INTER-UNIVERSAL TEICHMÜLLER
THEORY: A PROGRESS REPORT

Shinichi Mochizuki (RIMS, Kyoto Univ.)

http://www.kurims.kyoto-u.ac.jp/~motizuki
“Travel and Lectures”

§1. Comparison with Earlier “Teichmüller Theories”

§2. The Two Underlying Dimensions of Arithmetic Fields

§3. The Log-Theta-Lattice

§4. Inter-universality and Anabelian Geometry

§5. Expected Main Results
§1. **Comparison w/Earlier “Teich. Theories”**

Classical Complex Teichmuller Theory:

Relative to canonical coord. \(z = x + iy \) (assoc’d to a square diff.) on the Riemann surface, **Teichmüller deformations** given by

\[
\begin{align*}
z & \mapsto \zeta = \xi + i\eta = Kx + iy
\end{align*}
\]

— where \(1 < K < \infty \) is the **dilation** factor.

Key point: **One** holomorphic dimension, but **two** underlying real dimensions, of which **one** is **dilated**, while the **other** is held **fixed**!
p-adic Teich. Theory:

• p-adic canon. liftings of a hyp. curve in pos. char. equipped with a nilp. ind. bun.
• Frobenius liftings over ord. locus of moduli stack, tautological curve — cf. Poincaré upper half-plane, Weil-Petersson metric/\mathbb{C}.

Analogy between IUTeich and pTeich:

scheme theory \leftrightarrow scheme theory/\mathbb{F}_p
“log” no. field \leftrightarrow pos. char. hyp. curve
once-punct’d ell. curve/NF \leftrightarrow nilp. IB
log-Θ-lattice \leftrightarrow p-adic can. + Frob. lift.
§2. Two Underlying Dims. of Arith. Fields
Addition and Multiplication, Cohom. Dim.:

Regard ring structure of rings such as \(\mathbb{Z} \) as

one-dim. “arith. hol. str.”!

— which has

two underlying comb. dims.!

\[(\mathbb{Z}, +) \quad \sqcup \quad (\mathbb{Z}, \times)\]

1-comb. dim. 1-comb. dim.

— cf. two coh. dims. of abs. Gal. gp. of

• (totally imag.) no. field \(F/\mathbb{Q} < \infty \)
• \(p \)-adic local field \(k/\mathbb{Q}_p < \infty \)

as well as two underlying real dims. of

• \(\mathbb{C}^\times \)
Units and Value Group:

In case of p-adic local field $k/\mathbb{Q}_p < \infty$, one may also think of these two underlying comb. dims. as follows:

\[\mathcal{O}_k^\times \subseteq k^\times \rightarrow k^\times / \mathcal{O}_k^\times \ (\cong \mathbb{Z}) \]

1-comb. dim. 1-comb. dim.

— cf. complex case: $\mathbb{C}^\times = S^1 \times \mathbb{R}_{>0}$

In IUTeich, we shall\n
deform the hol. str. of the NF

by

dilating the val. gps. via the theta fn.

while

keeping the **units undilated**
§3. The Log-Theta-Lattice

Noncomm. (!) Diagram of Hodge Theaters:

\[\begin{array}{c}
\vdots \\
\uparrow \\
\vdots \\
\end{array} \]

\[\begin{array}{c}
\vdots \\
\uparrow \\
\vdots \\
\end{array} \]

Analogy between IUTeich and pTeich:
each “HT” \(\bullet \) \(\longleftrightarrow \) scheme theory/\(\mathbb{F}_p \)
\[\uparrow = \text{log-link} \longleftrightarrow \text{Frob. in pos. char.} \]
\[\longrightarrow = \Theta\text{-link} \longleftrightarrow \left(\frac{p^n}{p^{n+1}} \rightsquigarrow \frac{p^{n+1}}{p^{n+2}} \right) \]
Thus, 2-dims. of diagram
\[\leftrightarrow \] 2-cb. dims. of p-adic loc. fld.

log-Link:

At nonarch. v of NF F, ring strs. on either side of log-link related by non-ring. hom.

\[\log_v : \bar{k}^\times \rightarrow \bar{k} \]

— where \bar{k} is an alg. cl. of $k \overset{\text{def}}{=} F_v$.

Key point: log-link is compatible with isom.

\[\Pi_v \overset{\sim}{\rightarrow} \Pi_v \]

of arith. fund. gps. Π_v on either side, with natural actions via $\Pi_v \rightarrow G_v \overset{\text{def}}{=} \text{Gal}(\bar{k}/k)$; also, compatible with global Galois gps.

At arch. v of F, \exists an analogous theory
Θ-Link:

At **bad nonarch.** \(v \) of NF \(F \), ring strs. on either side of Θ-link related by **non-ring. hom.**

\[
\mathcal{O}^\times_k \xrightarrow{\sim} \mathcal{O}^\times_k
\]

\[
\Theta|_{l\text{-tors}} = \left\{ q^{j^2} \right\}_{j=1,\ldots,(l-1)/2} \mapsto q
\]

— where \(\overline{k} \) is an alg. cl. of \(k \overset{\text{def}}{=} F_v \).

Key point: Θ-link is **compatible** with isom.

\[
G_v \xrightarrow{\sim} G_v
\]

— where \(G_v \overset{\text{def}}{=} \text{Gal}(\overline{k}/k) \) — and **natural actions** on \(\mathcal{O}^\times_k \).

At **good nonarch./arch.** \(v \) of \(F \), define analogously, using **product formula**.
Note: ring str. rigid wrt/log-link [cf. \(\Pi_v \! \)], but not wrt/\(\Theta \)-link [cf. \(G_v \! \) \(\hat{\mathbb{Z}}^\times \sim \mathcal{O}_{k}^\times \! \)]

Note: “Galois portion” of log-\(\Theta \)-lattice \(\rightsquigarrow \) étale-picture — cf. cartes. vs. polar coords. for Gaussian int. \(\int_{0}^{\infty} e^{-x^2} \, dx \):

\[
\begin{array}{ccc}
\text{arith. hol.} & \text{str. } \Pi_v \\
\ldots & \mid & \ldots \\
\end{array}
\]

\[
\begin{array}{c}
\text{arith. hol.} \\
\text{str. } \Pi_v \\
\ldots
\end{array} - \begin{array}{c}
\text{mono-analytic core } G_v \\
\ldots
\end{array} - \begin{array}{c}
\text{arith. hol.} \\
\text{str. } \Pi_v \\
\ldots
\end{array}
\]

Note that \log-link, Θ-link [i.e., Θ-dilation!] incompatible with ring strs.:

$$\log_v : \bar{k}^\times \to \bar{k}$$

$$\Theta|_{l\text{-tors}} = \left\{ q^{j^2} \right\}_{j=1,\ldots,(l-1)/2} \mapsto q$$

— hence with basepoints arising from

· scheme-theoretic pts., i.e., ring homs.!
· Gal. gps. regarded as field str. automs.!

Consequence: As one crosses \log-, Θ-links, one only knows “Π_v”, “G_v” as abstract top. gps.! Thus, can only relate the bps., “universes”, ring/scheme theory in domain, codomain of \log-, Θ-links by applying

anabelian geometry!
§5. Expected Main Results
(work in progress!!)

Apply theory/ideas of tempered anab. geo., Étale Theta Fn., Frobenioids, and Topics in Abs. Anab. Geo. III to conclude:

Expected Main Theorem: One can give an explicit, algorithmic description, up to mild indeterminacies, of the left-hand side of the Θ-link — i.e., of “Θ|_{l-tors}” — relative to the [a priori, “alien”!] ring str. on the right-hand side of the Θ-link.

Key point: coric nature of \(G_v \cong \mathcal{O}_k^\times \)
— cf. analogy with Gaussian integral: i.e., dfn. of Θ-link, log-Θ-latt. \(\longleftrightarrow \) cart. crds. algo. desc. via anab. geo. \(\longleftrightarrow \) pol. crds.
By performing a volume computation concerning the output of the algorithms of the Expected Main Theorem, one obtains:

Expected Corollary: Inequality of Szpiro $(\iff \text{ABC})$ Conjecture.

... cf.

- “Hasse invariant $= d(\text{Frob. lift.})$” in $p\text{Teich}$
- Gauss-Bonnet on a Riemann surface S

\[- \int_S (\text{Poincaré metric}) = 4\pi(1 - g) \]