṽ ↪→ ΠI � I, and bṽ denotes the branch of e deter-
mined by the [unique] branch of ẽ that abuts to ṽ. Moreover,
the composite of these homomorphisms

I → ΛG

coincides with the composite

I
ρ−→ Dehn(G) De−→ ΛG

[cf. (i); Definition 4.7]. In particular, if ρ is of SNN-type
[cf. [NodNon], Definition 2.4, (iii)], then the image of the
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composite I
ρ→ Dehn(G) De→ ΛG coincides with lngΣG (e, ρ) ·ΛG ⊆

ΛG.

(iii) (Centralizers and cyclotomic characters) Suppose that ρ
is of SNN-type [cf. [NodNon], Definition 2.4, (iii)]. Let
e ∈ Node(G) be a node of G. Then χG(α) = 1 [cf. Defini-

tion 3.8, (ii)] for any α ∈ ZAut{e}(G)(Im(ρ)) ⊆ Aut{e}(G) [cf.

Definition 2.6, (i)].

Proof. Assertion (i) follows immediately from condition (2′) of
[NodNon], Definition 2.4. Next, we verify assertion (ii). The fact that
the natural inclusions Iṽ, Iw̃ ↪→ Iẽ and the composite Iẽ ↪→ ΠI � I give
rise to the diagram and homomorphisms of the first and second displays
in the statement of assertion (ii) follows immediately from [NodNon],
Lemma 2.5, (iv); condition (2′) of [NodNon], Definition 2.4. On the
other hand, it follows immediately from the various definitions involved
that the image of each β ∈ I via the composite of I

∼← Iṽ with the
action Iṽ → Aut(ΠG) given by conjugation coincides with the “α[ṽ]” of
Lemma 4.6, (i), in the case where one takes “α” to be ρ(β). Thus, it
follows immediately from the definition of Iw̃ that the image of β ∈ I
via the composite I

∼← Iṽ → Iẽ/Iw̃
∼→ Πẽ coincides with the “δẽ,ṽ” of

Lemma 4.6, (i), in the case where one takes “α” to be ρ(β). Therefore, it
follows immediately from the definition of De that the homomorphisms
of the final two displays of assertion (ii) coincide. Thus, the final portion
of assertion (ii) concerning ρ of SNN-type follows immediately from the
definition of Σ-length. This completes the proof of assertion (ii). To ver-
ify assertion (iii), let us first observe that, by Theorem 4.8, (v), the con-

jugation action of α ∈ Aut{e}(G) on the ΛG ⊆ ⊕
Node(G) ΛG

∼← Dehn(G)
indexed by e ∈ Node(G) is given by multiplication by χG(α). On the

other hand, since N � lngΣG (e, ρ) �= 0, it follows from the final portion of
assertion (ii) that the projection of Im(ρ) to the coordinate indexed by
e is open. Thus, the fact that α lies in the centralizer ZAut{e}(G)(Im(ρ))

implies that χG(α) = 1, as desired. This completes the proof of assertion
(iii). Q.E.D.

Definition 5.3. Let R be a complete discrete valuation ring whose
residue field is separably closed of characteristic �∈ Σ; π ∈ R a prime
element of R; vR the discrete valuation of R such that vR(π) = 1;

Slog the log scheme obtained by equipping S
def
= SpecR with the log

structure defined by the maximal ideal (π) ⊆ R of R; slog the log scheme
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obtained by equipping the spectrum s of the residue field of R with
the log structure induced by the log structure of Slog via the natural
closed immersion s ↪→ S; X log a stable log curve over Slog; GXlog the
semi-graph of anabelioids of pro-Σ PSC-type determined by the special

fiber X log
s

def
= X log ×Slog slogof the stable log curve X log [cf. [CmbGC],

Example 2.5]; ISlog (� ẐΣ) the maximal pro-Σ completion of the log
fundamental group π1(S

log) of Slog.

(i) One may verify easily that the natural outer representation
ISlog → Aut(GXlog) associated to the stable log curve X log

over Slog factors through Dehn(GXlog) ⊆ Aut(GXlog). We shall
write

ρXlog
s

: ISlog −→ Dehn(GXlog)

for the resulting homomorphism.

(ii) It follows from the well-known local structure of a stable log
curve in a neighborhood of a node that for each node e of the
special fiber of X log, there exists a nonzero element ae �= 0 of

the maximal ideal (π) ⊆ R such that the completion ÔX,e of
the local ring OX,e at e is isomorphic to R[[s1, s2]]/(s1s2 − ae)
— where s1, s2 denote indeterminates. Write

lngXlog(e)
def
= vR(ae); lngΣXlog(e)

def
= [ẐΣ : lngXlog(e) · ẐΣ].

We shall refer to lngXlog(e) as the length of e and to lngΣXlog(e)
as the Σ-length of e. One verifies easily that lngXlog(e), hence

also lngΣXlog(e), depends only on e, i.e., is independent of the

choice of the isomorphism ÔX,e � R[[s1, s2]]/(s1s2 − ae).

Lemma 5.4 (Local geometric universal outer representa-
tions). In the notation of Definition 5.3, suppose that GXlog is of type

(g, r) [cf. Definition 2.3, (i); Remark 2.3.1]. Write N
def
= Node(GXlog)

�

and σlog : Slog → (Mlog

g,r)S [cf. the discussion entitled “Curves” in §0]
for the classifying morphism of the stable log curve X log over Slog. Then
the following hold:

(i) (Local structure of the moduli stack of pointed sta-

ble curves) Write Ô for the completion of the local ring of
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(Mg,r)S at the image of the closed point of S via the underly-
ing (1-)morphism of stacks σ of σlog and T log for the

[fs] log scheme obtained by equipping T
def
= Spec Ô with the log

structure induced by the log structure of (Mlog

g,r)S. [Thus, we

have a tautological strict [cf. [Illu], 1.2] (1-)morphism T log →
(Mlog

g,r)S.] Then there exists an isomorphism of R-algebras

R[[t1, · · · , t3g−3+r]]
∼→ Ô such that the following hold:

• The log structure of the log scheme T log is given by the
following chart:⊕

e∈Node(G
Xlog )

Ne −→ R[[t1, · · · , t3g−3+r]]
∼→ Ô

(ne1 , · · · , neN ) �→ t
ne1
1 · · · tneN

N

— where we write Ne for the copy of N indexed by e ∈
Node(GXlog).

• For 1 ≤ i ≤ N , the homomorphism of R-algebras Ô → R
induced by the morphism σ maps ti to aei [cf. Defini-
tion 5.3, (ii)].

(ii) (Log-scheme-theoretic description of log fundamental
groups) Write IT log for the maximal pro-Σ quotient of the
log fundamental group π1(T

log) of T log. Then we have natural
isomorphisms

ISlog
∼→ Hom

(
Ngp, ẐΣ(1)

)
;

IT log
∼→ Hom

(⊕
e∈Node(G

Xlog )
Ngp

e , Ẑ
Σ(1)

)
∼→ ⊕

e∈Node(G
Xlog )

Hom
(
Ngp

e , Ẑ
Σ(1)

)
,

and the homomorphism ISlog → IT log induced by the classify-
ing morphism σlog is the homomorphism obtained by applying

the functor “Hom
ẐΣ((−)gp, ẐΣ(1))” to the homomorphism of

monoids⊕
e∈Node(G

Xlog )
Ne −→ N

(ne1 , · · · , neN ) �→ ∑N
i=1 nei lngXlog(ei)

.

(iii) (Local geometric universal outer representations) The
natural outer representation IT log → Aut(GXlog) associ-

ated to the stable log curve over T log determined
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by the tautological strict morphism T log → (Mlog

g,r)S factors
through Dehn(GXlog) ⊆ Aut(GXlog); thus, we have a homomor-
phism IT log → Dehn(GXlog). Moreover, the homomorphism
ρXlog

s
: ISlog → Dehn(GXlog) factors as the composite of the ho-

momorphism ISlog → IT log induced by σlog and this homomor-
phism IT log → Dehn(GXlog).

Proof. Assertion (i) follows immediately from the well-known local

structure of the log stack (Mlog

g,r)S [cf. [Knud], Theorem 2.7]. Assertion
(ii) follows immediately from assertion (i), together with the well-known
structure of the log fundamental groups of Slog and T log. Assertion (iii)
follows immediately from the various definitions involved. Q.E.D.

Definition 5.5. In the notation of Definition 5.3, Lemma 5.4, we
shall write tlog for the log scheme obtained by equipping the closed point
t of T with the log structure naturally induced by the log structure of

T log; X log
t for the stable log curve over tlog corresponding to the natural

strict morphism tlog (↪→ T log) → (Mlog

g,r)S ;

ρuniv
Xlog

t
: IT log −→ Dehn(GXlog)

for the homomorphism obtained in Lemma 5.4, (iii).

Proposition 5.6 (Outer representations arising from stable
log curves). In the notation of Definition 5.3, Lemma 5.4, the following
hold:

(i) (Compatibility of Σ-lengths) For each node e ∈
Node(GXlog) of GXlog , it holds that

lngΣG
Xlog

(e, ρXlog
s

) = lngΣXlog(e)

[cf. Definitions 5.1; 5.3, (ii)].

(ii) (Isomorphicity of local geometric universal outer rep-
resentations) The homomorphism

ρuniv
Xlog

t
: IT log −→ Dehn(GXlog)

[cf. Definition 5.5] is an isomorphism of profinite groups.
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(iii) (Compatibility with generization) Let Q ⊆ Node(GXlog)
be a subset of Node(GXlog). Then there exist a stable log curve

Y log over Slog and an isomorphism of semi-graphs of anabe-
lioids (GXlog)�Q

∼→ GY log that fit into a commutative diagram
of profinite groups

IT log
Y

ρuniv

Y
log
t−−−−→ Dehn(GY log)⏐⏐� ⏐⏐�

IT log
X

ρuniv

X
log
t−−−−→ Dehn(GXlog)

— where we write IT log
X

, IT log
Y

for the “IT log” associated to X log,

Y log, respectively; the right-hand vertical arrow is the natural
inclusion induced, via the isomorphism (GXlog)�Q

∼→ GY log , by
the natural inclusion of Theorem 4.8, (ii); the left-hand vertical
arrow is the injection induced, via the [relevant] isomorphism
of Lemma 5.4, (ii), by the natural projection of monoids⊕

e∈Node(G
Xlog )

Ne �
⊕

e∈Node(G
Y log )

Ne .

[Note that it follows immediately from the various definitions

involved that Node(GY log)
∼← Node((GXlog)�Q) may be regarded

as a subset of Node(GXlog).]

(iv) (Compatibility with specialization) Let H be a semi-graph

of anabelioids of pro-Σ PSC-type, Q ⊆ Node(H), and H�Q
∼→

GXlog an isomorphism of semi-graphs of anabelioids. Then

there exist a stable log curve Y log over Slog and an isomor-
phism of semi-graphs of anabelioids H ∼→ GY log that fit into a
commutative diagram of profinite groups

IT log
X

ρuniv

X
log
t−−−−→ Dehn(GXlog)⏐⏐� ⏐⏐�

IT log
Y

ρuniv

Y
log
t−−−−→ Dehn(GY log)

— where we write IT log
X

, IT log
Y

for the “IT log” associated to X log,

Y log, respectively; the right-hand vertical arrow is the natural
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inclusion induced, via the isomorphisms H�Q
∼→ GXlog and

H ∼→ GY log , by the natural inclusion of Theorem 4.8, (ii); the
left-hand vertical arrow is the injection induced, via the [rele-
vant] isomorphism of Lemma 5.4, (ii), by the natural projection
of monoids ⊕

e∈Node(G
Y log )

Ne �
⊕

e∈Node(G
Xlog )

Ne .

[Note that it follows immediately from the various definitions

involved that Node(GXlog)
∼← Node(H�Q) may be regarded as

a subset of Node(GY log)
∼← Node(H).]

(v) (Input compatibility with “surgery”) Let H be a sub-
semi-graph of PSC-type [cf. Definition 2.2, (i)] of the un-
derlying semi-graph of GXlog , Q ⊆ Node((GXlog)|H) [cf. Def-
inition 2.2, (ii)] a subset of Node((GXlog)|H) that is not of
separating type [cf. Definition 2.5, (i)], and U ⊆
Cusp(((GXlog)|H)�Q) [cf. Definition 2.5, (ii)] an omittable
[cf. Definition 2.4, (i)] subset of Cusp(((GXlog)|H)�Q). Then

there exist a stable log curve Y log over Slog and an isomor-
phism (((GXlog)|H)�Q)•U

∼→ GY log [cf. Definition 2.4, (ii)] that
fit into a commutative diagram of profinite groups

ISlog −−−−→ IT log
X

ρuniv

X
log
t−−−−→ Dehn(GXlog)∥∥∥ ⏐⏐� ⏐⏐�

ISlog −−−−→ IT log
Y

ρuniv

Y
log
t−−−−→ Dehn(GY log)

— where we write IT log
X

, IT log
Y

for the “IT log” associated to

X log, Y log, respectively; the left-hand horizontal arrows are the
homomorphisms induced by the classifying morphisms associ-
ated to X log, Y log, respectively; the right-hand vertical arrow
is the natural surjection induced, via the isomorphism
(((GXlog)|H)�Q)•U

∼→ GY log , by the natural surjection of The-
orem 4.8, (iii); the middle vertical arrow is the surjection in-
duced, via the [relevant] isomorphism of Lemma 5.4, (ii), by
the natural inclusion of monoids⊕

e∈Node(G
Y log )

Ne ↪→
⊕

e∈Node(G
Xlog )

Ne .
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[Note that it follows immediately from the various definitions

involved that Node(GY log)
∼← Node((((GXlog)|H)�Q)•U ) may be

regarded as a subset of Node(GXlog).]

(vi) (Output compatibility with “surgery”) Let H be a semi-
graph of anabelioids of pro-Σ PSC-type, K a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of the underlying semi-
graph of H, Q ⊆ Node(H|K) [cf. Definition 2.2, (ii)] a subset
of Node(H|K) that is not of separating type [cf. Defini-
tion 2.5, (i)], U ⊆ Cusp((H|K)�Q) [cf. Definition 2.5, (ii)] an
omittable [cf. Definition 2.4, (i)] subset of Cusp((H|K)�Q),

and ((H|K)�Q)•U
∼→ GXlog [cf. Definition 2.4, (ii)] an isomor-

phism of semi-graphs of anabelioids. Then there exist a stable
log curve Y log over Slog and an isomorphism of semi-graphs of
anabelioids H ∼→ GY log that fit into a commutative diagram of
profinite groups

ISlog −−−−→ IT log
Y

ρuniv

Y
log
t−−−−→ Dehn(GY log)∥∥∥ ⏐⏐� ⏐⏐�

ISlog −−−−→ IT log
X

ρuniv

X
log
t−−−−→ Dehn(GXlog)

— where we write IT log
X

, IT log
Y

for the “IT log” associated to

X log, Y log, respectively; the left-hand horizontal arrows are
the homomorphisms induced by the classifying morphisms as-
sociated to Y log, X log, respectively; the right-hand vertical ar-
row is the natural surjection induced, via the isomorphisms
((H|K)�Q)•U

∼→ GXlog and H ∼→ GY log , by the natural surjec-
tion of Theorem 4.8, (iii); the middle vertical arrow is the sur-
jection induced, via the [relevant] isomorphism of Lemma 5.4,
(ii), by the natural inclusion of monoids⊕

e∈Node(G
Xlog )

Ne ↪→
⊕

e∈Node(G
Y log )

Ne .

[Note that it follows immediately from the various definitions

involved that Node(GXlog)
∼← Node(((H|K)�Q)•U ) may be re-

garded as a subset of Node(GY log)
∼← Node(H).]

Proof. Assertion (i) follows immediately from the well-known lo-
cal structure of a stable log curve in a neighborhood of a node. Next,
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we verify assertion (ii). By allowing “ρXlog
s

” to vary among the natu-

ral outer representations ISlog → Dehn(GXlog) associated to stable log

curves “X log” over Slog whose classifying morphisms “σ” coincide with
the given σ on the closed point s of S, one concludes that the surjec-
tivity of ρuniv

Xlog
t

follows immediately from the final portion of Lemma 5.2,

(ii), concerning ρ of SNN-type [cf. also assertion (i); Theorem 4.8, (iv)].
[Here, we recall that ρXlog

s
is of IPSC-type [cf. [NodNon], Definition

2.4, (i)], hence also of SNN-type [cf. [NodNon], Remark 2.4.2].] On the

other hand, since both Dehn(GXlog) and IT log are free ẐΣ-modules of

rank Node(GXlog)
� [cf. Theorem 4.8, (iv); Lemma 5.4, (ii)], assertion (ii)

follows immediately from this surjectivity of ρuniv
Xlog

t

. This completes the

proof of assertion (ii).
Assertion (iii) (respectively, (iv)) follows immediately, in light of

the well-known structure of (Mlog

g,r)S [cf. also the discussion entitled

“The Étale Fundamental Group of a Log Scheme” in [CmbCsp], §0,
concerning the specialization isomorphism on fundamental groups, as
well as Remark 5.6.1 below], by considering a lifting to Slog of a sta-
ble log curve over slog obtained by deforming the nodes of the special

fiber X log
s

def
= X log ×Slog slog corresponding to the nodes contained in

Q (respectively, degenerating the moduli of X log
s so as to obtain nodes

corresponding to the nodes contained in Q) [cf. also Proposition 4.10,
(iii)].

Next, we verify assertion (v). First, we observe that one may verify
easily that if H is the underlying semi-graph of GXlog , and Q = ∅, then
the stable log curve Y log over Slog obtained by omitting the cusps ofX log

contained in U and the resulting natural isomorphism (GXlog)•U
∼→ GY log

satisfy the conditions given in the statement of assertion (v). Thus, one
verifies immediately that to verify assertion (v), we may assume without
loss of generality that U = ∅.

Write H def
= ((GXlog)|H)�Q and V

def
= Vert(GXlog) \Vert((GXlog)|H) ⊆

Vert(GXlog). Denote by (gH, rH) the type of H, and, for each v ∈ V , by
(gv, rv) the type of v [cf. Definition 2.3, (i), (iii); Remark 2.3.1]. Then
it follows immediately from the general theory of stable log curves that
there exists a “clutching (1-)morphism” corresponding to the operations
“(−)|H” and “(−)�Q” [i.e., obtained by forming appropriate composites
of the clutching morphisms discussed in [Knud], Definition 3.6]

N def
= (MgH,rH)s ×s

( ∏
v∈V

(Mgv,rv )s

)
−→ (Mg,r)s
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— where the fiber product “
∏

v∈V ” is taken over s — that satisfies

the following condition: write N log for the log stack obtained by equip-
ping the stack N with the log structure induced by the log structure

of (Mlog

g,r)s via the above clutching morphism; then there exists an slog-

valued point σlog
N ∈ N log(slog) of N log such that the image of σlog

N via

the natural strict (1-)morphism N log → (Mlog

g,r)s coincides with the slog-

valued point of (Mlog

g,r)s obtained by restricting the classifying morphism

σlog ∈ (Mlog

g,r)S(S
log) of X log to slog. If, moreover, we write Y log

s for the

stable log curve over slog corresponding to the image of σlog
N ∈ N log(slog)

via the composite of (1-)morphisms

N log −→ N log def
= (Mlog

gH,rH)s ×s

( ∏
v∈V

(Mgv,rv )s

)
prlog1−→ (Mlog

gH,rH)s

— where the first arrow is the (1-)morphism of log stacks obtained by

“forgetting” the portion of the log structure of N log that arises from [the

portion of the log structure of (Mlog

g,r)s determined by] the irreducible

components of the divisor (Mg,r)s \ (Mg,r)s which contain the image of

N → (Mg,r)s — then one verifies immediately that, for any stable log
curve Y log over Slog that lifts Y log

s , there exists a natural identification

isomorphism H = ((GXlog)|H)�Q
∼→ GY log .

Next, let us observe that by applying the various definitions in-

volved, together with the fact that the (1-)morphism N log → (Mlog

g,r)S
is strict, one may verify easily that the restrictions of the natural (1-
)morphisms of log stacks

(Mlog

gH,rH)s
prlog1←− N log ←− N log −→ (Mlog

g,r)s

to a suitable étale neighborhood of the underlying morphism of stacks

of σlog
N ∈ N log(slog) induce the following morphisms between the charts

of (Mlog

gH,rH)s, N log, N log, and (Mlog

g,r)s determined by the chart of

“(Mlog

g•,r•)s” given in Lemma 5.4, (i):

⊕
e∈Node(H) Ne

∼→
(⊕

e∈Node(H) Ne

)
⊕ {0}

↪→ ⊕
e∈Node(G

Xlog )
Ne

∼← ⊕
e∈Node(G

Xlog )
Ne

— where we use the notation Ne to denote a copy of the monoid N

indexed by e, and the “↪→” is the natural inclusion determined by the
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natural inclusion Node(H) ↪→ Node(G). Thus, by applying the func-

tor “Hom
ẐΣ((−)gp, ẐΣ(1))” to the homomorphism

⊕
e∈Node(H) Ne ↪→⊕

e∈Node(G
Xlog )

Ne obtained by composing the morphisms of the above

display and considering the [relevant] isomorphism of Lemma 5.4, (ii),
we obtain a homomorphism IT log

X
→ IT log

Y
, which makes the left-hand

square of the diagram in the statement of assertion (v) commute.
On the other hand, to verify the commutativity of the right-hand

square of the diagram in the statement of assertion (v), let us observe
that by Theorem 4.8, (iv), it suffices to verify that for any node e ∈
Node(GY log) of GY log , the two composites

IT log
X

ρuniv

X
log
t−→ Dehn(GXlog)

DeX−→ ΛG
Xlog

∼−→ ΛG
Y log

;

IT log
X

−→ IT log
Y

ρuniv

Y
log
t−→ Dehn(GY log)

De−→ ΛG
Y log

— where we write eX for the node of GXlog corresponding to the node
e ∈ Node(GY log) via the natural inclusion Node(GY log) ↪→ Node(GXlog)
— coincide. But this follows immediately by comparing the natural
action of IT log

X
on the portion of GXlog corresponding to {eX} ∪ V(eX)

with the natural action of IT log
Y

on the portion of GY log corresponding to

{e} ∪ V(e). This completes the proof of assertion (v).
Finally, we verify assertion (vi). First, we observe that one may

verify easily that if K is the underlying semi-graph of H, and Q = ∅,
then the stable log curve Y log over Slog obtained by equipping X log with
suitable cusps satisfies, for a suitable choice of isomorphism H ∼→ GY log ,
the conditions given in the statement of assertion (vi). Thus, one verifies
immediately that to verify assertion (vi), we may assume without loss
of generality that U = ∅.

Write V
def
= Vert(H) \ Vert(H|K) ⊆ Vert(H). Denote by (gH, rH)

the type of H, and, for each v ∈ V , by (gv, rv) the type of v. Then
it follows immediately from the general theory of stable log curves that
there exists a clutching “(1-)morphism” corresponding to the operations
“(−)|K” and “(−)�Q” [i.e., obtained by forming appropriate composites
of the clutching morphisms discussed in [Knud], Definition 3.6]

N def
= (Mg,r)s ×s

( ∏
v∈V

(Mgv,rv )s

)
−→ (MgH,rH)s

— where the fiber product “
∏

v∈V ” is taken over s — that satisfies

the following condition: write N log for the log stack obtained by equip-
ping the stack N with the log structure induced by the log structure



104 Yuichiro Hoshi and Shinichi Mochizuki

of (Mlog

gH,rH)s via the above clutching morphism; then there exists an

slog-valued point σlog
N ∈ N log(slog) of N log such that the image of σlog

N ∈
N log(slog) via the composite of (1-)morphisms

N log −→ N log def
= (Mlog

g,r)s ×s

( ∏
v∈V

(Mgv,rv )s

)
prlog1−→ (Mlog

g,r)s

— where the first arrow is the (1-)morphism of log stacks obtained by

“forgetting” the portion of the log structure of N log that arises from

[the portion of the log structure of (Mlog

gH,rH)s determined by] the irre-

ducible components of the divisor (MgH,rH)s \ (MgH,rH)s which con-

tain the image of N → (MgH,rH)s — coincides with the slog-valued

point of (Mlog

g,r)s obtained by restricting the classifying morphism σlog ∈
(Mlog

g,r)S(S
log) of X log to slog. If, moreover, we write Y log

s for the stable

log curve over slog corresponding to the image of σlog
N ∈ N log(slog) via

the natural strict (1-)morphism N log → (Mlog

gH,rH)s, then one verifies

immediately that, for any stable log curve Y log over Slog that lifts Y log
s ,

there exist a sub-semi-graph of PSC-type K′ of the underlying semi-graph
of GY log , a subset Q′ ⊆ Node((GY log)|K′), and an isomorphism of semi-

graphs of anabelioids H ∼→ GY log that satisfy the following conditions:

(a) ((GY log)|K′)�Q′ may be naturally identified with GXlog .

(b) The isomorphism H ∼→ GY log induces an isomorphism K
∼→ K′

and a bijectionQ
∼→ Q′, hence also an isomorphism (H|K)�Q

∼→
((GY log)|K′)�Q′ .

(c) The automorphism of GXlog determined by the composite

GXlog

∼←− (H|K)�Q
∼−→ ((GY log)|K′)�Q′

∼−→ GXlog

— where the first arrow is the isomorphism given in the state-
ment of assertion (vi); the second arrow is the isomorphism of
(b); the third arrow is the natural isomorphism arising from the

natural identification of (a) — is contained in Aut|grph|(GXlog),
and, moreover, the automorphism of ΛG

Xlog
induced by this au-

tomorphism of GXlog is the identity automorphism [cf. Propo-
sition 4.10, (iii)].

Thus, by applying a similar argument to the argument used in the proof
of assertion (v), one verifies easily that the stable log curve Y log and the
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isomorphism H ∼→ GY log satisfy the conditions given in the statement of
assertion (vi). This completes the proof of assertion (vi). Q.E.D.

Remark 5.6.1. Here, we take the opportunity to correct a minor
misprint in the discussion entitled “The Étale Fundamental Group of a
Log Scheme” in [CmbCsp], §0. In the third paragraph of this discussion,
the field K should be defined as a maximal algebraic extension of K◦
among those extensions which are unramified over US◦ [i.e., but not
necessarily over R◦].

Theorem 5.7 (Compatibility of scheme-theoretic and ab-
stract combinatorial cyclotomic synchronizations). Let (g, r) be a
pair of nonnegative integers such that 2g−2+r > 0; Σ a nonempty set of
prime numbers; R a complete discrete valuation ring whose residue field
is separably closed of characteristic �∈ Σ; Slog the log scheme obtained by

equipping S
def
= SpecR with the log structure defined by its closed point;

X log a stable log curve of type (g, r) over Slog; GXlog the semi-graph
of anabelioids of pro-Σ PSC-type determined by the special fiber of the

stable log curve X log [cf. [CmbGC], Example 2.5]; Ô the completion of
the local ring of (Mg,r)S [cf. the discussion entitled “Curves” in §0] at
the image of the closed point of S via the underlying (1-)morphism of
stacks σ : S → (Mg,r)S of the classifying morphism of X log; T log for

the log scheme obtained by equipping T
def
= Spec Ô with the log struc-

ture induced by the log structure of (Mlog

g,r)S [cf. the discussion entitled
“Curves” in §0]; IT log the maximal pro-Σ quotient of the log fundamental
group π1(T

log) of T log. Then there exists an isomorphism

synXlog : ΛΣ def
= Hom(Ngp, ẐΣ(1))

∼−→ ΛG
Xlog

[cf. Definition 3.8, (i)] such that the composite

IT log
∼→ ⊕

e∈Node(G
Xlog )

ΛΣ[e]⊕
syn

Xlog

∼→ ⊕
e∈Node(G

Xlog )
ΛG

Xlog

DG
Xlog

∼← Dehn(GXlog)

[cf. Definitions 4.4; 4.7] — where we use the notation ΛΣ[e] to denote
a copy of ΛΣ indexed by e ∈ Node(GXlog), and the first arrow is the
[relevant] isomorphism of Lemma 5.4, (ii) — coincides with the outer
representation ρuniv

Xlog
t

: IT log → Dehn(GXlog) [cf. Definition 5.5] associated
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to the stable log curve over T log corresponding to the tautological strict

(1-)morphism T log → (Mlog

g,r)S.

Proof. In light of Theorem 4.8, (ii), (iv); Proposition 5.6, (ii), by
applying Proposition 5.6, (iii), to the various generizations of the form
“(GXlog)�Node(G

Xlog )\{e}”, it follows immediately that for each node e ∈
Node(GXlog), there exists a(n) [necessarily unique] isomorphism

synXlog [e] : ΛΣ[e]
∼−→ ΛG

Xlog

— where ΛΣ[e] is a copy of ΛΣ indexed by e ∈ Node(GXlog) — such that
the composite

IT log
∼→ ⊕

e∈Node(G
Xlog )

ΛΣ[e]⊕
e syn

Xlog [e]
∼→ ⊕

e∈Node(G
Xlog )

ΛG
Xlog

DG
Xlog

∼← Dehn(GXlog)

— where the first “
∼→” is the [relevant] isomorphism of Lemma 5.4, (ii)

— coincides with ρuniv
Xlog

t

.

Thus, to complete the proof of Theorem 5.7, it suffices to verify that
this isomorphism synXlog [e] is independent of the choice of e. Now if
Node(GXlog)

� ≤ 1, then this independence is immediate. Thus, suppose

that Node(GXlog)
� > 1 and fix two distinct nodes e1, e2 ∈ Node(GXlog)

of GXlog . The rest of the proof of Theorem 5.7 is devoted to verifying
that

(‡): the two isomorphisms

ΛΣ[e1]

syn
Xlog [e1]
∼−→ ΛG

Xlog
, ΛΣ[e2]

syn
Xlog [e2]
∼−→ ΛG

Xlog

coincide.

Next, let us observe that one may verify easily that there exist

• a semi-graph of anabelioids of pro-Σ PSC-type H∗,

• a sub-semi-graph of PSC-type K∗ of the underlying semi-graph
of H∗,

• an omittable subset Q∗ ⊆ Cusp((H∗)|K∗), and

• an isomorphism

((H∗)|K∗)•Q∗
∼−→ GXlog
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such that the subset U∗ ⊆ Node(H∗) corresponding, relative to the iso-

morphism ((H∗)|K∗)•Q∗
∼→ GXlog , to the subset {e1, e2} ⊆ Node(GXlog)

is not of separating type. Thus, it follows immediately from Propo-
sition 5.6, (vi) — i.e., by replacing X log (respectively, e1, e2) by the
stable log curve “Y log” obtained by applying Proposition 5.6, (vi), to

the isomorphism ((H∗)|K∗)•Q∗
∼→ GXlog (respectively, by the two nodes

∈ Node(GY log) corresponding to the two nodes ∈ U∗) — that to verify
the above (‡), we may assume without loss of generality that the subset
{e1, e2} ⊆ Node(GXlog) is not of separating type.

Thus, it follows immediately from Proposition 5.6, (iii) — i.e., by
replacing X log (respectively, e1, e2) by the stable log curve “Y log” ob-
tained by applying Proposition 5.6, (iii), to (GXlog)�Node(G

Xlog )\{e1,e2}
(respectively, by the two nodes ∈ Node(GY log) corresponding to e1, e2)
— that to verify the above (‡), we may assume without loss of general-
ity that Node(GXlog) = {e1, e2}, and that Node(GXlog) = {e1, e2} is not
of separating type. One verifies easily that these hypotheses imply that
Vert(GXlog)

� = 1.
Next, let us observe that one may verify easily that there exist [cf.

Fig. 6 below]

• a semi-graph of anabelioids of pro-Σ PSC-type H†,

• two distinct cusps c†1, c
†
2 ∈ Cusp(H†) of H†,

• three distinct nodes f†1 , f
†
2 , f

†
3 ∈ Node(H†) of H†, and

• an isomorphism

(H†
�{f†

1 ,f
†
2 ,f

†
3}
)•{c†1,c†2}

∼−→ GXlog

such that

• Vert(H†) = {v†1, v†2, v†3, v†4};

• for i ∈ {1, 2}, if we write e†i ∈ Node(H†) for the node corre-

sponding, relative to the isomorphism (H†
�{f†

1 ,f
†
2 ,f

†
3}
)•{c†1,c†2}

∼→
GXlog , to ei ∈ Node(GXlog), then it holds that V(e†i ) = {v†i };

• V(f†1 ) = {v†1, v†3}, V(f†2 ) = {v†2, v†3}, V(f†3 ) = {v†3, v†4};

• V(c†1) = V(c†2) = {v†4};

• for i ∈ {1, 2, 3}, v†i is of type (0, 3) [cf. Definition 2.3, (iii)].
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Figure 6: The underlying semi-graph of H†

v†1 v†2

v†3

v†4
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1 f †

2

f †
3

•

•

• •

◦◦ · · · · · ·

One verifies easily that these hypotheses imply that (N (v†1) ∩
N (v†3))

� = (N (v†2) ∩ N (v†3))
� = 1. Thus, it follows immediately from

Proposition 5.6, (iv), (vi) — i.e., by replacing X log (respectively, e1, e2)
by the stable log curve “Y log” obtained by applying Proposition 5.6, (iv),

(vi), to the isomorphism (H†
�{f†

1 ,f
†
2 ,f

†
3}
)•{c†1,c†2}

∼→ GXlog (respectively, by

the two nodes ∈ Node(GY log) corresponding to the two nodes e†1, e
†
2) —

that to verify the above (‡), we may assume without loss of generality
that there exist vertices v1, v2, v3 of GXlog such that

• for i ∈ {1, 2}, V(ei) = {vi};
• for i ∈ {1, 2, 3}, vi is of type (0, 3);

• (N (v1) ∩N (v3))
� = (N (v2) ∩N (v3))

� = 1.

Write H for the sub-semi-graph of PSC-type of the underlying semi-
graph of GXlog whose set of vertices = {v1, v2, v3}. Then one verifies eas-
ily that these hypotheses imply that Node((GXlog)|H) = {e1, e2, f1, f2},
where we write {f1} = N (v1) ∩N (v3), {f2} = N (v2) ∩N (v3).

Thus, it follows immediately from Proposition 5.6, (v) — i.e., by
replacing X log (respectively, e1, e2) by the stable log curve “Y log” ob-
tained by applying Proposition 5.6, (v), to (GXlog)|H (respectively, by
the two nodes ∈ Node(GY log) corresponding to e1, e2) — that to verify
the above (‡), we may assume without loss of generality that there exist
three distinct vertices v1, v2, v3 of GXlog such that

• for i ∈ {1, 2}, V(ei) = {vi};
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• for i ∈ {1, 2, 3}, vi is of type (0, 3);

• Node(GXlog) = {e1, e2, f1, f2}, where we write {f1} = (N (v1)∩
N (v3)), {f2} = (N (v2) ∩N (v3)).

One verifies easily that these hypotheses imply that there exists a cusp
c of GXlog such that Cusp(GXlog) = {c} = C(v3).

Then it follows immediately from the explicit structure of GXlog that

there exists an automorphism τ of X log
t [cf. Definition 5.5] such that the

automorphism of Node(GXlog) = {e1, e2, f1, f2} (respectively, IT log
∼→

Hom
ẐΣ((Ne1⊕Ne2⊕Nf1⊕Nf2)

gp, ẐΣ(1)) [cf. Lemma 5.4, (ii)]) induced by
τ is given by mapping e1 �→ e2, e2 �→ e1, f1 �→ f2, f2 �→ f1, (respectively,
by the corresponding permutation of factors of Ne1 ⊕Ne2 ⊕Nf1 ⊕Nf2),
and, moreover, τ preserves the cusp corresponding to c. Now it follows
immediately from Corollary 3.9, (v), together with the fact that the
automorphism of the anabelioid (GXlog)c corresponding to the cusp c
induced by τ is the identity automorphism [cf. the argument used in the
final portion of the proof of Corollary 3.9, (vi)], that the automorphism
of ΛG

Xlog
induced by τ is the identity automorphism. Thus, by applying

the evident functoriality of the homomorphism ρuniv
Xlog

t

with respect to the

automorphism of GXlog induced by τ , one concludes immediately from
the above description of τ , together with Theorem 4.8, (v), that the
assertion (‡) holds. This completes the proof of Theorem 5.7. Q.E.D.

Definition 5.8. Let α ∈ Dehn(G) be a profinite Dehn multi-twist
of G and u ∈ ΛG a topological generator of ΛG .

(i) Let e ∈ Node(G) be a node of G. Then since ΛG is a free ẐΣ-
module of rank 1 [cf. Definition 3.8, (i)], there exists a unique

element ae ∈ ẐΣ of ẐΣ such that De(α) = aeu. We shall refer

to ae ∈ ẐΣ as the Dehn coordinate of α indexed by e with
respect to u.

(ii) We shall say that a profinite Dehn multi-twist α ∈ Dehn(G) is
nondegenerate if, for each node e ∈ Node(G) of G, the Dehn
coordinate of α indexed by e with respect to u [cf. (i)] topo-

logically generates an open subgroup of ẐΣ. Note that it is
immediate that if α is nondegenerate, then the Dehn coordi-

nate (∈ ẐΣ ∼→ ∏
l∈Σ Zl ⊆ ∏

l∈Σ Ql) of α indexed by e with
respect to u is contained in

∏
l∈Σ Q∗

l .
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(iii) We shall say that a profinite Dehn multi-twist α ∈ Dehn(G) is
positive definite if α is nondegenerate [cf. (ii)], and, moreover,
the following condition is satisfied: For each node e ∈ Node(G)
of G, denote by ae ∈ ẐΣ the Dehn coordinate of α indexed by
e with respect to u [cf. (i)]. [Thus, ae ∈ ∏

l∈Σ Q∗
l — cf. (ii).]

Then for any e, e′ ∈ Node(G), ae/ae′ is contained in the image

of the diagonal map Q>0
def
= { a ∈ Q | a > 0 } ↪→ ∏

l∈Σ Q∗
l .

Remark 5.8.1. One may verify easily that the notions defined in
Definition 5.8, (ii), (iii), are independent of the choice of the topological
generator u of ΛG .

Corollary 5.9 (Properties of outer representations of PSC–
type and profinite Dehn multi-twists). Let Σ be a nonempty set
of prime numbers and ρ : I → Aut(G) an outer representation of pro-Σ
PSC-type [cf. [NodNon], Definition 2.1, (i)]. Suppose that I is isomor-

phic to ẐΣ. Then the following hold:

(i) (Outer representations of SVA-type and profinite Dehn
multi-twists) The following three conditions are equivalent:

(i-1) ρ is of SVA-type [cf. [NodNon], Definition 2.4, (ii)].

(i-2) The image of any topological generator of I is a profinite
Dehn multi-twist [cf. Definition 4.4].

(i-3) There exists a topological generator of I whose image via
ρ is a profinite Dehn multi-twist.

(ii) (Outer representations of SNN-type and nondegener-
ate profinite Dehn multi-twists) The following three con-
ditions are equivalent [cf. the related discussion of [NodNon],
Remark 2.14.1]:

(ii-1) ρ is of SNN-type [cf. [NodNon], Definition 2.4, (iii)].

(ii-2) The image of any topological generator of I is a non-
degenerate [cf. Definition 5.8, (ii)] profinite Dehn
multi-twist.

(ii-3) There exists a topological generator of I whose image via
ρ is a nondegenerate profinite Dehn multi-twist.
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(iii) (Outer representations of IPSC-type and positive defi-
nite profinite Dehn multi-twists) The following three con-
ditions are equivalent [cf. Remark 5.10.1 below; the related
discussion of [NodNon], Remark 2.14.1]:

(iii-1) ρ is of IPSC-type [cf. [NodNon], Definition 2.4, (i)].

(iii-2) The image of any topological generator of I is a posi-
tive definite [cf. Definition 5.8, (iii)] profinite Dehn
multi-twist.

(iii-3) There exists a topological generator of I whose image via
ρ is a positive definite profinite Dehn multi-twist.

(iv) (Synchronization associated to outer representations
of IPSC-type) Suppose that ρ is of IPSC-type. Write

(ẐΣ)+ ⊆ (ẐΣ)∗

for the intersection of the images of the diagonal map Q>0
def
=

{ a ∈ Q | a > 0 } ↪→ ∏
l∈Σ Ql and the composite of natural

morphisms (ẐΣ)∗ ↪→ ẐΣ ∼→ ∏
l∈Σ Zl ⊆

∏
l∈Σ Ql. [Thus, when

Σ = Primes, it holds that (ẐΣ)+ = {1}.] Then there exists a

natural (ẐΣ)+-orbit of isomorphisms of ẐΣ-modules

syn ρ : I
∼−→ ΛG

that is functorial, in ρ, with respect to isomorphisms of outer
representations of PSC-type [cf. [NodNon], Definition 2.1,
(ii)].

(v) (Compatibility of synchronizations with finite étale

coverings) In the situation of (iv), let Π ⊆ ΠI
def
= ΠG

out
� I [cf.

the discussion entitled “Topological groups” in §0] be an open
subgroup of ΠI such that if we write H → G for the connected
finite étale covering of G corresponding to Π ∩ ΠG [so ΠH =

Π ∩ ΠG], then the outer representation ρΠ : J
def
= Π/ΠH →

Out(ΠH) is of IPSC-type. Then the diagram of ẐΣ-modules

J
syn ρΠ−−−−→ ΛH⏐⏐� ⏐⏐��

I
syn ρ−−−−→ ΛG
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— where the left-hand vertical arrow is the natural inclusion;
the right-hand vertical arrow is the isomorphism of Corol-
lary 3.9, (iii) — commutes up to multiplication by an el-
ement ∈ Q>0.

Proof. Assertion (i) follows immediately from condition (2′) of
[NodNon], Definition 2.4. Next, we verify assertions (ii) and (iii). The
implication

(ii-1) =⇒ (ii-2) , (respectively, (iii-1) =⇒ (iii-2))

follows immediately from the final portion of Lemma 5.2, (ii), concern-
ing ρ of SNN-type (respectively, Lemma 5.4, (ii); Theorem 5.7). The
implications

(ii-2) =⇒ (ii-3) , (iii-2) =⇒ (iii-3)

are immediate.
Next, we verify the implication

(ii-3) =⇒ (ii-1) .

It follows from the implication (i-3) ⇒ (i-1) that ρ is of SVA-type. Thus,
to show the implication in question, it suffices to verify that ρ satisfies

condition (3) of [NodNon], Definition 2.4. Let ẽ ∈ Node(G̃) be an ele-

ment of Node(G̃); ΠI
def
= ΠG

out
� I [cf. the discussion entitled “Topological

groups” in §0]; ṽ, w̃ ∈ Vert(G̃) the two distinct elements of Vert(G̃) such
that V(ẽ) = {ṽ, w̃} [cf. [NodNon], Remark 1.2.1, (iii)]; Iẽ, Iṽ, Iw̃ ⊆ ΠI

the inertia subgroups of ΠI associated to ẽ, ṽ, w̃, respectively. Then
since the homomorphisms of the final two displays of Lemma 5.2, (ii),

coincide, and ΛG
Xlog

and Iṽ are free ẐΣ-modules of rank 1 [cf. Defi-

nition 3.8, (i); [NodNon], Lemma 2.5, (i)], it follows immediately from
the definition of nondegeneracy that the composite of the second display
of Lemma 5.2, (ii), is an open injection. Thus, it follows immediately
that the natural homomorphism Iṽ × Iw̃ → Iẽ has open image, and that
Iṽ ∩ Iw̃ = {1}, i.e., that Iṽ × Iw̃ → Iẽ is injective. That is to say, ρ
satisfies condition (3) of [NodNon], Definition 2.4. This completes the
proof of the implication in question.

Next, we verify the implication

(iii-3) =⇒ (iii-1) .

Let u ∈ ΛG be a topological generator of ΛG . Then it follows immediately
from Lemma 5.4, (i), (ii), and Theorem 5.7 — by considering the stable
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log curve over Slog corresponding to a suitable homomorphism of R-

algebras Ô � R[[t1, · · · , t3g−g+r]] → R [cf. Lemma 5.4, (i)] — that to
complete the proof of the implication in question, it suffices to verify
that there exists a topological generator α ∈ I of I which satisfies the
following condition (∗):

(∗): The Dehn coordinates of ρ(α) with respect to u

[cf. Definition 5.8, (i)] ∈ N
=0
def
= N \ {0}.

To this end, let α ∈ I be a topological generator of I such that ρ(α) is
a positive definite profinite Dehn multi-twist of G [cf. condition (iii-3)].

For each node e ∈ Node(G) of G, denote by ae ∈ ẐΣ the Dehn coordinate
of ρ(α) indexed by e with respect to u. Now since ρ(α) is nondegenerate,
it follows immediately from the definition of nondegeneracy that for each

node e ∈ Node(G) of G, it holds that ae ∈ N
=0 · (ẐΣ)∗. Thus, it follows
immediately that for a given node f ∈ Node(G) of G, by replacing α
by a suitable topological generator of I, we may assume without loss of
generality that af ∈ N 
=0. In particular, it follows immediately from the
definition of positive definiteness that there exists an element a ∈ N 
=0

such that for each node e ∈ Node(G) of G, it holds that a · ae ∈ N
=0.
Moreover, again by replacing α by a suitable topological generator of
I, we may assume that every prime number dividing a belongs to Σ.

But then it follows from the fact that ae ∈ ẐΣ ∩ ( 1a · N 
=0) that ae is
a positive rational number that is integral at every element of Primes,
i.e., that ae ∈ N 
=0, as desired. In particular, the topological generator
α ∈ I of I satisfies the above condition (∗). This completes the proof of
the implication in question, hence also of assertions (ii) and (iii).

Next, we verify assertion (iv). It follows immediately from the fi-
nal portion of Lemma 5.2, (ii), concerning ρ of SNN-type that for each
e ∈ Node(G), the homomorphism syn ρ : I → ΛG obtained by dividing

the composite I
ρ→ Dehn(G) De→ ΛG by lngΣG (e, ρ) is an isomorphism.

Moreover, by “translating into group theory” the scheme-theoretic con-
tent of Lemma 5.4, (ii), by means of the correspondence between group-
theoretic and scheme-theoretic notions given in Proposition 5.6, (i); The-
orem 5.7, one concludes that syn ρ is independent — up to multiplication

by an element of (ẐΣ)+ — of the choice of the node e ∈ Node(G). Now
the functoriality of syn ρ follows immediately from the functoriality of
the homomorphism De [cf. Theorem 4.8, (iv)], together with the group-

theoreticity of lngΣG (e, ρ). This completes the proof of assertion (iv).
Finally, assertion (v) follows immediately, in light of the group-

theoretic construction of “syn ρ” given in the proof of assertion (iv),
from the various definitions involved. Q.E.D.
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Remark 5.9.1.

(i) Corollary 5.9, (iv), may be regarded as a sort of abstract com-
binatorial analogue of the cyclotomic synchronization given in
[GalSct], Theorem 4.3 [cf. also [AbsHyp], Lemma 2.5, (ii)].

(ii) It follows from Theorem 5.7 that one may think of the isomor-
phisms of Corollary 5.9, (iv), as a sort of abstract combinato-
rial construction of the various identification isomorphisms be-

tween the various copies of “ẐΣ(1)” that appear in Lemma 5.4,
(ii). Such identification isomorphisms are typically “taken for
granted” in conventional discussions of scheme theory.

Remark 5.9.2.

(i) Consider the exact sequence of free ẐΣ-modules

0 −→Mvert
G −→MG

def
= Πab

G −→M comb
G

def
= MG/Mvert

G −→ 0

— where we write Mvert
G ⊆ MG for the ẐΣ-submodule of MG

topologically generated by the images of the verticial subgroups
of ΠG [cf. [CmbGC], Remark 1.1.4]. Then one verifies easily
that any profinite Dehn multi-twist α ∈ Dehn(G) preserves and
induces the identity automorphism on Mvert

G , M comb
G . In par-

ticular, the homomorphismMG →MG obtained by considering
the difference of the automorphism of MG induced by α and
the identity automorphism on MG naturally determines [and
is determined by!] a homomorphism

αcomb,vert : M comb
G −→Mvert

G .

Write M edge
G ⊆Mvert

G for the ẐΣ-submodule topologically gen-
erated by the image of the edge-like subgroups of ΠG . Then
the following two facts are well-known:

• If Cusp(G) = ∅, then Poincaré duality MG
∼→

Hom
ẐΣ(MG ,ΛG) determines an isomorphism M edge

G
∼→

Hom
ẐΣ(M

comb
G ,ΛG) [cf. [CmbGC], Proposition 1.3].

• The natural homomorphism

Dehn(G) −→ Hom
ẐΣ(M

comb
G ,Mvert

G )

given by mapping α �→ αcomb,vert factors through the sub-

module Hom
ẐΣ(M

comb
G ,M edge

G ) ⊆ Hom
ẐΣ(M

comb
G ,Mvert

G ).
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[Indeed, this may be verified, for instance, by applying
a similar argument to the argument used in the proof of
[CmbGC], Proposition 1.3, involving weights.]

Thus, if Cusp(G) = ∅, then we obtain a homomorphism

ΩG : Dehn(G) −→M edge
G ⊗

ẐΣ M
edge
G ⊗

ẐΣ Hom
ẐΣ(ΛG , ẐΣ)

that is manifestly functorial, in G, with respect to isomor-
phisms of semi-graphs of anabelioids of pro-Σ PSC-type. The
matrices that appear in the image of this homomorphism ΩG
are often referred to as period matrices.

(ii) Now let us recall that [CmbGC], Proposition 2.6, plays a key
role in the proof of the combinatorial version of the
Grothendieck conjecture given in [CmbGC], Corollary 2.7, (iii).
Moreover, the proof of [CmbGC], Proposition 2.6, is essentially
a formal consequence of the nondegeneracy of the period matrix
associated to a positive definite profinite Dehn multi-twist —
i.e., of the injectivity of the homomorphism

αcomb,vert : M comb
G −→Mvert

G

of (i) in the case where α ∈ Dehn(G) is positive definite [cf.
Corollary 5.9, (iii)].

(iii) In general, the period matrix associated to a profinite Dehn
multi-twist may fail to be nondegenerate even if the profinite
Dehn multi-twist is nondegenerate. Indeed, suppose that Σ� =
1, that G is the double [cf. [CmbGC], Proposition 2.2, (i)] of a
semi-graph of anabelioids of pro-Σ PSC-type H such that

(Vert(H)�,Node(H)�,Cusp(H)�) = (1, 0, 2) .

Suppose, moreover, that H admits an automorphism which
permutes the two cusps of H and extends to an automorphism
φ of G. [One verifies easily that such data exist.] Then one may
verify easily that Node(G)� = 2, that Cusp(G)� = 0, and that

the free ẐΣ-module M comb
G , hence also M edge

G ⊗
ẐΣ M

edge
G ⊗

ẐΣ

Hom
ẐΣ(ΛG , ẐΣ) [cf. (i)], is of rank 1. Now let us recall that the

period matrix associated to a positive definite profinite Dehn
multi-twist is necessarily nondegenerate [cf. Corollary 5.9, (iii);
the proof of [CmbGC], Proposition 2.6]. Thus, since Σ� = 1, it
follows immediately from the functoriality of ΩG [cf. (i)] and
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DG [cf. Theorem 4.8, (iv)] with respect to φ that the kernel of
the composite of natural homomorphisms

⊕
Node(G)

ΛG
DG∼←− Dehn(G) ΩG−→M edge

G ⊗
ẐΣM

edge
G ⊗

ẐΣHomẐΣ(ΛG , ẐΣ)

is a free ẐΣ-submodule of
⊕

Node(G) ΛG of rank 1 that is stabi-

lized by φ. On the other hand, since profinite Dehn multi-twists
of the form (u, u) ∈ ⊕

Node(G) ΛG , where u ∈ ΛG , are [mani-

festly!] positive definite, we thus conclude that the kernel in
question is equal to

{ (u,−u) ∈
⊕

Node(G)
ΛG |u ∈ ΛG } .

In particular, any nonzero element of this kernel yields an ex-
ample of a nondegenerate profinite Dehn multi-twist whose as-
sociated period matrix fails to be nondegenerate.

Corollary 5.10 (Combinatorial/group-theoretic nature of
scheme-theoreticity Let (g, r) be a pair of nonnegative integers such
that 2g − 2 + r > 0; Σ a nonempty set of prime numbers; R a complete
discrete valuation ring whose residue field k is separably closed of charac-

teristic �∈ Σ; Slog the log scheme obtained by equipping S
def
= SpecR with

the log structure determined by the maximal ideal of R; x ∈ (Mg,r)S(k)

a k-valued point of the moduli stack of curves (Mg,r)S of type (g, r)

over S [cf. the discussion entitled “Curves” in §0). ; Ô the completion of
the local ring of (Mg,r)S at the image of x; T log the log scheme obtained

by equipping T
def
= Spec Ô with the log structure induced by the log struc-

ture of (Mlog

g,r)S [cf. the discussion entitled “Curves” in §0]; tlog the log
scheme obtained by equipping the closed point of T with the log struc-

ture induced by the log structure of T log; X log
t the stable log curve over

tlog corresponding to the natural strict (1-)morphism tlog → (Mlog

g,r)S;

IT log the maximal pro-Σ quotient of the log fundamental group π1(T
log)

of T log; ISlog the maximal pro-Σ quotient of the log fundamental group
π1(S

log) of Slog; GXlog the semi-graph of anabelioids of pro-Σ PSC-type

determined by the stable log curve X log
t [cf. [CmbGC], Example 2.5];

ρuniv
Xlog

t

: IT log → Aut(GXlog) the natural outer representation associated to

X log
t [cf. Definition 5.5]; I a profinite group; ρ : I → Aut(GXlog) an
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outer representation of pro-Σ PSC-type [cf. [NodNon], Definition 2.1,
(i)]. Then the following conditions are equivalent:

(i) ρ is of IPSC-type.

(ii) There exist a morphism of log schemes φlog : Slog → T log over
S and an isomorphism of outer representations of pro-Σ
PSC-type ρ

∼→ ρuniv
Xlog

t

◦ Iφlog [cf. [NodNon], Definition 2.1, (i)]

— where we write Iφlog : ISlog → IT log for the homomorphism

induced by φlog — i.e., there exist an automorphism β of

GXlog and an isomorphism α : I
∼→ I logS such that the diagram

I
ρ−−−−→ Aut(GXlog)

α

⏐⏐��
⏐⏐��

ISlog

ρ
X

log
t

◦I
φlog

−−−−−−−→ Aut(GXlog)

— where the right-hand vertical arrow is the automorphism of
Aut(GXlog) induced by β — commutes.

(iii) There exist a morphism of log schemes φlog : Slog → T log over

S and an isomorphism α : I
∼→ I logS such that ρ = ρuniv

Xlog
t

◦Iφlog◦
α — where we write Iφlog : ISlog → IT log for the homomorphism

induced by φlog — i.e., the automorphism “β” of (ii) may be
taken to be the identity.

Proof. The equivalence (i) ⇔ (ii) follows from the definition of the
term “IPSC-type” [cf. [NodNon], Definition 2.4, (i)]. The implication
(iii) ⇒ (ii) is immediate. The implication (ii) ⇒ (iii) follows immedi-
ately, in light of the functoriality asserted in Theorem 4.8, (iv), from
Lemma 5.4, (i), (ii), and Theorem 5.7. Q.E.D.

Remark 5.10.1.

(i) The equivalence of Corollary 5.10 essentially amounts to the
equivalence

“IPSC-type ⇐⇒ positive definite”

which was discussed in [HM], Remark 2.14.1, without proof.
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(ii) One way to understand the equivalence of Corollary 5.10 is as
the statement that the property that an outer representation
of PSC-type be of scheme-theoretic origin may be formulated
purely in terms of combinatorics/group theory.

In the final portion of the present §5, we apply the theory devel-
oped so far [i.e., in particular, the equivalences of Corollary 5.9, (ii),
(iii)] to derive results [cf. Theorem 5.14] concerning normalizers and
commensurators of groups of profinite Dehn multi-twists.

Definition 5.11. Let M ⊆ H ⊆ Out(ΠG) be closed subgroups of
Out(ΠG). Suppose further that M is an abelian pro-Σ group [such as
Dehn(G) — cf. Theorem 4.8, (iv)].

(i) We shall write

N scal
H (M) ⊆ NH(M) ⊆ H

for the [closed] subgroup ofH consisting of α ∈ H satisfying the
following condition: α ∈ NH(M), and, moreover, the action of
α onM by conjugation coincides with the automorphism ofM

given by multiplication by an element of (ẐΣ)∗. We shall refer
to N scal

H (M) as the scalar-normalizer of M in H.

(ii) We shall write

Cscal
H (M) ⊆ CH(M) ⊆ H

for the subgroup of H consisting of α ∈ H satisfying the fol-

lowing condition: there exists an open ẐΣ-submoduleM ′
α ⊆M

of M [possibly depending on α] such that the action of α on
H by conjugation determines an automorphism of M ′

α given

by multiplication by an element of (ẐΣ)∗. We shall refer to
Cscal

H (M) as the scalar-commensurator of M in H.

Lemma 5.12 (Scalar-normalizers and scalar-commensura-
tors). Let M ⊆ H ⊆ Out(ΠG) be closed subgroups of Out(ΠG). Suppose
further that M is an abelian pro-Σ group. Then:



Combinatorial anabelian topics I 119

(i) It holds that

M ⊆ ZH(M) ⊆ N scal
H (M) ⊆ Cscal

H (M) .

(ii) If M ′ ⊆M is a ẐΣ-submodule of M , then

N scal
H (M) ⊆ N scal

H (M ′) ; Cscal
H (M) ⊆ Cscal

H (M ′) .

If, moreover, M ′ ⊆M is open in M , then

Cscal
H (M) = Cscal

H (M ′) .

Proof. These assertions follow immediately from the various defi-
nitions involved. Q.E.D.

Definition 5.13. Let H ⊆ Out(ΠG) be a closed subgroup of
Out(ΠG). Then we shall say that H is IPSC-ample (respectively, NN-
ample) if H contains a positive definite (respectively, nondegenerate) [cf.
Definition 5.8] profinite Dehn multi-twist ∈ Dehn(G).

Remark 5.13.1. It follows immediately from Theorem 4.8, (iv),
that any open subgroup of Dehn(G) is IPSC-ample, hence also NN-ample
[cf. Definition 5.13].

Theorem 5.14 (Normalizers and commensurators of groups
of profinite Dehn multi-twists). Let Σ be a nonempty set of prime

numbers, G a semi-graph of anabelioids of pro-Σ PSC-type, OutC(ΠG)
the group of group-theoretically cuspidal [cf. [CmbGC], Definition

1.4, (iv)] outomorphisms of ΠG, and M ⊆ OutC(ΠG) a closed subgroup

of OutC(ΠG) which is abelian pro-Σ. Then the following hold:

(i) Suppose that one of the following two conditions is satisfied:

(1) M is IPSC-ample [cf. Definition 5.13].

(2) M is NN-ample [cf. Definition 5.13], and Cusp(G) �= ∅.
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Then it holds that

N scal
OutC(ΠG)(M) ⊆ Cscal

OutC(ΠG)(M) ⊆ Aut(G)

[cf. Definition 5.11]. If, moreover, M ⊆ Dehn(G) [cf. Defini-
tion 4.4], then

Aut|Node(G)|(G) ⊆ N scal
OutC(ΠG)(M) ⊆ Cscal

OutC(ΠG)(M) ⊆ Aut(G)

[cf. Definition 2.6, (i)]. In particular,

N scal
OutC(ΠG)(M) , Cscal

OutC(ΠG)(M) ⊆ Aut(G)

are open subgroups of Aut(G).
(ii) If M is an open subgroup of Dehn(G), then it holds that

Aut(G) = COutC(ΠG)(M) .

If, moreover, Node(G) �= ∅, then

Aut|Node(G)|(G) ∩ Ker(χG) = ZOutC(ΠG)(M)

[cf. Definition 3.8, (ii)].

(iii) It holds that

Aut(G) = NOutC(ΠG)(Dehn(G)) = COutC(ΠG)(Dehn(G)) .

Proof. First, we verify the inclusion Cscal
OutC(ΠG)

(M) ⊆ Aut(G) as-

serted in assertion (i). Suppose that condition (1) (respectively, (2)) is
satisfied. Let α ∈ Cscal

OutC(ΠG)
(M). Then since α ∈ Cscal

OutC(ΠG)
(M), and

M is IPSC-ample (respectively, NN-ample), it follows immediately that
there exists an element β ∈M of M such that both β and αβα−1 = βλ,

where λ ∈ (ẐΣ)∗, are positive definite (respectively, nondegenerate) profi-
nite Dehn multi-twists. Thus, the graphicity of α follows immediately
from [NodNon], Remark 4.2.1, together with Corollary 5.9, (iii) (respec-
tively, from [NodNon], Theorem A, together with Corollary 5.9, (ii)).
This completes the proof of the inclusion Cscal

OutC(ΠG)
(M) ⊆ Aut(G), hence

also, by Lemma 5.12, (i), of the two inclusions in the first display of as-
sertion (i).

If, moreover, M ⊆ Dehn(G), then the inclusion Aut|Node(G)|(G) ⊆
N scal

OutC(ΠG)
(M) follows immediately from Theorem 4.8, (v). Thus, since
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Aut|Node(G)|(G) is an open subgroup of Aut(G) [cf. Proposition 2.7, (iii)],
it follows immediately that N scal

OutC(ΠG)
(M), hence also Cscal

OutC(ΠG)
(M), is

an open subgroup of Aut(G). This completes the proof of assertion (i).
Next, we verify the equality Aut(G) = COutC(ΠG)(M) in the first

display of assertion (ii). It follows immediately from Theorem 4.8, (i),
that Aut(G) ⊆ NOutC(ΠG)(Dehn(G)) ⊆ COutC(ΠG)(M). Thus, to verify

the equality Aut(G) = COutC(ΠG)(M), it suffices to verify the inclusion

COutC(ΠG)(M) ⊆ Aut(G). To this end, let α ∈ COutC(ΠG)(M). Then it

follows from Lemma 5.12, (ii), that

Cscal
OutC(ΠG)(M) = Cscal

OutC(ΠG)(α ·M · α−1) = α · Cscal
OutC(ΠG)(M) · α−1 ,

i.e., α ∈ NOutC(ΠG)(C
scal
OutC(ΠG)

(M)). Thus, since Cscal
OutC(ΠG)

(M) is an

open subgroup of Aut(G) [cf. assertion (i); Remark 5.13.1], we conclude
that α ∈ COutC(ΠG)(Aut(G)). Thus, the fact that α ∈ Aut(G) follows

from the commensurable terminality of Aut(G) in Out(ΠG), i.e., the
equality Aut(G) = COut(ΠG)(Aut(G)) [cf. [CmbGC], Corollary 2.7, (iv)].
This completes the proof of the equality Aut(G) = COutC(ΠG)(M).

Next, we verify the equality

Aut|Node(G)|(G) ∩ Ker(χG) = ZOutC(ΠG)(M)

in the second display of assertion (ii). Now it follows immediately from

Theorem 4.8, (v), that Aut|Node(G)|(G) ∩ Ker(χG) ⊆ ZOutC(ΠG)(M).
Thus, to show the equality in question, it suffices to verify the inclu-

sion ZOutC(ΠG)(M) ⊆ Aut|Node(G)|(G) ∩ Ker(χG). To this end, let us

observe that since Aut(G) = COutC(ΠG)(M) [cf. the preceding para-

graph], it holds that ZOutC(ΠG)(M) ⊆ Aut(G). Thus, since the action

of ZOutC(ΠG)(M) on M by conjugation preserves and induces the iden-
tity automorphism on the intersection of M with each direct summand

of
⊕

e∈Node(G) ΛG
DG∼← Dehn(G) [i.e., each “ΛG”], it follows immediately

from Theorem 4.8, (v), in light of our assumption that Node(G) �= ∅,
that ZOutC(ΠG)(M) ⊆ Aut|Node(G)|(G) ∩ Ker(χG). This completes the

proof of assertion (ii).
Assertion (iii) follows immediately from assertion (ii), together with

Theorem 4.8, (i). This completes the proof of Theorem 5.14. Q.E.D.

Remark 5.14.1. In the notation of Theorem 5.14, (i) (respectively,
Theorem 5.14, (ii)), in general, the inclusion

Cscal
OutC(ΠG)(M) ⊆ Aut(G)
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[hence, a fortiori, by the inclusions of the first display of Theorem 5.14,
(i), the inclusion N scal

OutC(ΠG)
(M) ⊆ Aut(G)] (respectively, in general, the

inclusion
NOutC(ΠG)(M) ⊆ Aut(G) )

is strict. Indeed, suppose that there exist a node e ∈ Node(G) and an
automorphism α ∈ Aut(G) of G such that α does not stabilize e, and
χG(α) = 1. [For example, in the notation of the final paragraph of the
proof of Theorem 5.7, the node e1 and the automorphism induced by τ
of GXlog satisfy these conditions.] Now fix a prime number l ∈ Σ; write

M
def
= l · (ΛG)e ⊕

(⊕
f 
=e

ΛG
)
⊆

⊕
f∈Node(G)

ΛG
DG∼← Dehn(G)

— where we use the notation (ΛG)e to denote a copy of ΛG indexed by
e ∈ Node(G). ThenM is an open subgroup of Dehn(G), hence also IPSC-
ample [cf. Remark 5.13.1], but it follows immediately from Theorem 4.8,
(v), that α �∈ Cscal

OutC(ΠG)
(M) (respectively, α �∈ NOutC(ΠG)(M)).

§6. Centralizers of geometric monodromy

In the present §, we study the centralizer of the image of certain
geometric monodromy groups. As an application, we prove a “geometric
version of the Grothendieck conjecture” for the universal curve over the
moduli stack of pointed smooth curves [cf. Theorem 6.13 below].

Definition 6.1. Let Σ be a nonempty set of prime numbers and Π
a pro-Σ surface group [cf. [MT], Definition 1.2]. Then we shall write

OutC(Π) = OutFC(Π) = OutPFC(Π)

for the group of outomorphisms of Π which induce bijections on the
set of cuspidal inertia subgroups of Π. We shall refer to an element of
OutC(Π) = OutFC(Π) = OutPFC(Π) as a C-, FC-, or PFC-admissible
outomorphism of Π.

Remark 6.1.1. In the notation of Definition 6.1, suppose that ei-
ther Σ� = 1 or Σ = Primes. Then it follows from the various def-
initions involved that Π is equipped with a natural structure of pro-
Σ configuration space group [cf. [MT], Definition 2.3, (i)]. Thus, the
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terms “C-/FC-/PFC-admissible outomorphism of Π” and the notation

“OutC(Π) = OutFC(Π)” have already been defined in [CmbCsp], Defini-
tion 1.1, (ii), and Definition 1.4, (iii), of the present paper. In this case,
however, one may verify easily that these definitions coincide.

Lemma 6.2 (Extensions arising from log configuration
spaces). Let (g, r) be a pair of nonnegative integers such that 2g−2+r >
0; 0 < m < n positive integers; ΣF ⊆ ΣB nonempty sets of prime
numbers; k an algebraically closed field of characteristic zero; (Spec k)log

the log scheme obtained by equipping Spec k with the log structure given

by the fs chart N → k that maps 1 �→ 0; X log = X log
1 a stable log

curve of type (g, r) over (Spec k)log. Suppose that ΣF ⊆ ΣB satisfy one
of the following two conditions:

(1) ΣF and ΣB determine PT-formations [i.e., are either of car-
dinality one or equal to Primes — cf. [MT], Definition 1.1,
(ii)].

(2) n−m = 1 and ΣB = Primes.

Write
X log

n , X log
m

for the n-th, m-th log configuration spaces of the stable log curve X log

[cf. the discussion entitled “Curves” in §0], respectively; Πn, ΠB
def
= Πm

for the respective maximal pro-ΣB quotients of the kernels of the natu-
ral surjections π1(X

log
n ) � π1((Spec k)

log), π1(X
log
m ) � π1((Spec k)

log);
Πn/m ⊆ Πn for the kernel of the surjection Πn � ΠB = Πm induced

by the projection X log
n → X log

m obtained by forgetting the last (n − m)
factors; ΠF for the maximal pro-ΣF quotient of Πn/m; ΠT for the quo-
tient of Πn by the kernel of the natural surjection Πn/m � ΠF. Thus,
we have a natural exact sequence of profinite groups

1 −→ ΠF −→ ΠT −→ ΠB −→ 1 ,

which determines an outer representation

ρn/m : ΠB −→ Out(ΠF) .

Then the following hold:

(i) The isomorphism class of the exact sequence of profinite groups

1 −→ ΠF −→ ΠT −→ ΠB −→ 1
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depends only on (g, r) and the pair (ΣF,ΣB), i.e., if 1 →
Π•

F → Π•
T → Π•

B → 1 is the exact sequence “1 → ΠF →
ΠT → ΠB → 1” associated, with respect to the same (ΣF,ΣB),
to another stable log curve of type (g, r) over (Spec k)log, then
there exists a commutative diagram of profinite groups

1 −−−−→ ΠF −−−−→ ΠT −−−−→ ΠB −−−−→ 1

�
⏐⏐� �

⏐⏐� �
⏐⏐�

1 −−−−→ Π•
F −−−−→ Π•

T −−−−→ Π•
B −−−−→ 1

— where the vertical arrows are isomorphisms which may be
chosen to arise scheme-theoretically.

(ii) The profinite group ΠB is equipped with a natural structure
of pro-ΣB configuration space group [cf. [MT], Definition
2.3, (i)]. If, moreover, ΣF ⊆ ΣB satisfies condition (1) (re-
spectively, (2)), then the profinite group ΠF is equipped with a
natural structure of pro-ΣF configuration space group (re-
spectively, surface group [cf. [MT], Definition 1.2]).

(iii) The outer representation ρn/m : ΠB → Out(ΠF) factors through

the closed subgroup OutC(ΠF) ⊆ Out(ΠF) [cf. Definition 6.1;
[CmbCsp], Definition 1.1, (ii)].

Proof. Assertion (i) follows immediately by considering a suitable
specialization isomorphism [cf. the discussion preceding [CmbCsp], Def-
inition 2.1, as well as Remark 5.6.1 of the present paper]. Assertion (ii)
follows immediately from assertion (i), together with the various def-
initions involved. Assertion (iii) follows immediately from the various
definitions involved. This completes the proof of Lemma 6.2. Q.E.D.

Definition 6.3. In the notation of Lemma 6.2 in the case where

(m,n,ΣB) = (1, 2,Primes),

let x ∈ X(k) be a k-valued point of the underlying scheme X of X log.

(i) We shall denote by
G

the semi-graph of anabelioids of pro-Primes PSC-type deter-
mined by the stable log curve X log; by

Gx
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the semi-graph of anabelioids of pro-ΣF PSC-type determined

by the geometric fiber of X log
2 → X log over xlog

def
= x×X X log;

by ΠG , ΠGx the [pro-Primes, pro-ΣF] fundamental groups of G,
Gx, respectively. Thus, we have a natural outer isomorphism

ΠB
∼−→ ΠG

and a natural Im(ρ2/1) (⊆ Out(ΠF))-torsor of outer isomor-
phisms

ΠF
∼−→ ΠGx .

Let us fix isomorphisms ΠB
∼→ ΠG , ΠF

∼→ ΠGx that belong to
these collections of isomorphisms.

(ii) Denote by

cFdiag,x ∈ Cusp(Gx)

the cusp of Gx [i.e., the cusp of the geometric fiber of X log
2 →

X log over xlog] determined by the diagonal divisor of X log
2 .

For v ∈ Vert(G) (respectively, c ∈ Cusp(G)) [i.e., which cor-
responds to an irreducible component (respectively, a cusp) of
X log], denote by

vFx ∈ Vert(Gx) (respectively, cFx ∈ Cusp(Gx))

the vertex (respectively, cusp) of Gx that corresponds naturally
to v ∈ Vert(G) (respectively, c ∈ Cusp(G)).

(iii) Let e ∈ Edge(G), v ∈ Vert(G), S ⊆ VCN(G), and z ∈ VCN(G).
Then we shall say that x lies on e if the image of x is the cusp
or node corresponding to e ∈ Edge(G). We shall say that x lies
on v if x does not lie on any edge of G, and, moreover, the image
of x is contained in the irreducible component corresponding
to v ∈ Vert(G). We shall write x � S if x lies on some s ∈ S.
We shall write x� z if x� {z}.

Lemma 6.4 (Cusps and vertices of fibers). In the notation
of Definition 6.3, let x, x′ ∈ X(k) be k-valued points of X. Then the
following hold:

(i) The isomorphism ΠGx

∼→ ΠGx′ obtained by forming the compos-

ite of the isomorphisms ΠGx

∼← ΠF
∼→ ΠGx′ [cf. Definition 6.3,
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(i)] is group-theoretically cuspidal [cf. [CmbGC], Defini-
tion 1.4, (iv)].

(ii) The injection Cusp(G) ↪→ Cusp(Gx) given by mapping c �→ cFx
determines a bijection

Cusp(G) ∼−→ Cusp(Gx) \ {cFdiag,x}

[cf. Definition 6.3, (ii)]. Moreover, if we regard Cusp(G) as a
subset of each of the sets Cusp(Gx), Cusp(Gx′) by means of the

above injections, then the bijection Cusp(Gx)
∼→ Cusp(Gx′) de-

termined by the group-theoretically cuspidal isomorphism
ΠGx

∼→ ΠGx′ of (i) maps cFdiag,x �→ cFdiag,x′ and induces the

identity automorphism on Cusp(G). Thus, in the remain-
der of the present §, we shall omit the subscript “x” from the
notation “cFx” and “cFdiag,x”.

(iii) The injection Vert(G) ↪→ Vert(Gx) given by mapping v �→ vFx
[cf. Definition 6.3, (ii)] is bijective if and only if x� Vert(G)
[cf. Definition 6.3, (iii)]. If x � Edge(G), then the comple-
ment of the image of Vert(G) in Vert(Gx) is of cardinality one;
in this case, we shall write

vFnew,x ∈ Vert(Gx) \Vert(G)

for the unique element of Vert(Gx) \Vert(G).
(iv) Suppose that x � Cusp(G) (respectively, Node(G)). Then

it holds that cFdiag ∈ C(vFnew,x) [cf. (iii)], and (C(vFnew,x)
�,

N (vFnew,x)
�) = (2, 1) (respectively, = (1, 2)). Moreover, for any

element eF ∈ N (vFnew,x), it holds that V(eF)� = 2.

Proof. These assertions follow immediately from the various defi-
nitions involved. Q.E.D.

Definition 6.5. In the notation of Definition 6.3:

(i) Write

CuspF(G) def
= Cusp(G) � {cFdiag}

[cf. Definition 6.3, (ii); Lemma 6.4, (ii)].
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(ii) Let α ∈ OutC(ΠF) be an C-admissible outomorphism of ΠF [cf.
Definition 6.1; Lemma 6.2, (ii)]. Then it follows immediately
from Lemma 6.4, (ii), that for any k-valued point x ∈ X(k)

of X, the automorphism of CuspF(G) [cf. (i)] obtained by
conjugating the natural action of α on Cusp(Gx) by the natural

bijection CuspF(G) ∼→ Cusp(Gx) implicit in Lemma 6.4, (ii),
does not depend on the choice of x. We shall refer to this
automorphism of CuspF(G) as the automorphism of CuspF(G)
determined by α. Thus, we have a natural homomorphism
OutC(ΠF) → Aut(CuspF(G)).

(iii) For c ∈ CuspF(G) [cf. (i)], we shall refer to a closed subgroup

of ΠF obtained as the image — via the isomorphism ΠGx

∼← ΠF

[cf. Definition 6.3, (i)] for some k-valued point x ∈ X(k) —
of a cuspidal subgroup of ΠGx associated to the cusp of Gx

corresponding to c ∈ CuspF(G) as a cuspidal subgroup of ΠF

associated to c ∈ CuspF(G). Note that it follows immediately
from Lemma 6.4, (ii), that the ΠF-conjugacy class of a cuspidal

subgroup of ΠF associated to c ∈ CuspF(G) depends only on

c ∈ CuspF(G), i.e., does not depend on the choice of x or on
the choices of isomorphisms made in Definition 6.3, (i).

Lemma 6.6 (Images of VCN-subgroups of fibers). In the no-
tation of Definition 6.3, let ΠcFdiag

⊆ ΠF be a cuspidal subgroup of ΠF

associated to cFdiag ∈ CuspF(G) [cf. Definition 6.5, (i), (iii)], x ∈ X(k)

a k-valued point of X, zF ∈ VCN(Gx) \ {cFdiag}, and ΠzF ⊆ ΠGx a VCN-

subgroup of ΠGx associated to zF. Write Ndiag ⊆ ΠF for the normal
closed subgroup of ΠF topologically normally generated by ΠcFdiag

. [Note

that it follows immediately from Lemma 6.4, (i), that Ndiag is normal
in ΠT.] Then the following hold:

(i) Write GΣF for the semi-graph of anabelioids of pro-ΣF PSC-
type obtained by forming the pro-ΣF completion of G [cf.
[SemiAn], Definition 2.9, (ii)]. Then there exists a natural

outer isomorphism ΠF/Ndiag
∼→ ΠGΣF that satisfies the fol-

lowing conditions:

• Suppose that x� Vert(G) [cf. Definition 6.3, (iii)]. Then
the ΠGΣF -conjugacy class of the image of the composite

ΠzF ↪→ ΠGx

∼← ΠF � ΠF/Ndiag
∼→ ΠGΣF
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coincides with the ΠGΣF -conjugacy class of any VCN-sub-
group of ΠGΣF associated to the element of VCN(GΣF) =
VCN(G) naturally determined by zF.

• Suppose that x � e ∈ Edge(G), and that zF �∈ {vFnew,x} ∪
E(vFnew,x) (respectively, zF ∈ {vFnew,x} ∪ E(vFnew,x)) [cf.
Lemma 6.4, (iii)]. Then the ΠGΣF -conjugacy class of the
image of the composite

ΠzF ↪→ ΠGx

∼← ΠF � ΠF/Ndiag
∼→ ΠGΣF

coincides with the ΠGΣF -conjugacy class of any VCN-sub-
group of ΠGΣF associated to the element of VCN(GΣF) =
VCN(G) natural determined by zF (respectively, associated
to e ∈ Edge(GΣF) = Edge(G)).

(ii) The image of the composite

ΠzF ↪→ ΠGx

∼← ΠF � ΠF/Ndiag

is commensurably terminal.

(iii) Suppose that either

• zF ∈ Edge(Gx),

or

• zF = vFx for v ∈ Vert(G) such that x does not lie on v.

Then the composite

ΠzF ↪→ ΠGx

∼← ΠF � ΠF/Ndiag

is injective.

(iv) Let Π(z′)F ⊆ ΠGx
be a VCN-subgroup of ΠGx

associated to an

element (z′)F ∈ VCN(Gx) \ {cFdiag}. Suppose that either

• x� Vert(G),
or

• x� Edge(G), and zF, (z′)F �∈ {vFnew,x} ∪ E(vFnew,x).

Then if the ΠF/Ndiag-conjugacy classes of the images of ΠzF ,
Π(z′)F ⊆ ΠGx via the composite

ΠGx

∼← ΠF � ΠF/Ndiag
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coincide, then zF = (z′)F.

Proof. Assertion (i) follows immediately from the various defini-
tions involved. Assertion (ii) follows immediately from [CmbGC], Propo-
sition 1.2, (ii), and assertion (i), together with the various definitions
involved. Assertion (iii) follows immediately from assertion (i), together
with the various definitions involved. Assertion (iv) follows immediately
from [CmbGC], Proposition 1.2, (i), and assertion (i), together with the
various definitions involved. Q.E.D.

Lemma 6.7 (Outomorphisms preserving the diagonal). In
the notation of Definition 6.3, let H ⊆ ΠB be an open subgroup of ΠB,

α̃ an automorphism of ΠT|H def
= ΠT ×ΠB H over H, αF ∈ Out(ΠF) the

outomorphism of ΠF determined by the restriction α̃|ΠF of α̃ to ΠF ⊆
ΠT|H , and ΠcFdiag

⊆ ΠF a cuspidal subgroup of ΠF associated to cFdiag ∈
CuspF(G) [cf. Definition 6.5, (i), (iii)]. Then the following hold:

(i) Suppose that α̃ preserves ΠcFdiag
⊆ ΠF. Then the automorphism

of ΠF/Ndiag [where we refer to the statement of Lemma 6.6
concerning Ndiag] induced by α̃ is the identity automor-
phism. If, moreover, αF is C-admissible [cf. Definition 6.1;

Lemma 6.2, (ii)], then the automorphism of CuspF(G) induced
by αF [cf. Definition 6.5, (ii)] is the identity automor-
phism.

(ii) Let e ∈ Edge(G), x ∈ X(k) be such that x � e. Suppose
that αF is C-admissible, and that Edge(G) = {e} ∪ Cusp(G).
Then it holds that αF ∈ Aut(Gx) (⊆ Out(ΠGx)

∼← Out(ΠF)).

If, moreover, α̃ preserves ΠcFdiag
⊆ ΠF, then αF ∈ Aut|grph|

(Gx) (⊆ Aut(Gx)).

Proof. First, we verify assertion (i). Now let us observe that it
follows immediately from a similar argument to the argument used in
the proof of [CmbCsp], Proposition 1.2, (iii) — i.e., by considering the
action of α̃ on the decomposition subgroup D ⊆ ΠT|H of ΠT|H associated

to the diagonal divisor of X log
2 such that ΠcFdiag

⊆ D, and applying the

fact that D = NΠT|H (ΠcFdiag
) ⊆ ΠT|H — that α̃ induces the identity au-

tomorphism on some normal open subgroup J ⊆ ΠF/Ndiag of ΠF/Ndiag.
Thus, it follows immediately from the slimness [cf. [CmbGC], Remark
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1.1.3] of ΠGΣF

∼← ΠF/Ndiag ↪→ Aut(J) that α̃ induces the identity au-
tomorphism on ΠF/Ndiag. This completes the proof of the fact that α̃
induces the identity automorphism of ΠF/Ndiag. On the other hand, if,
moreover, αF is C-admissible, then since α̃ induces the identity automor-
phism of ΠF/Ndiag, it follows immediately from [CmbGC], Proposition

1.2, (i), applied to the cuspidal inertia subgroups of ΠF/Ndiag
∼→ ΠGΣF

[cf. Lemma 6.6, (i)] that the automorphism of CuspF(G) induced by αF

is the identity automorphism. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let Πe ⊆ ΠG
∼← ΠB be an edge-

like subgroup associated to the edge e ∈ Edge(G). By abuse of nota-
tion, we shall write H ∩ Πe ⊆ ΠB for the intersection of H with the
image of Πe in ΠB. Now since αF is C-admissible, and α̃ is an au-
tomorphism of ΠT|H over H, it holds that αF ∈ ZOutC(ΠF)(ρ2/1(H))

[cf. the discussion entitled “Topological groups” in §0], hence also that
αF ∈ ZOutC(ΠF)(ρ2/1(H ∩ Πe)). On the other hand, in light of the

well-known structure of X log in a neighborhood of the cusp or node cor-
responding to e, one verifies easily — by applying [NodNon], Proposition
2.14, together with our assumption that Edge(G) = {e} ∪ Cusp(G) —
that the image of the composite

Πe ↪→ ΠG
∼← ΠB

ρ2/1→ Out(ΠF)
∼→ Out(ΠGx) ,

hence also the image ρ2/1(H∩Πe) ⊆ Out(ΠF)
∼→ Out(ΠGx), is NN-ample

[cf. Definition 5.13; Theorem 5.9, (ii)]. Thus, since cFdiag ∈ Cusp(Gx) �=
∅, it follows immediately from Theorem 5.14, (i), that αF ∈ Aut(Gx).
This completes the proof of the fact that αF ∈ Aut(Gx). Now suppose,
moreover, that α̃ preserves ΠcFdiag

⊆ ΠF. Then it follows from assertion

(i) that αF fixes the cusps of Gx, hence that it fixes vFnew,x. On the
other hand, since α̃ induces the identity automorphism of ΠF/Ndiag [cf.
assertion (i)], it follows from Lemma 6.6, (iii), (iv), that αF fixes the
vertices of Gx that are �= vFnew,x, as well as [cf. [CmbGC], Proposition
1.2, (i)] the branches of nodes of Gx that abut to such vertices. Thus,

αF ∈ Aut|grph|(Gx), as desired. This completes the proof of assertion
(ii). Q.E.D.

Lemma 6.8 (Triviality of certain outomorphisms). In the no-
tation of Definition 6.3, let ΠcFdiag

⊆ ΠF be a cuspidal subgroup of ΠF

associated to cFdiag ∈ CuspF(G) [cf. Definition 6.5, (i), (iii)], H ⊆ ΠB an

open subgroup of ΠB, and α ∈ ZOutC(ΠF)(ρ2/1(H)) [cf. Definition 6.1;
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Lemma 6.2, (ii)]. Suppose that α preserves the ΠF-conjugacy class of
ΠcFdiag

⊆ ΠF. Then α is the identity outomorphism.

Proof. The following argument is essentially the same as the argu-
ment applied in [CmbCsp], [NodNon] to prove [CmbCsp], Corollary 2.3,
(ii); [NodNon], Corollary 5.3.

Let ΠT|H def
= ΠT ×ΠB H and α̃ ∈ AutH(ΠT|H) a lifting of α ∈

ZOutC(ΠF)(ρ2/1(H)) ⊆ ZOut(ΠF)(ρ2/1(H))
∼← AutH(ΠT|H)/Inn(ΠF) [cf.

the discussion entitled “Topological groups” in §0]. Since we have as-
sumed that α preserves the ΠF-conjugacy class of ΠcFdiag

⊆ ΠF, it fol-

lows from Lemma 6.7, (i), (ii), that by replacing α̃ by a suitable ΠF-
conjugate of α̃, we may assume without loss of generality that α̃ pre-
serves ΠcFdiag

⊆ ΠF, and, moreover, that

(a) the automorphism of ΠF/Ndiag induced by α̃ is the identity
automorphism;

(b) for e ∈ Edge(G), x ∈ X(k) such that x � e, if Edge(G) = {e}
∪ Cusp(G), then α ∈ Aut|grph|(Gx) (⊆ Out(ΠGx)

∼← Out(ΠF)).

Next, we claim that

(∗1): if (g, r) = (0, 3), then α is the identity outomor-
phism.

Indeed, write c1, c2, c3 ∈ Cusp(G) for the three distinct cusps of G;
v ∈ Vert(G) for the unique vertex of G. For i ∈ {1, 2, 3}, let xi ∈ X(k)
be such that xi � ci. Next, let us observe that since our assumption
that (g, r) = (0, 3) implies that Node(G) = ∅, it follows immediately

from (b) that for i ∈ {1, 2, 3}, the outomorphism α of ΠGxi

∼← ΠF is

∈ Aut|grph|(Gxi) (⊆ Out(ΠGxi
)

∼← Out(ΠF)). Next, let us fix a verticial

subgroup ΠvF
x2

⊆ ΠGx2

∼← ΠF associated to vFx2
∈ Vert(Gx2) [cf. Defini-

tion 6.3, (ii)]. Then since α ∈ Aut|grph|(Gx2), it follows immediately from
the commensurable terminality of the image of the composite ΠvF

x2
↪→

ΠGx2

∼← ΠF � ΠF/Ndiag [cf. Lemma 6.6, (ii)], together with (a), that

there exists an Ndiag-conjugate β̃ of α̃ such that β̃(ΠvF
x2
) = ΠvF

x2
. Thus,

since the composite ΠvF
x2

↪→ ΠGx2

∼← ΠF � ΠF/Ndiag is injective [cf.

Lemma 6.6, (iii)], it follows immediately from (a) that β̃ induces the

identity automorphism on ΠvF
x2

⊆ ΠGx2

∼← ΠF. Next, let ΠcF1
⊆ ΠF be a

cuspidal subgroup of ΠF associated to c1 ∈ CuspF(G) [cf. Definition 6.5,

(iii)] which is contained in ΠvF
x2

⊆ ΠGx2

∼← ΠF; ΠvF
x3

⊆ ΠGx3

∼← ΠF a
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verticial subgroup associated to vFx3
∈ Vert(Gx3) that contains ΠcF1

⊆ ΠF.

Then since β̃ induces the identity automorphism on ΠvF
x2

⊆ ΠGx2

∼← ΠF,

it follows from the inclusion ΠcF1
⊆ ΠvF

x2
that β̃(ΠcF1

) = ΠcF1
. Thus, since

the verticial subgroup ΠvF
x3

⊆ ΠGx3

∼← ΠF is the unique verticial sub-

group of ΠGx3

∼← ΠF associated to vFx3
∈ Vert(Gx3) which contains ΠcF1

[cf. [CmbGC], Proposition 1.5, (i)], it follows immediately from the fact

that α ∈ Aut|grph|(Gx3) that β̃(ΠvF
x3
) = ΠvF

x3
. In particular, since the

composite ΠvF
x3
↪→ ΠF � ΠF/Ndiag is injective [cf. Lemma 6.6, (iii)], it

follows immediately from (a) that β̃ induces the identity automorphism

on ΠvF
x3

⊆ ΠGx3

∼← ΠF. On the other hand, since ΠF is topologically

generated by ΠvF
x2

⊆ ΠGx2

∼← ΠF and ΠvF
x3

⊆ ΠGx3

∼← ΠF [cf. [CmbCsp],

Lemma 1.13], this implies that β̃ induces the identity automorphism on
ΠF. This completes the proof of the claim (∗1).

Next, we claim that

(∗2): for arbitrary (g, r), α is the identity outomor-
phism.

Indeed, we verify the claim (∗2) by induction on 3g−3+r. If 3g−3+r =
0, i.e., (g, r) = (0, 3), then the claim (∗2) amounts to the claim (∗1). Now
suppose that 3g−3+r > 1, and that the induction hypothesis is in force.
Since 3g − 3 + r > 1, one verifies easily that there exists a stable log
curve Y log of type (g, r) over (Spec k)log such that Y log has precisely one
node. Thus, it follows immediately from Lemma 6.2, (i), that to verify
the claim (∗2), by replacing X log by Y log, we may assume without loss
of generality that Node(G)� = 1. Let e be the unique node of G and
x ∈ X(k) such that x � e. Now let us observe that since Node(G)� =

1, and e ∈ Node(G), it follows from (b) that α ∈ Aut|grph|(Gx) (⊆
Out(ΠGx)

∼← Out(ΠF)). Write {eF1 , eF2 } = N (vFnew,x) [cf. Lemma 6.4,
(iv)]. Also, for i ∈ {1, 2}, denote by vi ∈ Vert(G) the vertex of G
such that (vi)

F
x ∈ Vert(Gx) is the unique element of V(eFi ) \ {vFnew,x}

[cf. Lemma 6.4, (iv)]; by Hi the sub-semi-graph of PSC-type of the
underlying semi-graph Gx of Gx whose set of vertices = {vFnew,x, (vi)

F
x};

and by Si
def
= Node((Gx)|Hi) \ {eFi } ⊆ Node((Gx)|Hi) the complement

of {eFi }. [Thus, if G is noncyclically primitive (respectively, cyclically
primitive) [cf. Definition 4.1], then Hi �= Gx and Si = ∅ (respectively,
Hi = Gx and Si = {eF3−i}). In particular, Si ⊆ Node((Gx)|Hi) is not of
separating type.]

Next, let us observe that to complete the proof of the above claim
(∗2), it suffices to verify that
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(†): α ∈ Dehn(Gx), and, moreover, for i ∈ {1, 2}, α
is contained in the kernel of the natural surjection
Dehn(Gx) � Dehn(((Gx)|Hi)�Si) [cf. Theorem 4.8,
(iii), (iv)].

Indeed, since [as is easily verified] Node(Gx) = N (vFnew,x) = {eF1 , eF2 }, it
follows immediately from Theorem 4.8, (iii), (iv), that

2⋂
i=1

Ker
(
Dehn(Gx) � Dehn(((Gx)|Hi)�Si)

)
= {1} .

In particular, the implication (†) ⇒ (∗2) holds. The remainder of the
proof of the claim (∗2) is devoted to verifying the above (†).

For i ∈ {1, 2}, let Π(vi)Fx
⊆ ΠGx

∼← ΠF be a verticial subgroup of

ΠGx

∼← ΠF associated to the vertex (vi)
F
x ∈ V(eFi ) \ {vFnew,x}. Then

since α ∈ Aut|grph|(Gx), it follows that α̃ preserves the ΠF-conjugacy

class of Π(vi)Fx
⊆ ΠGx

∼← ΠF. Thus, since the image of the composite
Π(vi)Fx

↪→ ΠF � ΠF/Ndiag is commensurably terminal [cf. Lemma 6.6,
(ii)], it follows immediately from (a) that there exists an Ndiag-conjugate

β̃i [which may depend on i ∈ {1, 2}!] of α̃ such that β̃i(Π(vi)Fx
) = Π(vi)Fx

.
Therefore, since the composite Π(vi)Fx

↪→ ΠF � ΠF/Ndiag is injective

[cf. Lemma 6.6, (iii)], it follows from (a) that β̃i induces the identity
automorphism of Π(vi)Fx

.

Next, let ΠeFi
⊆ Π(vi)Fx

be a nodal subgroup of ΠGx

∼← ΠF associated

to eFi ∈ Node(Gx) that is contained in Π(vi)Fx
; ΠvF

new,x;i
⊆ ΠGx

∼← ΠF

a verticial subgroup [which may depend on i ∈ {1, 2}!] associated to
vFnew,x ∈ Vert(Gx) which contains ΠeFi

:

ΠvF
new,x;i

⊇ ΠeFi
⊆ Π(vi)Fx

⊆ ΠGx

∼← ΠF .

Then since β̃i preserves and induces the identity automorphism on Π(vi)Fx
,

it follows from the inclusion ΠeFi
⊆ Π(vi)Fx

that β̃i(ΠeFi
) = ΠeFi

. More-

over, since ΠvF
new,x;i

is the unique verticial subgroup of ΠGx

∼← ΠF

associated to vFnew,x which contains ΠeFi
[cf. [CmbGC], Proposition

1.5, (i)], it follows immediately from the fact that α ∈ Aut|grph|(Gx)

that β̃i(ΠvF
new,x;i

) = ΠvF
new,x;i

. Thus, β̃i preserves the closed subgroup

ΠFi ⊆ ΠF of ΠF obtained by forming the image of the natural homo-
morphism

lim−→
(
ΠvF

new,x;i
←↩ ΠeFi

↪→ Π(vi)Fx

)
−→ ΠF
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— where the inductive limit is taken in the category of pro-ΣF groups.
Now one may verify easily that the ΠF-conjugacy class of ΠFi ⊆ ΠF

coincides with the ΠF-conjugacy class of the image of the natural outer
injection Π((Gx)|Hi

)�Si
↪→ ΠGx

∼← ΠF discussed in Proposition 2.11; in

particular, ΠFi is commensurably terminal in ΠF [cf. Proposition 2.11].
Moreover, by applying a similar argument to the argument used in
[CmbCsp], Definition 2.1, (iii), (vi), or [NodNon], Definition 5.1, (ix),

(x) [i.e., by considering the portion of the underlying scheme X2 of X log
2

corresponding to the underlying scheme (Xvi)2 of the 2-nd log configu-

ration space (Xvi)
log
2 of the stable log curve X log

vi determined by G|vi ],

one concludes that there exists a verticial subgroup Πvi ⊆ ΠG
∼← ΠB

associated to vi ∈ Vert(G) such that the outer representation of Πvi on

ΠF determined by the composite Πvi ↪→ ΠB

ρ2/1→ Out(ΠF) preserves the
ΠF-conjugacy class of ΠFi ⊆ ΠF [so we obtain a natural outer repre-
sentation Πvi → Out(ΠFi) — cf. Lemma 2.12, (iii)], and, moreover,

that if we write ΠTi

def
= ΠFi

out
� Πvi (⊆ ΠT) [cf. the discussion enti-

tled “Topological groups” in §0], then ΠTi is naturally isomorphic to the
“ΠT” obtained by taking “G” to be G|vi .

Now since β̃i(ΠFi) = ΠFi , and α ∈ ZOutC(ΠF)(ρ2/1(H)), one may

verify easily that the outomorphism of ΠFi determined by β̃i|ΠFi
[cf.

Lemma 2.12, (iii)] is ∈ ZOutC(ΠFi
)(ρ2/1(H ∩ Πvi)) — where, by abuse

of notation, we write H ∩ Πvi ⊆ ΠB for the intersection of H with
the image of Πvi in ΠB. Therefore, since the quantity “3g − 3 + r”
associated to G|vi is < 3g − 3 + r, by considering a similar diagram to
the diagram in [CmbCsp], Definition 2.1, (vi), or [NodNon], Definition

5.1, (x), and applying the induction hypothesis, we conclude that β̃i|ΠFi

is a ΠFi-inner automorphism. In particular, it follows immediately [by
allowing i ∈ {1, 2} to vary] that the outomorphism α is ∈ Dehn(Gx), and,
moreover — by considering the natural identification outer isomorphism
ΠFi

∼→ Π((Gx)|Hi
))�Si

— that α is contained in the kernel of the natural

surjection Dehn(Gx) � Dehn(((Gx)|Hi))�Si), as desired. This completes
the proof of (†), hence also of Lemma 6.8. Q.E.D.

Definition 6.9. In the notation of Definition 6.3:

(i) Suppose that 2g − 2 + r > 1, i.e., (g, r) �∈ {(0, 3), (1, 1)}. Then
we shall write

Ag,r
def
= {1} ⊆ Aut(CuspF(G))
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[cf. Definition 6.5, (i)].

(ii) Suppose that (g, r) = (1, 1). Then we shall write

(Z/2Z �) Ag,r
def
= Aut(CuspF(G)) .

(iii) Suppose that (g, r) = (0, 3). Then we shall write

(Z/2Z× Z/2Z �) Ag,r ⊆ Aut(CuspF(G))

for the subgroup of Aut(CuspF(G)) obtained as the image of
the subgroup of the symmetric group on 4 letters

{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊆ S4

via the isomorphismS4
∼→ Aut(CuspF(G)) arising from a bijec-

tion {1, 2, 3, 4} ∼→ CuspF(G). [Note that since the above sub-

group of S4 is normal, the subgroup Ag,r ⊆ Aut(CuspF(G))
does not depend on the choice of the bijection {1, 2, 3, 4} ∼→
CuspF(G).]

Lemma 6.10 (Permutations of cusps arising from certain
C-admissible outomorphisms). In the notation of Definition 6.3,
let H ⊆ ΠB be an open subgroup of ΠB. Then the following hold:

(i) The composite

ZOutC(ΠF)(ρ2/1(H)) ↪→ OutC(ΠF) → Aut(CuspF(G))

[cf. Definition 6.5, (ii)] factors through the subgroup Ag,r ⊆
Aut(CuspF(G)) [cf. Definition 6.9], hence determines a homo-
morphism

ZOutC(ΠF)(Im(ρ2/1)) −→ Ag,r .

(ii) The composite

AutXlog(X log
2 ) −→ ZOutC(ΠF)(Im(ρ2/1)) −→ Ag,r

of the natural homomorphism

AutXlog(X log
2 ) −→ ZOutC(ΠF)(Im(ρ2/1))
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with the homomorphism of (i) is an isomorphism. In par-
ticular, the homomorphism ZOutC(ΠF)(Im(ρ2/1)) → Ag,r of (i)

is a split surjection [cf. the discussion entitled “Topological
groups” in §0].

Proof. First, we verify assertion (i). If (g, r) = (1, 1), then since

Ag,r = Aut(CuspF(G)), assertion (i) is immediate. On the other hand, if

r = 0, then since CuspF(G)� = 1, assertion (i) is immediate. Thus, in the
remainder of the proof of assertion (i), we suppose that (g, r) �= (1, 1),
r ≥ 1.

Now we verify assertion (i) in the case where r = 1. Let us observe
that it follows immediately from Lemma 6.2, (i), that by replacing X log

by a suitable stable log curve of type (g, r) over (Spec k)log, we may as-
sume without loss of generality [cf. our assumption that r = 1, which im-
plies that (g, r) �= (0, 3)] that G is cyclically primitive [cf. Definition 4.1].
Let c ∈ Cusp(G) be the unique cusp of G, e ∈ Node(G) the unique node
of G, x ∈ X(k) such that x � e, and α ∈ ZOutC(ΠF)(ρ2/1(H)). Then
let us observe that it follows immediately from our assumption that G is
cyclically primitive of type (g, r) �= (1, 1) (respectively, the various defi-
nitions involved) that the vertex of Gx to which cF (respectively, cFdiag)

abuts is not of type (0, 3) (respectively, is of type (0, 3)). Moreover, it
follows immediately from Lemma 6.7, (ii), that the outomorphism α of

ΠGx

∼← ΠF is ∈ Aut(Gx). Thus, we conclude that the automorphism of

CuspF(G) induced by α is the identity automorphism. This completes
the proof of assertion (i) in the case where r = 1.

Next, we verify assertion (i) in the case where r > 1. Let us observe
that it follows immediately from Lemma 6.2, (i), that by replacing X log

by a suitable stable log curve of type (g, r) over (Spec k)log, we may
assume without loss of generality that Node(G) = ∅. Let v ∈ Vert(G)
be the unique vertex of G [cf. our assumption that Node(G) = ∅] and
α ∈ ZOutC(ΠF)(ρ2/1(H)). Now let us observe that for any c ∈ Cusp(G),
x ∈ X(k) such that x � c, it follows immediately from the various def-
initions involved that Vert(Gx) = {vFx , vFnew,x}; C(vFnew,x) = {cF, cFdiag};
C(vFx ) = Cusp(Gx)\{cF, cFdiag}; vFx is of type (g, r); vFnew,x is of type (0, 3).

Moreover, it follows immediately from Lemma 6.7, (ii), that the outo-

morphism α of ΠGx

∼← ΠF is ∈ Aut(Gx). Thus, if (g, r) �= (0, 3), then
since vFx is of type (g, r), and vFnew,x is of type (0, 3), it follows imme-
diately that α induces the identity automorphism on Vert(Gx), hence

that α preserves the subset {c, cFdiag} ⊆ CuspF(G) corresponding to

C(vFnew,x) = {cF, cFdiag}. In particular, if (g, r) �= (0, 3), (respectively,

(g, r) = (0, 3)), then — by allowing “c” to vary among the elements of
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Cusp(G) — one may verify easily that the automorphism of CuspF(G)
induced by α is the identity automorphism (respectively, satisfies the
condition that

for any subset S ∈ CuspF(G) of cardinality 2, the au-

tomorphism of CuspF(G) induced by α determines

an automorphism of the set {S,CuspF(G) \ S} ⊆
2CuspF(G),

hence, by Lemma 6.11 below, is contained in Ag,r ⊆ Aut(CuspF(G))).
This completes the proof of assertion (i) in the case where r > 1, hence
also of assertion (i).

Next, we verify assertion (ii). One verifies easily that the composite
of natural homomorphisms

AutXlog(X log
2 ) → AutΠB(ΠT)/Inn(ΠF)

∼→ ZOut(ΠF)(Im(ρ2/1))

[cf. the discussion entitled “Topological groups” in §0] factors through
ZOutC(ΠF)(Im(ρ2/1)) ⊆ ZOut(ΠF)(Im(ρ2/1)). In particular, we obtain a

natural homomorphism AutXlog(X log
2 ) → ZOutC(ΠF)(Im(ρ2/1)). Now the

fact that the composite

AutXlog(X log
2 ) → ZOutC(ΠF)(Im(ρ2/1)) ↪→ OutC(ΠF) → Aut(CuspF(G))

determines a surjection AutXlog(X log
2 ) � Ag,r is well-known and easily

verified. To verify that this surjection is injective, observe that an el-
ement of the kernel of this surjection determines an automorphism of
the trivial family X log ×(Spec k)log X

log → X log over X log that preserves
the image of the diagonal. On the other hand, since the relative tangent
bundle of this trivial family has no nonzero global sections, one con-
cludes immediately that such an automorphism is constant, i.e., arises
from a single automorphism of the fiber X log over (Spec k)log that is
compatible with the diagonal, hence [as is easily verified] equal to the
identity automorphism, as desired. This completes the proof of asser-
tion (ii). Q.E.D.

Lemma 6.11 (A subgroup of the symmetric group on 4 let-
ters). Write G ⊆ S4 for the subgroup of the symmetric group on 4
letters S4 consisting of g ∈ S4 such that

(∗): for any subset S ⊆ {1, 2, 3, 4} of cardinality 2,
the automorphism g of {1, 2, 3, 4} determines an au-
tomorphism of the set {S, {1, 2, 3, 4} \S} ⊆ 2{1,2,3,4}.
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Then
G = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} .

Proof. First, let us observe that one may verify easily that

{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊆ G .

Thus, to verify Lemma 6.11, it suffices to verify that G� = 4. Next, let
us observe that it follows immediately from the condition (∗) that for
any element g ∈ G, it holds that g4 = id; in particular, by the Sylow

Theorem, together with the fact that S�
4 = 23 · 3, we conclude that G is

a 2-group. Thus, to verify Lemma 6.11, it suffices to verify that G� �= 8.
Next, let us observe that it follows immediately from the condition (∗)
that G ⊆ S4 is normal. Thus, if G� = 8, then since S�

4 = 23 · 3, and
(1 2) ∈ S4 is of order 2, again by the Sylow Theorem, we conclude that
(1 2) ∈ G, in contradiction to the fact that (1 2) does not satisfy the
condition (∗). This completes the proof of Lemma 6.11. Q.E.D.

Theorem 6.12 (Centralizers of geometric monodromy
groups arising from configuration spaces). Let (g, r) be a pair of
nonnegative integers such that 2g − 2 + r > 0; 0 < m < n positive
integers; ΣF ⊆ ΣB nonempty sets of prime numbers; k an algebraically
closed field of characteristic zero; (Spec k)log the log scheme obtained
by equipping Spec k with the log structure given by the fs chart N → k

that maps 1 �→ 0; X log = X log
1 a stable log curve of type (g, r) over

(Spec k)log. Suppose that ΣF ⊆ ΣB satisfy one of the following two
conditions:

(1) ΣF and ΣB determine PT-formations [i.e., are either of car-
dinality one or equal to Primes — cf. [MT], Definition 1.1,
(ii)].

(2) n−m = 1 and ΣB = Primes.

Write
X log

n , X log
m

for the n-th, m-th log configuration spaces of the stable log curve X log

[cf. the discussion entitled “Curves” in §0], respectively; Πn, ΠB
def
= Πm

for the respective maximal pro-ΣB quotients of the kernels of the natu-
ral surjections π1(X

log
n ) � π1((Spec k)

log), π1(X
log
m ) � π1((Spec k)

log);
Πn/m ⊆ Πn for the kernel of the surjection Πn � ΠB = Πm induced

by the projection X log
n → X log

m obtained by forgetting the last (n − m)
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factors; ΠF for the maximal pro-ΣF quotient of Πn/m; ΠT for the quo-
tient of Πn by the kernel of the natural surjection Πn/m � ΠF. Thus,
we have a natural exact sequence of profinite groups

1 −→ ΠF −→ ΠT −→ ΠB −→ 1 ,

which determines an outer representation

ρn/m : ΠB −→ Out(ΠF) .

Then the following hold:

(i) Let H ⊆ ΠB be an open subgroup of ΠB. Recall that X log
n →

X log
m may be regarded as the (n−m)-th log configuration space

of the family of stable log curves X log
m+1 → X log

m over X log
m .

Then the composite of natural homomorphisms

AutXlog
m

(X log
m+1) −→ AutXlog

m
(X log

n ) −→ AutΠB(ΠT)/Inn(ΠF)

∼−→ ZOut(ΠF)(Im(ρn/m)) ⊆ ZOut(ΠF)(ρn/m(H))

— where the first arrow is the homomorphism arising from the
functoriality of the construction of the log configuration space;
the third arrow is the isomorphism appearing in the discussion
entitled “Topological groups” in §0 — determines an isomor-
phism

AutXlog
m

(X log
m+1)

∼−→ ZOutFC(ΠF)(ρn/m(H))

— where we write OutFC(ΠF) for the group of FC-admissible
[cf. Definition 6.1; [CmbCsp], Definition 1.1, (ii)] outomor-
phisms of ΠF [cf. Lemma 6.2, (ii)]. Here, we recall that the

automorphism group AutXlog
m

(X log
m+1) is isomorphic to⎧⎨

⎩
Z/2Z× Z/2Z if (g, r,m) = (0, 3, 1);

Z/2Z if (g, r,m) = (1, 1, 1);
{1} if (g, r,m) �∈ {(0, 3, 1), (1, 1, 1)}.

(ii) The isomorphism of (i) and the natural inclusion Sn−m ↪→
ZOutPFC(ΠF)(ρn/m(H)) — where we write OutPFC(ΠF) for the

group of PFC-admissible [cf. Definitions 1.4, (iii); 6.1] out-
omorphisms of ΠF [cf. Lemma 6.2, (ii)] — determine an iso-
morphism

AutXlog
m

(X log
m+1)×Sn−m

∼−→ ZOutPFC(ΠF)(ρn/m(H)) .
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(iii) Let H be a closed subgroup of OutPFC(ΠF) that contains an
open subgroup of Im(ρn/m) ⊆ Out(ΠF). Then H is almost
slim [cf. the discussion entitled “Topological groups” in §0]. If,
moreover, H ⊆ OutFC(ΠF), and (g, r,m) �∈ {(0, 3, 1), (1, 1, 1)},
then H is slim [cf. the discussion entitled “Topological groups”
in §0].

Proof. First, we verify assertion (i). We begin by observing that

the description of the automorphism group AutXlog
m

(X log
m+1) given in the

statement of assertion (i) follows immediately from Lemma 6.10, (ii).
Next, let us observe that

(∗1): to verify assertion (i), it suffices to verify asser-
tion (i) in the case where ΣB = Primes.

Indeed, this follows immediately from the various definitions involved.
Thus, in the remainder of the proof of assertion (i), we suppose that
ΣB = Primes.

Next, we claim that

(∗2): the composite homomorphism of assertion (i)
determines an injection

AutXlog
m

(X log
m+1) ↪→ ZOutFC(ΠF)(ρn/m(H)) .

Indeed, one verifies easily that the composite as in assertion (i) factors
through ZOutFC(ΠF)(ρn/m(H)). On the other hand, by considering the

action of AutXlog
m

(X log
m+1) on the set of conjugacy classes of cuspidal

inertia subgroups of suitable subquotients [arising from fiber subgroups]
of ΠF, it follows immediately that the composite as in assertion (i) is
injective [cf. Lemma 6.10, (ii)]. This completes the proof of the claim
(∗2).

Next, we claim that

(∗3): the injection of (∗2) is an isomorphism.

Indeed, it follows immediately from the various definitions involved that
if NB ⊆ ΠB is a fiber subgroup of ΠB of length 1 [cf. Lemma 6.2,
(ii); [MT], Definition 2.3, (iii)], then the natural surjection ΠT ×ΠB

NB � NB may be regarded as the “ΠT � ΠB” obtained by taking
“(g, r,m, n)” to be (g, r + m − 1, 1, n − m + 1). Thus, by applying
the inclusion ZOutFC(ΠF)(ρn/m(H)) ⊆ ZOutFC(ΠF)(ρn/m(H ∩ NB)) and
replacing ΠT � ΠB by ΠT ×ΠB NB � NB, we may assume without
loss of generality that m = 1. On the other hand, it follows immediately
from the various definitions involved that if NF ⊆ ΠF is a fiber subgroup
of ΠF of length n − 2, then the natural surjection ΠT/NF � ΠB may



Combinatorial anabelian topics I 141

be regarded as the “ΠT � ΠB” obtained by taking “(g, r,m, n)” to

be (g, r, 1, 2). Thus, since the natural homomorphism OutFC(ΠF) →
OutFC(ΠF/NF) is injective [cf. [NodNon], Theorem B], by replacing
ΠT � ΠB by ΠT/NF � ΠB, we may assume without loss of generality
that (m,n) = (1, 2). In particular — in light of our assumption that
ΣB = Primes [cf. (∗1)] — we are in the situation of Definition 6.3.

Let α ∈ ZOutFC(ΠF)(ρn/m(H)). Then it follows immediately from

Lemma 6.10, (ii), that there exists an element β of the image of the
injection of (∗2) such that α ◦ β ∈ ZOutFC(ΠF)(ρn/m(H)) induces the

identity automorphism of CuspF(G) [cf. Definition 6.5, (i), (ii)]. In par-
ticular, α ◦ β preserves the ΠF-conjugacy class of a cuspidal subgroup
ΠcFdiag

⊆ ΠF of ΠF associated to cFdiag ∈ CuspF(G) [cf. Definition 6.5,

(iii)]. Thus, it follows from Lemma 6.8 that α ◦ β is the identity outo-
morphism of ΠF. In particular, we conclude that the injection of (∗2)
is surjective. This completes the proof of the claim (∗3), hence also of
assertion (i).

Next, we verify assertion (ii). First, let us observe that by consider-
ing the action of ZOutPFC(ΠF)(ρn/m(H)) on the set of fiber subgroups of
ΠF of length 1, we obtain an exact sequence of profinite groups

1 −→ ZOutFC(ΠF)(ρn/m(H)) −→ ZOutPFC(ΠF)(ρn/m(H)) −→ Sn−m .

Now by considering the action of Sn−m on X log
n over X log

m obtained by
permuting the first n−m factors of X log

n , we obtain a section Sn−m ↪→
ZOutPFC(ΠF)(ρn/m(H)) of the third arrow in the above exact sequence;
in particular, the third arrow is surjective. On the other hand, it follows
from [NodNon], Theorem B, that the image of the section Sn−m ↪→
ZOutPFC(ΠF)(ρn/m(H)) commutes with ZOutFC(ΠF)(ρn/m(H)). Thus, the
composite of natural homomorphisms

AutXlog
m

(X log
m+1)

∼→ ZOutFC(ΠF)(ρn/m(H)) ↪→ ZOutFPC(ΠF)(ρn/m(H))

[cf. assertion (i)] and the section Sn−m ↪→ ZOutPFC(ΠF)(ρn/m(H)) de-

termine an isomorphism as in the statement of assertion (ii). This com-
pletes the proof of assertion (ii). Assertion (iii) follows immediately
from assertions, (i), (ii). This completes the proof of Theorem 6.12.

Q.E.D.

Remark 6.12.1. By considering a suitable specialization isomor-
phism, one may replace the expression “k an algebraically closed field of
characteristic zero” in the statement of Theorem 6.12 by the expression
“k an algebraically closed field of characteristic �∈ ΣB”.
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Theorem 6.13 (Centralizers of geometric monodromy
groups arising from moduli stacks of pointed curves). Let (g, r)
be a pair of nonnegative integers such that 2g−2+ r > 0; Σ a nonempty
set of prime numbers; k an algebraically closed field of characteristic

zero. Write ΠMg,r

def
= π1((Mg,r)k) for the étale fundamental group of

the moduli stack (Mg,r)k [cf. the discussion entitled “Curves” in §0];
Πg,r for the maximal pro-Σ quotient of the kernel Ng,r of the natural sur-
jection π1((Cg,r)k) � π1((Mg,r)k) = ΠMg,r [cf. the discussion entitled
“Curves” in §0]; ΠCg,r for the quotient of the étale fundamental group
π1((Cg,r)k) of (Cg,r)k by the kernel of the natural surjection Ng,r � Πg,r.
Thus, we have a natural exact sequence of profinite groups

1 −→ Πg,r −→ ΠCg,r
−→ ΠMg,r

−→ 1 ,

which determines an outer representation

ρg,r : ΠMg,r −→ Out(Πg,r) .

Then the following hold:

(i) The profinite group Πg,r is equipped with a natural structure of
pro-Σ surface group [cf. [MT], Definition 1.2].

(ii) Let H ⊆ ΠMg,r be an open subgroup of ΠMg,r . Suppose that

2g − 2 + r > 1, i.e., (g, r) �∈ {(0, 3), (1, 1)}.
Then the composite of natural homomorphisms

Aut(Mg,r)k((Cg,r)k) −→ AutΠMg,r
(ΠCg,r )/Inn(Πg,r)

∼−→ ZOut(Πg,r)(Im(ρg,r)) ⊆ ZOut(Πg,r)(ρg,r(H))

[cf. the discussion entitled “Topological groups” in §0] deter-
mines an isomorphism

Aut(Mg,r)k((Cg,r)k)
∼−→ ZOutC(Πg,r)(ρg,r(H))

[cf. (i); Definition 6.1]. Here, we recall that the automorphism
group Aut(Mg,r)k((Cg,r)k) is isomorphic to⎧⎨

⎩
Z/2Z× Z/2Z if (g, r) = (0, 4);

Z/2Z if (g, r) ∈ {(1, 2), (2, 0)};
{1} if (g, r) �∈ {(0, 4), (1, 2), (2, 0)} .
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(iii) Let H ⊆ OutC(Πg,r) be a closed subgroup of OutC(Πg,r) that
contains an open subgroup of Im(ρg,r) ⊆ Out(Πg,r). Suppose
that

2g − 2 + r > 1, i.e., (g, r) �∈ {(0, 3), (1, 1)}.
Then H is almost slim [cf. the discussion entitled “Topolog-
ical groups” in §0]. If, moreover,

2g − 2 + r > 2, i.e., (g, r) �∈ {(0, 3), (0, 4), (1, 1), (1, 2), (2, 0)},
then H is slim [cf. the discussion entitled “Topological groups”
in §0].

Proof. Assertion (i) follows immediately from the various defini-
tions involved. Next, we verify assertion (ii). First, we recall that the
description of the automorphism group Aut(Mg,r)k((Cg,r)k) given in the
statement of assertion (ii) is well-known [cf., e.g., [CorHyp], Theorem B,
if 2g− 2 + r > 2, i.e., (g, r) �∈ {(0, 4), (1, 2), (2, 0)}]. Next, we claim that

(∗1): the composite homomorphism of assertion (ii)
determines an injection

Aut(Mg,r)k((Cg,r)k) ↪→ ZOutC(Πg,r)(ρg,r(H)) .

Indeed, one verifies easily that the composite as in assertion (ii) factors
through ZOutC(Πg,r)(ρg,r(H)). Thus, the claim (∗1) follows immediately
from the well-known fact that any nontrivial automorphism of a hyper-
bolic curve over an algebraically closed field of characteristic �∈ Σ induces
a nontrivial outomorphism of the maximal pro-Σ quotient of the étale
fundamental group of the hyperbolic curve [cf., e.g., [LocAn], the proof
of Theorem 14.1]. This completes the proof of the claim (∗1).

Next, we claim that

(∗2): if r > 0, then the injection of (∗1) is an isomor-
phism.

Indeed, write N ⊆ ΠMg,r for the kernel of the surjection ΠMg,r �
π1((Mg,r−1)k) determined by the (1-)morphism (Mg,r)k → (Mg,r−1)k
obtained by forgetting the last section. Then it follows immediately from
the various definitions involved that there exists a commutative diagram
of profinite groups

1 −−−−→ Πg,r −−−−→ E −−−−→ N −−−−→ 1

�
⏐⏐� �

⏐⏐� �
⏐⏐�

1 −−−−→ ΠF −−−−→ ΠT −−−−→ ΠB −−−−→ 1
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— where the upper sequence is the exact sequence obtained by pulling
back the exact sequence 1 → Πg,r → ΠCg,r → ΠMg,r → 1 by the
natural inclusion N ↪→ ΠMg,r ; the lower sequence is the exact sequence
“1 → ΠF → ΠT → ΠB → 1” obtained by applying the procedure given
in the statement of Theorem 6.12 in the case where (m,n,ΣF,ΣB) =
(1, 2,Σ,Primes) to a stable log curve of type (g, r − 1) over (Spec k)log;
the vertical arrows are isomorphisms. Thus, it follows immediately from
Theorem 6.12, (i), that ZOutC(Πg,r)(ρg,r(H ∩ N)) is isomorphic to the

automorphism group AutXlog(X log
2 ) for the stable log curve X log over

(Spec k)log of type (g, r− 1). In particular, by the claim (∗1), we obtain
that

Aut(Mg,r)k((Cg,r)k) ↪→ ZOutC(Πg,r)(ρg,r(H))

⊆ ZOutC(Πg,r)(ρg,r(H ∩N))
∼← AutXlog(X log

2 ) .

Thus, by comparing (Aut(Mg,r)k((Cg,r)k))� with AutXlog(X log
2 )� [cf. The-

orem 6.12, (i)], we conclude that the injection of the claim (∗1) is an
isomorphism. This completes the proof of the claim (∗2). Moreover, it
follows immediately from the proof of the claim (∗2) that

(∗3): if α ∈ ZOutC(Π0,4)(ρ0,4(H)) induces the identity
automorphism on the set of conjugacy classes of cus-
pidal inertia subgroups of Π0,4, then α is the identity
outomorphism of Π0,4.

In light of the claim (∗2), in the remainder of the proof of assertion
(ii), we assume that

r = 0, hence also that g ≥ 2.

For x ∈ (Mg,0)k(k), write

Gx

for the semi-graph of anabelioids of pro-Σ PSC-type associated to the

geometric fiber of (Clog

g,0)k → (Mlog

g,0)k over xlog
def
= x ×(Mg,0)k

(Mlog

g,0)k;

thus, we have a natural Im(ρg,0) (⊆ Out(Πg,0))-torsor of outer isomor-

phisms Πg,0
∼→ ΠGx . Let us fix an isomorphism Πg,0

∼→ ΠGx that belongs

to this collection of isomorphisms. Moreover, for x ∈ (Mg,0)k(k), we
shall say that x satisfies the condition (†) if

(†1) Vert(Gx) = {v1, v2}; Node(Gx) = {e1, e2, · · · , eg+1};
(†2) N (v1) = N (v2) = Node(Gx);

(†3) v1 and v2 are of type (0, g + 1);
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we shall say that x satisfies the condition (‡) if

(‡1) Vert(Gx) = {v∗1 , v∗2 , w∗}; Node(Gx) = {e∗1, e∗2, · · · , e∗g+1, f
∗};

(‡2) N (v∗1) = {e∗1, e∗2, · · · , e∗g+1}; N (v∗2) = {e∗1, e∗2, · · · , e∗g−1, f
∗};

N (w∗) = {e∗g, e∗g+1, f
∗};

(‡3) v∗1 is of type (0, g + 1), v∗2 is of type (0, g), and w∗ is of type
(0, 3).

Let us observe that one may verify easily that there exists a k-valued
point x ∈ (Mg,0)k(k) that satisfies (†); if, moreover, g > 2, then there

exists a k-valued point x ∈ (Mg,0)k(k) that satisfies (‡).
Let x ∈ (Mg,0)k(k) be a k-valued point. Then we claim that

(∗4): if x satisfies (†), and, relative to the isomor-

phism Πg,0
∼→ ΠGx fixed above,

α ∈ ZOutC(Πg,0)(ρg,0(H))

determines an element of Aut|grph|(Gx) (⊆ Out(ΠGx)∼← Out(Πg,0)), then for any e ∈ Node(Gx), the image

αe of α via the natural inclusion Aut|grph|(Gx) ↪→
Aut|grph|((Gx)�{e}) [cf. Proposition 2.9, (ii)] satisfies

αe ∈ Dehn((Gx)�{e}) .

Indeed, let e ∈ Node(Gx) and y ∈ (Mg,0)k(k) a k-valued point such that
Gy corresponds to (Gx)�{e} [cf. the special fibers of the stable log curves

over “Slog” that appear in Proposition 5.6, (iii)]. Write v ∈ Vert(Gy)
for the unique vertex of Gy. [Note that it follows from the definition
of the condition (†) that Vert(Gy)

� = 1.] Then it follows immediately
from the general theory of stable log curves that there exist a “clutching
(1-)morphism” corresponding to the operation of resolving the nodes of
Gy [i.e., obtained by forming appropriate composites of the clutching
morphisms discussed in [Knud], Definition 3.6]

(M0,2g)k −→ (Mg,0)k

and a k-valued point ỹ ∈ (M0,2g)k(k) such that the image of ỹ via the
above clutching morphism coincides with y, and, moreover, Gỹ is natu-

rally isomorphic to (Gy)|v. Write (Mlog
0,2g)k for the log stack obtained by

equipping (M0,2g)k with the log structure induced by the log structure

of (Mlog

g,0)k via the above clutching morphism. Then one verifies easily
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that the composite

ΠM0,2g

def
= π1((Mlog

0,2g)k) −→ π1((M
log

g,0)k)
∼←− ΠMg,0

ρg,0−→ Out(Πg,0)

— where the first arrow is the outer homomorphism induced by the
above clutching morphism, and the second arrow is the outer isomor-
phism obtained by applying the “log purity theorem” to the natural

(1-)morphism (Mg,0)k ↪→ (Mlog

g,0)k [cf. [ExtFam], Theorem B] — fac-

tors through Aut|grph|(Gy) ⊆ Out(ΠGy )
∼← Out(Πg,0). Moreover, the

resulting homomorphism ΠM0,2g
→ Aut|grph|(Gy) fits into a commuta-

tive diagram of profinite groups

ΠM0,2g
−−−−→ ΠM0,2g⏐⏐� ⏐⏐�

Aut|grph|(Gy)
ρVert
Gy−−−−→ Glu(Gy) = Aut|grph|((Gy)|v)

[cf. Definition 4.9; Proposition 4.10, (ii)] — where the upper hori-
zontal arrow is the outer homomorphism induced by the (1-)morphism

(Mlog
0,2g)k → (M0,2g)k obtained by forgetting the log structure. More-

over, one verifies easily that there exists a natural outer isomorphism
Π(Gy)|v

∼→ Π0,2g such that the homomorphism ΠM0,2g → Out(Π0,2g) ob-
tained by conjugating the outer action implicit in the right-hand vertical

arrow of the above diagram ΠM0,2g → Aut|grph|((Gy)|v) ⊆ Out(Π(Gy)|v )
by the outer isomorphism Π(Gy)|v

∼→ Π0,2g coincides with ρ0,2g. Thus,
by considering the image in ΠM0,2g

of the inverse image of H ⊆ ΠMg,0

in ΠM0,2g
[cf. the diagrams of the above displays], it follows immedi-

ately from the claims (∗2) [in the case where “(g, r)”= (0, 2g)] and (∗3)
[in the case where g = 2], together with the various definitions involved,

that if α ∈ ZOutC(Πg,0)(ρg,0(H)) determines an element of Aut|grph|(Gx)

(⊆ Out(ΠGx)
∼← Out(Πg,0)), then the image of α via

Aut|grph|(Gx) ↪→ Aut|grph|((Gx)�{e})
∼→ Aut|grph|(Gy)

ρVert
Gy� Glu(Gy) = Aut|grph|((Gy)|v)

[cf. Proposition 2.9, (ii)] is trivial. In particular, it follows from Propo-

sition 4.10, (ii), that the image αe of α via Aut|grph|(Gx) ↪→
Aut|grph|((Gx)�{e}) satisfies αe ∈ Dehn((Gx)�{e}). This completes the
proof of the claim (∗4).

Next, we claim that
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(∗5): if x satisfies (†), and α ∈ ZOutC(Πg,0)(ρg,0(H))

determines an element of Aut|grph|(Gx) (⊆ Out(ΠGx)∼← Out(Πg,0)), then α is the identity outomorphism
of Πg,0.

Indeed, it follows from the claim (∗4) that

α ∈
⋂

e∈Node(Gx)

Im
(
Dehn((Gx)�{e}) → Dehn(Gx)

)

[cf. Theorem 4.8, (ii)]. On the other hand, it follows immediately from
Theorem 4.8, (ii), (iv), that the right-hand intersection is = {1}. This
completes the proof of the claim (∗5).

Next, we claim that

(∗6): we have

ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|Node(Gx)|(Gx) (⊆ Out(ΠGx)
∼← Out(Πg,0)) ;

if, moreover, x satisfies (‡), then

ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|grph|(Gx) .

Indeed, it follows immediately from Proposition 5.6, (ii), together with

the definition of xlog = x×(Mg,0)k
(Mlog

g,0)k, that the composite

π1(x
log) −→ π1((M

log

g,0)k)
∼←− ΠMg,0

ρg,0−→ Out(Πg,0)

— where the second arrow is the outer isomorphism obtained by apply-
ing the “log purity theorem” to the natural (1-)morphism (Mg,0)k ↪→
(Mlog

g,0)k [cf. [ExtFam], Theorem B] — determines a surjection π1(x
log)

� Dehn(Gx) (⊆ Out(ΠGx)
∼← Out(Πg,0)) [i.e., which induces an iso-

morphism between the respective maximal pro-Σ quotients]. Thus, it
follows immediately from the various definitions involved that there ex-
ists an open subgroup M ⊆ Dehn(Gx) such that ZOutC(Πg,0)(ρg,0(H)) ⊆
ZOutC(ΠGx )

(M) relative to the identification OutC(Πg,0)
∼→ OutC(ΠGx

)

arising from our choice of an isomorphism Πg,0
∼→ ΠGx . Therefore,

the inclusion ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|Node(Gx)|(Gx) follows immedi-

ately from Theorem 5.14, (ii). This completes the proof of the inclusion

ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|Node(Gx)|(Gx). On the other hand, if, more-

over, x satisfies (‡), then it follows immediately from the definition of

the condition (‡) that Aut|grph|(Gx) = Aut|Node(Gx)|(Gx). In particular,
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we obtain that ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|grph|(Gx). This completes

the proof of the claim (∗6).
Next, we claim that

(∗7): if x satisfies (†), then for any α ∈
ZOutC(Πg,0)(ρg,0(H)), there exists an element β of the

image of the injection of (∗1) such that the outo-

morphism α ◦ β of Πg,0
∼→ ΠGx is ∈ Aut|grph|(Gx)

(⊆ Out(ΠGx)
∼← Out(Πg,0)).

Indeed, suppose that g > 2. Then by the definitions of (†), (‡), one
may verify easily that there exist y ∈ (Mg,0)k(k) and f ∈ Node(Gy)
such that y satisfies (‡), and, moreover, Gx corresponds to (Gy)�{f} [cf.
Proposition 5.6, (iv)]. Thus, it follows immediately from the claim (∗6)
that ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|grph|(Gy) ↪→ Aut|grph|(Gx) [cf. Proposi-

tion 2.9, (ii)], i.e., so we may take β to be the identity outomorphism.
This completes the proof of the claim (∗7) in the case where g > 2.

Next, suppose that g = 2. Write Gx for the underlying semi-graph

of Gx and Aut|Node|(Gx) for the group of automorphisms of Gx which
induce the identity automorphism of the set of nodes of Gx. Then one
may verify easily from the explicit structure of Gx [cf. the definition of

the condition (†)] that Aut|Node|(Gx) is isomorphic to Z/2Z. Thus, since
the automorphism group Aut(M2,0)k((C2,0)k) is isomorphic to Z/2Z, it
follows immediately from the claim (∗6), together with the various defi-
nitions involved, that — to complete the proof of the claim (∗7) in the
case where g = 2 — it suffices to verify that the composite of natural
homomorphisms

Aut(M2,0)k((C2,0)k) −→ Aut(Gx) −→ Aut(Gx)

factors through Aut|Node|(Gx) ⊆ Aut(Gx) and is injective. Now the

fact that the composite in question factors through Aut|Node|(Gx) ⊆
Aut(Gx) follows immediately from the claim (∗6), applied to elements
of the image of the injection of (∗1). On the other hand, the injectivity
of the composite in question follows immediately from the injectivity
of the natural homomorphism Aut(M2,0)k((C2,0)k) → Aut(Gx) [cf. the
proof of the claim (∗1)] and the claim (∗5). This completes the proof
of the claim (∗7) in the case where g = 2, hence also — in light of the
above proof of the claim (∗7) in the case where g > 2 — of the claim
(∗7). Thus, the surjectivity of the injection of (∗1) follows immediately
from the claims (∗5) and (∗7). This completes the proof of assertion (ii).
Assertion (iii) follows immediately from assertion (ii). This completes
the proof of Theorem 6.13. Q.E.D.
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Remark 6.13.1. In the notation of Theorem 6.13, since ΠM0,3 =
{1}, it is immediate that a similar result to the results stated in Theo-
rem 6.13, (ii), (iii), does not hold in the case where (g, r) = (0, 3). On
the other hand, it is not clear to the authors at the time of writing
whether or not a similar result to the results stated in Theorem 6.13,
(ii), (iii), holds in the case where (g, r) = (1, 1). Nevertheless, we are able
to obtain a conditional result concerning the centralizer of the geometric
monodromy group in the case where (g, r) = (1, 1) [cf. Theorem 6.14,
(iii), (iv) below].

Theorem 6.14 (Centralizers of geometric monodromy
groups arising from moduli stacks of punctured semi-ellptic
curves). In the notation of Theorem 6.13, write (C±

1,1)k for the stack-

theoretic quotient of (C1,1)k by the natural action of Aut(M1,1)k((C1,1)k)
over the moduli stack (M1,1)k; Π±

1,1 for the maximal pro-Σ quotient

of the kernel N±
1,1

def
= Ker(π1((C±

1,1)k) � π1((M1,1)k) = ΠM1,1) of the

natural surjection π1((C±
1,1)k) � π1((M1,1)k) = ΠM1,1 ; ΠC±

1,1
for the

quotient of the étale fundamental group π1((C±
1,1)k) of the stack (C±

1,1)k
by the kernel of the natural surjection N±

1,1 � Π±
1,1. Thus, we have a

natural exact sequence of profinite groups

1 −→ Π±
1,1 −→ ΠC±

1,1
−→ ΠM1,1 −→ 1 ,

which determines an outer representation

ρ±1,1 : ΠM1,1 −→ Out(Π±
1,1) .

Write OutC(Π±
1,1) for the group of outomorphisms of Π±

1,1 which induce

bijections on the set of cuspidal inertia subgroups of Π±
1,1. Suppose that

2 ∈ Σ.

Then the following hold:

(i) The profinite group Π±
1,1 is slim [cf. the discussion entitled

“Topological groups” in §0].
(ii) Let H ⊆ ΠM1,1 be an open subgroup of ΠM1,1 . Then the com-

posite of natural homomorphisms

Aut(M1,1)k((C±
1,1)k) −→ AutΠM1,1

(ΠC±
1,1

)/Inn(Π±
1,1)

∼−→ ZOut(Π±
1,1)

(Im(ρ±1,1)) ⊆ ZOut(Π±
1,1)

(ρ±1,1(H))
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[cf. (i); the discussion entitled “Topological groups” in §0] de-
termines an isomorphism

Aut(M1,1)k((C±
1,1)k)

∼−→ ZOutC(Π±
1,1)

(ρ±1,1(H)) .

Here, we recall that Aut(M1,1)k((C±
1,1)k) = {1}.

(iii) Let H ⊆ ΠM1,1 be an open subgroup of ΠM1,1 . Then the com-
posite of natural homomorphisms

Aut(M1,1)k((C1,1)k) −→ AutΠM1,1
(ΠC1,1)/Inn(Π1,1)

∼−→ ZOut(Π1,1)(Im(ρ1,1)) ⊆ ZOut(Π1,1)(ρ1,1(H))

[cf. Theorem 6.13, (i); the discussion entitled “Topological
groups” in §0] determines an injection

Aut(M1,1)k((C1,1)k) ↪→ ZOutC(Π1,1)(ρ1,1(H)) .

Moreover, the image of this injection is centrally terminal
in ZOutC(Π1,1)(ρ1,1(H)) [cf. the discussion entitled “Topologi-

cal groups” in §0]. Here, we recall that Aut(M1,1)k((C1,1)k) �
Z/2Z.

(iv) The composite of natural homomorphisms

Aut(M1,1)k((C1,1)k) −→ AutΠM1,1
(ΠC1,1)/Inn(Π1,1)

∼−→ ZOut(Π1,1)(Im(ρ1,1))

[cf. Theorem 6.13, (i); the discussion entitled “Topological
groups” in §0] determines an isomorphism

Aut(M1,1)k((C1,1)k)
∼−→ ZOutC(Π1,1)(Im(ρ1,1)) .

Proof. Assertion (i) follows immediately from a similar argument to
the argument used in the proof of [MT], Proposition 1.4. This completes
the proof of assertion (i).

Next, we verify assertion (ii). First, let us recall that the description
of the automorphism group Aut(M1,1)k((C±

1,1)k) given in the statement

of assertion (ii) is well-known and easily verified. Write E → (M1,1)k
for the family of elliptic curves determined by the family of hyperbolic
curves (C1,1)k → (M1,1)k of type (1, 1); U → (C1,1)k for the restriction
of the finite étale covering E → E over (M1,1)k given by multiplica-
tion by 2 to (C1,1)k ⊆ E . Then one verifies easily that the action of
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Aut(M1,1)k((C1,1)k) on (C1,1)k lifts naturally to an action [i.e., given by
“multiplication by ±1”] on U over (M1,1)k. Write P for the stack-
theoretic quotient of U by the action of Aut(M1,1)k((C1,1)k) on U ; ΠP/M
for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(P) � π1((M1,1)k);

ρP/M : ΠM1,1 −→ Out(ΠP/M)

for the natural pro-Σ outer representation arising from the family of
hyperbolic curves P → (M1,1)k. Thus, since 2 ∈ Σ, one verifies easily
that ΠP/M may be regarded as a normal open subgroup of Π±

1,1. Now
let us observe that one verifies easily that

(∗1): P → (M1,1)k is a family of hyperbolic curves of
type (0, 4). If, moreover, we denote by T → (M1,1)k
the connected finite étale covering that trivializes the
finite étale covering determined by the four cusps
of P → (M1,1)k, then the classifying (1-)morphism
T → (M0,4)k of P ×(M1,1)k T → T [which is well-
defined up to the natural action of S4 on (M0,4)k] is
dominant.

Now we claim that

(∗2): every element of OutC(Π±
1,1) preserves the nor-

mal open subgroup ΠP/M ⊆ Π±
1,1.

Indeed, let us observe that one verifies easily that the natural surjections
Π±

1,1 � Π±
1,1/Π1,1, Π

±
1,1/ΠP/M determine an isomorphism

(Π±
1,1)

ab ⊗
ẐΣ Z/2Z

∼−→ (Π±
1,1/Π1,1)× (Π±

1,1/ΠP/M) .

Moreover, it follows immediately from the various definitions involved
that the natural action of (Π±

1,1)
ab ⊗

ẐΣ Z/2Z on the set of conjugacy
classes of cuspidal inertia subgroups of the kernel of the natural surjec-
tion Π±

1,1 � (Π±
1,1)

ab ⊗
ẐΣ Z/2Z [which is equipped with a natural struc-

ture of pro-Σ surface group of type (1, 4)] factors through (Π±
1,1)

ab ⊗
ẐΣ

Z/2Z
∼→ (Π±

1,1/Π1,1)× (Π±
1,1/ΠP/M)

pr2� (Π±
1,1/ΠP/M), and that the re-

sulting action of (Π±
1,1/ΠP/M) is faithful. Thus, we conclude that every

element of OutC(Π±
1,1) preserves the normal open subgroup ΠP/M ⊆

Π±
1,1. This completes the proof of the claim (∗2).

To verify assertion (ii), take an element α± ∈ ZOutC(Π±
1,1)

(ρ±1,1(H)).

Then it follows from the claim (∗2) that α± naturally determines an ele-

ment αP ∈ Aut(ΠP/M)/Inn(Π±
1,1). Let us fix a lifting β ∈ OutC(ΠP/M)
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of αP . Next, let us observe that since Π±
1,1/ΠP/M is finite, to ver-

ify assertion (ii), by replacing H by an open subgroup of ΠM1,1 con-
tained in H, we may assume without loss of generality that β com-
mutes with ρP/M(H) ⊆ Out(ΠP/M), i.e., β ∈ ZOutC(ΠP/M)(ρP/M(H)).

Then it follows immediately from Theorem 6.13, (ii), in the case where
(g, r) = (0, 4), together with (∗1), that β is contained in the image of the
natural injection Π±

1,1/ΠP/M ↪→ Out(ΠP/M) obtained by conjugation.

Thus, αP , hence also — by the manifest injectivity [cf. assertion (i)]

of the homomorphism OutC(Π±
1,1) → Aut(ΠP/M)/Inn(Π±

1,1) implicit in

the content of the claim (∗2) — α±, is trivial. This completes the proof
of assertion (ii).

Next, we verify assertion (iii). First, recall that the description of
Aut(M1,1)k((C1,1)k) given in the statement of assertion (iii) is well-known
and easily verified. Next, let us observe that the fact that the composite
in the statement of assertion (iii) determines an injection

Aut(M1,1)k((C1,1)k) ↪→ ZOutC(Π1,1)(ρ1,1(H))

follows immediately from a similar argument to the argument used in the
proof of the claim (∗1) in the proof of Theorem 6.13, (ii), together with
the various definitions involved. Next, let us observe that by applying

the natural outer isomorphism Π±
1,1

∼→ Π1,1

out
� Aut(M1,1)k((C1,1)k), we

obtain an exact sequence of profinite groups

1 −→ Aut(M1,1)k((C1,1)k) −→ ZOut(Π1,1)(Aut(M1,1)k((C1,1)k))

−→ Out(Π±
1,1)

— where we regard Aut(M1,1)k((C1,1)k) as a closed subgroup of Out(Π1,1)
by means of the injection “↪→” of the above display. Thus, the central
terminality asserted in the statement of assertion (iii) follows immedi-
ately, in light of the above exact sequence, from assertion (ii). This
completes the proof of assertion (iii).

Finally, we verify assertion (iv). It follows immediately from asser-
tion (iii) that the image of the homomorphism Aut(M1,1)k((C1,1)k) ↪→
ZOutC(Π1,1)(Im(ρ1,1)) determined by the composite in the statement of

assertion (iv) is centrally terminal. On the other hand, as is well-
known, this image of Aut(M1,1)k((C1,1)k) in Out(Π1,1) is contained in
Im(ρ1,1) ⊆ Out(Π1,1). [Indeed, recall that there exists a natural outer

isomorphism SL2(Z)
∧ ∼→ ΠM1,1 , where we write SL2(Z)

∧ for the profi-

nite completion of SL2(Z), such that the image of

(
−1 0
0 −1

)
∈ SL2(Z)

∧
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in Out(Π1,1) coincides with the image of the unique nontrivial element
of Aut(M1,1)k((C1,1)k) � Z/2Z in Out(Π1,1).] Now assertion (iv) follows
immediately. This completes the proof of assertion (iv). Q.E.D.

Remark 6.14.1. The authors hope to be able to address the issue
of whether or not a similar result to the results stated in Theorem 6.13,
(ii), (iii), holds for other families of pointed curves [e.g., the universal
curves over moduli stacks of hyperelliptic curves or more general Hurwitz
stacks] in a sequel to the present paper.

References
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