FIBERED PRODUCTS OF HOPF ALGEBRAS AND
SEIFERT-VAN KAMPEN THEOREM FOR SEMI-GRAPHS OF
TANNAKIAN CATEGORIES

YUKI KAWAGUCHI

ABSTRACT. It is known that Seifert-van Kampen theorem (for “good” topolog-
ical spaces) can be showed by arguing the category of covering spaces. Similar
arguments should be valid for abstract Galois categories (which Mochizuki
calls ”connected anabelioids”) and neutral Tannakian categories. But when
we try to state the theorem, the problem is the existence of amalgams (in other
words, fibered coproducts) of profinite groups and that of affine group schemes
(which is translated to the existence of fibered products of commutative Hopf
algebras). A construction of amalgams of profinite groups can be found in
Zalesskii [6]. We will construct fibered products of commutative Hopf algebras
by using the explicit construction of cofree coalgebras which Hazewinkel gave
in [3]. Another interest is the existence of so-called HNN extensions of affine
group schemes, which we will also prove. By combining these two kinds of
constructions, when we are given data of finitely many affine group schemes
and a manner of composing them, we can describe the composite affine group
scheme. The main theorem in this article is that, when we are given data of
finitely many neutral Tannakian categories and a manner of glueing them, the
fundamental group of the glued neutral Tannakian categories is isomorphic to
the composition of the respective fundamental groups under the assumption
that the data can be translated to the data of affine group schemes, which is
not true in general unlike the case of Galois categories and profinite groups.
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1. FIBERED PRODUCTS OF HOPF ALGEBRAS

Throughout this article, & denotes a field. In this section, we construct the
fibered product of A; and Ay over Ay for given Hopf algebras Ay, Ay, A over k.
We write Vecty (resp. Alg,, Coalg,, Bialg, , Hopf,, Aff; and AGS;) for the
category of k-vector spaces (resp. commutative k-algebras, k-coalgebras, commu-
tative k-bialgebras, commutative k-Hopf algebras, k-affine schemes and k-affine
groups schemes). Note that the same argument as in this section will be valid
for non-commutative k-algebras, k-bialgebras and k-Hopf algebras. Let N denotes

{0,1,2,...}.



2

Definition 1.1. Let (C,A,e) be a k-coalgebra, where C is a k-vector space, A :
C — C®C is a comultiplication and ¢ : C — k is a counit. For n € N,
A, i C — C®" s defined by:

Ag=¢:0C — k=0C%,
Al =id: C — C = C®%,
A, =(A®id®" ) oA, 1 : C — C®" (n>2).

Remark 1.2. By the coassociativity of A, it follows that for n,t,s € N such that
t+s=n—-2>0, (iId*" ®A®id®* ) oA, = A,.
Furthermore, one can also show that fort,s € N, we have (A; @ Ag)o A = Ayps.
The following proposition is due to Hazewinkel [3].

Proposition 1.3. The forgetful functor F : Coalg;, — Vecty has a right adjoint
functor C and we can construct it as below.

Proof. Let V € Vecty. We set

v =[] ver,
neN
TVETV = H y®tts
t,seN

and . . .
ATV — TVRTV; (20)n = (Zt4s)t.s-
An element z € T'V is called representative if A(z) lies in the image of the natural
map X R
TV X TV — TV®TV, (xt)t [ (ys)s — ((Et [ ys)t,s'

We write T'V;ep, for the set of representative elements of TV. Then A restricts
t0 At TViepr — TViepr ® TViepr (see Hazewinkel [3] (3.12)). We define € as the
composition of
TViepr — TV = [ VE" =5 k.
neN
Let us show that id ®A o A = A ®@idoA. For (2,)n € TViepr, We write

A(za)n) = Y (=), ® (u),

l

A(D),) =D "), ® (),

I

A(w),) =D (@), & (@),

4

and

Then we have

id®A o A((zp)n) = Z (xgl))t ® (u’(”l)l/))r ® (vgz,l/))s
Ll

and the image of the right hand side in H Y OttTEs g
t,r,seN

(ZZEU @ <Zug,z’) 2 ng,z’)))
1 I

t,r,s



Similarly we have

AieA() = X (), @ (@), @ (1),
L

and the image of the right hand side in H Yy ettrts g
t,r,s€N

(Z (Zpﬁl’l = qﬁ””) ® yﬁ”) :
t,r,s

l 4 )T

Since
l L /
2= p" @ gt
l/

and

l LY !
l/t(st _ ZUE )@ vgz,z )
ll

we see that

(Zetre (Sutnrewn))
l 4
(T ot ouit)
1 t,r,s

5Ty

t,r,s

:(Zt+r+s)t,7‘,s

and

LU ’
< E ( E pg )®Q£l’l )> ®y£l)>
t,r,s

l v
(Sl 0u)
l

:(zt+r+s)t,r,s .

t,r,s

Let us show that id ®e o0 A = e ®id oA = id. Under the same notation as above,
we have for (2,)n € TViepr

id@e o A((zn)n) = Y (55 "), = (20)e
!

and thus id ®e o A = id. Similarly we have ¢ ® id oA = id.

After all TViepr becomes a k-coalgebra, which we denote C(V'). Moreover, for a
k-linear map V. — W, we define a k-coalgebra homomorphism C(f) : C(V) —
CW); (zn)n = (f®"(2n))n- Then we obtain a functor C : Vect;, — Coalg,.

Now let us show that C is a right adjoint functor of F. We claim that, for
C € Coalg,,,V € Vecty, there is a functorial bijective map

wc,v : Homvyect, (F(C), V) — Homcoalg, (C,C(V)); g — (z — (g®" o An(z))n)
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First, we must check that (g®” o An(z))n is a representative element of 7V. When
we write A(z) = Zx(l) ®y® (x(l),y(l) € C), we have

A((9%" 0 An(2)),,) = (9% (Auts(2)),.,

- (o (SaEmeawm))
=Y (g% 0 A (zV) © g% 0 AL (1)), ,

I
using Remark 1.2. Here the right hand side is the image of Z (g% 0 Ap(zW)) ®

n
1
(%" oA, (y(l)))n € TV ®TV, which implies that (¢®™ 0 A, (2)), is representative.

The above calculation shows also that the map z — (g®" OAn(z))n is compatible
with comultiplications. Moreover, it is easy to see that the map z — (g®”OAn (z))n
is counit preserving and hence a k-coalgebra homomorphism.

For bijectivity of ¢ v, we will show that the map ¥¢c v : f — prjof is the
inverse. Obviously we have ¢y o pc,v = id. To see that pc v o Yo v = id, we
have to show that, for f € Homcoalg, (C,C(V)), pr, of is determined by pry of for
each n € N. Since pryof = ¢, pryof is determined. It is enough to show that for
n > 1, if pr, of is determined by pry of, then pr, ,of is also determined. For
z € C, we fix a presentation A(z) = Zx(l) @y and write f(x(l)) = (ag))n,

1
f(y(l)) = (57(11)),1 and f(2) = (Yn)n. Then we have

fofoA Zf ) fy?)
—Z (82).,

and the image of the right hand side in H VTS ig Z (l ® B(Z)) On the
t,seN
other hand the image of Ao f(z) is (y44s),s- Therefore we have for t,s € N

Vits = Z ai” ® Y
l

and in particular, y,11 = Zag) ® 5%”. Then since ag) and B;l) are determined

l
by pr; of and z by assumption, v,4+1 is also determined and hence we are done. [J

Remark 1.4. For C € Coalg,,, the natural k-coalgebra homomorphism C —
C(F(C)) obtained from the adjointness is given by z — (A, (2)), and injective.
Thus we can always regard C as a k-subcoalgebra of C(F(C)).

Lemma 1.5. Let C' € Coalg;, and V C C be a k-linear subspace. Then there is
the largest k-subcoalgebra of C' contained in V.

Proof. For k-subcoalgebras CY, C% C C, we see that C{+C% C C is a k-subcoalgebra.
Thus C' = U{C” C C': k-subcoalgebra | C"” C V'} is the largest k-subcoalgebra of
C contained in V. O
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Proposition 1.6. For C1,Cy € Coalg,,, a direct product C1 % Co of C1 and Cy in
Coalg, exists and we can construct it as below.

Proof. We regard C; as a k-subcoalgebra of C(F(C;)). We define C; x Cy as the
largest k-subcoalgebra of C(F(C})®F (Cy)) contained in C(pr; )~ (C1)NC(pry) ~ (Cy)
where pr; denotes the i-th projection F(C7) @ F(C2) — F(C;). Then for an ar-
bitrary k-coalgebra D, we see that
Hom(D, Cy * C3)

={h € Hom(D,C(F(Cy) ® F(C2))) | ImC(pry) o h C C1,ImC(pry) o h C Ca}

={f € Hom(D,C(F(Cy))) | Im f € C1} x {g € Hom(D,C(F(C2))) | Img C Cs}

~Hom(D, Cy) x Hom(D, C5)
using adjointness of F and C and the fact that the image of a k-coalgebra homo-

morphism is k-subcoalgebra. This implies that Cy x C5 satisfies the universality of
a direct product of C; and Cs. O

Proposition 1.7. The functor C induces a right adjoint functor of the forgetful
functor F : Bialg, — Alg,. We also write C for that functor.

Proof. This follows from almost the same argument with the proof of Proposition
1.3. Note that for A € Alg,, TA has a natural structure of k-algebra (the di-
rect product of k-algebras A®™, not the tensor algebra of A) and T Aep, is its
k-subalgebra. |

Lemma 1.8. Let A € Bialg,, and B C A be a k-subalgebra. Then the largest
k-subcoalgebra of A contained in B is the largest k-subbialgebra of A contained in
B.

Proof. Let A’ be the largest k-subcoalgebra of A contained in B. We claim that
A’ is also a k-subalgebra. Let A” be the k-subalgebra of A generated by A’, i.e.,
the k-linear subspace of A spanned by elements zixs - -2, with x; € A’. For

T1,T, ...,y € A’ since Ay(z;) € A/QA" (i=1,2,...n), wehave Ag(x129 - T,) €
A" @ A”. Therefore A” is a k-subbialgebra contained in B and containing A’. We
conclude that A" = A” and hence A’ is the largest k-subbialgebra of A. O

Proposition 1.9. For A, Ay € Bialg,, we can equip Ay x Ay constructed in
Lemma 1.6 with a k-bialgebra structure which makes it a direct product of A1 and
As in Bialg,,.

Proof. Note that C(pr;) (A1) N C(pry) *(As) is a k-subalgebra of C(F(A;) @
F(Az)). Since Ay * Aj is the largest k-subcoalgebra of C(F (A1) & F(Az)) contained
in C(pry) "1 (A1)NC(pry) "1 (Ay), it is the largest k-subbialgebra of C(F (A1) D F(Asz))
contained in C(pr;) ™" (A1) NC(pry) ' (As) by Proposition 1.8. By the similar argu-
ment as (1.6), we see that A; x A satisfies the universality of a direct product of A;
and A, (note that the image of a k-bialgebra homomorphism is k-subbialgebra). O

Proposition 1.10. For A, Ay € Hopf,,, we can eqiuip Ay *x Ay constructed in
Proposition 1.9 with a k-Hopf algebra structure which makes it a direct product of
Ay and Ay in Hopf,.

Proof. We write
S:SAl X SA2 ]:(Al) XJ:(AQ) —>]:(A1) X]:(AQ)
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where Sy4, denotes the antipode of A; (i = 1,2) and
S T(F(A1) x F(A2)) — T(F(A1) x F(A2)); (zn)n = (T 0 S (20))n
where 7, denotes the map
(F(A1) x F(A2)®™ — (F(A1) X F(A2)®™5201 @ @ Zppn > Zpn @+ @ 2 1.
We claim that S(C(F(A1)xF(Asz))) C C(F(A1)xF(Asz)). For (z,)n € C(F(A1)x%

F(Az)), since it is representative, we can write

Girs)es =3 (@ @) (D), (WD), € T(F(A1) x F(Ay)))
l

Then we have A(S((zy)n)) = A((n 0 S®"(Zn))n) = (745 © S®t+s(zt+s))ts =
Z (7‘8 o S’®sy£l) @710 S®tm’§l))
1
Next we claim that S(A; * A3) C Ay * Ag. It is enough to show that S(A4; x As)

is a k-subbialgebra of C(F(A;) x F(As)) and C(pr;)(S(A1xA42)) C 4; (i=1,2). Tt
is clear that S(A; x As) is a k-subalgebra. Since the diagram

. »» Which implies S((z5)y) is representative.

C(F(A1) x F(Az)) —== C(F(Ar) x F(Az)) @ C(F(Ar) x F(A))

Si \LTOS@S

C(F(A) X F(A2)) —— C(F(A1) x F(Ay)) ® C(F(A1) x F(A2)

is commutative (where 7 = 73), we have A(S(A; * A2)) = 7(S®@ S(A(A1 x Az))) C
T(S@S(Al *AQ ®A1 *AQ)) C T(S(Al *Ag) ®S(A1 *AQ)) C S(Al *Ag) ®S(A1 *Ag),
which implies that S(A;%A5) is a k-subbialgebra. Moreover, we see that for i = 1, 2,
C(pr;)(S(A1 x Ag)) C A, since the diagram

Ay x Ay ——= C(F (A1) x F(Ay)) mC(F(Ai)) 4

| | |k

S(Al *AQ) HC(‘F(Al) X .F(AQ)) —_—

is commutative.

Now we will show that (A; x A2, m,e, A e,5) is a k-Hopf algebra where m and
e denote the multiplication and the unit respectively. We have to show that the
diagram

A]_*AQ $ (A]_ *Ag) X (A]_*AQ)

sl lmoid ®S

k A1 *Ag

e
is commutative. Let us consider (z,), € A;xAs. Note that there is a pair of a € A;
and b € Ay such that pr?”(z,,) = A, (a) and pr5"(z,) = A, (b) for n € N. We can
write

Grrses =y (@ @), (@), @), € T(F(A1) x F(A,)))
l



and thus

Then we have

o (id®S) 0 A((zn)n) =moid ®S(Z (=) ® (ygp)n)

l

_ m<z<x53>)n ® (7,0 5®"(y$f>))n)

l
— (a5 )
1 n
- (Zmo (id®" @, 0 5°7) (af) ®y£f>)>
l

= (mo (4% (r 0 5°) (z),.

n

n

Thus it is enough to show that for n € N
o (1d®" @ (7 0 S¥™)) (220) = 20(1,1)®".
Clearly this holds for n = 0. We consider the case n = 1. When we write
I I
2= (08") @ (0.5
1

we have
M) o 0 A
Z oy’ ®ay’ = pr; @pry(z2) = Aa),

3 80 @ B = pry @ pry(z2) = A(b)
l

and thus
Z agl)S(agl)) =moid®S o A(a) =e(a) = 2,
!

Zﬁy)s( ) = moid®S o A(b) = e(b) = .
!

Hence m oid ®5(z2) = Z (a(l) ( ) ﬁ(l) ( )) = (20,20) = 20(1,1). We will

l
show that if n > 1 and the claim holds for n then it also holds for n + 1. We can
write

W =3 () @ g ((8) (@), € T(F(AL) x F(A2)))
InG

and

O = 3 (@ I) (@) @), € PRA)F(Aa)).

i,
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Then we have

l
22(n4+1) = Z x(l) & y;iz

—Zf(l)@@(ZP” ® g0 )
Zx(l) ® (Z (Z () ®U§l,l’,l”)) ®q(” ))

’ 1

= Z 20 @ ul!) @ B g gt
LU

and thus
m o (id®n+1 ®(Tn+1 o S®n+1))(22(n+1))

= 3 (1D ® (7 0 557 (¢0)) @ m(ul ) @ S (1))

1,11

Sl @ (rao $) ) m( S 0 S0 1) )

Ll 1

= (e © (r 0 55 @) © mo (id @) (")

L

= Zm(xﬁf) ® (Tn o S®”) (qu’l'))) ®pél’ll)(1, 1)

N4

= Y m(@? @ (ra 0 557) (p) ) @ (1,1)

LU

= D mla) @ (o 8 () @ (1,1)

1
=moid®" ®@(r, 0 ") (22,) @ (1,1)
= zo(1, 1)@
Hence we have mo (ild®S)o A =coe, aswellasmo (S®id)o A =eoe.
To see that A; x Ay satisfies the universality, let B € Hopf,, and f; : B — A;
be a k-Hopf algebra homomorphism (i = 1,2). Then the map
g: B — Ay x Ag;w — ((F(f1) x F(f2))®" o An(w))n

is the unique k-bialgebra homomorphism such that C(pr;) og = f; (i = 1,2). Thus
it is enough to show that h is a k-Hopf algebra homomorphism, i.e., go .S = Sog.
This is true because

go S(w) =((F(fr) x F(f2)®" 0 An(S(w))),,
=((F(f1) x F(f2))®" 0 7 0 S¥" 0 Ay (w))
=(7 0 8% o (F(f1) x F(f2))®" 0 Ap(w))
=S o g(w).

Note that, in general, for a Hopf algebra A, Ao S = 70 (S ®S) oA and thus
A, 08 =1,08%"0A, (see Abe [1] Theorem 2.1.4). O

— —

n

n
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Lemma 1.11. Let A € Hopf,, and B C A be a k-subalgebra. Then there is the
largest k-subHopf algebra of A contained in B.

Proof. We set B' = {z € B | S(z) € B} C B, which is a k-subalgebra. The largest
k-subbialgebra A" contained in B’ is a k-subHopf algebra. Indeed, since S(A’) is a
k-subbialgebra (see Abe [1] Theorem 2.1.4) and contained in S(B’) = B’, we see
that S(A") C A’. A’ satisfies the property. O

Proposition 1.12. For Ay, A1 € Hopf,, and k-algebra homomorphism f : Ay —
Ay, there exists a unique (upto isomorphism) pair of B € Hopf, and a k-Hopf
algebra homomorphism g : B — A; that satisfies the following universal properties:

— The composition of B -2+ A, N Ag coincides with the composition of

counit

B —'k— Ao.
— For any pair of B' € Hopfy, and a k-Hopf algebra morphism g’ : B' — Ay,

if the composition of B' < A, N Ap coincides with the composition of

B Ut Ap, then there is a unique k-Hopf algebra homomorphism
h: B — B such that goh = ¢'.

Proof. We define B as the largest k-subHopf algebra of A; contained in the equalizer

counit

of f and the composition of Ay — k — Ag, and g as the inclusion B — A;.
Then B and g clearly satisfiy the first property. For the second property, let ¢’ :
B’ — A, be such a homomorphism. The image of ¢’ is a k-subHopf algebra of A;

contained in the equalizer of f and the composition of A; Count g Ap and hence

contained in B. Therefore ¢’ induces a k-Hopf algebra homomorphism h : B' — B
such that g o h = ¢’. Uniqueness of such h is clear. (I

Remark 1.13. Note that the morphism g : B — Ay in the statement of the
proposition is injective. Thus for V,W € Comodfg, a morphism V.— W of
Comodf 4, is also a morphism of Comodfp.

Proposition 1.14. For Ay, A1, Ay € Hopf,, and k-Hopf algebra homomorphisms
fi 1Al — Ao, fo: Ay — Ao, a fibered product Ay x4, Az of A1 and Az over Ay
in Hopf,, exists and is constructed as below.

Proof. Let A; « Ay be a direct product of A; and Ay in Hopf, and pr; : A; +

As — A; be the i-th projection. We apply Proposition 1.12 to the k-algebra
homomorphism

mo((fiopr;)®(f20pr; 0S5))

Ay x Ay —2 5 (Ag % As) @ (Ag % As) Ag

and obtain g : B — Aj x As. Then B is a fibered product of A; and Ay over Ag.
Indeed, since

mo ((fiop1) ® (faopaoS))oAog=c¢
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we have
fropryog

= ((fiopr)) ®e)oAoyg

=((f1Opr1)®(80f20pr2))°A°g

=mo((fiopr;)) ®(mo(S®id)oAo fyopry))oAog
o((fiopr)) ® (mo(fzopryoS® faopry)oA))oAoyg
o (id@m) o ((fiopry) ® (f20pryoS) ® (f20pry)) o (id®A)oAcy
=mo (m®id)o ((fiopr;) @ (fzopry05) @ (f2opry))e(A®id)oAocy
o((mo(fiopr;®fsopryoS)oA)@ (faopry))oAoyg
o(mo(fiopr, ®fzopryof)oAog)® (f2opryog))ecA
:m0(€®(fzoprzog))0A
= fa o pryog.

Moreover, for a k-Hopf algebra homomorphism ¢’ : B’ — A; x Ay such that
fiopiog = faopyog, since
o((fiopry) @ (fzopryoS))oAog

= mo ((fiopryog) ® (f20pryoq’ 0 5)) 0 A

=mo ((fiopryog’) @ (fiopryog o S))o A

=mo (id®S)o Ao fj opr; o

=co fi oprlog’

=c

there is a unique k-Hopf algebra homomorphism h : B’ — B such that go h =
/
g- O

Remark 1.15. We did not use commutativity of algebras in the above arguments.
Thus it is almost clear that the same claim as Proposition 1.7-Proposition 1.1/ holds
even if we replace Alg, (resp. Bialg,, Hopf, ) by the category of non-commutative
k-algebras (resp.k-bialgebras, k-Hopf algebras).

By the contravariant equivalences between Alg; and Aff), and between Hopf,,
and AGSy, we immediately obtain the following corollaries.

Corollary 1.16. For G1,Gs € AGSy, a free product (direct coproduct) Gy * Ga of
G1 and Gy in AGS,, exists.

Corollary 1.17. For Go,G1 € AGSy and k-scheme morphism p : Gy — G1,
there exists a unique (upto isomorphism) pair of H € AGSy and a k-affine group
scheme morphism w : Gy — H that satisfies the following universal properties:

— The composition of Go — Gy —=» H coincides with the composition of

unit

Gy — Speck — H.
— For any pair of H € AGSy and a k-affine group scheme morphism @' :
G1 — H', if the composition of Gy -~ G1 = H' coincides with the
unit

composition of Go — Speck — H', then there is a unique k-affine group
scheme morphism & : H — H' such that £ ow = @'.
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Corollary 1.18. For Goy,G1,G2 € AGSy and k-affine group scheme morphisms
1: Go — Gi,p2 : Gy — Ga, an amalgam (fibered coproduct) Gy ¢, G2 of Gy
and Go over Go in AGSy, exists.

2. THE CATEGORY OF TANNAKIAN CATEGORIES

In this section, we will define the category Tanny of neutral Tannakian categories
over k as a quotient category of the category of pairs of neutral Tannakian categories
over k, and its neutral fiber functors. Then we will get category equivalences among
AGSy, Hopf;, and Tanny.

We write Vectf}, for the category of the finite dimensional k-vector spaces. For
A € Hopf}, let Comodf, denotes the category of finite dimensional (right) A-
comodules over k and for G € AGSy, let Repf denotes the category of finite
dimensional representation of G over k.

Definition 2.1. We write Tann), for the category whose object is a pair (C,w)
where C is a neutral Tannakian category over k and w is a neutral fiber functor on
C. For (C,w),(C",w") € Tann}, a morphism between (C,w) and (C',w') is defined
to be a pair (F,¢) where F is an exact faithful k-linear tensor functor C — C' and
@ is a tensor functor isomorphism F*w' — w. For (F,p): (C,w) — (C',w') and
(F',¢") : (C',w') — (C", "), we set (F', ") o (F,p) = (F' o F,poF*y').

We define an equivalence relation ~ on Homrann' ((C,w), (C',w")) so that (F1,¢1)
(Fy, ¢2) if and only if there exists a tensor functor isomorphism u : Fy — Fy such
that

/

w’ 0F1—>w oFy

N A

commutes. Then we can define the quotient category Tanny, = Tann) / ~.

Consider the functor AGSy — Tann), defined by sending G to (Repfs,wa)
where wg : Repfs — Vectfy is the forgetful functor, and p : G — G’ to
(p*,id). C denotes the composition of that functor followed by the natural functor
Tann;C — Tanny.

Similarly, consider the functor Hopf, — Tannj, defined by sending A to
(Comodf 4,wa) where wy : Comodf s — Vectfy is the forgetful functor, and
f:A— A" to(f.,id). D denotes the composition of that functor followed by the
natural functor Tannj, — Tanny,.

Remark 2.2. The category equivalence Hopf, — AGSy; A — Spec A makes the
following diagram commute:

AGS; Hopf,, .

S~

Tanny

Proposition 2.3. We consider a functor from Tann), to the category of group val-
ued functors on Alg,, defined by sending (C,w) to Aut®(w) and (F, ) : (C,w) —
(C',w') to pr, where, for R € Algy, (pr,p)r maps 0 € Aut®(w')(R) to ¢ ® Ro
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F*oop ' ® R e Awt®(w)(R). Then the functor factors as
Tann), — Tann, — AGS; — (group valued functors on Alg,,)

Proof. 1t is a well-known fact that the functor factors through AGSj. Hence it is
enough to show that the functor factors through Tanny. Consider (F7, 1), (Fa, p2) :
(C,w) — (C',w') and a tensor functor isomorphism u : F; — Fy such that
o 0wl = ¢1. Then for R € Alg, and o € Aut®(w')(R), since

Ffo
WoFi®R—>woF, ®R
wiu®RJ/ lwiz@R

Wolb, QR——=w ol ®R
Fjo

commutes, we see that @1®R0F1*00<p1_1®R= Yo @Row,p@RoFfoow,u™ ' ®
Rop,' @ R=ps @ RoFyo0p,' ®R. O

Theorem 2.4. 7 is a quasi-inverse of C' and consequently AGSy, Hopf, and
Tann; are equivalent.

Proof. For G € AGS and R € Alg,,, we take the morphism G(R) — Aut®(wg)(R)
which maps o to o where o is the association Repfs 3V — oy :we(V) @ R —
we(V) ® R. This gives a functor morphism idags, — 71 o C, which is in fact a
functor isomorphism by [4] Proposition 2.8.

Next we will show that idrann, is isomorphic to Comy. Let (C,w) € Tanny and
G = 7 (C,w). Then for each X € C, we see w(X) has natural structure of finite
dimensional representation of G. Therefore w factors as

¢ % Repf,, <% Vectf, .

Here Fg¢, is a equivalence of k-linear tensor categories by [4] Theorem 2.11. We
want to show that the association (C,w) + [F¢ . id] € Homrann, ((C,w),C(m1(C,w)))
gives a functor morphism idrapn, — C o 7, i.e., for each morphism [F,¢] :
(C,w) — (C',w') in Tanny, the diagram

Fe.o.id
(C,w) LJ (Repfs,wa)

[Fvsa]l l[p’ﬂidl

(Cla w/%FﬁdeeprH wG’)
where G = m(C,w),G = m(C',w') and p = m(F, ), is commutative. Since
(p*,id) o (Few,1d) = (p” o Fe . 1d) and (Fer ., id) o (F, @) = (Fer o © F, ), what
we have to show is that there exists a tensor functor isomorphism p : Fer (v 0o F' —
p* o Fe,, that makes the diagram

War b

weqgr © FC/,w/ oF waqgr © p* o Fc,w

l_

w oF w<———wgo Feu
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commute (as a diagram of functors). By the definition of 71, for X € C, R € Alg,
and o € G'(R),we see the diagram

VoF(X)oRZCE u(x)oR
O'F(X)\L \L(ﬂl(F#P)R(U))X
w’oF(X)®R4>®Rw(X) ®R

wx

is commutative. This means that ¢x : w o F(X) — w(X) is a morphism in
Repf., under the natural action of G’, namely, the existence of p that we are
looking for.

It remains to show that, in general, for (C,w), (C’,w’) € Tanny, and a k-linear
tensor category equivalence F : C — C’ such that F*w' = w, [F,id] : (C,w) —
(C',w') is an isomorphism in Tanng. We take a quasi-inverse F 1 of F and a
tensor functor isomorphism 6 : F o F~' — ide,. Then (F,id) o (F7, w.0) =
(F o F7',w.6) ~ (id,id). When we write ¢ for the element of Hom(F ™' o F,id)
that corresponds to F*6 € Hom(F o F~! o F, F) by F, : Hom(F~! o F,id) =
Hom(F o F~! o F, F), ¢ is an isomorphism and w.e = w,F.e = W.F*6 = F*w.0 :
wo F~'oF — w. This implies (F~1,w.d) o (F,id) = (F~! o F, F*w.é) ~ (id, id)
and thus, we are done. O

3. SEMI-GRAPHS OF TANNAKIAN CATEGORIES

By the result of the preceding section, we may expect that the Tannakian funda-
mental group of the “fibered product” of Tannakian categories should be isomorphic
to the amalgam (fibered coproduct) of their Tannakian fundamental groups. This
is an analogy of Seifert-van Kampen theorem. In addition, we may consider the
“HNN extension” of affine group schemes. In this section we will generalize these
two constructions by introducing “semi-graphs of Tannakian categories”. The idea
of semi-graph of Tannakian categories is an analogy of “semi-graphs of anabelioids”
introduced by Mochizuki in [5].

Definition 3.1. (1) A semi-graph G consists of the following data:
— a set V, whose elements we refer to as “vertices”,
— a set £, whose elements we refer to as “edges”, each of whose elements
e is a set of cardinality 2 satisfying the property ‘e #¢ = ene =
@v;
— a collection ¢ of maps, one for each edge e, such that (. : e — VU{V}
is a map from the set e to the set VU {V}.
We refer to an edge e of a semi-graph (V,&,() such that the inverse image
of the subset V C VU{V} has cardinality 2 as closed. We say a semi-graph
G is connected if it is connected with respect to its natural topology. See [5]
for more details.
(2) A semi-graph € of Tannakian categories over k consists of the following
data:
— a semi-graph G = (V,&,(),
— for each vertex v of G, a Tannakian category C, over k,
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— for each edge e of G, a Tannakian category C. over k, together with,
for each pair b € e and v € V such that (.(b) = v, a exact faithful
k-linear tensor functor Fy : C, — C,.

Let € = (G = (V,&,0),(Cy)vev, (Ce)ece, (Fu)p) be a semi-graph of Tan-
nakian categories over k. We say € is connected if its underlying semi-
graph G is connected. If moreover there exists an edge e such that C. is a
neutral Tannakian category, i.e., it admits some neutral fiber functor, then
we say € is neutral.

(3) Let € = (G = (V,E,(), (Co)vev, (Ce)ece, (Fb)p) be a connected semi-graph of
Tannakian categories over k. If G has at least one vertex, B(€) denotes the
category whose object is ((Xy)vev, (Me)e:closed edge) Where for each v € V,
X, € Cy and for each closed edge e = {b1,ba}, me @ Fp, (X (by) —
Fy (X¢,b,)) is an isomorphism in C. and whose morphism is (F,)yey that
18 compatible with m.’s. If G has no vertices and hence precisely one edge,
say e, then we set B(€) = C..

Note that for each wvertex v there is a natural forgetful functor P, :

B(€) — C,.

Proposition 3.2. If a semi-graph € = (G = (V,&,C), (Cy)vev, (Ce)ecs, (Fb)p) of
Tannakian categories is neutral, then B(€) has a natural structure of a rigid k-
linear abelian tensor category whose unit object 1 statisfies End(1) = k and admits
a neutral fiber functor, and hence becomes a neutral Tannakian category over k.
Moreover, for each vertex v, the forgetful functor P, is an exact faithful k-linear
tensor functor.

Proof. Of course we may assume € has at least one vertex. It is clear that B(C)
has natural structure of k-linear abelian category.

To see that B(€) is a tensor category, for X = ((X,), (me)), X' = (X)), (m.)) €
B(€), we set X @ X' = ((X, ® X)), (m. ®m.)) where, for e = {b1,b2}, me @ m.,
me®m;
denotes the composition of Fy,(X¢(,) ® Xé(bQ)) = Fyy (Xe(bs)) @ Foy (Xé(bQ)) &
Fy (Xewy)) @ Fy, (Xé(bl)) = By (Xewy) ® Xé(bl)). Obviously this makes B(€) into
tensor category.

To see that B(€) has a unit object, we set 1 = ((1,), (¢te)) where 1, denotes
a unit object in C, for each vertex v, and ¢, denotes the canonical isomorphism
Fy,(1,,) — Fy, (1,,) for each e = {b1, b2} (note that exact faithful k-linear tensor
functor maps a unit object to a unit object). Moreover, there is a canonical iso-
morphism 1 = ((1,), (¢e)) — (1, ® 1), (te ® te)) = 1 ® 1. We can easily check
that B(€) — B(€); X — 1 ® X is an equivalence of categories.

For rigidity, we must construct internal homs. For X = ((X,),(m.)),Y =
((Yy), (ne)) € B(€), we set Hom(X,Y) = ((Hom(X,,Ys)), (me,ne))) where for

e ={by, b2}, (Mme,ne) denotes the composition of

Fy,(Hom(X¢ (b, Ye(b2))) = Hom(Fy, (X¢(by))s Fo, (Ye(be)))
= Foy (X¢(52)” © Foy(Ye(ny)
(mY) " ®ne

= Fy, (Xew)” © Fo,(Yevy)
= Hom(Fy, (X¢(v,))s Foy (Yeor)))
= Fy, (Hom (X ¢(5,), Ye()))-
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Then it is clear that for Xy, Xs,Y7,Y5 € B(€) the natural morphism Hom(X;,Y7)®
Hom(X5,Ys) — Hom(X; ® X5,Y; ®Y>) is an isomorphism and that for X € B(€)
the natural morphism X — X"V is an isomorphism.

We claim that End(1) = k. Note that

End(1) = { (fu) € TTERA(L) | 10 © Fin(Feo) = Fo (Fegon) © }

Since for a vertex vy the composition of & — End(1) g End(1,,) = k equals to
identity, it is enough to show that pr, is injective. Let (f,),(f,) € End(1) such
that fo, = f,,- Weset W={veV|f, = f,} CV. Since W is non-empty and G
is connected, if W # V), there exists an edge e = {by, b} such that {(b1) € W and
((b2) & W. But then Fy, (few,)) = Fo, (f{1,)) and hence Fy,(fe(v,) = Fbo (fny))-

Since the composition of k& = End(1¢,)) g, End(1.) = k is identity, fep,) =
fé(b,)» Which is absurd.

For existence of a neutral fiber functor, we may assume, for an edge ey = {b1, ba },
Ce, have a neutral fiber functor wg and ((b1) is a vertex. We claim that w = wg o
Pe(p,) is a neutral fiber functor on B(€). It is enough to show that, for each vertex
v, P, : B(€) — C, is an exact faithful k-linear tensor functor. The faithfulness
can be checked similarly to the argument in the preceding paragraph and the other
conditions are clear. O

Proposition 3.3. Let € = (G = (V,&,(), (Co)vev, (Ce)ecs, (Fb)p) be a neutral
semi-graph of Tannakian categories. Let us consider the situation thatV = {vy,va},
E={e={b1,ba}}, C(b;) = v; (i =1,2) and w, is a neutral fiber functor on C.. We
write Wy, = Fy we, w = Pjwy,, Go = m1(Ce,we) and Gy = m1(Cy,,wy,) (1 = 1,2).
Then w1 (B(€),w) is isomorphic to Gy ¢, Ga.

Proof. We rewrite C. (resp. Cy,;, B(€), Fp,, P,,, w. and w,,) as Cy (resp. C; , C, F;,
P;, wp and w;). Note that C equals to the fibered product category Cy x¢,C2. There is
a natural functor isomorphism p : Foo P, — FjoP; that associate to (X1, Xo,m) €
C the isomorphisrn FQ(PQ(Xl,XQ,m)) = FQ(XQ) ﬂ) F1 (Xl) = Fl(P1(X1, X27m)).
This is indeed a tensor functor isomorphism since for (X1, Xa,m), (Y1,Y2,n) € C,
the diagram

FyoPy(X1 ®@Y1,Xo @Yo, m®n) - F 0 Py(X1, Xo,m) ® Fy 0 Py(Y1,Y2,n)

Fy(X2 ®Ya) = Fy(X3) @ F5(Y2)
i/ l/m@n
Fl(X1®Y1) = Fl(X1)®F1(Y1)

FioP (X1 ®Y1,Xo @Yo, m®n) — Fi o PI(X1, Xo,m) ® Iy o Py(Y1,Y2,n)



16

is commutative. Then we can easily see

[Pg,w(]*,u]

(Cv w) — (CQ, WQ)

[Py,id] J/ i [F2,id]

(Cl,wl) W (CO,WO)

is a commutative diagram in Tanng. We set G; = 71(C;,w;), pi = Wl([Fi,id]),

v = ([Pl,id]) and vy = m ([Pg,wo*u]). Let H be a amalgam of G and G5 over
Gp. Then we get a commutative diagram

V2

AN

H<LG2

v
L1 P2

GlTGO

in AGS) and furthermore a commutative diagram

Repf G
Repf H

Repr1 XRepf, Repfs, — Repf,

Repf;, ———— Repf,

of Tannakian categories. Since C; = Repf, (i = 0,1,2), we have
C = Repfg, XRepfg, Repf,,. We are going to show that Repf; = Repfy.
Considering the commutative diagram

T

Repf; —— Repfy; —— Repfy, XRrept,, Repfy,

it is enough to show that the natural functor Repf; — Repf, XRepfg, Repf,
is fully faithful. We deduce it from the following lemma. O

Lemma 3.4. Let A; € Hopf, (i = 0,1,2), f; : A; — Ao be Hopf algebra ho-
momorphisms (i = 1,2) and A be a fibered product of Ay and As over Ag. Then
for VW € Comodf, and a k-linear map g : V.— W, g is an A-comodule ho-

momorphism if and only if it is an Ay-comodule homomorphism and As-comodule
homomorphism.

Proof. Let py : V — V@i A and py : W — W ®; A be structure morphisms of
V and W as A-comodules. What we have to show is that (¢ ® ida) o py = pw oy
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if (9 ®ida,) o (idy ®@pr;) o py = (idw ®pr;) o pw o g (¢ = 1,2) where pr; denotes
the i-th projection A — A, (i = 1,2).
Take bases {e;} C V,{e}j} C W. We write

Zt” ¢ (tij € k)
pv(e;) = Zel ®ay (ay € A)
1
= Ze;n @ bjm (bjm € A).

Let I be the ideal of A generated by

{ Z timaq — Z tijbjrm Sa ( Z timai — Z tijbjm> } A
l J l J

i,m

where S4 denotes the antipode of A. We claim that I is a Hopf ideal, i.e., (1)
Aa(l) CI@r A+ ARk I, (2) Sa(l)C 1, (3)ea(l)=0.

Let us check that As(l) C I ®; A+ A®y I. Since Ay is a k-algebra homomor-
phism it is enough to show that A4 maps the generators of I into I @3 A+ A®y I.
Using the condition that (id @A 4) o py = (py ®1id) o py, we know that A4 (ay) =

Zasl ® a;s and similarly A 4(bj,) Z by @ bjr. Then we can achieve (1) by

the caluculation
Ag ( zz: tim @il — Z tijbjm)
J
-y (um S aa® ) 5 (tl,- S b ® bﬁ)
I s ; T
= Z <Z Limas, — Z tsjbjm) ® a;s + Z tsjbjim @ Qs
s l J 8,
+ Z brm & <Z tirai — Z tijbjr) - z tirbrm @ air
T ] j ol
=> <; tim@sl — Y tsjbjm) ® ais + > bm @ <; tirai — Y tijbjr>
s 3 T j

€l A+1I®, A

and

Ay <SA < Z timail — Z tijbjm)>
l J
=70 (S4a®84)0Aa < z timai — Z tijbjm)
1 J

ET0(SAaRSAN)I R A+ AR ) CTUI R, A+ AR, ) CI®r A+ AR 1.

(2) is obvious since Sy is a k-algebra homomorphism. To check (3), similarly
to (1), it is enough to show that €4 maps the generators of I to 0. Note that
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€4 0854 =ea ([1] Theorem 2.1.4). For each i and m, since
et S timaa— Y iy
m l J

=(id®e) o ((9 ®id) o pv — pw © g)(e;)
=((g®e) o pv — (id®e) o pw o g)(ei)
(9—9)(ei) =0

and {e;n} is a basis, we see that 5<Ztlmail — Ztijbjm) =0.
l J

Next we claim that (4) I C Ker pr; NKer pry. For ¢ and m, since
> e, ®pr (Z timai — Y tijbjm>
m l J
=(id®pr;) o ((g®id) o pv — pw o g)(e;) =0

and {e],} is a basis, we see that pr; (Z tim@is — Z tij bjm) = 0. Moreover, since

pr; is a k-Hopf algebra homomorphism, pr; ( (Ztlmazl — Z tij bjm)> =0.
By (1),(2),(3) and (4) we obtain a commutative diagram
A/I —— A2
Ay —— Ay

in Hopf, and hence a k-Hopf algebra homomorphism A/I — A such that the
composition of A — A/I — A is id4 using the universality of A. Thus I = 0,

which implies that for each ¢ and m, we have (Z tim Qi — Z 1 bjm> =0 and so
l J

((g®id) o py — pw o g)(es)

( tim€, ® ail) — (Ztije;n ® bjm)
im

Z e, ® (Z timai — Z tijbjm) =0.

m l J

Since {e;} is a basis, we conclude that (¢ ® id) o py — pw 0 g = 0. O

Proposition 3.5. Let € = (G = (V,&,(), (Co)vev, (Ce)ecs, (Fb)p) be a neutral
semi-graph of Tannakian categories. Let us consider the situation that V = {v},
E={e={b1,b2}}, C(b;) =v (i =1,2) and w, is a neutral fiber functor on C.. We
set w; = Fbtwe and w = PJwy. We assume there is a tensor functor isomorphism
© i wy — wy. We write Gg = 71 (Ceywe), G1 = m1(Cypywn), p1 = m1(Fp,,id), pa =
1 (Fpy,0) : Go — Gy and C = B(€). Then w1 (C,w) is isomorphic to the k-affine
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group scheme G obtained by applying Corollary 1.17 to the composition of

Go paxux(iopr) X (iou) Gy x Zalg < G x Zalg
(G1 * Zalg) X (G1 * Zalg) X (G1 * Zalg) X (Gl * Zalg)

m Gl % Zalg

where i and m denotes the inverse and multiplication repectively, Z*® is the al-
gebraic hull of 7. and u : Speck — Z™® is the image of 1 by the natural group
homomorphism 7. — 7' (k).

Proof. We may assume C. = Repf, ,C, = Repf, and we is the forgetful functor
wa,- 1t is enough to show that there is a equivalence C — Repf of tensor
k-linear abelian categories that makes the diagram

Repf

~

Vectf,,

commutes. Let (X,m) € C, i.e., X € Repfs, and m is an isomorphism p53 X —
piX in Repfg, . Let 7™ — GL(wg, (X)) be the representation of Z& cor-
responding to the representation Z — GL(w¢g, (X))(k);1 — m of Z. Then we
obtain G * Z*® — GL(w;(X)). We claim that the diagram

mo(p1 Xux(iops) X (iow))

Go Gy * 728
Spec k GL(w1 (X))

is commutative. For R € Alg,. and o € Gy(R), since the diagram

we, (X) @ R Y22 e (X))o R

m®Rl lm@R

wGI(X) X R4>WG1(X) ® R
(p1)r(o)

is commutative, we have

(p1)r(0) - ur(e) - (io (p2)r(0)) - (i o ur(e)) = idug, (x)oR -



20

Thus the diagram

GNRL\\\\\\$ M‘*\*‘5*hWNM\\\“\\\

G1(R) x Z"(R) x G1(R) x Z"(R) = (G x Z%9 x Gy x Z"9)(R)

/ :

(G1(R) * Z*9(R))! ———————— (G1 * Z*)(R)

: y

G1(R) * Z%9(R) (Gy * Z9)(R)

T

Spec k(R) GL(we, (X))(R)

is commutative, which proves the claim. Then by Corollary 1.17 we obtain an
object ®(X,m) = (G — GL(w1(X)) of Repfs. Let f: (X,m) — (Y,n) be a
morphism of C, i.e., f is a morphism of Repf, such that the diagram

* ‘f *
p3X ——=p5Y

mi ln

X e Py

is commutative, which implies that the k-linear map f is a morphism of Repf ..
By Lemma 3.4, we see that f is a morphism of Repfs 7. and furthermore a
morphism of Repf, by Remark 1.13. Hence we can define a functor ® : ¢ —
Repf . Clearly, ® is a k-linear tensor funtor and wg o ® = w.

Conversely, Let Z = (G — GL(V)) € Repf,. Weset X = (Gi — G —
GL(V)). Let m be the image of 1 by Z — Z8(k) — GL(V)(k). We set
U(Z) = (X,m). Clearly ¥ becomes a functor Repf — C and gives a quasi-
inverse of ®. O

Theorem 3.6. Let € = (G = (V,E£,(), (Cy)vev, (Ce)ece, (Fb)p) be a neutral semi-
graph of Tannakian categories such that V and £ are finite. We consider the case
that C, = Repfy, ,C. = Repfy,  and Fy, = py where G,,,G. € AGSy, (v eV, e€f)
and py is a k-affine group scheme morphism G. — G¢uy (b € e,¢(b) € V). We
can calculate m (B(€)) as follows.

(1) If there is a non-closed edge ey, we consider a new semi-graph of Tanakian
categories € = (G = (V,E\{e0},¢), (Co)v, (Ce)ecefeot> (Fb)b). Then B(C')
is naturally isomorphic to B(€). We replace € by €. We repeat this argu-
ment and assume there is no non-closed edge.

(2) We consider the case that there is a closed edge ey = {by,ba} such that
C(by) # C(ba). We set

V' =V \ {C(b1),¢(b2)} 1T {wo}
& =&\ {eo}

() () € LC(). (b)) ,
C““‘( w0 (if () € {Cbr), b)) BECEE)
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I

B( Repfc,,,) Repfe,) )

CUO = Repr((bl)*GeGC(bz) Repr

o= ( b (if ¢(b) € {¢(D1),¢(b2)})
’ (Ge 25 Gey — Gegn) *a. Gewa))  (if C(b) € {¢(b1),C(b2)})
¢ =((V,&,¢),(Cy) (Ce), (7))

Then B(€') is naturally isomorphic to B(€). We substitute € for €. We
repeat this argument and assume there is no edge e = {b1,ba} such that

C(b1) # C(b2).
(3) We may assume there is a unique vertex v and all edges are closed. We
consider the case that there is a edge eg. We set

& =&\ {eo}

C! = Repf, = B( ReprCQReprv )

Py =(Ge 225G, — Q) (beee&)

(beee&)

¢ = ((V’€l7 C)) (C;), (Ce)v (PZ*))

then B(€') is naturally isomorphic to B(€). We substitute €' for €. We
repeat this argument and assume there is a unique vertexr and no edge.

After these three steps, € consists of one Tannakian category Repf, where G is a
k-affine group scheme calculated from the first data €. We conclude that G is what
we want.

Corollary 3.7. Let € = (G = (V,&,Q), (Cy)vev, (Ce)ece, (Fu)p) be a neutral semi-
graph of Tannakian categories such that V and € are finite. Suppose we are given,
for each closed edge e, neutral fiber functor w. on Ce and, for each triple (v,e =
(b1,b2), € = (b}, b3)) such that ((b1) = ((b}) = v, isomorphism between Fy w. and
Fb*,l wer . In this case € is isomorphic to a neutral semi-graph of Tannakian categories
of the form like one of the theorem. Thus we can calculate the fundamental group
of € in the manner of the theorem.

Remark 3.8. Let C be a neutral Tannakian category over an algebraically closed
field k. Suppose there is a set J of objects which generate C as a tensor category
satisfying one of the following two conditions:

— J is countable.
— The cardinality of J is less than the one of k.

Then any two neutral fiber functors on C are isomorphic ([2]). Thus for a neutral
semi-graph € of Tannakian categories over an algebraically closed field k, if the
Tannakian category associated to each edge admits a neutral fiber functor and the
Tannakian category associated to each vertex satisfies one of the conditions above,
we may apply the corollary.
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