
INTER-UNIVERSAL TEICHMÜLLER THEORY III:
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Abstract. The present paper constitutes the third paper in a series of
four papers and may be regarded as the culmination of the abstract conceptual por-

tion of the theory developed in the series. In the present paper, we study the theory
surrounding the log-theta-lattice, a highly non-commutative two-dimensional dia-
gram of “miniature models of conventional scheme theory”, called Θ±ellNF-Hodge
theaters. Here, we recall that Θ±ellNF-Hodge theaters were associated, in the first

paper of the series, to certain data, called initial Θ-data, that includes an elliptic
curve EF over a number field F , together with a prime number l ≥ 5. Each ar-
row of the log-theta-lattice corresponds to a certain gluing operation between the
Θ±ellNF-Hodge theaters in the domain and codomain of the arrow. The horizontal

arrows of the log-theta-lattice are defined as certain versions of the “Θ-link” that
was constructed, in the second paper of the series, by applying the theory of Hodge-
Arakelov-theoretic evaluation — i.e., evaluation in the style of the scheme-theoretic

Hodge-Arakelov theory established by the author in previous papers — of the
[reciprocal of the l-th root of the] theta function at l-torsion points. In the
present paper, we focus on the theory surrounding the log-link between Θ±ellNF-
Hodge theaters. The log-link is obtained, roughly speaking, by applying, at each

[say, for simplicity, nonarchimedean] valuation of the number field under consider-
ation, the local p-adic logarithm. The significance of the log-link lies in the fact
that it allows one to construct log-shells, i.e., roughly speaking, slightly adjusted
forms of the image of the local units at the valuation under consideration via the

local p-adic logarithm. The theory of log-shells was studied extensively in a previ-
ous paper by the author. The vertical arrows of the log-theta-lattice are given by
the log-link. Consideration of various properties of the log-theta-lattice leads natu-
rally to the establishment of multiradial algorithms for constructing “splitting

monoids of logarithmic Gaussian procession monoids”. Here, we recall that
“multiradial algorithms” are algorithms that make sense from the point of view of
an “alien arithmetic holomorphic structure”, i.e., the ring/scheme structure

of a Θ±ellNF-Hodge theater related to a given Θ±ellNF-Hodge theater by means of
a non-ring/scheme-theoretic horizontal arrow of the log-theta-lattice. These loga-
rithmic Gaussian procession monoids, or LGP-monoids, for short, may be thought
of as the log-shell-theoretic versions of the Gaussian monoids that were studied in

the second paper of the series. Finally, by applying these multiradial algorithms
for splitting monoids of LGP-monoids, we obtain estimates for the log-volume of
these LGP-monoids. Explicit computations of these estimates will be applied, in the
fourth paper of the series, to derive various diophantine results.
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Introduction

In the following discussion, we shall continue to use the notation of the In-
troduction to the first paper of the present series of papers [cf. [IUTchI], §I1]. In
particular, we assume that are given an elliptic curve EF over a number field F , to-
gether with a prime number l ≥ 5. In the first paper of the series, we introduced and
studied the basic properties of Θ±ellNF-Hodge theaters, which may be thought of as
miniature models of the conventional scheme theory surrounding the given elliptic
curve EF over the number field F . In the present paper, which forms the third paper
of the series, we study the theory surrounding the log-link between Θ±ellNF-Hodge
theaters. The log-link induces an isomorphism between the underlying D-Θ±ellNF-
Hodge theaters and, roughly speaking, is obtained by applying, at each [say, for
simplicity, nonarchimedean] valuation v ∈ V, the local pv-adic logarithm to the lo-
cal units [cf. Proposition 1.3, (i)]. The significance of the log-link lies in the fact
that it allows one to construct log-shells, i.e., roughly speaking, slightly adjusted
forms of the image of the local units at v ∈ V via the local pv-adic logarithm.
The theory of log-shells was studied extensively in [AbsTopIII]. The introduction
of log-shells leads naturally to the construction of new versions — namely, the
Θ×μ

LGP-/Θ
×μ
lgp -links [cf. Definition 3.8, (ii)] — of the Θ-/Θ×μ-/Θ×μ

gau-links studied

in [IUTchI], [IUTchII]. The resulting [highly non-commutative!] diagram of iterates

of the log- [i.e., the vertical arrows] and Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links [i.e., the

horizontal arrows] — which we refer to as the log-theta-lattice [cf. Definitions

1.4; 3.8, (iii), as well as Fig. I.1 below, in the case of the Θ×μ
LGP-link] — plays a

central role in the theory of the present series of papers.

...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

LGP−→ n,m+1HT Θ±ellNF Θ×μ
LGP−→ n+1,m+1HT Θ±ellNF Θ×μ

LGP−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

LGP−→ n,mHT Θ±ellNF Θ×μ
LGP−→ n+1,mHT Θ±ellNF Θ×μ

LGP−→ . . .�⏐⏐log

�⏐⏐log

...
...

Fig. I.1: The [LGP-Gaussian] log-theta-lattice
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Consideration of various properties of the log-theta-lattice leads naturally to
the establishment ofmultiradial algorithms for constructing “splitting monoids
of logarithmic Gaussian procession monoids” [cf. Theorem A below]. Here,
we recall that “multiradial algorithms” [cf. the discussion of [IUTchII], Introduc-
tion] are algorithms that make sense from the point of view of an “alien arithmetic
holomorphic structure”, i.e., the ring/scheme structure of a Θ±ellNF-Hodge
theater related to a given Θ±ellNF-Hodge theater by means of a non-ring/scheme-

theoretic Θ-/Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -link. These logarithmic Gaussian procession

monoids, or LGP-monoids, for short, may be thought of as the log-shell-theoretic
versions of the Gaussian monoids that were studied in [IUTchII]. Finally, by apply-
ing these multiradial algorithms for splitting monoids of LGP-monoids, we obtain
estimates for the log-volume of these LGP-monoids [cf. Theorem B below].
These estimates will be applied to verify various diophantine results in [IUTchIV].

Recall [cf. [IUTchI], §I1] the notion of an F-prime-strip. An F-prime-strip
consists of data indexed by the valuations v ∈ V; roughly speaking, the data at
each v consists of a Frobenioid, i.e., in essence, a system of monoids over a base
category. For instance, at v ∈ Vbad, this data may be thought of as an isomorphic
copy of the monoid with Galois action

Πv � O�
Fv

— where we recall that O�
Fv

denotes the multiplicative monoid of nonzero integral

elements of the completion of an algebraic closure F of F at a valuation lying over
v [cf. [IUTchI], §I1, for more details]. The pv-adic logarithm logv : O×

Fv
→ F v at v

then defines a natural Πv-equivariant isomorphism of ind-topological modules

(O×μ

Fv
⊗ Q

∼→ ) O×
Fv
⊗ Q

∼→ F v

—where we recall the notation “O×μ

F v
= O×

Fv
/Oμ

Fv
” from the discussion of [IUTchI],

§1 — which allows one to equip O×
F v
⊗ Q with the field structure arising from the

field structure of F v. The portion at v of the log-link associated to an F-prime-strip
[cf. Definition 1.1, (iii); Proposition 1.2] may be thought of as the correspondence{

Πv � O�
Fv

}
log−→

{
Πv � O�

Fv

}
in which one thinks of the copy of “O�

Fv
” on the right as obtained from the field

structure induced by the pv-adic logarithm on the tensor product with Q of the

copy of the units “O×
Fv
⊆ O�

F v
” on the left. Since this correspondence induces an

isomorphism of topological groups between the copies of Πv on either side, one may
think of Πv as “immune to”/“neutral with respect to” — or, in the terminology
of the present series of papers, “coric” with respect to — the transformation
constituted by the log-link. This situation is studied in detail in [AbsTopIII], §3,
and reviewed in Proposition 1.2 of the present paper.

By applying various results from absolute anabelian geometry, one may
algorithmically reconstruct a copy of the data “Πv � O�

F v
” from Πv. Moreover,
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by applying Kummer theory, one obtains natural isomorphisms between this “coric
version” of the data “Πv � O�

F v
” and the copies of this data that appear on

either side of the log-link. On the other hand, one verifies immediately that these
Kummer isomorphisms are not compatible with the coricity of the copy of the
data “Πv � O�

Fv
” algorithmically constructed from Πv. This phenomenon is, in

some sense, the central theme of the theory of [AbsTopIII], §3, and is reviewed in
Proposition 1.2, (iv), of the present paper.

The introduction of the log-link leads naturally to the construction of log-
shells at each v ∈ V. If, for simplicity, v ∈ Vbad, then the log-shell at v is given,
roughly speaking, by the compact additive module

Iv def
= p−1

v · logv(O×Kv
) ⊆ Kv ⊆ F v

[cf. Definition 1.1, (i), (ii); Remark 1.2.2, (i), (ii)]. One has natural functorial
algorithms for constructing various versions of the notion of a log-shell — i.e.,
mono-analytic/holomorphic and étale-like/Frobenius-like — from D�-/D-
/F�-/F-prime-strips [cf. Proposition 1.2, (v), (vi), (vii), (viii), (ix)]. Although,
as discussed above, the relevant Kummer isomorphisms are not compatible with
the log-link “at the level of elements”, the log-shell Iv at v satisfies the important
property

O�
Kv
⊆ Iv; logv(O×Kv

) ⊆ Iv
— i.e., it contains the images of the Kummer isomorphisms associated to both the
domain and the codomain of the log-link [cf. Proposition 1.2, (v); Remark 1.2.2, (i),
(ii)]. In light of the compatibility of the log-link with log-volumes [cf. Propositions
1.2, (iii); 3.9, (iv)], this property will ultimately lead to upper bounds — i.e., as
opposed to “precise equalities” — in the computation of log-volumes in Corollary
3.12 [cf. Theorem B below]. Put another way, although iterates [cf. Remark 1.1.1]
of the log-link fail to be compatible with the various Kummer isomorphisms that
arise, one may nevertheless consider the entire diagram that results from considering
such iterates of the log-link and related Kummer isomorphisms [cf. Proposition 1.2,
(x)]. We shall refer to such diagrams

. . . → • → • → • → . . .

. . . ↘ ↓ ↙ . . .

◦

— i.e., where the horizontal arrows correspond to the log-links [that is to say, to
the vertical arrows of the log-theta-lattice!]; the “•’s” correspond to the Frobenioid-
theoretic data within a Θ±ellNF-Hodge theater; the “◦” corresponds to the coric
version of this data [that is to say, in the terminology discussed below, verti-
cally coric data of the log-theta-lattice]; the vertical/diagonal arrows correspond
to the various Kummer isomorphisms — as log-Kummer correspondences [cf.
Theorem 3.11, (ii); Theorem A, (ii), below]. Then the inclusions of the above
display may be interpreted as a sort of “upper semi-commutativity” of such
diagrams [cf. Remark 1.2.2, (iii)], which we shall also refer to as the “upper semi-
compatibility” of the log-link with the relevant Kummer isomorphisms — cf. the
discussion of the “indeterminacy” (Ind3) in Theorem 3.11, (ii).
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By considering the log-links associated to the various F-prime-strips that occur
in a Θ±ellNF-Hodge theater, one obtains the notion of a log-link between Θ±ellNF-
Hodge theaters

†HT Θ±ellNF log−→ ‡HT Θ±ellNF

[cf. Proposition 1.3, (i)]. As discussed above, by considering the iterates of the log-

[i.e., the vertical arrows] and Θ-/Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links [i.e., the horizontal

arrows], one obtains a diagram which we refer to as the log-theta-lattice [cf.

Definitions 1.4; 3.8, (iii), as well as Fig. I.1, in the case of the Θ×μ
LGP-link]. As

discussed above, this diagram is highly noncommutative, since the definition of
the log-link depends, in an essential way, on both the additive and the multiplicative
structures — i.e., on the ring structure — of the various local rings at v ∈ V,
structures which are not preserved by the Θ-/Θ×μ-/Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -links [cf.

Remark 1.4.1, (i)]. So far, in the Introductions to [IUTchI], [IUTchII], as well as
in the present Introduction, we have discussed various “coricity” properties — i.e.,
properties of invariance with respect to various types of “transformations” — in the
context of Θ-/Θ×μ-/Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -links, as well as in the context of log-links.

In the context of the log-theta-lattice, it becomes necessary to distinguish between
various types of coricity. That is to say, coricity with respect to log-links [i.e.,
the vertical arrows of the log-theta-lattice] will be referred to as vertical coricity,

while coricity with respect to Θ-/Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links [i.e., the horizontal

arrows of the log-theta-lattice] will be referred to as horizontal coricity. On the
other hand, coricity properties that hold with respect to all of the arrows of the
log-theta-lattice will be referred to as bi-coricity properties.

Relative to the analogy between the theory of the present series of papers and
p-adic Teichmüller theory [cf. [IUTchI], §I4], we recall that a Θ±ellNF-Hodge the-
ater, which may be thought of as a miniature model of the conventional scheme
theory surrounding the given elliptic curve EF over the number field F , corresponds
to the positive characteristic scheme theory surrounding a hyperbolic curve over a
positive characteristic perfect field that is equipped with a nilpotent ordinary indige-
nous bundle [cf. Fig. I.2 below]. Then the rotation, or “juggling”, effected by the
log-link of the additive and multiplicative structures of the conventional scheme
theory represented by a Θ±ellNF-Hodge theater may be thought of as correspond-
ing to the Frobenius morphism in positive characteristic [cf. the discussion of
[AbsTopIII], §I1, §I3, §I5]. Thus, just as the Frobenius morphism is completely well-
defined in positive characteristic, the log-link may be thought of as a phenomenon
that occurs within a single arithmetic holomorphic structure, i.e., a vertical
line of the log-theta-lattice. By contrast, the essentially non-ring/scheme-theoretic
relationship between Θ±ellNF-Hodge theaters constituted by the Θ-/Θ×μ-/Θ×μ

gau-

/Θ×μ
LGP-/Θ

×μ
lgp -links corresponds to the relationship between the “mod pn” and “mod

pn+1” portions of the ring of Witt vectors, in the context of a canonical lifting of the
original positive characteristic data [cf. the discussion of Remark 1.4.1, (iii); Fig.
I.2 below]. Thus, the log-theta-lattice, taken as a whole, may be thought of as
corresponding to the canonical lifting of the original positive characteristic data,
equipped with a corresponding canonical Frobenius action/lifting [cf. Fig. I.2
below]. Finally, the non-commutativity of the log-theta-lattice may be thought
of as corresponding to the complicated “intertwining” that occurs in the theory
of Witt vectors and canonical liftings between the Frobenius morphism in positive
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characteristic and the mixed characteristic nature of the ring of Witt vectors [cf.
the discussion of Remark 1.4.1, (ii), (iii)].

One important consequence of this “noncommutative intertwining” of the two
dimensions of the log-theta-lattice is the following. Since each horizontal arrow
of the log-theta-lattice [i.e., the Θ-/Θ×μ-/Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -link] may only be

used to relate — i.e., via various Frobenioids — the multiplicative portions of the
ring structures in the domain and codomain of the arrow, one natural approach
to relating the additive portions of these ring structures is to apply the theory
of log-shells. That is to say, since each horizontal arrow is compatible with the
canonical splittings [up to roots of unity] discussed in [IUTchII], Introduction, of
the theta/Gaussian monoids in the domain of the horizontal arrow into unit group
and value group portions, it is natural to attempt to relate the ring structures on
either side of the horizontal arrow by applying the canonical splittings to

· relate themultiplicative structures on either side of the horizontal arrow
by means of the value group portions of the theta/Gaussian monoids;

· relate the additive structures on either side of the horizontal arrow by
means of the unit group portions of the theta/Gaussian monoids, shifted
once via a vertical arrow, i.e., the log-link, so as to “render additive” the
[a priori] multiplicative structure of these unit group portions.

Indeed, this is the approach that will ultimately be taken in Theorem 3.11 [cf.
Theorem A below] to relating the ring structures on either side of a horizontal
arrow. On the other hand, in order to actually implement this approach, it will be
necessary to overcome numerous technical obstacles. Perhaps the most immediately
obvious such obstacle lies in the observation [cf. the discussion of Remark 1.4.1,
(ii)] that, precisely because of the “noncommutative intertwining” nature of the
log-theta-lattice,

any sort of algorithmic construction concerning objects lying in the do-
main of a horizontal arrow that involves vertical shifts [e.g., such as the
approach to relating additive structures in the fashion described above]
cannot be “translated” in any immediate sense into an algorithm that
makes sense from the point of view of the codomain of the horizontal
arrow.

In a word, our approach to overcoming this technical obstacle consists of working
with objects in the vertical line of the log-theta-lattice that contains the domain of
the horizontal arrow under consideration that satisfy the crucial property of being

invariant with respect to vertical shifts

— i.e., shifts via iterates of the log-link [cf. the discussion of Remarks 1.2.2, (iii);
1.4.1, (ii)]. For instance, étale-like objects that are vertically coric satisfy this
invariance property. On the other hand, as discussed in the beginning of [IUTchII],
Introduction, in the theory of the present series of papers, it is of crucial impor-
tance to be able to relate corresponding Frobenius-like and étale-like structures
to one another via Kummer theory. In particular, in order to obtain structures
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that are invariant with respect to vertical shifts, it is necessary to consider log-
Kummer correspondences, as discussed above. Moreover, in the context of
such log-Kummer correspondences, typically, one may only obtain structures that
are invariant with respect to vertical shifts if one is willing to admit some sort of in-
determinacy, e.g., such as the “upper semi-compatibility” [cf. the discussion
of the “indeterminacy” (Ind3) in Theorem 3.11, (ii)] discussed above.

Inter-universal Teichmüller theory p-adic Teichmüller theory

number field hyperbolic curve C over a
F positive characteristic perfect field

[once-punctured] nilpotent ordinary
elliptic curve indigenous bundle

X over F P over C

Θ-link arrows of the mixed characteristic extension
log-theta-lattice structure of a ring of Witt vectors

log-link arrows of the the Frobenius morphism
log-theta-lattice in positive characteristic

the resulting canonical lifting
the entire + canonical Frobenius action;

log-theta-lattice canonical Frobenius lifting
over the ordinary locus

relatively straightforward relatively straightforward
original construction of original construction of

Θ×μ
LGP-link canonical liftings

highly nontrivial highly nontrivial
description of alien arithmetic absolute anabelian

holomorphic structure reconstruction of
via absolute anabelian geometry canonical liftings

Fig. I.2: Correspondence between inter-universal Teichmüller theory and
p-adic Teichmüller theory
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One important property of the log-link, and hence, in particular, of the con-
struction of log-shells, is its compatibility with the F�±

l -symmetry discussed in
the Introductions to [IUTchI], [IUTchII] — cf. Remark 1.3.2. Here, we recall from
the discussion of [IUTchII], Introduction, that the F�±

l -symmetry allows one to
relate the various F-prime-strips — i.e., more concretely, the various copies of the
data “Πv � O�

F v
” at v ∈ Vbad [and their analogues for v ∈ Vgood] — associated

to the various labels ∈ Fl that appear in the Hodge-Arakelov-theoretic evaluation
of [IUTchII] in a fashion that is compatible with

· the distinct nature of distinct labels ∈ Fl;

· the Kummer isomorphisms used to relate Frobenius-like and étale-
like versions of the F-prime-strips that appear, i.e., more concretely, the
various copies of the data “Πv � O�

F v
” at v ∈ Vbad [and their analogues

for v ∈ Vgood];

· the structure of the underlying D-prime-strips that appear, i.e., more
concretely, the various copies of the [arithmetic] tempered fundamental

group “Πv” at v ∈ Vbad [and their analogues for v ∈ Vgood]

— cf. the discussion of [IUTchII], Introduction; Remark 1.5.1; Step (vii) of the proof
of Corollary 3.12 of the present paper. This compatibility with the F�±

l -symmetry
gives rise to the construction of

· vertically coric F�×μ-prime-strips, log-shells by means of the arith-
metic holomorphic structures under consideration;

· mono-analytic F�×μ-prime-strips, log-shells which are bi-coric

— cf. Theorem 1.5. These bi-coric mono-analytic log-shells play a central role in
the theory of the present paper.

One notable aspect of the compatibility of the log-link with the F�±
l -symmetry

in the context of the theory of Hodge-Arakelov-theoretic evaluation developed in
[IUTchII] is the following. One important property of mono-theta environments is
the property of “isomorphism class compatibility”, i.e., in the terminology of
[EtTh], “compatibility with the topology of the tempered fundamental group”
[cf. the discussion of Remark 2.1.1]. This “isomorphism class compatibility” allows
one to apply the Kummer theory of mono-theta environments [i.e., the theory of
[EtTh]] relative to the ring-theoretic basepoints that occur on either side of the
log-link [cf. Remark 2.1.1, (ii); [IUTchII], Remark 3.6.4, (i)], for instance, in the
context of the log-Kummer correspondences discussed above. Here, we recall that
the significance of working with such “ring-theoretic basepoints” lies in the fact that
the full ring structure of the local rings involved [i.e., as opposed to, say, just the
multiplicative portion of this ring structure] is necessary in order to construct the
log-link. That is to say, it is precisely by establishing the conjugate synchronization
arising from the F�±

l -symmetry relative to these basepoints that occur on either
side of the log-link that one is able to conclude the crucial compatibility of this
conjugate synchronization with the log-link discussed in Remark 1.3.2. Thus, in



INTER-UNIVERSAL TEICHMÜLLER THEORY III 9

summary, one important consequence of the “isomorphism class compatibility” of
mono-theta environments is the simultaneous compatibility of

· the Kummer theory of mono-theta environments;
· the conjugate synchronization arising from the F�±

l -symmetry;
· the construction of the log-link.

This simultaneous compatibility is necessary in order to perform the construction
of the [crucial!] splitting monoids of LGP-monoids referred to above — cf. the
discussion of Step (vi) of the proof of Corollary 3.12.

In §2 of the present paper, we continue our preparation for the multiradial con-
struction of splitting monoids of LGP-monoids given in §3 [of the present paper]

by presenting a global formulation of the essentially local theory at v ∈ Vbad [cf.
[IUTchII], §1, §2, §3] concerning the interpretation, via the notion of multiradial-
ity, of various rigidity properties of mono-theta environments. That is to say,
although much of the [essentially routine!] task of formulating the local theory of
[IUTchII], §1, §2, §3, in global terms was accomplished in [IUTchII], §4, the [again
essentially routine!] task of formulating the portion of this local theory that con-
cerns multiradiality was not explicitly addressed in [IUTchII], §4. One reason for
this lies in the fact that, from the point of view of the theory to be developed in §3 of
the present paper, this global formulation of multiradiality properties of the mono-
theta environment may be presented most naturally in the framework developed in
§1 of the present paper, involving the log-theta-lattice [cf. Theorem 2.2; Corollary
2.3]. Indeed, the étale-like versions of the mono-theta environment, as well as the
various objects constructed from the mono-theta environment, may be interpreted,
from the point of view of the log-theta-lattice, as vertically coric structures,
and are Kummer-theoretically related to their Frobenius-like [i.e., Frobenioid-
theoretic] counterparts, which arise from the [Frobenioid-theoretic portions of the]
various Θ±ellNF-Hodge theaters in a vertical line of the log-theta-lattice [cf. Theo-
rem 2.2, (ii); Corollary 2.3, (ii), (iii), (iv)]. Moreover, it is precisely the horizontal

arrows of the log-theta-lattice that give rise to the Ẑ×-indeterminacies acting
on copies of “O×μ” that play a prominent role in the local multiradiality theory de-
veloped in [IUTchII] [cf. the discussion of [IUTchII], Introduction]. In this context,
it is useful to recall from the discussion of [IUTchII], Introduction [cf. also Remark
2.2.1 of the present paper], that the essential content of this local multiradiality the-
ory consists of the observation [cf. Fig. I.3 below] that, since mono-theta-theoretic
cyclotomic and constant multiple rigidity only require the use of the portion of O×

F v
,

for v ∈ Vbad, given by the torsion subgroup Oμ

Fv
⊆ O×

Fv
[i.e., the roots of unity],

the triviality of the composite of natural morphisms

Oμ

Fv
↪→ O×

F v
� O×μ

F v

has the effect of insulating the Kummer theory of the étale theta function
— i.e., via the theory of the mono-theta environments developed in [EtTh] — from

the Ẑ×-indeterminacies that act on the copies of “O×μ” that arise in the F�×μ-
prime-strips that appear in the Θ-/Θ×μ-/Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -link.
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id � Ẑ× �

Oμ

F v
→ O×μ

Fv

Fig. I.3: Insulation from Ẑ×-indeterminacies in the context of
mono-theta-theoretic cyclotomic, constant multiple rigidity

In §3 of the present paper, which, in some sense, constitutes the conclusion
of the theory developed thus far in the present series of papers, we present the
construction of the [splitting monoids of] LGP-monoids, which may be thought
of as a multiradial version of the [splitting monoids of] Gaussian monoids that
were constructed via the theory of Hodge-Arakelov-theoretic evaluation developed
in [IUTchII]. In order to achieve this multiradiality, it is necessary to “multiradi-
alize” the various components of the construction of the Gaussian monoids given
in [IUTchII]. The first step in this process of “multiradialization” concerns the
labels j ∈ F�

l that occur in the Hodge-Arakelov-theoretic evaluation performed
in [IUTchII]. That is to say, the construction of these labels, together with the
closely related theory of F�

l -symmetry, depend, in an essential way, on the full

arithmetic tempered fundamental groups “Πv” at v ∈ Vbad, i.e., on the portion

of the arithmetic holomorphic structure within a Θ±ellNF-Hodge theater which is
not shared by an alien arithmetic holomorphic structure [i.e., an arithmetic holo-
morphic structure related to the original arithmetic holomorphic structure via a
horizontal arrow of the log-theta-lattice]. One naive approach to remedying this
state of affairs is to simply consider the underlying set, of cardinality l�, associated
to F�

l , which we regard as being equipped with the full set of symmetries given
by arbitrary permutation automorphisms of this underlying set. The problem with
this approach is that it yields a situation in which, for each label j ∈ F�

l , one must
contend with an indeterminacy of l� possibilities for the element of this underlying
set that corresponds to j [cf. [IUTchI], Propositions 4.11, (i); 6.9, (i)]. From the
point of view of the log-volume computations to be performed in [IUTchIV], this
degree of indeterminacy gives rise to log-volumes which are “too large”, i.e., to esti-
mates that are not sufficient for deriving the various diophantine results obtained in
[IUTchIV]. Thus, we consider the following alternative approach, via processions
[cf. [IUTchI], Propositions, 4.11, 6.9]. Instead of working just with the underlying
set associated to F�

l , we consider the diagram of inclusions of finite sets

S±1 ↪→ S±1+1=2 ↪→ . . . ↪→ S±j+1 ↪→ . . . ↪→ S±1+l�=l±

— where we write S±j+1
def
= {0, 1, . . . , j}, for j = 0, . . . , l�, and we think of each of

these finite sets as being subject to arbitrary permutation automorphisms. That
is to say, we think of the set S±j+1 as a container for the labels 0, 1, . . . , j. Thus,
for each j, one need only contend with an indeterminacy of j + 1 possibilities for
the element of this container that corresponds to j. In particular, if one allows
j = 0, . . . , l� to vary, then this approach allows one to reduce the resulting label

indeterminacy from a total of (l±)l
±

possibilities [where we write l± = 1 + l� =
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(l+1)/2] to a total of l±! possibilities. It turns out that this reduction will yield just
the right estimates in the log-volume computations to be performed in [IUTchIV].
Moreover, this approach satisfies the important property of insulating the “core
label 0” from the various label indeterminacies that occur.

Each element of each of the containers S±j+1 may be thought of as parametrizing
an F- or D-prime-strip that occurs in the Hodge-Arakelov-theoretic evaluation of
[IUTchII]. In order to render the construction multiradial, it is necessary to replace
such holomorphic F-/D-prime-strips by mono-analytic F�-/D�-prime-strips. In
particular, as discussed above, one may construct, for each such F�-/D�-prime-
strip, a collection of log-shells associated to the various v ∈ V. Write VQ for
the set of valuations of Q. Then, in order to obtain objects that are immune to
the various label indeterminacies discussed above, we consider, for each element
∗ ∈ S±j+1, and for each [say, for simplicity, nonarchimedean] vQ ∈ VQ,

· the direct sum of the log-shells associated to the prime-strip labeled by
the given element ∗ ∈ S±j+1 at the v ∈ V that lie over vQ;

we then form

· the tensor product, over the elements ∗ ∈ S±j+1, of these direct sums.

This collection of tensor products associated to vQ ∈ VQ will be referred to as the
tensor packet associated to the collection of prime-strips indexed by elements of
S±j+1. One may carry out this construction of the tensor packet either for holomor-

phic F-/D-prime-strips [cf. Proposition 3.1] or for mono-analytic F�-/D�-prime-
strips [cf. Proposition 3.2].

The tensor packets associated to D�-prime-strips will play a crucial role in
the theory of §3, as “multiradial mono-analytic containers” for the principal
objects of interest [cf. the discussion of Remark 3.12.2, (ii)], namely,

· the action of the splitting monoids of the LGP-monoids — i.e., the

monoids generated by the theta values {qj2
v
}j=1,...,l� — on the portion of

the tensor packets just defined at v ∈ Vbad [cf. Fig. I.4 below; Propositions
3.4, 3.5; the discussion of [IUTchII], Introduction];

· the action of copies “(F×mod)j” of [the multiplicative monoid of nonzero
elements of] the number field Fmod labeled by j = 1, . . . , l� on the
product, over vQ ∈ VQ, of the portion of the tensor packets just defined
at vQ [cf. Fig. I.5 below; Propositions 3.3, 3.7, 3.10].

q1 � qj
2

� q(l
�)2 �

/± ↪→ /±/± ↪→ . . . ↪→ /±/± . . . /± ↪→ . . . ↪→ /±/± . . . . . . /±

S±1 S±1+1=2 S±j+1 S±1+l�=l±

Fig. I.4: Splitting monoids of LGP-monoids acting on tensor packets
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(F×mod)1 � (F×mod)j � (F×mod)l� �

/± ↪→ /±/± ↪→ . . . ↪→ /±/± . . . /± ↪→ . . . ↪→ /±/± . . . . . . /±

S±1 S±1+1=2 S±j+1 S±1+l�=l±

Fig. I.5: Copies of F×mod acting on tensor packets

Indeed, these [splitting monoids of] LGP-monoids and copies “(F×mod)j” of [the
multiplicative monoid of nonzero elements of] the number field Fmod admit nat-
ural embeddings into/actions on the various tensor packets associated to labeled F-
prime-strips in each Θ±ellNF-Hodge theater n,mHT Θ±ellNF of the log-theta-lattice.
One then obtains vertically coric versions of these splitting monoids of LGP-
monoids and labeled copies “(F×mod)j” of [the multiplicative monoid of nonzero
elements of] the number field Fmod by applying suitable Kummer isomorphisms
between

· log-shells/tensor packets associated to [labeled] F-prime-strips and
· log-shells/tensor packets associated to [labeled] D-prime-strips.

Finally, by passing to the

· log-shells/tensor packets associated to [labeled] D�-prime-strips

— i.e., by forgetting the arithmetic holomorphic structure associated to a
specific vertical line of the log-theta-lattice — one obtains the desired multiradial
representation, i.e., description in terms that make sense from the point of view
of an alien arithmetic holomorphic structure, of the splitting monoids of LGP-
monoids and labeled copies of the number field Fmod discussed above. This
passage to the multiradial representation is obtained by admitting the following
three types of indeterminacy:

(Ind1): This is the indeterminacy that arises from the automorphisms of proces-
sions of D�-prime-strips that appear in the multiradial representation
— i.e., more concretely, from permutation automorphisms of the label sets
S±j+1 that appear in the processions discussed above, as well as from the

automorphisms of the D�-prime-strips that appear in these processions.

(Ind2): This is the [“non-(Ind1) portion” of the] indeterminacy that arises from
the automorphisms of the F�×μ-prime-strips that appear in the Θ-/Θ×μ-

/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -link — i.e., in particular, at [for simplicity] v ∈ Vnon,

the Ẑ×-indeterminacies acting on local copies of “O×μ” [cf. the above
discussion].

(Ind3): This is the indeterminacy that arises from the upper semi-compatibility
of the log-Kummer correspondences associated to the specific vertical line
of the log-theta-lattice under consideration [cf. the above discussion].
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A detailed description of this multiradial representation, together with the indeter-
minacies (Ind1), (Ind2) is given in Theorem 3.11, (i) [and summarized in Theorem
A, (i), below; cf. also Fig. I.6 below].

q1

qj
2

q(l
�)2

�

/± ↪→
/±/± ↪→

. . . ↪→
/±/± . . . /± ↪→
. . . ↪→
/±/± . . . . . . /±

�

(F×mod)1

(F×mod)j

(F×mod)l�

Fig. I.6: The full multiradial representation

One important property of the multiradial representation discussed above con-
cerns the relationship between the three main components — i.e., roughly speaking,
log-shells, splitting monoids of LGP-monoids, and number fields — of this multira-
dial representation and the log-Kummer correspondence of the specific vertical
line of the log-theta-lattice under consideration. This property — which may be
thought of as a sort of “non-interference”, or “mutual compatibility”, prop-
erty — asserts that the multiplicative monoids constituted by the splitting monoids
of LGP-monoids and copies of F×mod “do not interfere”, relative to the various ar-
rows that occur in the log-Kummer correspondence, with the local units at v ∈ V

that give rise to the log-shells. In the case of splitting monoids of LGP-monoids,
this non-interference/mutual compatibility property is, in essence, a formal conse-
quence of the existence of the canonical splittings [up to roots of unity] of the
theta/Gaussian monoids that appear into unit group and value group portions [cf.
the discussion of [IUTchII], Introduction]. Here, we recall that, in the case of the
theta monoids, these canonical splittings are, in essence, a formal consequence of
the constant multiple rigidity property of mono-theta environments reviewed
above. In the case of copies of Fmod, this non-interference/mutual compatibility
property is, in essence, a formal consequence of the well-known fact in elementary
algebraic number theory that any nonzero element of a number field that is inte-
gral at every valuation of the number field is necessarily a root of unity. These
mutual compatibility properties are described in detail in Theorem 3.11, (ii), and
summarized in Theorem A, (ii), below.

Another important property of the multiradial representation discussed above
concerns the relationship between the three main components — i.e., roughly speak-
ing, log-shells, splitting monoids of LGP-monoids, and number fields — of this
multiradial representation and the Θ×μ

LGP-links, i.e., the horizontal arrows of the
log-theta-lattice under consideration. This property — which may be thought of
as a property of compatibility with the Θ×μ

LGP-link — asserts that the cyclotomic
rigidity isomorphisms that appear in the Kummer theory surrounding the splitting

monoids of LGP-monoids and copies of F×mod are immune to the Ẑ×-indeterminacies

that act on the copies of “O×μ” that arise in the F�×μ-prime-strips that appear
in the Θ×μ

LGP-link. In the case of splitting monoids of LGP-monoids, this prop-
erty amounts precisely to the multiradiality theory developed in §2 [cf. the above
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discussion], i.e., in essence, to the mono-theta-theoretic cyclotomic rigidity
property reviewed in the above discussion. In the case of copies of F×mod, this prop-
erty follows from the theory surrounding the construction of the cyclotomic rigidity
isomorphisms discussed in [IUTchI], Example 5.1, (v). These compatibility prop-
erties are described in detail in Theorem 3.11, (iii), and summarized in Theorem
A, (iii), below.

At this point, we pause to observe that although considerable attention has
been devoted so far in the present series of papers, especially in [IUTchII], to
the theory of Gaussian monoids, not so much attention has been devoted [i.e.,
outside of [IUTchI], §5; [IUTchII], Corollaries 4.7, 4.8] to [the multiplicative monoids
constituted by] copies of F×mod. These copies of F×mod enter into the theory of the
multiradial representation discussed above in the form of various types of global
Frobenioids in the following way. If one starts from the number field Fmod, one
natural Frobenioid that can be associated to Fmod is the Frobenioid F�

mod of [stack-
theoretic] arithmetic line bundles on [the spectrum of the ring of integers of] Fmod

discussed in [IUTchI], Example 5.1, (iii) [cf. also Example 3.6 of the present paper].
From the point of view of the theory surrounding the multiradial representation
discussed above, there are two natural ways to approach the construction of “F�

mod”:

(�MOD) (Rational Function Torsor Version): This approach consists of con-
sidering the category F�

MOD of F×mod-torsors equipped with trivializations
at each v ∈ V [cf. Example 3.6, (i), for more details].

(�mod) (Local Fractional Ideal Version): This approach consists of consid-
ering the category F�

mod of collections of integral structures on the various
completions Kv at v ∈ V and morphisms between such collections of in-

tegral structures that arise from multiplication by elements of F×mod [cf.
Example 3.6, (ii), for more details].

Then one has natural isomorphisms of Frobenioids

F�
mod

∼→ F�
MOD

∼→ F�
mod

that induce the respective identity morphisms F×mod → F×mod → F×mod on the asso-
ciated rational function monoids [cf. [FrdI], Corollary 4.10]. In particular, at first
glance, F�

MOD and F�
mod appear to be “essentially equivalent” objects.

On the other hand, when regarded from the point of view of the multiradial
representations discussed above, these two constructions exhibit a number of signif-
icant differences — cf. Fig. I.7 below; the discussion of Remarks 3.6.2, 3.10.1. For
instance, whereas the construction of (�MOD) depends only on the multiplica-
tive structure of F×mod, the construction of (�mod) involves the module, i.e., the

additive, structure of the localizations Kv. The global portion of the Θ×μ
LGP-link

(respectively, the Θ×μ
lgp -link) is, by definition [cf. Definition 3.8, (ii)], constructed

by means of the realification of the Frobenioid that appears in the construction of
(�MOD) (respectively, (�mod)). This means that the construction of the global por-

tion of the Θ×μ
LGP-link — which is the version of the Θ-link that is in fact ultimately

used in the theory of the multiradial representation — depends only on the multi-
plicative monoid structure of a copy of F×mod, together with the various valuation
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homomorphisms F×mod → R associated to v ∈ V. Thus, the mutual compatibility

[discussed above] of copies of F×mod with the log-Kummer correspondence implies

that one may perform this construction of the global portion of the Θ×μ
LGP-link in

a fashion that is immune to the “upper semi-compatibility” indeterminacy (Ind3)
[discussed above]. By contrast, the construction of (�mod) involves integral struc-
tures on the underlying local additive modules “Kv”, i.e., from the point of view of
the multiradial representation, integral structures on log-shells and tensor packets
of log-shells, which are subject to the “upper semi-compatibility” indeterminacy
(Ind3) [discussed above]. In particular, the log-Kummer correspondence subjects
the construction of (�mod) to “substantial distortion”. On the other hand, the es-
sential role played by local integral structures in the construction of (�mod) enables
one to compute the global arithmetic degree of the arithmetic line bundles consti-
tuted by objects of the category “F�

mod” in terms of log-volumes on log-shells
and tensor packets of log-shells [cf. Proposition 3.9, (iii)]. This property of the
construction of (�mod) will play a crucial role in deriving the explicit estimates
for such log-volumes that are obtained in Corollary 3.12 [cf. Theorem B below].

F�
MOD F�

mod

biased toward biased toward
multiplicative structures additive structures

easily related to easily related to unit group/coric

value group/non-coric portion portion “(−)�×μ” of Θ×μ
LGP-/Θ

×μ
lgp -link,

“(−)��” of Θ×μ
LGP-link i.e., mono-analytic log-shells

admits only admits
precise log-Kummer “upper semi-compatible”

correspondence log-Kummer correspondence

rigid, but not suited subject to substantial distortion,
to explicit computation but suited to explicit estimates

Fig. I.7: F�
MOD versus F�

mod

Thus, in summary, the natural isomorphism F�
MOD

∼→ F�
mod discussed above plays

the important role, in the context of the multiradial representation discussed above,
of relating

· the multiplicative structure of the global number field Fmod to the
additive structure of Fmod,
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· the unit group/coric portion “(−)�×μ” of the Θ×μ
LGP-link to the value

group/non-coric portion “(−)��” of the Θ×μ
LGP-link.

Finally, in Corollary 3.12 [cf. also Theorem B below], we apply the multiradial
representation discussed above to estimate certain log-volumes as follows. We begin
by introducing some terminology [cf. Definition 3.8, (i)]. We shall refer to the object
that arises in any of the versions [including realifications] of the global Frobenioid
“F�

mod” discussed above — such as, for instance, the global realified Frobenioid

that occurs in the codomain of the Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -link — by considering the

arithmetic divisor determined by the zero locus of the elements “q
v
” at v ∈ Vbad

as a q-pilot object. The log-volume of the q-pilot object will be denoted by

− |log(q)| ∈ R

— so |log(q)| > 0 [cf. Corollary 3.12; Theorem B]. In a similar vein, we shall refer to

the object that arises in the global realified Frobenioid that occurs in the domain of
the Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -link by considering the arithmetic divisor determined by the

zero locus of the collection of theta values “{qj2
v
}j=1,...,l�” at v ∈ Vbad as a Θ-pilot

object. The log-volume of the holomorphic hull — cf. Remark 3.9.5, (i); Step
(xi) of the proof of Corollary 3.12 — of the union of the collection of possible
images of the Θ-pilot object in the multiradial representation — i.e., where
we recall that these “possible images” are subject to the indeterminacies (Ind1),
(Ind2), (Ind3) — will be denoted by

− |log(Θ)| ∈ R
⋃
{+∞}

[cf. Corollary 3.12; Theorem B]. Here, the reader might find the use of the notation
“−” and “| . . . |” confusing [i.e., since this notation suggests that − |log(Θ)| is a
non-positive real number, which would appear to imply that the possibility that
− |log(Θ)| = +∞ may be excluded from the outset]. The reason for the use of

this notation, however, is to express the point of view that − |log(Θ)| should be
regarded as a positive real multiple of − |log(q)| [i.e., which is indeed a negative real

number!] plus a possible error term, which [a priori!] might be equal to +∞. Then
the content of Corollary 3.12, Theorem B may be summarized, roughly speaking
[cf. Remark 3.12.1, (ii)], as a result concerning the

negativity of the Θ-pilot log-volume |log(Θ)|

— i.e., where we write |log(Θ)| def
= −(− |log(Θ)|) ∈ R

⋃ {−∞}. Relative to
the analogy between the theory of the present series of papers and complex/p-adic
Teichmüller theory [cf. [IUTchI], §I4], this result may be thought of as a statement
to the effect that

“the pair consisting of a number field equipped with an elliptic curve is
metrically hyperbolic, i.e., has negative curvature”.

That is to say, it may be thought of as a sort of analogue of the inequality

χS = −
∫
S

dμS < 0
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arising from the classical Gauss-Bonnet formula on a hyperbolic Riemann sur-
face of finite type S [where we write χS for the Euler characteristic of S and dμS for
the Kähler metric on S determined by the Poincaré metric on the upper half-plane
— cf. the discussion of Remark 3.12.3], or, alternatively, of the inequality

(1− p)(2gX − 2) ≤ 0

that arises by computing global degrees of line bundles in the context of the Hasse
invariant that arises in p-adic Teichmüller theory [where X is a smooth, proper
hyperbolic curve of genus gX over the ring of Witt vectors of a perfect field of
characteristic p which is canonical in the sense of p-adic Teichmüller theory — cf.
the discussion of Remark 3.12.4, (v)].

The proof of Corollary 3.12 [i.e., Theorem B] is based on the following funda-
mental observation: the multiradial representation discussed above yields

two tautologically equivalent ways to compute
the q-pilot log-volume − |log(q)|

— cf. Fig. I.8 below; Step (xi) of the proof of Corollary 3.12. That is to say, suppose

that one starts with the q-pilot object in the Θ±ellNF-Hodge theater 1,0HT Θ±ellNF

at (1, 0), which we think of as being represented, via the approach of (�mod), by

means of the action of the various q
v
, for v ∈ Vbad, on the log-shells that arise,

via the log-link 1,−1HT Θ±ellNF log−→ 1,0HT Θ±ellNF, from the various local “O×μ’s”

in the Θ±ellNF-Hodge theater 1,−1HT Θ±ellNF at (1,−1). Thus, if one considers
the value group “(−)��” and unit group “(−)�×μ” portions of the codomain of

the Θ×μ
LGP-link

0,0HT Θ±ellNF Θ×μ
LGP−→ 1,0HT Θ±ellNF in the context of the arithmetic

holomorphic structure of the vertical line (1, ◦), this action on log-shells may be
thought of as a somewhat intricate “intertwining” between these value group
and unit group portions [cf. Remark 3.12.2, (ii)]. On the other hand, the Θ×μ

LGP-

link 0,0HT Θ±ellNF Θ×μ
LGP−→ 1,0HT Θ±ellNF constitutes a sort of gluing isomorphism

between the arithmetic holomorphic structures associated to the vertical lines (0, ◦)
and (1, ◦) that is based on

forgetting this intricate intertwining, i.e., by working solely with
abstract isomorphisms of F��×μ-prime-strips.

Thus, in order to relate the arithmetic holomorphic structures, say, at (0, 0) and
(1, 0), one must apply the multiradial representation discussed above. That is to
say, one starts by applying the theory of bi-coric mono-analytic log-shells given
in Theorem 1.5. One then applies the Kummer theory surrounding the splitting
monoids of theta/Gaussian monoids and copies of the number field Fmod,
which allows one to pass from the Frobenius-like versions of various objects that
appear in — i.e., that are necessary in order to consider — the Θ×μ

LGP-link to the
corresponding étale-like versions of these objects that appear in the multiradial
representation. This passage from Frobenius-like versions to étale-like versions is
referred to as the operation of Kummer-detachment [cf. Fig. I.8; Remark 1.5.4,
(i)]. As discussed above, this operation of Kummer-detachment is possible precisely
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as a consequence of the compatibility of the multiradial representation with the
indeterminacies (Ind1), (Ind2), (Ind3), hence, in particular, with the Θ×μ

LGP-link.
Here, we recall that since the log-theta-lattice is, as discussed above, far from
commutative, in order to represent the various “log-link-conjugates” at (0,m) [for
m ∈ Z] in terms that may be understood from the point of view of the arith-
metic holomorphic structure at (1, 0), one must work [not only with the Kummer
isomorphisms at a single (0,m), but rather] with the entire log-Kummer corre-
spondence. In particular, one must take into account the indeterminacy (Ind3).
Once one completes the operation of Kummer-detachment so as to obtain vertically
coric versions of objects on the vertical line (0, ◦), one then passes to multiradial
objects, i.e., to the “final form” of the multiradial representation, by taking into
account [once again] the indeterminacy (Ind1), i.e., that arises from working with
[mono-analytic!] D�- [as opposed to D-!] prime-strips. Finally, one computes the
log-volume of the holomorphic hull of this “final form” multiradial representation
of the Θ-pilot object — i.e., subject to the indeterminacies (Ind1), (Ind2), (Ind3)!
— and concludes the desired estimates from the tautological observation that

the log-theta-lattice — and, in particular, the “gluing isomorphism”
constituted by the Θ×μ

LGP-link — were constructed precisely in such a way
as to ensure that the computation of the log-volume of the holomorphic hull
of the union of the collection of possible images of the Θ-pilot object [cf.
the definition of |log(Θ)|] necessarily amounts to a computation of [an
upper bound for] |log(q)|

multiradial
representation
at 0-column (0, ◦)

permutation
symmetry of

≈
étale-picture

multiradial
representation
at 1-column (1, ◦)

Kummer-
detach-
ment
via
log-

Kummer

⇑

com-
pati-
bly
with

Θ×μ
LGP-
link

com-
pari-
son
via

⇓
hol.
hull,
log-
vol.

Θ-pilot object in
Θ±ellNF-Hodge
theater at (0, 0)

(−)��-portion,
(−)�×μ-portion

≈
of Θ×μ

LGP-link

q-pilot object in
Θ±ellNF-Hodge
theater at (1, 0)

Fig. I.8: Two tautologically equivalent ways to compute
the log-volume of the q-pilot object at (1, 0)
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— cf. Fig. I.8; Step (xi) of the proof of Corollary 3.12. That is to say, the “gluing

isomorphism” constituted by the Θ×μ
LGP-link relates two distinct “arithmetic holo-

morphic structures”, i.e., two distinct copies of conventional ring/scheme theory,
that are glued together precisely by means of a relation that identifies the Θ-pilot
object in the domain of the Θ×μ

LGP-link with the q-pilot object in the codomain of the

Θ×μ
LGP-link. Thus, once one sets up such an apparatus, the computation of the log-

volume of the holomorphic hull of the union of possible images of the Θ-pilot object
in the domain of the Θ×μ

LGP-link in terms of the q-pilot object in the codomain of

the Θ×μ
LGP-link amounts — tautologically! — to the computation of the log-volume

of the q-pilot object [in the codomain of the Θ×μ
LGP-link] in terms of itself, i.e., to

a computation that reflects certain intrinsic properties of this q-pilot object. This
is the content of Corollary 3.12 [i.e., Theorem B]. As discussed above, this sort
of “computation of intrinsic properties” in the present context of a number field
equipped with an elliptic curve may be regarded as analogous to the “computa-
tions of intrinsic properties” reviewed above in the classical complex and p-adic
cases.

We conclude the present Introduction with the following summaries of the
main results of the present paper.

Theorem A. (Multiradial Algorithms for Logarithmic Gaussian Proces-
sion Monoids) Fix a collection of initial Θ-data (F/F, XF , l, CK , V, Vbad

mod, ε)
as in [IUTchI], Definition 3.1. Let

{n,mHT Θ±ellNF}n,m∈Z

be a collection of distinct Θ±ellNF-Hodge theaters [relative to the given initial
Θ-data] — which we think of as arising from a LGP-Gaussian log-theta-lattice
[cf. Definition 3.8, (iii)]. For each n ∈ Z, write

n,◦HT D-Θ±ellNF

for the D-Θ±ellNF-Hodge theater determined, up to isomorphism, by the various
n,mHT Θ±ellNF, where m ∈ Z, via the vertical coricity of Theorem 1.5, (i) [cf.
Remark 3.8.2].

(i) (Multiradial Representation) Write

n,◦RLGP

for the collection of data consisting of

(a) tensor packets of log-shells;

(b) splitting monoids of LGP-monoids acting on the tensor packets of
(a);

(c) copies, labeled by j ∈ F�
l , of [the multiplicative monoid of nonzero ele-

ments of ] the number field Fmod acting on the tensor packets of (a)
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[cf. Theorem 3.11, (i), (a), (b), (c), for more details] regarded up to indetermi-
nacies of the following two types:

(Ind1) the indeterminacies induced by the automorphisms of the procession
of D�-prime-strips Prc(n,◦D�T ) that gives rise to the tensor packets of
(a);

(Ind2) the [“non-(Ind1) portion” of the] indeterminacies that arise from the au-

tomorphisms of the F�×μ-prime-strips that appear in the Θ×μ
LGP-link,

i.e., in particular, at [for simplicity] v ∈ Vnon, the Ẑ×-indeterminacies
acting on local copies of “O×μ”

— cf. Theorem 3.11, (i), for more details. Then n,◦RLGP may be constructed via
an algorithm in the procession of D�-prime-strips Prc(n,◦D�T ), which is functo-
rial with respect to isomorphisms of processions of D�-prime-strips. For n, n′ ∈
Z, the permutation symmetries of the étale-picture discussed in [IUTchI],
Corollary 6.10, (iii); [IUTchII], Corollary 4.11, (ii), (iii) [cf. also Corollary 2.3,
(ii); Remarks 2.3.2 and 3.8.2, of the present paper], induce compatible poly-
isomorphisms

Prc(n,◦D�T )
∼→ Prc(n

′,◦D�T );
n,◦RLGP ∼→ n′,◦RLGP

which are, moreover, compatible with the bi-coricity poly-isomorphisms

n,◦D�0
∼→ n′,◦D�0

of Theorem 1.5, (iii) [cf. also [IUTchII], Corollaries 4.10, (iv); 4.11, (i)].

(ii) (log-Kummer Correspondence) For n,m ∈ Z, the inverses of the
Kummer isomorphisms associated to the various F-prime-strips and NF-

bridges that appear in the Θ±ellNF-Hodge theater n,mHT Θ±ellNF induce “inverse
Kummer” isomorphisms between the vertically coric data (a), (b), (c) of (i)
and the corresponding Frobenioid-theoretic data arising from each Θ±ellNF-

Hodge theater n,mHT Θ±ellNF [cf. Theorem 3.11, (ii), (a), (b), (c), for more de-
tails]. Moreover, as one varies m ∈ Z, the corresponding Kummer isomor-
phisms [i.e., inverses of “inverse Kummer” isomorphisms] of splitting monoids
of LGP-monoids [cf. (i), (b)] and labeled copies of the number field Fmod [cf.
(i), (c)] are mutually compatible, relative to the log-links of the n-th column of
the LGP-Gaussian log-theta-lattice under consideration, in the sense that the only
portions of the [Frobenioid-theoretic] domains of these Kummer isomorphisms that
are possibly related to one another via the log-links consist of roots of unity in the
domains of the log-links [multiplication by which corresponds, via the log-link, to an
“addition by zero” indeterminacy, i.e., to no indeterminacy!] — cf. Proposi-
tion 3.5, (ii), (c); Proposition 3.10, (ii); Theorem 3.11, (ii), for more details. On
the other hand, the Kummer isomorphisms of tensor packets of log-shells [cf.
(i), (a)] are subject to a certain “indeterminacy” as follows:

(Ind3) as one varies m ∈ Z, these Kummer isomorphisms of tensor packets of
log-shells are “upper semi-compatible”, relative to the log-links of the
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n-th column of the LGP-Gaussian log-theta-lattice under consideration, in
a sense that involves certain natural inclusions “⊆” at vQ ∈ Vnon

Q and
certain natural surjections “�” at vQ ∈ Varc

Q — cf. Proposition 3.5,
(ii), (a), (b); Theorem 3.11, (ii), for more details.

Finally, as one varies m ∈ Z, these Kummer isomorphisms of tensor packets of
log-shells are [precisely!] compatible, relative to the log-links of the n-th column
of the LGP-Gaussian log-theta-lattice under consideration, with the respective log-
volumes [cf. Proposition 3.9, (iv)].

(iii) (Θ×μ
LGP-Link Compatibility) The various Kummer isomorphisms of (ii)

satisfy compatibility properties with the various horizontal arrows — i.e., Θ×μ
LGP-

links — of the LGP-Gaussian log-theta-lattice under consideration as follows: The
tensor packets of log-shells [cf. (i), (a)] are compatible, relative to the relevant

Kummer isomorphisms, with [the unit group portion “(−)�×μ” of] the Θ×μ
LGP-link

[cf. the indeterminacy “(Ind2)” of (i)]; we refer to Theorem 3.11, (iii), (a), (b),
for more details. The identity automorphism on the objects that appear in the
construction of the splitting monoids of LGP-monoids via mono-theta envi-
ronments [cf. (i), (b)] is compatible, relative to the relevant Kummer isomorphisms

and isomorphisms of mono-theta environments, with the Θ×μ
LGP-link [cf. the inde-

terminacy “(Ind2)” of (i)]; we refer to Theorem 3.11, (iii), (c), for more details.
The identity automorphism on the objects that appear in the construction of the
labeled copies of the number field Fmod [cf. (i), (c)] is compatible, relative to
the relevant Kummer isomorphisms and cyclotomic rigidity isomorphisms [cf. the
discussion of Remark 2.3.2; the constructions of [IUTchI], Example 5.1, (v)], with

the Θ×μ
LGP-link [cf. the indeterminacy “(Ind2)” of (i)]; we refer to Theorem 3.11,

(iii), (d), for more details.

Theorem B. (Log-volume Estimates for Multiradially Represented Split-
ting Monoids of Logarithmic Gaussian Procession Monoids) Suppose that
we are in the situation of Theorem A. Write

− |log(Θ)| ∈ R
⋃
{+∞}

for the procession-normalized mono-analytic log-volume [where the average
is taken over j ∈ F�

l — cf. Remark 3.1.1, (ii), (iii), (iv); Proposition 3.9, (i), (ii);
Theorem 3.11, (i), (a), for more details] of the holomorphic hull [cf. Remark
3.9.5, (i)] of the union of the possible images of a Θ-pilot object [cf. Definition
3.8, (i)], relative to the relevant Kummer isomorphisms [cf. Theorems A, (ii);
3.11, (ii)], in the multiradial representation of Theorems A, (i); 3.11, (i), which
we regard as subject to the indeterminacies (Ind1), (Ind2), (Ind3) described in
Theorems A, (i), (ii); 3.11, (i), (ii). Write

− |log(q)| ∈ R

for the procession-normalized mono-analytic log-volume of the image of a
q-pilot object [cf. Definition 3.8, (i)], relative to the relevant Kummer isomor-
phisms [cf. Theorems A, (ii); 3.11, (ii)], in the multiradial representation of
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Theorems A, (i); 3.11, (i), which we do not regard as subject to the indetermina-
cies (Ind1), (Ind2), (Ind3) described in Theorems A, (i), (ii); 3.11, (i), (ii). Here,
we recall the definition of the symbol “�” as the result of identifying the labels

“0” and “〈F�
l 〉”

[cf. [IUTchII], Corollary 4.10, (i)]. In particular, |log(q)| > 0 is easily computed

in terms of the various q-parameters of the elliptic curve EF [cf. [IUTchI],

Definition 3.1, (b)] at v ∈ Vbad ( �= ∅). Then it holds that − |log(Θ)| ∈ R, and

− |log(Θ)| ≥ − |log(q)|

— i.e., CΘ ≥ −1 for any real number CΘ ∈ R such that − |log(Θ)| ≤ CΘ · |log(q)|.
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Notations and Conventions:

We shall continue to use the “Notations and Conventions” of [IUTchI], §0.
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Section 1: The Log-theta-lattice

In the present §1, we discuss various enhancements to the theory of log-shells,
as developed in [AbsTopIII]. In particular, we develop the theory of the log-link [cf.
Definition 1.1; Propositions 1.2, 1.3], which, together with the Θ×μ- and Θ×μ

gau-links
of [IUTchII], Corollary 4.10, (iii), leads naturally to the construction of the log-
theta-lattice, an apparatus that is central to the theory of the present series of
papers. We conclude the present §1 with a discussion of various coric structures
associated to the log-theta-lattice [cf. Theorem 1.5].

In the following discussion, we assume that we have been given initial Θ-data
as in [IUTchI], Definition 3.1. We begin by reviewing various aspects of the theory
of log-shells developed in [AbsTopIII].

Definition 1.1. Let
†F = {†Fv}v∈V

be an F-prime-strip [relative to the given initial Θ-data — cf. [IUTchI], Definition
5.2, (i)]. Write

†F� = {†F�v }v∈V; †F�×μ = {†F�×μ
v }v∈V; †D = {†Dv}v∈V

for the associated F�-, F�×μ-, D-prime-strips [cf. [IUTchI], Remark 5.2.1, (ii);
[IUTchII], Definition 4.9, (vi), (vii); [IUTchI], Remark 5.2.1, (i)]. Recall the func-
torial algorithm of [IUTchII], Corollary 4.6, (i), in the F-prime-strip †F for con-
structing the assignment Ψcns(

†F) given by

Vnon � v �→ Ψcns(
†F)v

def
=

{
Gv(

†Πv) � Ψ†Fv

}
Varc � v �→ Ψcns(

†F)v
def
= Ψ†Fv

— where the data in brackets “{−}” is to be regarded as being well-defined only
up to a †Πv-conjugacy indeterminacy [cf. [IUTchII], Corollary 4.6, (i), for more
details]. In the following, we shall write

(−)gp def
= (−)gp

⋃
{0}

for the formal union with {0} of the groupification (−)gp of a [multiplicatively
written] monoid “(−)”. Thus, by setting the product of all elements of (−)gp with
0 to be equal to 0, one obtains a natural monoid structure on (−)gp.

(i) Let v ∈ Vnon. Write

(Ψ†Fv
⊇ Ψ×†Fv

→) Ψ∼†Fv

def
= (Ψ×†Fv

)pf

for the perfection (Ψ×†Fv
)pf of the submonoid of units Ψ×†Fv

of Ψ†Fv
. Now let us

recall from the theory of [AbsTopIII] [cf. [AbsTopIII], Definition 3.1, (iv); [Ab-
sTopIII], Proposition 3.2, (iii), (v)] that the natural, algorithmically constructible
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ind-topological field structure on Ψ
gp
†Fv

allows one to define a pv-adic logarithm on

Ψ∼†Fv
, which, in turn, yields a functorial algorithm in the Frobenioid †Fv for con-

structing an ind-topological field structure on Ψ∼†Fv
. Write

Ψlog(†Fv) ⊆ Ψ∼†Fv

for the resulting multiplicative monoid of nonzero integers. Here, we observe that
the resulting diagram

Ψ†Fv
⊇ Ψ×†Fv

→ Ψ∼†Fv
= Ψ

gp

log(†Fv)

is compatible with the various natural actions of †Πv � Gv(
†Πv) on each of the [four]

“Ψ’s” appearing in this diagram. The pair {†Πv � Ψlog(†Fv)} now determines a

Frobenioid
log(†Fv)

[cf. [AbsTopIII], Remark 3.1.1; [IUTchI], Remark 3.3.2] — which is, in fact, nat-
urally isomorphic to the Frobenioid †Fv, but which we wish to think of as being

related to †Fv via the above diagram. We shall denote this diagram by means of
the notation

†Fv
log−→ log(†Fv)

and refer to this relationship between †Fv and log(†Fv) as the tautological log-

link associated to †Fv [or, when †F is fixed, at v]. If log(†Fv)
∼→ ‡Fv is any

[poly-]isomorphism of Frobenioids, then we shall write

†Fv
log−→ ‡Fv

for the diagram obtained by post-composing the tautological log-link associated
to †Fv with the given [poly-]isomorphism log(†Fv)

∼→ ‡Fv and refer to this re-

lationship between †Fv and ‡Fv as a log-link from †Fv to ‡Fv; when the given

[poly-]isomorphism log(†Fv)
∼→ ‡Fv is the full poly-isomorphism, then we shall re-

fer to the resulting log-link as the full log-link from †Fv to ‡Fv. Finally, we recall
from [AbsTopIII], Definition 3.1, (iv), that the image in Ψ∼†Fv

of the submonoid

of Gv(
†Πv)-invariants of Ψ×†Fv

constitutes a compact topological module, which we

shall refer to as the pre-log-shell. Write p∗v
def
= pv when pv is odd and p∗v

def
= p2v when

pv is even. Then we shall refer to the result of multiplying the pre-log-shell by the

factor (p∗v)
−1 as the log-shell

I†Fv
⊆ Ψ∼†Fv

= Ψ
gp

log(†Fv)

[cf. [AbsTopIII], Definition 5.4, (iii)]. In particular, by applying the natural, al-

gorithmically constructible ind-topological field structure on Ψ
gp

log(†Fv)
[cf. [Ab-

sTopIII], Proposition 3.2, (iii)], it thus follows that one may think of this log-shell
as an object associated to the codomain of any [that is to say, not necessarily
tautological!] log-link

†Fv
log−→ ‡Fv
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— i.e., an object that is determined by the image of a certain portion [namely, the
Gv(

†Πv)-invariants of Ψ
×
†Fv

] of the domain of this log-link.

(ii) Let v ∈ Varc. For N ∈ N≥1, write Ψ
μN
†Fv
⊆ Ψ×†Fv

⊆ Ψgp
†Fv

for the subgroup

of N -th roots of unity and Ψ∼†Fv
� Ψgp

†Fv
for the [pointed] universal covering of the

topological group determined by the groupification Ψgp
†Fv

of the topological monoid

Ψ†Fv
. Then one verifies immediately that one may think of the composite covering

of topological groups

Ψ∼†Fv
� Ψgp

†Fv
� Ψgp

†Fv
/ΨμN

†Fv

— where the second “�” is the natural surjection — as a [pointed] universal cov-
ering of Ψgp

†Fv
/ΨμN

†Fv
. That is to say, one may think of Ψ∼†Fv

as an object constructed

from Ψgp
†Fv

/ΨμN
†Fv

[cf. also Remark 1.2.1, (i), below]. Now let us recall from the

theory of [AbsTopIII] [cf. [AbsTopIII], Definition 4.1, (iv); [AbsTopIII], Propo-
sition 4.2, (i), (ii)] that the natural, algorithmically constructible [i.e., starting
from the collection of data †Fv — cf. [IUTchI], Definition 5.2, (i), (b)] topological

field structure on Ψ
gp
†Fv

allows one to define a [complex archimedean] logarithm on

Ψ∼†Fv
, which, in turn, yields a functorial algorithm in the collection of data †Fv

[cf. [IUTchI], Definition 5.2, (i), (b)] for constructing a topological field structure

on Ψ∼†Fv
, together with a Ψ∼†Fv

-Kummer structure on †Uv
def
= †Dv [cf. [AbsTopIII],

Definition 4.1, (iv); [IUTchII], Proposition 4.4, (i)]. Write

Ψlog(†Fv) ⊆ Ψ∼†Fv

for the resulting multiplicative monoid of nonzero integral elements [i.e., elements
of norm ≤ 1]. Here, we observe that the resulting diagram

Ψ†Fv
⊆ Ψgp

†Fv
� Ψ∼†Fv

= Ψ
gp

log(†Fv)

is compatible [cf. the discussion of [AbsTopIII], Definition 4.1, (iv)] with the

co-holomorphicizations determined by the natural Ψ
gp
†Fv

-Kummer [cf. [IUTchII],

Proposition 4.4, (i)] and Ψ∼†Fv
-Kummer [cf. the above discussion] structures on

†Uv. The triple of data consisting of the topological monoid Ψlog(†Fv), the Aut-

holomorphic space †Uv, and the Ψ∼†Fv
-Kummer structure on †Uv discussed above

determines a collection of data [i.e., as in [IUTchI], Definition 5.2, (i), (b)]

log(†Fv)

which is, in fact, naturally isomorphic to the collection of data †Fv, but which we

wish to think of as being related to †Fv via the above diagram. We shall denote
this diagram by means of the notation

†Fv
log−→ log(†Fv)

and refer to this relationship between †Fv and log(†Fv) as the tautological log-

link associated to †Fv [or, when †F is fixed, at v]. If log(†Fv)
∼→ ‡Fv is any
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[poly-]isomorphism of collections of data [i.e., as in [IUTchI], Definition 5.2, (i),
(b)], then we shall write

†Fv
log−→ ‡Fv

for the diagram obtained by post-composing the tautological log-link associated
to †Fv with the given [poly-]isomorphism log(†Fv)

∼→ ‡Fv and refer to this re-

lationship between †Fv and ‡Fv as a log-link from †Fv to ‡Fv; when the given

[poly-]isomorphism log(†Fv)
∼→ ‡Fv is the full poly-isomorphism, then we shall re-

fer to the resulting log-link as the full log-link from †Fv to ‡Fv. Finally, we recall

from [AbsTopIII], Definition 4.1, (iv), that the submonoid of units Ψ×†Fv
⊆ Ψ†Fv

determines a compact topological subquotient of Ψ∼†Fv
, which we shall refer to as

the pre-log-shell. We shall refer to the Ψ×
log(†Fv)

-orbit of the [uniquely determined]

closed line segment of Ψ∼†Fv
which is preserved by multiplication by ±1 and whose

endpoints differ by a generator of the kernel of the natural surjection Ψ∼†Fv
� Ψgp

†Fv

— or, equivalently, the Ψ×
log(†Fv)

-orbit of the result ofmultiplying by N the [uniquely

determined] closed line segment of Ψ∼†Fv
which is preserved by multiplication by ±1

and whose endpoints differ by a generator of the kernel of the natural surjection
Ψ∼†Fv

� Ψgp
†Fv

/ΨμN
†Fv

— as the log-shell

I†Fv
⊆ Ψ∼†Fv

= Ψ
gp

log(†Fv)

[cf. [AbsTopIII], Definition 5.4, (v)]. Thus, one may think of the log-shell as an
object constructed from Ψgp

†Fv
/ΨμN

†Fv
. Moreover, by applying the natural, algorithmi-

cally constructible topological field structure on Ψ
gp

log(†Fv)
(= Ψ∼†Fv

), it thus follows

that one may think of this log-shell as an object associated to the codomain of any
[that is to say, not necessarily tautological!] log-link

†Fv
log−→ ‡Fv

— i.e., an object that is determined by the image of a certain portion [namely, the
subquotient Ψ×†Fv

of Ψ∼†Fv
] of the domain of this log-link.

(iii) Write

log(†F) def
=

{
log(†Fv)

def
= Ψ∼†Fv

}
v∈V

for the collection of ind-topological modules constructed in (i), (ii) above indexed
by v ∈ V — where the group structure arises from the additive portion of the field
structures on Ψ∼†Fv

discussed in (i), (ii); for v ∈ Vnon, we regard Ψ∼†Fv
as equipped

with its natural Gv(
†Πv)-action. Write

log(†F) def
= {log(†Fv)}v∈V

for the F-prime-strip determined by the data log(†Fv) constructed in (i), (ii) for
v ∈ V. We shall denote by

†F
log−→ log(†F)
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the collection of diagrams {†Fv
log−→ log(†Fv)}v∈V constructed in (i), (ii) for v ∈ V

and refer to this relationship between †F and log(†F) as the tautological log-link

associated to †F. If log(†F) ∼→ ‡F is any [poly-]isomorphism of F-prime-strips,
then we shall write

†F
log−→ ‡F

for the diagram obtained by post-composing the tautological log-link associated to
†F with the given [poly-]isomorphism log(†F) ∼→ ‡F and refer to this relationship
between †F and ‡F as a log-link from †F to ‡F; when the given [poly-]isomorphism

log(†F) ∼→ ‡F is the full poly-isomorphism, then we shall refer to the resulting log-
link as the full log-link from †F to ‡F. Finally, we shall write

I†F
def
= {I†Fv

}v∈V

for the collection of log-shells constructed in (i), (ii) for v ∈ V and refer to this
collection as the log-shell associated to †F and [by a slight abuse of notation]

I†F ⊆ log(†F)

for the collection of natural inclusions indexed by v ∈ V. In particular, [cf. the
discussion of (i), (ii)], it thus follows that one may think of this log-shell as an object
associated to the codomain of any [that is to say, not necessarily tautological!] log-
link

†F
log−→ ‡F

— i.e., an object that is determined by the image of a certain portion [cf. the
discussion of (i), (ii)] of the domain of this log-link.

(iv) Let v ∈ Vnon. Then observe that it follows immediately from the construc-
tions of (i) that the ind-topological modules with Gv(

†Πv)-action I†Fv
⊆ log(†Fv)

may be constructed solely from the collection of data †F�×μ
v [i.e., the portion of the

F�×μ-prime-strip †F�×μ labeled by v]. That is to say, in light of the definition of a
×μ-Kummer structure [cf. [IUTchII], Definition 4.9, (i), (ii), (iv), (vi), (vii)], these
constructions only require the perfection “(−)pf” of the units and are manifestly
unaffected by the operation of forming the quotient by a torsion subgroup of the
units. Write

I†F�×μ
v

⊆ log(†F�×μ
v )

for the resulting ind-topological modules with Gv(
†Πv)-action, regarded as objects

constructed from †F�×μ
v .

(v) Let v ∈ Varc. Then by applying the algorithms for constructing “k∼(G)”,
“I(G)” given in [AbsTopIII], Proposition 5.8, (v), to the [object of the category

“TM�” of split topological monoids discussed in [IUTchI], Example 3.4, (ii), deter-
mined by the] split Frobenioid portion of the collection of data †F�v , one obtains

a functorial algorithm in the collection of data †F�v for constructing a topological

module log(†F�v ) [i.e., corresponding to “k∼(G)”] and a topological subspace I†F�
v

[i.e., corresponding to “I(G)”]. In fact, this functorial algorithm only makes use of
the unit portion of this split Frobenioid, together with a pointed universal covering
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of this unit portion. Moreover, by arguing as in (ii), one may in fact regard this
functorial algorithm as an algorithm that only makes use of the quotient of this unit
portion by its N -torsion subgroup, for N ∈ N≥1, together with a pointed universal
covering of this quotient. That is to say, this functorial algorithm may, in fact,
be regarded as a functorial algorithm in the collection of data †F�×μ

v [cf. Remark

1.2.1, (i), below; [IUTchII], Definition 4.9, (v), (vi), (vii)]. Write

I†F�×μ
v

⊆ log(†F�×μ
v )

for the resulting topological module equipped with a closed subspace, regarded as
objects constructed from †F�×μ

v .

(vi) Finally, just as in (iii), we shall write

I†F�×μ
def
= {I†F�×μ

v
}v∈V ⊆ log(†F�×μ)

def
= {log(†F�×μ

v )}v∈V

for the resulting collections of data constructed solely from the F�×μ-prime-strip
†F�×μ [i.e., which we do not regard as objects constructed from †F!].

Remark 1.1.1.

(i) Thus, log-links may be thought of as correspondences between certain
portions of the ind-topological monoids in the domain of the log-link and certain
portions of the ind-topological monoids in the codomain of the log-link. Frequently,
in the theory of the present paper, we shall have occasion to consider “iterates” of
log-links. The log-links — i.e., correspondences between certain portions of the ind-
topological monoids in the domains and codomains of the log-links — that appear
in such iterates are to be understood as being defined only on the [local] units [cf.
also (ii) below, in the case of v ∈ Varc] that appear in the domains of these log-links.
Thus, for instance, when considering [the nonzero elements of] a global number field
embedded in an “idèlic” product [indexed by the set of all valuations of the number
field] of localizations, we shall regard the log-links that appear as being defined
only on the product [indexed by the set of all valuations of the number field] of the
groups of local units that appear in the domains of these log-links. Indeed, in the
theory of the present paper, the only reason for the introduction of log-links is to
render possible

the construction of the log-shells from the various [local] units.

That is to say, the construction of log-shells does not require the use of the “non-
unit” — i.e., the local and global “value group” — portions of the various monoids
in the domain. Thus, when considering the effect of applying various iterates of log-
links, it suffices, from the point of view of computing the effect of the construction
of the log-shells from the local units, to consider the effect of such iterates on the
various groups of local units that appear.

(ii) Suppose that we are in the situation of the discussion of [local] units in
(i), in the case of v ∈ Varc. Then, when thinking of Kummer structures in
terms of Aut-holomorphic structures and co-holomorphicizations, as in the
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discussion of [IUTchI], Remark 3.4.2, it is natural to regard the [local] units that
appear as being, in fact, “Aut-holomorphic semi-germs”, that is to say,

· projective systems of arbitrarily small neighborhoods of the [local] units
[i.e., of “S1” in “C×”, or, in the notation of [IUTchI], Example 3.4, (i);
[IUTchI], Remark 3.4.2, of “O×(Cv)” in “O�(Cv)gp”], equipped with

· the Aut-holomorphic structures induced by restricting the ambient Aut-
holomorphic structure [i.e., of “C×”, or, in the notation of [IUTchI], Ex-
ample 3.4, (i); [IUTchI], Remark 3.4.2, of “O�(Cv)gp”],
· the group structure [germ] induced by restricting the ambient group
structure [i.e., of “C×”, or, in the notation of [IUTchI], Example 3.4, (i);
[IUTchI], Remark 3.4.2, of “O�(Cv)gp”], and
· a choice of one of the two connected components of the complement of the
units in a sufficiently small neighborhood [i.e., determined by “O�

C \ S1 ⊆
C× \ S1”, or, in the notation of [IUTchI], Example 3.4, (i); [IUTchI],
Remark 3.4.2, by “O�(Cv) \ O×(Cv) ⊆ O�(Cv)gp \ O×(Cv)”].

Indeed, one verifies immediately that such “Aut-holomorphic semi-germs” are rigid
in the sense that they do not admit any nontrivial holomorphic automorphisms. In
particular, by thinking of the [local] units as “Aut-holomorphic semi-germs” in
this way, the approach to Kummer structures in terms of Aut-holomorphic
structures and co-holomorphicizations discussed in [IUTchI], Remark 3.4.2,
carries over without change [cf. [AbsTopIII], Corollary 2.3, (i)]. Moreover, in
light of the well-known discreteness of the image of the units of a number field via
the logarithms of the various archimedean valuations of the number field [cf., e.g.,
[Lang], p. 144, Theorem 5], it follows that the “idèlic” aspects discussed in (i) are
also unaffected by thinking in terms of Aut-holomorphic semi-germs.

Remark 1.1.2.

(i) In the notation of Definition 1.1, (i), we observe that the tautological
log-link

†Fv
log−→ log(†Fv)

satisfies the property that there is a tautological identification between the †Πv’s

that appear in the data that gives rise to the domain [i.e., {†Πv � Ψ†Fv
}] and the

data that gives rise to the codomain [i.e., {†Πv � Ψlog(†Fv)}] of the tautological

log-link. By contrast, the †Πv that appears in the data that gives rise to the domain
of the full log-link

†Fv
log−→ ‡Fv

is related to the ‡Πv [where we use analogous notational conventions for objects

associated to ‡F to the notational conventions already in force for objects associated
to †F ] that appears in the data that gives rise to the codomain of the full log-link

by means of a full poly-isomorphism †Πv
∼→ ‡Πv. In this situation,

the specific isomorphism between the †Πv’s in the domain and codomain
of the tautological log-link may be thought of as a sort of specific “rigid-
ifying path” between the †Πv’s in the domain and codomain of the tau-
tological log-link that is constructed precisely by using [in an essential
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way!] Frobenius-like monoids that are related via the pv-adic logarithm
[cf. the construction of Definition 1.1, (i)], i.e., by applying the Galois-
equivariance of the power series defining the pv-adic logarithm to relate
automorphisms of the monoid Ψ†Fv

to [induced!] automorphisms of the

monoid Ψ∼†Fv
= Ψ

gp

log(†Fv)
.

Here, the use of the term “path” is intended to be in the spirit of the notion of
a path in the étale groupoid [i.e., in the context of the classical theory of the étale
fundamental group], except that, in the present context, we allow arbitrary au-
tomorphism indeterminacies, instead of just inner automorphism indeterminacies.
In the present paper, we shall work mainly with the full log-link [i.e., not with
the tautological log-link!] since, in the context of the multiradial algorithms to be
developed in §3 below, it will be of crucial importance to be able to

express the relationship between the étale-like (−)Πv’s in the domain and
codomain of the log-links that appear in purely étale-like terms, i.e., in a
fashion that is [unlike the specific “rigidifying path” discussed above!] free
of any dependence on the Frobenius-like monoids involved.

This is precisely what is achieved by working with the “tautologically indeterminate
isomorphism” between (−)Πv’s that underlies the full log-link.

(ii) An analogous discussion to that of (i) may be given in the situation of
Definition 1.1, (ii), i.e., in the case of v ∈ Varc. We leave the routine details to the
reader.

From the point of view of the present series of papers, the theory of [AbsTopIII]
may be summarized as follows.

Proposition 1.2. (log-links Between F-prime-strips) Let

†F = {†Fv}v∈V; ‡F = {‡Fv}v∈V

be F-prime-strips [relative to the given initial Θ-data — cf. [IUTchI], Definition
5.2, (i)] and

†F
log−→ ‡F

a log-link from †F to ‡F. Write †F�×μ, ‡F�×μ for the associated F�×μ-prime-strips
[cf. [IUTchII], Definition 4.9, (vi), (vii)]; †D, ‡D for the associated D-prime-strips
[cf. [IUTchI], Remark 5.2.1, (i)]; †D�, ‡D� for the associated D�-prime-strips [cf.
[IUTchI], Definition 4.1, (iv)]. Also, let us recall the diagrams

Ψ†Fv
⊇ Ψ×†Fv

→ log(†Fv) = Ψ
gp

log(†Fv)

∼→ Ψ
gp
‡Fv

(∗non)

Ψ†Fv
⊆ Ψgp

†Fv
� log(†Fv) = Ψ

gp

log(†Fv)

∼→ Ψ
gp
‡Fv

(∗arc)

— where the v of (∗non) (respectively, (∗arc)) belongs to Vnon (respectively, Varc),

and the [poly-]isomorphisms on the right are induced by the “
log−→ ” — of Definition

1.1, (i), (ii).
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(i) (Coricity of Associated D-Prime-Strips) The log-link †F
log−→ ‡F

induces [poly-]isomorphisms

†D ∼→ ‡D; †D� ∼→ ‡D�

between the associated D- and D�-prime-strips. In particular, the [poly-]isomorphism
†D ∼→ ‡D induced by †F

log−→ ‡F induces a [poly-]isomorphism

Ψcns(
†D)

∼→ Ψcns(
‡D)

between the collections of monoids equipped with auxiliary data of [IUTchII], Corol-
lary 4.5, (i).

(ii) (Simultaneous Compatibility with Ring Structures) At v ∈ Vnon,
the natural †Πv-actions on the “Ψ’s” appearing in the diagram (∗non) are compat-

ible with the ind-topological ring structures on Ψ
gp
†Fv

and Ψ
gp

log(†Fv)
. At v ∈ Varc,

the co-holomorphicizations determined by the natural Ψ
gp
†Fv

- and Ψ
gp

log(†Fv)
(=

Ψ∼†Fv
)-Kummer structures on †Uv — which [cf. the discussion of Definition 1.1,

(ii)] are compatible with the diagram (∗arc) — are compatible with the topological

ring structures on Ψ
gp
†Fv

and Ψ
gp

log(†Fv)
.

(iii) (Simultaneous Compatibility with Log-volumes) At v ∈ Vnon, the
diagram (∗non) is compatible with the natural pv-adic log-volumes [cf. [Ab-
sTopIII], Proposition 5.7, (i), (c); [AbsTopIII], Corollary 5.10, (ii)] on the sub-

sets of †Πv-invariants of Ψ
gp
†Fv

and Ψ
gp

log(†Fv)
. At v ∈ Varc, the diagram (∗arc) is

compatible with the natural angular log-volume [cf. Remark 1.2.1, (i), below;
[AbsTopIII], Proposition 5.7, (ii); [AbsTopIII], Corollary 5.10, (ii)] on Ψ×†Fv

and

the natural radial log-volume [cf. [AbsTopIII], Proposition 5.7, (ii), (c); [Ab-

sTopIII], Corollary 5.10, (ii)] on Ψ
gp

log(†Fv)
— cf. also Remark 1.2.1, (ii), below.

(iv) (Kummer theory) The Kummer isomorphisms

Ψcns(
†F) ∼→ Ψcns(

†D); Ψcns(
‡F) ∼→ Ψcns(

‡D)

of [IUTchII], Corollary 4.6, (i), fail to be compatible with the [poly-]isomorphism

Ψcns(
†D)

∼→ Ψcns(
‡D) of (i), relative to the diagrams (∗non), (∗arc) [and the

notational conventions of Definition 1.1] — cf. [AbsTopIII], Corollary 5.5, (iv).
[Here, we regard the diagrams (∗non), (∗arc) as diagrams that relate Ψ†Fv

and Ψ‡Fv
,

via the [poly-]isomorphism log(†F) ∼→ ‡F that determines the log-link †F
log−→ ‡F.]

(v) (Holomorphic Log-shells) At v ∈ Vnon, the log-shell

I†Fv
⊆ log(†Fv) (

∼→ Ψ
gp
‡Fv

)

satisfies the following properties: (anon) I†Fv
is compact, hence of finite log-

volume [cf. [AbsTopIII], Corollary 5.10, (i)]; (bnon) I†Fv
contains the submonoid
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of †Πv-invariants of Ψlog(†Fv) [cf. [AbsTopIII], Definition 5.4, (iii)]; (cnon) I†Fv

contains the image of the submonoid of †Πv-invariants of Ψ×†Fv
. At v ∈ Varc, the

log-shell

I†Fv
⊆ log(†Fv) (

∼→ Ψ
gp
‡Fv

)

satisfies the following properties: (aarc) I†Fv
is compact, hence of finite radial

log-volume [cf. [AbsTopIII], Corollary 5.10, (i)]; (barc) I†Fv
contains Ψlog(†Fv)

[cf. [AbsTopIII], Definition 5.4, (v)]; (carc) the image of I†Fv
in Ψgp

†Fv
contains

Ψ×†Fv
[i.e., in essence, the pre-log-shell].

(vi) (Nonarchimedean Mono-analytic Log-shells) At v ∈ Vnon, if we
write †D�v = B(†Gv)

0 for the portion of †D� indexed by v [cf. the notation of

[IUTchII], Corollary 4.5], then the algorithms for constructing “k∼(G)”, “I(G)”
given in [AbsTopIII], Proposition 5.8, (ii), yield a functorial algorithm in the
category †D�v for constructing an ind-topological module equipped with a continuous
†Gv-action

log(†D�v )
def
=

{
†Gv � k∼(†Gv)

}
and a topological submodule — i.e., a “mono-analytic log-shell” —

I†D�
v

def
= I(†Gv) ⊆ k∼(†Gv)

equipped with a pv-adic log-volume [cf. [AbsTopIII], Corollary 5.10, (iv)]. More-
over, there is a natural functorial algorithm [cf. the second display of [IUTchII],
Corollary 4.6, (ii)] in the collection of data †F�×μ

v [i.e., the portion of †F�×μ labeled

by v] for constructing an Ism-orbit of isomorphisms [cf. [IUTchII], Example 1.8,
(iv); [IUTchII], Definition 4.9, (i), (vii)]

log(†D�v )
∼→ log(†F�×μ

v )

of ind-topological modules [cf. Definition 1.1, (iv)], as well as a functorial al-
gorithm [cf. [AbsTopIII], Corollary 5.10, (iv), (c), (d); the fourth display of
[IUTchII], Corollary 4.5, (ii); the final display of [IUTchII], Corollary 4.6, (i)]
in the collection of data †Fv for constructing isomorphisms

log(†D�v )
∼→ log(†F�×μ

v )
∼→ log(†Fv) (

∼→ Ψ
gp
‡Fv

)

of ind-topological modules. The various isomorphisms of the last two displays are
compatible with one another, as well as with the respective †Gv- and Gv(

†Πv)-

actions [relative to the natural identification †Gv = Gv(
†Πv) that arises from re-

garding †D�v as an object constructed from †Dv], the respective log-shells, and the
respective log-volumes on these log-shells.

(vii) (Archimedean Mono-analytic Log-shells) At v ∈ Varc, the algo-
rithms for constructing “k∼(G)”, “I(G)” given in [AbsTopIII], Proposition 5.8,
(v), yield a functorial algorithm in †D�v [regarded as an object of the category
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“TM�” of split topological monoids discussed in [IUTchI], Example 3.4, (ii)] for
constructing a topological module

log(†D�v )
def
= k∼(†Gv)

and a topological subspace — i.e., a “mono-analytic log-shell” —

I†D�
v

def
= I(†Gv) ⊆ k∼(†Gv)

equipped with angular and radial log-volumes [cf. [AbsTopIII], Corollary 5.10, (iv)].
Moreover, there is a natural functorial algorithm [cf. the second display of
[IUTchII], Corollary 4.6, (ii)] in the collection of data †F�×μ

v for constructing

a poly-isomorphism [i.e., an orbit of isomorphisms with respect to the indepen-
dent actions of {±1} on each of the direct factors that occur in the construction
of [AbsTopIII], Proposition 5.8, (v)]

log(†D�v )
∼→ log(†F�×μ

v )

of topological modules [cf. Definition 1.1, (v)], as well as a functorial algorithm
[cf. [AbsTopIII], Corollary 5.10, (iv), (c), (d); the fourth display of [IUTchII],
Corollary 4.5, (ii); the final display of [IUTchII], Corollary 4.6, (i)] in the collection
of data †Fv for constructing poly-isomorphisms [i.e., orbits of isomorphisms with
respect to the independent actions of {±1} on each of the direct factors that occur
in the construction of [AbsTopIII], Proposition 5.8, (v)]

log(†D�v )
∼→ log(†F�×μ

v )
∼→ log(†Fv) (

∼→ Ψ
gp
‡Fv

)

of topological modules. The various isomorphisms of the last two displays are com-
patible with one another, as well as with the respective log-shells and the respec-
tive angular and radial log-volumes on these log-shells.

(viii) (Mono-analytic Log-shells) The various [poly-]isomorphisms of (vi),
(vii) [cf. also Definition 1.1, (iii), (vi)] yield collections of [poly-]isomorphisms
indexed by v ∈ V

log(†D�) def
= {log(†D�v )}v∈V

∼→ log(†F�×μ)
def
= {log(†F�×μ

v )}v∈V

I†D�
def
= {I†D�

v
}v∈V ∼→ I†F�×μ

def
= {I†F�×μ

v
}v∈V

log(†D�) ∼→ log(†F�×μ)
∼→ log(†F) def

= {log(†Fv)}v∈V( ∼→ Ψ
gp
cns(

‡F) def
= {Ψgp

‡Fv
}v∈V

)
I†D�

∼→ I†F�×μ
∼→ I†F

def
= {I†Fv

}v∈V

— where, in the definition of “Ψ
gp
cns(‡F)”, we regard each Ψ

gp
‡Fv

, for v ∈ Vnon, as

being equipped with its natural Gv(
‡Πv)-action [cf. the discussion at the beginning

of Definition 1.1].
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(ix) (Coric Holomorphic Log-shells) Let ∗D be a D-prime-strip; write

F(∗D)

for the F-prime-strip naturally determined by Ψcns(
∗D) [cf. [IUTchII], Remark

4.5.1, (i)]. Suppose that †F = ‡F = F(∗D), and that the given log-link F(∗D) =
†F

log−→ ‡F = F(∗D) is the full log-link. Then there exists a functorial algorithm
in the D-prime-strip ∗D for constructing a collection of topological subspaces — i.e.,
a collection of “coric holomorphic log-shells” —

I∗D def
= I†F

of the collection Ψ
gp
cns(∗D), which may be naturally identified with Ψ

gp
cns(‡F), together

with a collection of natural isomorphisms [cf. (viii); the fourth display of [IUTchII],
Corollary 4.5, (ii)]

I∗D�
∼→ I∗D

— where we write ∗D� for the D�-prime-strip determined by ∗D.

(x) (Frobenius-picture) Let {nF}n∈Z be a collection of distinct F-prime-
strips [relative to the given initial Θ-data — cf. [IUTchI], Definition 5.2, (i)]
indexed by the integers. Write {nD}n∈Z for the associated D-prime-strips [cf.
[IUTchI], Remark 5.2.1, (i)] and {nD�}n∈Z for the associated D�-prime-strips [cf.

[IUTchI], Definition 4.1, (iv)]. Then the full log-links nF
log−→ (n+1)F, for

n ∈ Z, give rise to an infinite chain

. . .
log−→ (n−1)F

log−→ nF
log−→ (n+1)F

log−→ . . .

of log-linked F-prime-strips which induces chains of full poly-isomorphisms

. . .
∼→ nD

∼→ (n+1)D
∼→ . . . and . . .

∼→ nD� ∼→ (n+1)D� ∼→ . . .

on the associated D- and D�-prime-strips [cf. (i)]. These chains may be represented

symbolically as an oriented graph �Γ [cf. [AbsTopIII], §0]

. . . → • → • → • → . . .

. . . ↘ ↓ ↙ . . .

◦

— i.e., where the horizontal arrows correspond to the “
log−→ ’s”; the “•’s” corre-

spond to the “nF”; the “◦” corresponds to the “nD”, identified up to isomorphism;
the vertical/diagonal arrows correspond to the Kummer isomorphisms of (iv).

This oriented graph �Γ admits a natural action by Z [cf. [AbsTopIII], Corollary 5.5,
(v)] — i.e., a translation symmetry — that fixes the “core” ◦, but it does not

admit arbitrary permutation symmetries. For instance, �Γ does not admit an
automorphism that switches two adjacent vertices, but leaves the remaining vertices
fixed.
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Proof. The various assertions of Proposition 1.2 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 1.2.1.

(i) Suppose that we are in the situation of Definition 1.1, (ii). Then at the
level of metrics — i.e., which give rise to angular log-volumes as in Proposition
1.2, (iii) — we suppose that Ψgp

†Fv
/ΨμN

†Fv
is equipped with the metric obtained by

descending the metric of Ψgp
†Fv

, but we regard the object

Ψgp
†Fv

/ΨμN
†Fv

[or Ψ×†Fv
/ΨμN

†Fv
] as being equipped with a “weight N”

— i.e., which has the effect of ensuring that the log-volume of Ψ×†Fv
/ΨμN

†Fv
is equal

to that of Ψ×†Fv
. That is to say, this convention concerning “weights” ensures that

working with Ψgp
†Fv

/ΨμN
†Fv

does not have any effect on various computations of log-

volume.

(ii) Although, at first glance, the compatibility with archimedean log-volumes
discussed in Proposition 1.2, (iii), appears to relate “different objects” — i.e., angu-
lar versus radial log-volumes — in the domain and codomain of the log-link under
consideration, in fact, this compatibility property may be regarded as an invari-
ance property — i.e., that relates “similar objects” in the domain and codomain
of the log-link under consideration — by reasoning as follows. Let k be a complex
archimedean field. Write O×k ⊆ k for the group of elements of absolute value = 1
and k× ⊆ k for the group of nonzero elements. In the following, we shall use the
term “metric on k” to refer to a Riemannian metric on the real analytic manifold
determined by k that is compatible with the two natural almost complex structures
on this real analytic manifold and, moreover, is invariant with respect to arbitrary
additive translation automorphisms of k. In passing, we note that any metric on
k is also invariant with respect to multiplication by elements ∈ O×k . Next, let us
observe that the metrics on k naturally form a torsor over R>0. In particular, if
we write k× ∼= O×k × R>0 for the natural direct product decomposition, then one
verifies immediately that

any metric on k is uniquely determined either by its restriction to
O×k ⊆ k or by its restriction to R>0 ⊆ k.

Thus, if one regards the compatibility property concerning angular and radial log-
volumes discussed in Proposition 1.2, (iii), as a property concerning the respective
restrictions of the corresponding uniquely determined metrics [i.e., the metrics
corresponding to the respective standard norms on the complex archimedean fields
under consideration — cf. [AbsTopIII], Proposition 5.7, (ii), (a)], then this compat-
ibility property discussed in Proposition 1.2, (iii), may be regarded as a property
that asserts the invariance of the respective natural metrics with respect to the
“transformation” constituted by the log-link.

Remark 1.2.2. Before proceeding, we pause to consider the significance of the
various properties discussed in Proposition 1.2, (v). For simplicity, we suppose
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that “†F” is the F-prime-strip that arises from the data constructed in [IUTchI],
Examples 3.2, (iii); 3.3, (i); 3.4, (i) [cf. [IUTchI], Definition 5.2, (i)].

(i) Suppose that v ∈ Vnon. Thus, Kv [cf. the notation of [IUTchI], Definition

3.1, (e)] is amixed-characteristic nonarchimedean local field. Write k
def
= Kv,

Ok ⊆ k for the ring of integers of k, O×k ⊆ Ok for the group of units, and logk :

O×k → k for the pv-adic logarithm. Then, at a more concrete level — i.e., relative
to the notation of the present discussion — the log-shell “I†Fv

” corresponds to

the submodule

Ik def
= (p∗v)

−1 · logk(O×k ) ⊆ k

— where p∗v = pv if pv is odd, p∗v = p2v if pv is even — while the properties (bnon),

(cnon) of Proposition 1.2, (v), correspond, respectively, to the evident inclusions

O�
k

def
= Ok \ {0} ⊆ Ok ⊆ Ik; logk(O×k ) ⊆ Ik

of subsets of k.

(ii) Suppose that v ∈ Varc. Thus, Kv [cf. the notation of [IUTchI], Definition

3.1, (e)] is a complex archimedean field. Write k
def
= Kv, Ok ⊆ k for the subset

of elements of absolute value ≤ 1, O×k ⊆ Ok for the group of elements of absolute
value = 1, and expk : k → k× for the exponential map. Then, at a more concrete
level — i.e., relative to the notation of the present discussion — the log-shell
“I†Fv

” corresponds to the subset

Ik def
= {a ∈ k | |a| ≤ π} ⊆ k

of elements of absolute value ≤ π, while the properties (barc), (carc) of Proposition
1.2, (v), correspond, respectively, to the evident inclusions

O�
k

def
= Ok \ {0} ⊆ Ok ⊆ Ik; O×k ⊆ expk(Ik)

— where we note the slightly different roles played, in the archimedean [cf. the
present (ii)] and nonarchimedean [cf. (i)] cases, by the exponential and logarithmic
functions, respectively [cf. [AbsTopIII], Remark 4.5.2].

(iii) The diagram represented by the oriented graph �Γ of Proposition 1.2, (x), is,
of course, far from commutative [cf. Proposition 1.2, (iv)]! Ultimately, however,
[cf. the discussion of Remark 1.4.1, (ii), below] we shall be interested in

(a) constructing invariants with respect to the Z-action on �Γ— i.e., in effect,
constructing objects via functorial algorithms in the coric D-prime-strips
“nD” —

while, at the same time,

(b) relating the corically constructed objects of (a) to the non-coric “nF” via
the various Kummer isomorphisms of Proposition 1.2, (iv).
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That is to say, from the point of view of (a), (b), the content of the inclusions
discussed in (i) and (ii) above may be interpreted, at v ∈ Vnon, as follows:

the coric holomorphic log-shells of Proposition 1.2, (ix), contain not
only the images, via the Kummer isomorphisms [i.e., the vertical/diagonal

arrows of �Γ], of the various “O�” at v ∈ Vnon, but also the images, via
the composite of the Kummer isomorphisms with the various iterates

[cf. Remark 1.1.1] of the log-link [i.e., the horizontal arrows of �Γ], of the
portions of the various “O�” at v ∈ Vnon on which these iterates are
defined.

An analogous statement in the case of v ∈ Varc may be formulated by adjusting the
wording appropriately so as to accommodate the latter portion of this statement,
which corresponds to a certain surjectivity — we leave the routine details to the

reader. Thus, although the diagram [corresponding to] �Γ fails to be commutative,

the coric holomorphic log-shells involved exhibit a sort of “upper semi-
commutativity” with respect to containing/surjecting onto the various

images arising from composites of arrows in �Γ.

(iv) Note that although the diagram �Γ admits a natural “upper semi-commu-
tativity” interpretation as discussed in (iii) above, it fails to admit a corresponding
“lower semi-commutativity” interpretation. Indeed, such a “lower semi-commu-
tativity” interpretation would amount to the existence of some sort of collection
of portions of the various “O�’s” involved [cf. the discussion of (i), (ii) above]
— i.e., a sort of “core” — that are mapped to one another isomorphically by
the various maps “logk”/“expk” [cf. the discussion of (i), (ii) above] in a fashion
that is compatible with the various Kummer isomorphisms that appear in

the diagram �Γ. On the other hand, it is difficult to see how to construct such a
collection of portions of the various “O�’s” involved.

(v) Proposition 1.2, (iii), may be interpreted in the spirit of the discussion of

(iii) above. That is to say, although the diagram corresponding to �Γ fails to be
commutative, it is nevertheless “commutative with respect to log-volumes”, in
the sense discussed in Proposition 1.2, (iii). This “commutativity with respect to
log-volumes” allows one to work with log-volumes in a fashion that is consistent

with all composites of the various arrows of �Γ. Log-volumes will play an important
role in the theory of §3, below, as a sort of mono-analytic version of the notion of
the degree of a global arithmetic line bundle [cf. the theory of [AbsTopIII], §5].

(vi) As discussed in [AbsTopIII], §I3, the log-links of �Γ may be thought of
as a sort of “juggling of �, �” [i.e., of the two combinatorial dimensions of
the ring structure constituted by addition and multiplication]. The “arithmetic
holomorphic structure” constituted by the coric D-prime-strips is immune to
this juggling, and hence may be thought as representing a sort of quotient of the

horizontal arrow portion of �Γ by the action of Z [cf. (iii), (a)] — i.e., at the level
of abstract oriented graphs, as a sort of “oriented copy of S1”. That is to say,

the horizontal arrow portion of �Γ may be thought of as a sort of “unraveling” of
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this “oriented copy of S1”, which is subject to the “juggling of �, �” constituted
by the Z-action. Here, it is useful to recall that

(a) the Frobenius-like structures constituted by the monoids that appear

in the horizontal arrow portion of �Γ play the crucial role in the theory
of the present series of papers of allowing one to construct such “non-
ring/scheme-theoretic filters” as the Θ-link [cf. the discussion of
[IUTchII], Remark 3.6.2, (ii)].

By contrast,

(b) the étale-like structures constituted by the coric D-prime-strips play
the crucial role in the theory of the present series of papers of allowing
one to construct objects that are capable of “functorially permeating”
such non-ring/scheme-theoretic filters as the Θ-link [cf. the discussion of
[IUTchII], Remark 3.6.2, (ii)].

Finally, in order to relate the theory of (a) to the theory of (b), one must avail
oneself of Kummer theory [cf. (iii), (b), above].

mono-anabelian coric invariant differential
étale-like structures dθ on S1

post-anabelian coordinate functions

Frobenius-like structures
∫
• dθ on �Γ

Fig. 1.1: Analogy with the differential geometry of S1

(vii) From the point of view of the discussion in (vi) above of the “oriented

copy of S1” obtained by forming the quotient of the horizontal arrow portion of �Γ
by Z, one may think of the coric étale-like structures of Proposition 1.2, (i) — as
well as the various objects constructed from these coric étale-like structures via the
various mono-anabelian algorithms discussed in [AbsTopIII] — as corresponding to
the “canonical invariant differential dθ” on S1 [which is, in particular, invariant
with respect to the action of Z!]. On the other hand, the various post-anabelian
Frobenius-like structures obtained by forgetting the mono-anabelian algorithms ap-
plied to construct these objects — cf., e.g.., the “Ψcns(

†F)” that appear in the
Kummer isomorphisms of Proposition 1.2, (iv) — may be thought of as coordinate

functions on the horizontal arrow portion of �Γ [which are not invariant with respect
to the action of Z!] of the form “

∫
• dθ” obtained by integrating the invariant dif-

ferential dθ along various paths of �Γ that emanate from some fixed vertex “•” of
�Γ. This point of view is summarized in Fig. 1.1 above. Finally, we observe that
this point of view is reminiscent of the discussion of [AbsTopIII], §I5, concerning
the analogy between the theory of [AbsTopIII] and the construction of canonical
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coordinates via integration of Frobenius-invariant differentials in the classical p-adic
theory.

Remark 1.2.3.

(i) Observe that, relative to the notation of Remark 1.2.2, (i), any multi-
plicative indeterminacy with respect to the action on O�

k of some subgroup

H ⊆ O×k at some “•” of the diagram �Γ gives rise to an additive indeterminacy
with respect to the action of logk(H) on the copy of “Ok” that corresponds to the

subsequent “•” of the diagram �Γ. In particular, if H consists of roots of unity,
then logk(H) = {0}, so the resulting additive indeterminacy ceases to exist. This
observation will play a crucial role in the theory of §3, below, when it is applied in
the context of the constant multiple rigidity properties constituted by the canon-
ical splittings of theta and Gaussian monoids discussed in [IUTchII], Proposition
3.3, (i); [IUTchII], Corollary 3.6, (iii) [cf. also [IUTchII], Corollary 1.12, (ii); the
discussion of [IUTchII], Remark 1.12.2, (iv)].

(ii) In the theory of §3, below, we shall consider global arithmetic line bundles.
This amounts, in effect, to considering multiplicative translates by f ∈ F×mod

of the product of the various “O×k ” of Remark 1.2.2, (i), (ii), as v ranges over the
elements of V. Such translates are disjoint from one another, except in the case
where f is a unit at all v ∈ V. By elementary algebraic number theory [cf., e.g.,
[Lang], p. 144, the proof of Theorem 5], this corresponds precisely to the case where
f is a root of unity. In particular, to consider quotients by this multiplicative action

by F×mod at one “•” of the diagram �Γ [where we allow v to range over the elements
of V] gives rise to an additive indeterminacy by “logarithms of roots of unity”

at the subsequent “•” of the diagram �Γ. In particular, at v ∈ Vnon, the resulting
additive indeterminacy ceases to exist [cf. the discussion of (i); Definition 1.1,
(iv)]; at v ∈ Varc, the resulting indeterminacy corresponds to considering certain
quotients of the copies of “O×k ” — i.e., of “S1” — that appear by some finite
subgroup [cf. the discussion of Definition 1.1, (ii)]. These observations will be of
use in the development of the theory of §3, below.

Remark 1.2.4.

(i) At this point, we pause to recall the important observation that the log-link

is incompatible with the ring structures of Ψ
gp
†Fv

and Ψ
gp

log(†Fv)
[cf. the notation

of Proposition 1.2, (ii)], in the sense that it does not arise from a ring homomorphism
between these two rings. The barrier constituted by this incompatibility between
the ring structures on either side of the log-link is precisely what is referred to as the
“log-wall” in the theory of [AbsTopIII] [cf. the discussion of [AbsTopIII], §I4]. This
incompatibility with the respective ring structures implies that it is not possible,
a priori, to transport objects whose structure depends on these ring structures via
the log-link by invoking the principle of “transport of structure”. From the point
of view of the theory of the present series of papers, this means, in particular, that

the log-wall is incompatible with conventional scheme-theoretic base-
points, which are defined by means of geometric points [i.e., ring homo-
morphisms of a certain type]
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— cf. the discussion of [IUTchII], Remark 3.6.3, (i); [AbsTopIII], Remark 3.7.7, (i).
In this context, it is useful to recall that étale fundamental groups — i.e., Galois
groups — are defined as certain automorphism groups of fields/rings; in particular,
the definition of such a Galois group “as a certain automorphism group of some ring
structure” is incompatible, in a quite essential way, with the log-wall. In a similar
vein, Kummer theory, which depends on the multiplicative structure of the ring
under consideration, is also incompatible, in a quite essential way, with the log-wall
[cf. Proposition 1.2, (iv)]. That is to say, in the context of the log-link,

the only structure of interest that is manifestly compatible with the log-
link [cf. Proposition 1.2, (i), (ii)] is the associated D-prime-strip

— i.e., the abstract topological groups [isomorphic to “Πv” — cf. the notation of
[IUTchI], Definition 3.1, (e), (f)] at v ∈ Vnon and abstract Aut-holomorphic spaces
[isomorphic to “Uv” — cf. the notation of [IUTchII], Proposition 4.3] at v ∈ Varc.
Indeed, this observation is precisely the starting point of the theory of [AbsTopIII]
[cf. the discussion of [AbsTopIII], §I1, §I4].

(ii) Other important examples of structures which are incompatible with the
log-wall include

(a) the additive structure on the image of the Kummer map [cf. the discussion
of [AbsTopIII], Remark 3.7.5];

(b) in the “birational” situation — i.e., where one replaces “Πv” by the abso-

lute Galois group Πbirat
v of the function field of the affine curve that gave

rise to Πv — the datum of the collection of closed points that determines
the affine curve [cf. [AbsTopIII], Remark 3.7.7, (ii)].

Note, for instance in the case of (b), when, say, for simplicity, v ∈ Vgood ⋂Vnon,
that one may think of the additional datum under consideration as consisting of
the natural outer surjection Πbirat

v � Πv that arises from the scheme-theoretic
morphism from the spectrum of the function field to the given affine curve. On the
other hand, just as in the case of the discussion of scheme-theoretic basepoints in
(i), the construction of such an object Πbirat

v � Πv whose structure depends, in an

essential way, on the scheme [i.e., ring!] structures involved necessarily fails to be
compatible with the log-link [cf. the discussion of [AbsTopIII], Remark 3.7.7, (ii)].

(iii) One way to understand the incompatibility discussed in (ii), (b), is as
follows. Write Δbirat

v , Δv for the respective kernels of the natural surjections

Πbirat
v � Gv, Πv � Gv. Then if one forgets about the scheme-theoretic base-

points discussed in (i), Gv, Δbirat
v , and Δv may be understood on both sides of

the log-wall as “some topological group”, and each of the topological groups Δbirat
v ,

Δv may be understood on both sides of the log-wall as being equipped with “some
outer Gv-action” — cf. the two diagonal arrows of Fig. 1.2 below. On the other

hand, the datum of a particular outer surjection Δbirat
v � Δv [cf. the dotted line in

Fig. 1.2] relating these two diagonal arrows — which depends, in an essential way,
on the scheme [i.e., ring] structures involved! — necessarily fails to be compatible
with the log-link [cf. the discussion of [AbsTopIII], Remark 3.7.7, (ii)]. This issue
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of “triangular compatibility between independent indeterminacies” is formally remi-
niscent of the issue of compatibility of outer homomorphisms discussed in [IUTchI],
Remark 4.5.1, (i) [cf. also [IUTchII], Remark 2.5.2, (ii)].

indep.
bp. indet.

�

nonarch. local
abs. Galois group Gv

indep.
bp. indet.

�

↙ � ↘ indep.
bp. indet.

�

birational geom.
fund. gp. Δbirat

v

?
. . . . . . . . . . . . . . .

affine geom.
fund. gp. Δv

Fig. 1.2: Independent basepoint indeterminacies obstruct relationship
between birational and affine geometric fundamental groups

Remark 1.2.5. The discussion in Remark 1.2.4 of the incompatibility of the log-
wall with various structures that arise from ring/scheme-theory is closely related to
the issue of avoiding the use of fixed ring/scheme-theoretic reference mod-
els in mono-anabelian construction algorithms [cf. the discussion of [IUTchI],
Remark 3.2.1, (i); [AbsTopIII], §I4]. Put another way, at least in the context of
the log-link [i.e., situations of the sort considered in [AbsTopIII], as well as in the
present paper], mono-anabelian construction algorithms may be understood as

algorithms whose dependence on data arising from such fixed ring/scheme-
theoretic reference models is “invariant”, or “coric”, with respect to the
action of log on such models.

A substantial portion of [AbsTopIII], §3, is devoted precisely to the task of giving
a precise formulation of this concept of “invariance” by means of such notions as
observables, families of homotopies, and telecores. For instance, one approach to
formulating the failure of the ring structure of a fixed reference model to be “coric”
with respect to log may be seen in [AbsTopIII], Corollary 3.6, (iv); [AbsTopIII],
Corollary 3.7, (iv).

Proposition 1.3. (log-links Between Θ±ellNF-Hodge Theaters) Let

†HT Θ±ellNF; ‡HT Θ±ellNF
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be Θ±ellNF-Hodge theaters [relative to the given initial Θ-data] — cf. [IUTchI],

Definition 6.13, (i). Write †HT D-Θ±ellNF, ‡HT D-Θ±ellNF for the associated D-
Θ±ellNF-Hodge theaters — cf. [IUTchI], Definition 6.13, (ii). Then:

(i) (Construction of the log-Link) Fix an isomorphism

Ξ : †HT D-Θ±ellNF ∼→ ‡HT D-Θ±ellNF

of D-Θ±ellNF-Hodge theaters. Let †F� be one of the F-prime-strips that appear

in the Θ- and Θ±-bridges that constitute †HT Θ±ellNF — i.e., either one of the
F-prime-strips

†F>,
†F	

or one of the constituent F-prime-strips of the capsules

†FJ ,
†FT

[cf. [IUTchI], Definition 5.5, (ii); [IUTchI], Definition 6.11, (i)]. Write ‡F� for

the corresponding F-prime-strip of ‡HT Θ±ellNF. Then the poly-isomorphism deter-
mined by Ξ between the D-prime-strips associated to †F�, ‡F� uniquely determines
a poly-isomorphism log(†F�)

∼→ ‡F� [cf. Definition 1.1, (iii); [IUTchI], Corol-

lary 5.3, (ii)], hence a log-link †F�
log−→ ‡F� [cf. Definition 1.1, (iii)]. We shall

denote by
†HT Θ±ellNF log−→ ‡HT Θ±ellNF

and refer to as a log-link from †HT Θ±ellNF to ‡HT Θ±ellNF the collection of data

consisting of Ξ, together with the collection of log-links †F�
log−→ ‡F�, as “�”

ranges over all possibilities for the F-prime-strips in question. When Ξ is replaced

by a poly-isomorphism †HT D-Θ±ellNF ∼→ ‡HT D-Θ±ellNF, we shall also refer to the
resulting collection of log-links [i.e., corresponding to each constituent isomorphism

of the poly-isomorphism Ξ] as a log-link from †HT Θ±ellNF to ‡HT Θ±ellNF. When
Ξ is the full poly-isomorphism, we shall refer to the resulting log-link as the full
log-link.

(ii) (Coricity) Any log-link †HT Θ±ellNF log−→ ‡HT Θ±ellNF induces [and may
be thought of as “lying over”] a [poly-]isomorphism

†HT D-Θ±ellNF ∼→ ‡HT D-Θ±ellNF

of D-Θ±ellNF-Hodge theaters [and indeed coincides with the log-link constructed in
(i) from this [poly-]isomorphism of D-Θ±ellNF-Hodge theaters].

(iii) (Further Properties of the log-Link) In the notation of (i), any log-

link †HT Θ±ellNF log−→ ‡HT Θ±ellNF satisfies, for each F-prime-strip †F�, properties
corresponding to the properties of Proposition 1.2, (ii), (iii), (iv), (v), (vi), (vii),
(viii), (ix), i.e., concerning simultaneous compatibility with ring structures
and log-volumes, Kummer theory, and log-shells.



INTER-UNIVERSAL TEICHMÜLLER THEORY III 43

(iv) (Frobenius-picture) Let {nHT Θ±ellNF}n∈Z be a collection of distinct
Θ±ellNF-Hodge theaters [relative to the given initial Θ-data] indexed by the in-

tegers. Write {nHT D-Θ±ellNF}n∈Z for the associated D-Θ±ellNF-Hodge theaters.

Then the full log-links nHT Θ±ellNF log−→ (n+1)HT Θ±ellNF, for n ∈ Z, give rise
to an infinite chain

. . .
log−→ (n−1)HT Θ±ellNF log−→ nHT Θ±ellNF log−→ (n+1)HT Θ±ellNF log−→ . . .

of log-linked Θ±ellNF-Hodge theaters which induces a chain of full poly-isomor-
phisms

. . .
∼→ nHT D-Θ±ellNF ∼→ (n+1)HT D-Θ±ellNF ∼→ . . .

on the associated D-Θ±ellNF-Hodge theaters. These chains may be represented

symbolically as an oriented graph �Γ [cf. [AbsTopIII], §0]

. . . → • → • → • → . . .

. . . ↘ ↓ ↙ . . .

◦

— i.e., where the horizontal arrows correspond to the “
log−→ ’s”; the “•’s” corre-

spond to the “nHT Θ±ellNF”; the “◦” corresponds to the “nHT D-Θ±ellNF”, identified
up to isomorphism; the vertical/diagonal arrows correspond to the Kummer iso-

morphisms implicit in the statement of (iii). This oriented graph �Γ admits a
natural action by Z [cf. [AbsTopIII], Corollary 5.5, (v)] — i.e., a translation
symmetry — that fixes the “core” ◦, but it does not admit arbitrary per-

mutation symmetries. For instance, �Γ does not admit an automorphism that
switches two adjacent vertices, but leaves the remaining vertices fixed.

Proof. The various assertions of Proposition 1.3 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 1.3.1. Note that in Proposition 1.3, (i), it was necessary to carry
out the given construction of the log-link first for a single Ξ [i.e., as opposed to
a poly-isomorphism Ξ], in order to maintain compatibility with the crucial “±-
synchronization” [cf. [IUTchI], Remark 6.12.4, (iii); [IUTchII], Remark 4.5.3,
(iii)] inherent in the structure of a Θ±ell-Hodge theater.

Remark 1.3.2. In the construction of Proposition 1.3, (i), the constituent F-
prime-strips †Ft, for t ∈ T , of the capsule †FT are considered without regard to the
F�±
l -symmetries discussed in [IUTchII], Corollary 4.6, (iii). On the other hand, one

verifies immediately that the log-links associated, in the construction of Proposi-
tion 1.3, (i), to these F-prime-strips †Ft, for t ∈ T — i.e., more precisely, associated
to the labeled collections of monoidsΨcns(

†F	)t of [IUTchII], Corollary 4.6, (iii)
— are in fact compatible with the F�±

l -symmetrizing isomorphisms discussed
in [IUTchII], Corollary 4.6, (iii), hence also with the conjugate synchronization
determined by these F�±

l -symmetrizing isomorphisms — cf. the discussion of Step
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(vi) of the proof of Corollary 3.12 of §3 below. We leave the routine details to the
reader.

Remark 1.3.3.

(i) In the context of Proposition 1.3 [cf. also the discussion of Remarks 1.2.4,
1.3.1, 1.3.2], it is of interest to observe that the relationship between the various
Frobenioid-theoretic [i.e., Frobenius-like!] portions of the Θ±ellNF-Hodge the-
aters in the domain and codomain of the log-link of Proposition 1.3, (i),

does not include any data — i.e., of the sort discussed in Remark 1.2.4,
(ii), (a), (b); Remark 1.2.4, (iii) — that is incompatible, relative to the
relevant Kummer isomorphisms, with the coricity property for étale-
like structures given in Proposition 1.3, (ii).

Indeed, this observation may be understood as a consequence of the fact [cf. Re-
marks 1.3.1, 1.3.2; [IUTchI], Corollary 5.3, (i), (ii), (iv); [IUTchI], Corollary 5.6,
(i), (ii), (iii)] that these Frobenioid-theoretic portions of the Θ±ellNF-Hodge the-
aters under consideration are completely [i.e., fully faithfully!] controlled [cf. the
discussion of (ii) below for more details], via functorial algorithms, by the cor-
responding étale-like structures, i.e., structures that appear in the associated D-
Θ±ellNF-Hodge theaters, which satisfy the crucial coricity property of Proposition
1.3, (ii).

(ii) In the context of (i), it is of interest to recall that the global portion of
the underlying Θell-bridges is defined [cf. [IUTchI], Definition 6.11, (ii)] in such a
way that it does not contain any global Frobenioid-theoretic data! In particular,
the issue discussed in (i) concerns only the Frobenioid-theoretic portions of the
following:

(a) the various F-prime-strips that appear;
(b) the underlying Θ-Hodge theaters of the Θ±ellNF-Hodge theaters under

consideration;
(c) the global portion of the underlying NF-bridges of the Θ±ellNF-Hodge

theaters under consideration.

Here, the Frobenioid-theoretic data of (c) gives rise to independent [i.e., for cor-
responding portions of the Θ±ellNF-Hodge theaters in the domain and codomain of
the log-link] basepoints with respect to the F�

l -symmetry [cf. [IUTchI], Corol-
lary 5.6, (iii); [IUTchI], Remark 6.12.6, (iii); [IUTchII], Remark 4.7.6]. On the
other hand, the independent basepoints that arise from the Frobenioid-theoretic
data of (b), as well as of the portion of (a) that lies in the underlying ΘNF-Hodge
theater, do not cause any problems [i.e., from the point of view of the sort of in-
compatibility discussed in (i)] since this data is only subject to relationships defined
by means of full poly-isomorphisms [cf. [IUTchI], Examples 4.3, 4.4]. That is to
say, the F-prime-strips that lie in the underlying Θ±ell-Hodge theater constitute
the most delicate [i.e., relative to the issue of independent basepoints!] portion of
the Frobenioid-theoretic data of a Θ±ellNF-Hodge theater. This delicacy revolves
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around the global synchronization of ±-indeterminacies in the underlying Θ±ell-
Hodge theater [cf. [IUTchI], Remark 6.12.4, (iii); [IUTchII], Remark 4.5.3, (iii)].
On the other hand, this delicacy does not in fact cause any problems [i.e., from the
point of view of the sort of incompatibility discussed in (i)] since [cf. [IUTchI],
Remark 6.12.4, (iii); [IUTchII], Remark 4.5.3, (iii)] the synchronizations of ±-
indeterminacies in the underlying Θ±ell-Hodge theater are defined [not by means of
scheme-theoretic relationships, but rather] by applying the intrinsic structure of
the underlying D-Θ±ell-Hodge theater, which satisfies the crucial coricity property
of Proposition 1.3, (ii) [cf. the discussion of (i); Remarks 1.3.1, 1.3.2].

The diagrams discussed in the following Definition 1.4 will play a central role
in the theory of the present series of papers.

Definition 1.4. We maintain the notation of Proposition 1.3 [cf. also [IUTchII],

Corollary 4.10, (iii)]. Let {n,mHT Θ±ellNF}n,m∈Z be a collection of distinct Θ±ellNF-
Hodge theaters [relative to the given initial Θ-data] indexed by pairs of integers.
Then we shall refer to either of the diagrams

...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

−→ n,m+1HT Θ±ellNF Θ×μ

−→ n+1,m+1HT Θ±ellNF Θ×μ

−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

−→ n,mHT Θ±ellNF Θ×μ

−→ n+1,mHT Θ±ellNF Θ×μ

−→ . . .�⏐⏐log

�⏐⏐log

...
...

...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

gau−→ n,m+1HT Θ±ellNF Θ×μ
gau−→ n+1,m+1HT Θ±ellNF Θ×μ

gau−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

gau−→ n,mHT Θ±ellNF Θ×μ
gau−→ n+1,mHT Θ±ellNF Θ×μ

gau−→ . . .�⏐⏐log

�⏐⏐log

...
...

— where the vertical arrows are the full log-links, and the horizontal arrows are the
Θ×μ- and Θ×μ

gau-links of [IUTchII], Corollary 4.10, (iii) — as the log-theta-lattice.

We shall refer to the log-theta-lattice that involves the Θ×μ- (respectively, Θ×μ
gau-)
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links as non-Gaussian (respectively, Gaussian). Thus, either of these diagrams may
be represented symbolically by an oriented graph

...
...�⏐⏐ �⏐⏐

. . . −→ • −→ • −→ . . .�⏐⏐ �⏐⏐

. . . −→ • −→ • −→ . . .�⏐⏐ �⏐⏐
...

...

— where the “•’s” correspond to the “n,mHT Θ±ellNF”.

Remark 1.4.1.

(i) One fundamental property of the log-theta-lattices discussed in Definition
1.4 is the following:

the various squares that appear in each of the log-theta-lattices discussed
in Definition 1.4 are far from being [1-]commutative!

Indeed, whereas the vertical arrows in each log-theta-lattice are constructed by
applying the various logarithms at v ∈ V — i.e., which are defined by means of
power series that depend, in an essential way, on the local ring structures at v ∈ V

— the horizontal arrows in each log-theta-lattice [i.e., the Θ×μ-, Θ×μ
gau-links] are

incompatible with these local ring structures at v ∈ V in an essential way [cf.
[IUTchII], Remark 1.11.2, (i), (ii)].

(ii) Whereas the horizontal arrows in each log-theta-lattice [i.e., the Θ×μ-,
Θ×μ

gau-links] allow one, roughly speaking, to identify the respective “O×μ’s” at [for
simplicity] v ∈ Vnon on either side of the horizontal arrow [cf. [IUTchII], Corollary
4.10, (iv)], in order to avail oneself of the theory of log-shells — which will play
an essential role in the multiradial representation of the Gaussian monoids to be
developed in §3 below — it is necessary for the “•” [i.e., Θ±ellNF-Hodge theater] in
which one operates to appear as the codomain of a log-link, i.e., of a vertical arrow
of the log-theta-lattice [cf. the discussion of [AbsTopIII], Remark 5.10.2, (iii)].
That is to say, from the point of view of the goal of constructing the multiradial
representation of the Gaussian monoids that is to be developed in §3 below,

each execution of a horizontal arrow of the log-theta-lattice necessarily
obligates a subsequent execution of a vertical arrow of the log-theta-lattice.

On the other hand, in light of the noncommutativity observed in (i), this “in-
tertwining” of the horizontal and vertical arrows of the log-theta-lattice means
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that the desired multiradiality — i.e., simultaneous compatibility with the
arithmetic holomorphic structures on both sides of a horizontal arrow of the log-
theta-lattice — can only be realized [cf. the discussion of Remark 1.2.2, (iii)] if one
works with objects that are invariant with respect to the vertical arrows [i.e., with
respect to the action of Z discussed in Proposition 1.3, (iv)], that is to say, with
“vertical cores”, of the log-theta-lattice.

(iii) From the point of view of the analogy between the theory of the present
series of papers and p-adic Teichmüller theory [cf. [AbsTopIII], §I5], the vertical
arrows of the log-theta-lattice correspond to the Frobenius morphism in positive
characteristic, whereas the horizontal arrows of the log-theta-lattice correspond
to the “transition from pnZ/pn+1Z to pn−1Z/pnZ”, i.e., the mixed characteristic
extension structure of a ring of Witt vectors [cf. [IUTchI], Remark 3.9.3, (i)]. These
correspondences are summarized in Fig. 1.3 below. In particular, the “intertwining
of horizontal and vertical arrows of the log-theta-lattice” discussed in (ii) above
may be thought of as the analogue, in the context of the theory of the present
series of papers, of the well-known “intertwining between the mixed characteristic
extension structure of a ring of Witt vectors and the Frobenius morphism in positive
characteristic” that appears in the classical p-adic theory.

horizontal arrows of the mixed characteristic extension structure
log-theta-lattice of a ring of Witt vectors

vertical arrows of the the Frobenius morphism
log-theta-lattice in positive characteristic

Fig. 1.3: Analogy between the log-theta-lattice and p-adic Teichmüller theory

Remark 1.4.2.

(i) The horizontal and vertical arrows of the log-theta-lattices discussed in
Definition 1.4 share the common property of being incompatible with the local ring
structures, hence, in particular, with the conventional scheme-theoretic basepoints
on either side of the arrow in question [cf. the discussion of [IUTchII], Remark 3.6.3,
(i)]. On the other hand, whereas the linking data of the vertical arrows [i.e., the log-
link] is rigid and corresponds to a single fixed, rigid arithmetic holomorphic
structure in which addition and multiplication are subject to “rotations” [cf. the
discussion of [AbsTopIII], §I3], the linking data of the horizontal arrows [i.e., the
Θ×μ-, Θ×μ

gau-links] — i.e., more concretely, the “O×μ’s” at [for simplicity] v ∈ Vnon

— is subject to a Ẑ×-indeterminacy, which has the effect of obliterating the
arithmetic holomorphic structure associated to a vertical line of the log-theta-lattice
[cf. the discussion of [IUTchII], Remark 1.11.2, (i), (ii)].

(ii) If, in the spirit of the discussion of [IUTchII], Remark 1.11.2, (ii), one
attempts to “force” the horizontal arrows of the log-theta-lattice to be compat-
ible with the arithmetic holomorphic structures on either side of the arrow by
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declaring — in the style of the log-link! — that these horizontal arrows induce an
isomorphism of the respective “Πv’s” at [for simplicity] v ∈ Vnon, then one must
contend with a situation in which the “common arithmetic holomorphic structure
rigidified by the isomorphic copies of Πv” is obliterated each time one takes into

account the action of a nontrivial element of Ẑ× [i.e., that arises from the Ẑ×-
indeterminacy involved] on the corresponding “O×μ”. In particular, in order to
keep track of the arithmetic holomorphic structure currently under consideration,
one must, in effect, consider paths that record the sequence of “Πv-rigidifying”

and “Ẑ×-indeterminacy” operations that one invokes. On the other hand, the hor-
izontal lines of the log-theta-lattices given in Definition 1.4 amount, in effect, to
universal covering spaces of the loops — i.e., “unraveling paths of the loops” [cf.
the discussion of Remark 1.2.2, (vi)] — that occur as one invokes various series

of “Πv-rigidifying” and “Ẑ×-indeterminacy” operations. Thus, in summary, any
attempt as described above to “force” the horizontal arrows of the log-theta-lattice
to be compatible with the arithmetic holomorphic structures on either side of the
arrow does not result in any substantive simplification of the theory of the present
series of papers. We refer the reader to [IUTchIV], Remark 3.6.3, for a discussion
of a related topic.

We are now ready to state the main result of the present §1.

Theorem 1.5. (Bi-cores of the Log-theta-lattice) Fix a collection of initial
Θ-data

(F/F, XF , l, CK , V, Vbad
mod, ε)

as in [IUTchI], Definition 3.1. Then any Gaussian log-theta-lattice correspond-
ing to this collection of initial Θ-data [cf. Definition 1.4] satisfies the following
properties:

(i) (Vertical Coricity) The vertical arrows of the Gaussian log-theta-lattice
induce full poly-isomorphisms between the respective associated D-Θ±ellNF-Hodge
theaters

. . .
∼→ n,mHT D-Θ±ellNF ∼→ n,m+1HT D-Θ±ellNF ∼→ . . .

[cf. Proposition 1.3, (ii)]. Here, n ∈ Z is held fixed, while m ∈ Z is allowed to vary.

(ii) (Horizontal Coricity) The horizontal arrows of the Gaussian log-theta-
lattice induce full poly-isomorphisms between the respective associated F�×μ-
prime-strips

. . .
∼→ n,mF�×μ



∼→ n+1,mF�×μ



∼→ . . .

[cf. [IUTchII], Corollary 4.10, (iv)]. Here, m ∈ Z is held fixed, while n ∈ Z is
allowed to vary.

(iii) (Bi-coric F�×μ-Prime-Strips) For n,m ∈ Z, write n,mD�
 for the D�-
prime-strip associated to the F�-prime-strip n,mF�
 labeled “�” of the Θ±ellNF-

Hodge theater n,mHT Θ±ellNF [cf. [IUTchII], Corollary 4.10, (i)]; n,mD	 for the D-
prime-strip labeled “�” of the Θ±ellNF-Hodge theater n,mHT Θ±ellNF [cf. [IUTchI],
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Definitions 6.11, (i), (iii); 6.13, (i)]. Let us identify [cf. [IUTchII], Corollary
4.10, (i)] the collections of data

Ψcns(
n,mD	)0 and Ψcns(

n,mD	)〈F�

l
〉

via the isomorphism of the final display of [IUTchII], Corollary 4.5, (iii), and
denote by

F�
(
n,mD	)

the resulting F�-prime-strip. [Thus, it follows immediately from the constructions
involved — cf. the discussion of [IUTchII], Corollary 4.10, (i) — that there is a

natural identification isomorphism F�
(
n,mD	)

∼→ F�>(
n,mD>), where we

write F�>(
n,mD>) for the F�-prime-strip determined by Ψcns(

n,mD>).] Write

F�×
 (n,mD	), F�×μ

 (n,mD	)

for the F�×-, F�×μ-prime-strips determined by F�
(
n,mD	) [cf. [IUTchII], Def-

inition 4.9, (vi), (vii)]. Thus, by applying the isomorphisms “Ψcns(
‡D)×v

∼→
Ψss

cns(
‡D�)×v ”, for v ∈ V, of [IUTchII], Corollary 4.5, (ii), [it follows immediately

from the definitions that] there exists a functorial algorithm in the D�-prime-

strip n,mD�
 for constructing an F�×-prime-strip F�×
 (n,mD�
), together with a
functorial algorithm in the D-prime-strip n,mD	 for constructing a natural
isomorphism

F�×
 (n,mD	)
∼→ F�×
 (n,mD�
)

— i.e., in more intuitive terms, “F�×
 (n,mD	)”, hence also the associated F�×μ-

prime-strip “F�×μ

 (n,mD	)”, may be naturally regarded, up to isomorphism, as

objects constructed from n,mD�
. Then the poly-isomorphisms of (i) [cf. Remark

1.3.2], (ii) induce, respectively, poly-isomorphisms of F�×μ-prime-strips

. . .
∼→ F�×μ


 (n,mD	)
∼→ F�×μ


 (n,m+1D	)
∼→ . . .

. . .
∼→ F�×μ


 (n,mD�
)
∼→ F�×μ


 (n+1,mD�
)
∼→ . . .

— where we note that, relative to the natural isomorphisms of F�×μ-prime-strips
F�×
 (n,mD	)

∼→ F�×
 (n,mD�
) discussed above, the collection of isomorphisms that

constitute the poly-isomorphisms of F�×μ-prime-strips of the first line of the display
is, in general, strictly smaller than the collection of isomorphisms that constitute
the poly-isomorphisms of F�×μ-prime-strips of the second line of the display [cf.
the existence of non-scheme-theoretic automorphisms of absolute Galois groups of
MLF’s, as discussed in [AbsTopIII], §I3]; the poly-isomorphisms of F�×μ-prime-
strips of the second line of the display are not full [cf. [IUTchII], Remark 1.8.1].
In particular, by composing these isomorphisms, one obtains poly-isomorphisms
of F�×μ-prime-strips

F�×μ

 (n,mD�
)

∼→ F�×μ

 (n

′,m′
D�
)

for arbitrary n′,m′ ∈ Z. That is to say, in more intuitive terms, the F�×μ-prime-

strip “n,mF�×μ

 (n,mD�
)”, regarded up to a certain class of isomorphisms, is an
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invariant — which we shall refer to as “bi-coric” — of both the horizontal and
the vertical arrows of the Gaussian log-theta-lattice. Finally, the Kummer iso-
morphisms “Ψcns(

‡F) ∼→ Ψcns(
‡D)” of [IUTchII], Corollary 4.6, (i), determine

Kummer isomorphisms

n,mF�×μ



∼→ F�×μ

 (n,mD�
)

which are compatible with the poly-isomorphisms of (ii), as well as with the ×μ-
Kummer structures at the v ∈ Vnon of the various F�×μ-prime-strips involved [cf.
[IUTchII], Definition 4.9, (vi), (vii)]; a similar compatibility holds for v ∈ Varc [cf.
the discussion of the final portion of [IUTchII], Definition 4.9, (v)].

(iv) (Bi-coric Mono-analytic Log-shells) The poly-isomorphisms that con-
stitute the bi-coricity property discussed in (iii) induce poly-isomorphisms{

In,mD�
�
⊆ log(n,mD�
)

} ∼→
{
In′,m′D�

�
⊆ log(n

′,m′
D�
)

}
{
IF�×μ

� (n,mD�
�) ⊆ log(F�×μ


 (n,mD�
))
} ∼→

{
IF�×μ

� (n′,m′D�
�) ⊆ log(F�×μ


 (n
′,m′

D�
))
}

for arbitrary n,m, n′,m′ ∈ Z that are compatible with the natural poly-isomor-
phisms{

In,mD�
�
⊆ log(n,mD�
)

} ∼→
{
IF�×μ

� (n,mD�
�) ⊆ log(F�×μ


 (n,mD�
))
}

of Proposition 1.2, (viii). On the other hand, by applying the constructions of
Definition 1.1, (i), (ii), to the collections of data “Ψcns(

†F	)0” and “Ψcns(
†F	)〈F�

l
〉”

used in [IUTchII], Corollary 4.10, (i), to construct n,mF�
 [cf. Remark 1.3.2], one

obtains a [“holomorphic”] log-shell, together with an enveloping “log(−)” [cf.

the pair “I†F ⊆ log(†F)” of Definition 1.1, (iii)], which we denote by

In,mF� ⊆ log(n,mF
)

[by means of a slight abuse of notation, since no F-prime-strip “n,mF
” has been
defined!]. Then one has natural poly-isomorphisms{

In,mD�
�
⊆ log(n,mD�
)

} ∼→
{
In,mF�×μ

�
⊆ log(n,mF�×μ


 )
}

∼→
{
In,mF� ⊆ log(n,mF
)

}
[cf. the poly-isomorphisms obtained in Proposition 1.2, (viii)]; here, the first “

∼→ ”
may be regarded as being induced by the Kummer isomorphisms of (iii) and is
compatible with the poly-isomorphisms induced by the poly-isomorphisms of (ii).

(v) (Bi-coric Mono-analytic Global Realified Frobenioids) Let n,m,

n′,m′ ∈ Z. Then the poly-isomorphisms of D�-prime-strips n,mD�

∼→ n′,m′

D�

induced by the full poly-isomorphisms of (i), (ii) induce [cf. [IUTchII], Corollaries
4.5, (ii); 4.10, (v)] an isomorphism of collections of data

(D�(n,mD�
), Prime(D�(n,mD�
))
∼→ V, {n,mρD�,v}v∈V)

∼→ (D�(n
′,m′

D�
), Prime(D�(n
′,m′

D�
))
∼→ V, {n′,m′

ρD�,v}v∈V)
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— i.e., consisting of a Frobenioid, a bijection, and a collection of isomorphisms
of topological monoids indexed by V. Moreover, this isomorphism of collections of
data is compatible, relative to the horizontal arrows of the Gaussian log-theta-
lattice [cf., e.g., the full poly-isomorphisms of (ii)], with the R>0-orbits of the
isomorphisms of collections of data

(n,mC�
, Prime(n,mC�
)
∼→ V, {n,mρ
,v}v∈V)

∼→ (D�(n,mD�
), Prime(D�(n,mD�
))
∼→ V, {n,mρD�,v}v∈V)

obtained by applying the functorial algorithm discussed in the final portion of [IUTchII],
Corollary 4.6, (ii) [cf. also the latter portions of [IUTchII], Corollary 4.10, (i), (v)].

Proof. The various assertions of Theorem 1.5 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ©

Remark 1.5.1.

(i) Note that the theory of conjugate synchronization developed in [IUTchII]
[cf., especially, [IUTchII], Corollaries 4.5, (iii); 4.6, (iii)] plays an essential role in
establishing the bi-coricity properties discussed in Theorem 1.5, (iii), (iv), (v) —
i.e., at a more technical level, in constructing the objects equipped with a sub-
script “�” that appear in Theorem 1.5, (iii); [IUTchII], Corollary 4.10, (i). That
is to say, the conjugate synchronization determined by the various symmetrizing
isomorphisms of [IUTchII], Corollaries 4.5, (iii); 4.6, (iii), may be thought of as
a sort of descent mechanism that allows one to descend data that, a priori, is
label-dependent [i.e., depends on the labels “t ∈ LabCusp±(−)”] to data that is
label-independent. Here, it is important to recall that these labels depend, in
an essential way, on the “arithmetic holomorphic structures” involved — i.e.,
at a more technical level, on the geometric fundamental groups involved — hence
only make sense within a vertical line of the log-theta-lattice. That is to say, the
significance of this transition from label-dependence to label-independence lies in
the fact that this transition is precisely what allows one to construct objects that
make sense in horizontally adjacent “•’s” of the log-theta-lattice, i.e., to construct
horizontally coric objects [cf. Theorem 1.5, (ii); the second line of the fifth display
of Theorem 1.5, (iii)]. On the other hand, in order to construct the horizontal
arrows of the log-theta-lattice, it is necessary to work with Frobenius-like struc-
tures [cf. the discussion of [IUTchII], Remark 3.6.2, (ii)]. In particular, in order
to construct vertically coric objects [cf. the first line of the fifth display of Theo-
rem 1.5, (iii)], it is necessary to pass to étale-like structures [cf. the discussion of
Remark 1.2.4, (i)] by means of Kummer isomorphisms [cf. the final display of
Theorem 1.5, (iii)]. Thus, in summary,

the bi-coricity properties discussed in Theorem 1.5, (iii), (iv), (v) — i.e.,
roughly speaking, the bi-coricity of the various “O×μ” at v ∈ Vnon — may
be thought of as a consequence of the intricate interplay of various aspects
of the theory of Kummer-compatible conjugate synchronization es-
tablished in [IUTchII], Corollaries 4.5, (iii); 4.6, (iii).
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(ii) In light of the central role played by the theory of conjugate synchronization
in the constructions that underlie Theorem 1.5 [cf. the discussion of (i)], it is of
interest to examine in more detail to what extent the highly technically nontrivial
theory of conjugate synchronization may be replaced by a simpler apparatus. One
naive approach to this problem is the following. Let G be a topological group [such
as one of the absolute Galois groups Gv associated to v ∈ Vnon]. Then one way
to attempt to avoid the application of the theory of conjugate synchronization —
which amounts, in essence, to the construction of a diagonal embedding

G ↪→ G × . . . × G

[cf. the notation “〈|Fl|〉”, “〈F�
l 〉” that appears in [IUTchII], Corollaries 3.5, 3.6,

4.5, 4.6] in a product of copies of G that, a priori, may only be identified with
one another up to conjugacy [i.e., up to composition with an inner automorphism]
— is to try to work, instead, with the (G × . . . × G)-conjugacy class of such a
diagonal. Here, to simplify the notation, let us assume that the above products of
copies of G are, in fact, products of two copies of G. Then to identify the diagonal
embedding G ↪→ G×G with its (G×G)-conjugates implies that one must consider
identifications

(g, g) ∼ (g, hgh−1) = (g, [h, g] · g)
[where g, h ∈ G] — i.e., one must identify (g, g) with the product of (g, g) with
(1, [h, g]). On the other hand, the original purpose of working with distinct copies
of G lies in considering distinct Galois-theoretic Kummer classes — corre-
sponding to distinct theta values [cf. [IUTchII], Corollaries 3.5, 3.6] — at distinct
components. That is to say, to identify elements of G × G that differ by a factor
of (1, [h, g]) is incompatible, in an essential way, with the convention that such
a factor (1, [h, g]) should correspond to distinct elements [i.e., “1” and “[h, g]”] at
distinct components [cf. the discussion of Remark 1.5.3, (ii), below]. Here, we
note that this incompatibility may be thought of as an essential consequence of
the highly nonabelian nature of G, e.g., when G is taken to be a copy of Gv, for
v ∈ Vnon. Thus, in summary, this naive approach to replacing the theory of conju-
gate synchronization by a simpler apparatus is inadequate from the point of view
of the theory of the present series of papers.

(iii) At a purely combinatorial level, the notion of conjugate synchronization
is reminiscent of the label synchronization discussed in [IUTchI], Remark 4.9.2,
(i), (ii). Indeed, both conjugate and label synchronization may be thought of as a
sort of combinatorial representation of the arithmetic holomorphic structure
associated to a single vertical line of the log-theta-lattice [cf. the discussion of
[IUTchI], Remark 4.9.2, (iv)].

Remark 1.5.2.

(i) Recall that unlike the case with the action of the F�±
l -symmetry on the

various labeled copies of the absolute Galois group Gv, for v ∈ Vnon [cf. [IUTchII],
Corollaries 4.5, (iii); 4.6, (iii)], it is not possible to establish an analogous theory of
conjugate synchronization in the case of the F�

l -symmetry for labeled copies of F
[cf. [IUTchII], Remark 4.7.2]. This is to say, the closest analogue of the conjugate
synchronization obtained in the local case relative to the F�±

l -symmetry is the
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action of the F�
l -symmetry on labeled copies of the subfields Fmod ⊆ Fsol ⊆ F and

the pseudo-monoid of ∞κ-coric rational functions, i.e., as discussed in [IUTchII],
Corollaries 4.7, (ii); 4.8, (ii). One consequence of this incompatibility of the F�

l -

symmetry with the full algebraic closure F of Fmod is that, as discussed in [IUTchI],
Remark 5.1.5, the reconstruction of the ring structure on labeled copies of the
subfield Fsol ⊆ F subject to the F�

l -symmetry [cf. [IUTchII], Corollaries 4.7, (ii);
4.8, (ii)], fails to be compatible with the various localization operations that
occur in the structure of a D-ΘNF-Hodge theater. This is one quite essential
reason why it is not possible to establish bi-coricity properties for, say, “F×sol”
[which we regard as being equipped with the ring structure on the union of “F×sol”
with {0} — without which the abstract pair “Gal(Fsol/Fmod) � F×sol” consisting
of an abstract module equipped with the action of an abstract topological group is
not very interesting] that are analogous to the bi-coricity properties established in
Theorem 1.5, (iii), for “O×μ” [cf. the discussion of Remark 1.5.1, (i)]. From this
point of view,

the bi-coric mono-analytic global realified Frobenioids of Theorem
1.5, (v) — i.e., in essence, the notion of “log-volume” [cf. the point of
view of Remark 1.2.2, (v)] — may be thought of as a sort of “closest
possible approximation” to such a “bi-coric F×sol” [i.e., which does not
exist].

Alternatively, from the point of view of the theory to be developed in §3 below,

we shall apply the bi-coric “O×μ’s” of Theorem 1.5, (iii) — i.e., in
the form of the bi-coric mono-analytic log-shells of Theorem 1.5,
(iv) — to construct “multiradial containers” for the labeled copies of
Fmod discussed above by applying the localization functors discussed
in [IUTchII], Corollaries 4.7, (iii); 4.8, (iii).

That is to say, such “multiradial containers” will play the role of a transportation
mechanism for “F×mod”— up to certain indeterminacies! — between distinct arith-
metic holomorphic structures [i.e., distinct vertical lines of the log-theta-lattice].

(ii) In the context of the discussion of “multiradial containers” in (i) above, we
recall [cf. the discussion of [IUTchII], Remark 3.6.2, (ii)] that, in general, Kummer
theory plays a crucial role precisely in situations in which one performs construc-
tions — such as, for instance, the construction of the Θ-, Θ×μ-, or Θ×μ

gau-links —
that are “not bound to conventional scheme theory”. That is to say, in the
case of the labeled copies of “Fmod” discussed in (i), the incompatibility of “solv-
able reconstructions” of the ring structure with the localization operations
that occur in a D-ΘNF-Hodge theater [cf. [IUTchI], Remark 5.1.5] may be thought
of as a reflection of the dismantling of the global prime-tree structure of a
number field [cf. the discussion of [IUTchII], Remark 4.11.2, (iv)] that underlies
the construction of the Θ±ellNF-Hodge theater performed in [IUTchI], [IUTchII],
hence, in particular, as a reflection of the requirement of establishing a Kummer-
compatible theory of conjugate synchronization relative to the F�±

l -symmetry
[cf. the discussion of Remark 1.5.1, (i)].

(iii) Despite the failure of labeled copies of “F×mod” to admit a natural bi-coric
structure — a state of affairs that forces one to resort to the use of “multiradial
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containers” in order to transport such labeled copies of “F×mod” to alien arithmetic
holomorphic structures [cf. the discussion of (i) above] — the global Frobenioids
associated to copies of “F×mod” nevertheless possess important properties that are
not satisfied, for instance, by the bi-coric global realified Frobenioids discussed in
Theorem 1.5, (v) [cf. also [IUTchI], Definition 5.2, (iv); [IUTchII], Corollary 4.5,
(ii); [IUTchII], Corollary 4.6, (ii)]. Indeed, unlike the objects contained in the
realified global Frobenioids that appear in Theorem 1.5, (v), the objects contained
in the global Frobenioids associated to copies of “F×mod” correspond to genuine
“conventional arithmetic line bundles”. In particular, by applying the ring
structure of the copies of “Fmod” under consideration, one can push forward such
arithmetic line bundles so as to obtain arithmetic vector bundles over [the ring
of rational integers] Z and then form tensor products of such arithmetic vector
bundles. Such operations will play a key role in the theory of §3 below, as well as
in the theory to be developed in [IUTchIV].

Remark 1.5.3.

(i) In [QuCnf] [cf. also [AbsTopIII], Proposition 2.6; [AbsTopIII], Corollary
2.7], a theory was developed concerning deformations of holomorphic structures
on Riemann surfaces in which holomorphic structures are represented by means of
squares or rectangles on the surface, while quasiconformal Teichmüller deforma-
tions of holomorphic structures are represented by parallelograms on the surface.
That is to say, relative to suitable choices of local coordinates, quasiconformal Te-
ichmüller deformations may be thought of as affine linear deformations in which
one of the two underlying real dimensions of the Riemann surface is dilated by some
factor ∈ R>0, while the other underlying real dimensions is left undeformed. From
this point of view, the theory of conjugate synchronization — which may be
regarded as a sort of rigidity that represents the arithmetic holomorphic struc-
ture associated to a vertical line of the log-theta-lattice [cf. the discussion given
in [IUTchII], Remarks 4.7.3, 4.7.4, of the uniradiality of the F�±

l -symmetry that
underlies the phenomenon of conjugate synchronization] — may be thought of as
a sort of nonarchimedean arithmetic analogue of the representation of holo-
morphic structures by means of squares/rectangles referred to above. That is to
say, the right angles which are characteristic of squares/rectangles may be thought
of as a sort of synchronization between the metrics of the two underlying real di-
mensions of a Riemann surface [i.e., metrics which, a priori, may differ by some
dilating factor] — cf. Fig. 1.4 below. Here, we mention in passing that this point
of view is reminiscent of the discussion of [IUTchII], Remark 3.6.5, (ii), in which
the point of view is taken that the phenomenon of conjugate synchronization may
be thought of as a reflection of the coherence of the arithmetic holomorphic
structures involved.

(ii) Relative to the point of view discussed in (i), the approach described in Re-
mark 1.5.1, (ii), to “avoiding conjugate synchronization by identifying the various
conjugates of the diagonal embedding” corresponds — in light of the highly non-
abelian nature of the groups involved! [cf. the discussion of Remark 1.5.1, (ii)] — to
thinking of a holomorphic structure on a Riemann surface as an “equivalence class
of holomorphic structures in the usual sense relative to the equivalence relation of
differing by a Teichmüller deformation”! That is to say, such an [unconventional!]
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approach to the definition of a holomorphic structure allows one to circumvent the
issue of rigidifying the relationship between the metrics of the two underlying real
dimensions of the Riemann surface — but only at the cost of rendering unfeasible
any meaningful theory of “deformations of a holomorphic structure”!

(iii) The analogy discussed in (i) between conjugate synchronization [which
arises from the F�±

l -symmetry!] and the representation of a complex holomor-
phic structure by means of squares/rectangles may also be applied to the “κ-sol-
conjugate synchronization” [cf. the discussion of [IUTchI], Remark 5.1.5] given
in [IUTchII], Corollary 4.7, (ii); [IUTchII], Corollary 4.8, (ii), between, for in-
stance, the various labeled non-realified and realified global Frobenioids by means
of the F�

l -symmetry. Indeed, this analogy is all the more apparent in the case
of the realified global Frobenioids — which admit a natural R>0-action. Here, we
observe in passing that, just as the theory of conjugate synchronization [via the
F�±
l -symmetry] plays an essential role in the construction of the local portions of

the Θ×μ-, Θ×μ
gau-links given in [IUTchII], Corollary 4.10, (i), (ii), (iii),

the synchronization of global realified Frobenioids by means of the
F�
l -symmetry may be related — via the isomorphisms of Frobenioids of

the second displays of [IUTchII], Corollary 4.7, (iii); [IUTchII], Corollary
4.8, (iii) [cf. also the discussion of [IUTchII], Remark 4.8.1] — to the
construction of the global realified Frobenioid portion of the Θ×μ

gau-link
given in [IUTchII], Corollary 4.10, (ii).

On the other hand, the synchronization involving the non-realified global Frobe-
nioids may be thought of as a sort of further rigidification of the global realified
Frobenioids. As discussed in Remark 1.5.2, (iii), this “further rigidification” will
play an important role in the theory of §3 below.

Gv . . . Gv Gv Gv . . . Gv

� . . . � � � . . . �

−l� . . . −1 0 1 . . . l�

...

R>0 �
... ↗ ↘
... ↗ ↘

. . . . . . . . . . . . . . . � id
... ↘ ↗
... ↘ ↗

Fig. 1.4: Analogy between conjugate synchronization and the
representation of complex holomorphic structures via squares/rectangles
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Remark 1.5.4.

(i) As discussed in [IUTchII], Remark 3.8.3, (iii), one of the main themes of the
present series of papers is the goal of giving an explicit description of what one
arithmetic holomorphic structure — i.e., one vertical line of the log-theta-lattice —
looks like from the point of view of a distinct arithmetic holomorphic structure
— i.e., another vertical line of the log-theta-lattice — that is only related to the
original arithmetic holomorphic structure via some mono-analytic core, e.g., the
various bi-coric structures discussed in Theorem 1.5, (iii), (iv), (v). Typically, the
objects of interest that are constructed within the original arithmetic holomorphic
structure are Frobenius-like structures [cf. the discussion of [IUTchII], Remark
3.6.2], which, as we recall from the discussion of Remark 1.5.2, (ii) [cf. also the
discussion of [IUTchII], Remark 3.6.2, (ii)], are necessary in order to perform con-
structions — such as, for instance, the construction of the Θ-, Θ×μ-, or Θ×μ

gau-links
— that are “not bound to conventional scheme theory”. Indeed, the main
example of such an object of interest consists precisely of the Gaussian monoids
discussed in [IUTchII], §3, §4. Thus, the operation of describing such an object of
interest from the point of view of a distinct arithmetic holomorphic structure may
be broken down into two steps:

(a) passing from Frobenius-like structures to étale-like structures via various
Kummer isomorphisms;

(b) transporting the resulting étale-like structures from one arithmetic holo-
morphic structure to another by means of various multiradiality prop-
erties.

In particular, the computation of what the object of interest looks like from the
point of view of a distinct arithmetic holomorphic structure may be broken down
into the computation of the indeterminacies or “departures from rigidity” that
arise — i.e., the computation of “what sort of damage is incurred to the object
of interest” — during the execution of each of these two steps (a), (b). We shall
refer to the indeterminacies that arise from (a) as Kummer-detachment inde-
terminacies and to the indeterminacies that arise from (b) as étale-transport
indeterminacies.

(ii) Étale-transport indeterminacies typically amount to the indeterminacies
that occur as a result of the execution of various “anabelian” or “group-theoretic”
algorithms. One fundamental example of such indeterminacies is constituted by the
indeterminacies that occur in the context of Theorem 1.5, (iii), (iv), as a result of
the existence of automorphisms of the various [copies of] local absolute Galois
groups Gv, for v ∈ Vnon, which are not of scheme-theoretic origin [cf. the discussion
of [AbsTopIII], §I3].

(iii) On the other hand, one important example, from the point of view of the
theory of the present series of papers, of a Kummer-detachment indeterminacy is
constituted by the Frobenius-picture diagrams given in Propositions 1.2, (x);
1.3, (iv) — i.e., the issue of which path one is to take from a particular “•” to the
coric “◦”. That is to say, despite the fact that these diagrams fail to be commutative,
the “upper semi-commutativity” property satisfied by the coric holomorphic
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log-shells involved [cf. the discussion of Remark 1.2.2, (iii)] may be regarded as a
sort of computation, in the form of an upper estimate, of the Kummer-detachment
indeterminacy in question. Another important example, from the point of view of
the theory of the present series of papers, of a Kummer-detachment indeterminacy is

given by the Ẑ×-indeterminacies discussed in Remark 1.4.2 [cf. also the Kummer
isomorphisms of the final display of Theorem 1.5, (iii)].
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Section 2: Multiradial Theta Monoids

In the present §2, we globalize the multiradial portion of the local the-
ory of theta monoids developed in [IUTchII], §1, §3, at v ∈ Vbad [cf., espe-
cially, [IUTchII], Corollary 1.12; [IUTchII], Proposition 3.4] so as to cover the theta
monoids/Frobenioids of [IUTchII], Corollaries 4.5, (iv), (v); 4.6, (iv), (v), and ex-
plain how the resulting theory may be fit into the framework of the log-theta-
lattice developed in §1.

In the following discussion, we assume that we have been given initial Θ-data

as in [IUTchI], Definition 3.1. Let †HT Θ±ellNF be a Θ±ellNF-Hodge theater [relative
to the given initial Θ-data — cf. [IUTchI], Definition 6.13, (i)] and

{n,mHT Θ±ellNF}n,m∈Z

a collection of distinct Θ±ellNF-Hodge theaters [relative to the given initial Θ-data]
indexed by pairs of integers, which we think of as arising from a Gaussian log-theta-
lattice, as in Definition 1.4. We begin by reviewing the theory of theta monoids
developed in [IUTchII].

Proposition 2.1. (Vertical Coricity and Kummer Theory of Theta
Monoids) We maintain the notation introduced above. Also, we shall use the
notation AutF�(−) to denote the group of automorphisms of the F�-prime-strip in
parentheses. Then:

(i) (Vertically Coric Theta Monoids) In the notation of [IUTchII], Corol-
lary 4.5, (iv), (v) [cf. also the assignment “0, � �→ >” of [IUTchI], Proposition
6.7], there are functorial algorithms in the D- and D�-prime-strips †D>,

†D�>
associated to the Θ±ellNF-Hodge theater †HT Θ±ellNF for constructing collections of
data indexed by V

V � v �→ Ψenv(
†D>)v; V � v �→ ∞Ψenv(

†D>)v

as well as a global realified Frobenioid

D�
env(

†D�>)

equipped with a bijection Prime(D�
env(

†D�>))
∼→ V and corresponding local isomor-

phisms, for each v ∈ V, as described in detail in [IUTchII], Corollary 4.5, (v). In
particular, each isomorphism of the full poly-isomorphism induced [cf. Theorem 1.5,
(i)] by a vertical arrow of the Gaussian log-theta-lattice under consideration
induces a compatible collection of isomorphisms

Ψenv(
n,mD>)

∼→ Ψenv(
n,m+1D>); ∞Ψenv(

n,mD>)
∼→ ∞Ψenv(

n,m+1D>)

D�
env(

n,mD�>)
∼→ D�

env(
n,m+1D�>)
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— where the final isomorphism of Frobenioids is compatible with the respective
bijections involving “Prime(−)”, as well as with the respective local isomorphisms
for each v ∈ V.

(ii) (Kummer Isomorphisms) In the notation of [IUTchII], Corollary 4.6,

(iv), (v), there are functorial algorithms in the Θ±ellNF-Hodge theater †HT Θ±ellNF

for constructing collections of data indexed by V

V � v �→ ΨFenv(
†HT Θ)v; V � v �→ ∞ΨFenv(

†HT Θ)v

as well as a global realified Frobenioid

C�env(†HT Θ)

equipped with a bijection Prime(C�env(†HT Θ))
∼→ V and corresponding local iso-

morphisms, for each v ∈ V, as described in detail in [IUTchII], Corollary 4.6,

(v). Moreover, there are functorial algorithms in †HT Θ±ellNF for constructing
Kummer isomorphisms

ΨFenv(
†HT Θ)

∼→ Ψenv(
†D>); ∞ΨFenv(

†HT Θ)
∼→ ∞Ψenv(

†D>)

C�env(†HT Θ)
∼→ D�

env(
†D�>)

— where the final isomorphism of Frobenioids is compatible with the respective bi-
jections involving “Prime(−)”, as well as with the respective local isomorphisms
for each v ∈ V — with the data discussed in (i) [cf. [IUTchII], Corollary 4.6,
(iv), (v)]. Finally, the collection of data Ψenv(

†D>) gives rise, in a natural fash-
ion, to an F�-prime-strip F�env(

†D>) [cf. the F�-prime-strip “†F�env” of [IUTchII],
Corollary 4.10, (ii)]; the global realified Frobenioid D�

env(
†D�>), equipped with the

bijection Prime(D�
env(

†D�>))
∼→ V and corresponding local isomorphisms, for each

v ∈ V, reviewed in (i), together with the F�-prime-strip F�env(
†D>), determine an

F�-prime-strip F�
env(

†D>) [cf. the F�-prime-strip “†F�
env” of [IUTchII], Corollary

4.10, (ii)]. In particular, the first and third Kummer isomorphisms of the above
display may be interpreted as [compatible] isomorphisms

†F�env
∼→ F�env(

†D>);
†F�

env
∼→ F�

env(
†D>)

of F�-, F�-prime-strips.

(iii) (Kummer Theory at Bad Primes) The portion at v ∈ Vbad of the
Kummer isomorphisms of (ii) is obtained by composing the Kummer isomorphisms
of [IUTchII], Proposition 3.3, (i) — which, we recall, were defined by forming
Kummer classes in the context of mono-theta environments that arise from
tempered Frobenioids — with the isomorphisms on cohomology classes induced
[cf. the upper left-hand portion of the first display of [IUTchII], Proposition 3.4,
(i)] by the full poly-isomorphism of projective systems of mono-theta envi-

ronments “MΘ
∗ (
†D>,v)

∼→ MΘ
∗ (
†F

v
)” [cf. [IUTchII], Proposition 3.4; [IUTchII],

Remark 4.2.1, (iv)] between projective systems of mono-theta environments that
arise from tempered Frobenioids [i.e., “†F

v
”] and projective systems of mono-theta
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environments that arise from the tempered fundamental group [i.e., “†D>,v”] — cf.
the left-hand portion of the third display of [IUTchII], Corollary 3.6, (ii), in the
context of the discussion of [IUTchII], Remark 3.6.2, (i). Here, each “isomorphism
on cohomology classes” is induced by the isomorphism on exterior cyclotomes

Πμ(M
Θ
∗ (
†D>,v))

∼→ Πμ(M
Θ
∗ (
†F

v
))

determined by each of the isomorphisms that constitutes the full poly-isomorphism
of projective systems of mono-theta environments discussed above. In particular,
the composite map

Πμ(M
Θ
∗ (
†D>,v))⊗Q/Z → (Ψ†FΘ

v
)×μ

obtained by composing the result of applying “⊗ Q/Z” to this isomorphism on ex-
terior cyclotomes with the natural inclusion

Πμ(M
Θ
∗ (
†F

v
))⊗Q/Z ↪→ (Ψ†FΘ

v
)×

[cf. the notation of [IUTchII], Proposition 3.4, (i); the description given in [IUTchII],
Proposition 1.3, (i), of the exterior cyclotome of a mono-theta environment that
arises from a tempered Frobenioid] and the natural projection (Ψ†FΘ

v
)× � (Ψ†FΘ

v
)×μ

is equal to the zero map.

(iv) (Kummer Theory at Good Nonarchimedean Primes) The unit

portion at v ∈ Vgood ⋂Vnon of the Kummer isomorphisms of (ii) is obtained [cf.
[IUTchII], Proposition 4.2, (iv)] as the unit portion of a “labeled version” of the
isomorphism of ind-topological monoids equipped with a topological group
action — i.e., in the language of [AbsTopIII], Definition 3.1, (ii), the isomorphism
of “MLF-Galois TM-pairs” — discussed in [IUTchII], Proposition 4.2, (i) [cf.
also [IUTchII], Remark 1.11.1, (i), (a); [AbsTopIII], Proposition 3.2, (iv)]. In

particular, the portion at v ∈ Vgood ⋂Vnon of the AutF�(†F�
env)-orbit of the second

isomorphism of the final display of (ii) may be obtained as a “labeled version” of
the “Kummer poly-isomorphism of semi-simplifications” given in the final
display of [IUTchII], Proposition 4.2, (ii).

(v) (Kummer Theory at Archimedean Primes) The unit portion at
v ∈ Varc of the Kummer isomorphisms of (ii) is obtained [cf. [IUTchII], Propo-
sition 4.4, (iv)] as the unit portion of a “labeled version” of the isomorphism of
topological monoids discussed in [IUTchII], Proposition 4.4, (i). In particular,
the portion at v ∈ Varc of the AutF�(†F�

env)-orbit of the second isomorphism of the
final display of (ii) may be obtained as a “labeled version” of the “Kummer poly-
isomorphism of semi-simplifications” given in the final display of [IUTchII],
Proposition 4.4, (ii) [cf. also [IUTchII], Remark 4.6.1].

(vi) (Compatibility with Constant Monoids) The definition of the unit
portion of the theta monoids involved [cf. [IUTchII], Corollary 4.10, (iv)] gives
rise to natural isomorphisms

†F�×

∼→ †F�×env; F�×
 (†D�
)

∼→ F�×env(
†D>)
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— i.e., where the morphism induced on F�×μ-prime-strips by the first displayed
isomorphism is precisely the isomorphism of the first display of [IUTchII], Corollary
4.10, (iv) — of the respective associated F�×-prime-strips [cf. the notation of
Theorem 1.5, (iii), where the label “n,m” is replaced by the label “†”]. Moreover,
these natural isomorphisms are compatible with the Kummer isomorphisms of
(ii) above and Theorem 1.5, (iii).

Proof. The various assertions of Proposition 2.1 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 2.1.1. The theory of mono-theta environments [cf. Proposition 2.1,
(iii)] will play a crucial role in the theory of the present §2 [cf. Theorem 2.2, (ii);
Corollary 2.3, (iv), below] in the passage from Frobenius-like to étale-like struc-
tures [cf. Remark 1.5.4, (i), (a)] at bad primes. In particular, the various rigidity
properties of mono-theta environments established in [EtTh] play a fundamental
role in ensuring that the resulting “Kummer-detachment indeterminacies” [cf. the
discussion of Remark 1.5.4, (i)] are sufficiently mild so as to allow the establishment
of the various reconstruction algorithms of interest. For this reason, we pause to
review the main properties of mono-theta environments established in [EtTh] [cf.
[EtTh], Introduction] — namely,

(a) cyclotomic rigidity
(b) discrete rigidity
(c) constant multiple rigidity
(d) isomorphism class compatibility
(e) Frobenioid structure compatibility

— and the roles played by these main properties in the theory of the present series of
papers. Here, we remark that “isomorphism class compatibility” [i.e., (d)] refers to
compatibility with the convention that various objects of the tempered Frobenioids
[and their associated base categories] under consideration are known only up to
isomorphism [cf. [EtTh], Corollary 5.12; [EtTh], Remarks 5.12.1, 5.12.2]. In the
Introduction to [EtTh], instead of referring to (d) in this form, we referred to the
property of compatibility with the topology of the tempered fundamental group. In
fact, however, this compatibility with the topology of the tempered fundamental
group is a consequence of (d) [cf. [EtTh], Remarks 5.12.1, 5.12.2]. On the other
hand, from the point of view of the present series of papers, the essential property
of interest in this context is best understood as being the property (d).

(i) First, we recall that the significance, in the context of the theory of the
present series of papers, of the compatibility with the Frobenioid structure of the
tempered Frobenioids under consideration [i.e., (e)] — i.e., in particular, with the
monoidal portion, equipped with its natural Galois action, of these Frobenioids
— lies in the role played by this “Frobenius-like” monoidal portion in performing
constructions — such as, for instance, the construction of the log-, Θ-, Θ×μ-, or
Θ×μ

gau-links — that are “not bound to conventional scheme theory”, but may
be related, viaKummer theory, to various étale-like structures [cf. the discussions
of Remark 1.5.4, (i); [IUTchII], Remark 3.6.2, (ii); [IUTchII], Remark 3.6.4, (ii),
(v)].
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(ii) Next, we consider isomorphism class compatibility [i.e., (d)]. As discussed
above, this compatibility corresponds to regarding each of the various objects of
the tempered Frobenioids [and their associated base categories] under consideration
as being known only up to isomorphism [cf. [EtTh], Corollary 5.12; [EtTh], Re-
marks 5.12.1, 5.12.2]. As discussed in [IUTchII], Remark 3.6.4, (i), the significance
of this property (d) in the context of the present series of papers lies in the fact
that — unlike the case with the projective systems constituted by Kummer tow-
ers constructed from N -th power morphisms, which are compatible with only the
multiplicative, but not the additive structures of the pv-adic local fields involved —
each individual object in such a Kummer tower corresponds to a single field [i.e., as
opposed to a projective system of multiplicative groups of fields]. This field/ring
structure is necessary in order to apply the theory of the log-link developed in
§1 — cf. the vertical coricity discussed in Proposition 2.1, (i). Note, moreover,
that, unlike the log-, Θ-, Θ×μ-, or Θ×μ

gau-links, the N -th power morphisms that
appear in a Kummer tower are “algebraic”, hence compatible with the conven-
tional scheme theory surrounding the étale [or tempered] fundamental group. In
particular, since the tempered Frobenioids under consideration may be constructed
from such scheme-theoretic categories, the fundamental groups on either side of
such an N -th power morphism may be related up to an indeterminacy arising from
an inner automorphism of the tempered fundamental group [i.e., the “funda-
mental group” of the base category] under consideration — cf. the discussion of
[IUTchII], Remark 3.6.3, (ii). On the other hand, the objects that appear in these
Kummer towers necessarily arise from nontrivial line bundles [indeed, line bundles
all of whose positive tensor powers are nontrivial!] on tempered coverings of a
Tate curve — cf. the constructions underlying the Frobenioid-theoretic version of
the mono-theta environment [cf. [EtTh], Proposition 1.1; [EtTh], Lemma 5.9]; the
crucial role played by the commutator “[−,−]” in the theory of cyclotomic rigidity
[i.e., (a)] reviewed in (iv) below. In particular, the extraction of various N -th roots
in a Kummer tower necessarily leads to mutually non-isomorphic line bundles, i.e.,
mutually non-isomorphic objects in the Kummer tower. From the point of view of
reconstruction algorithms, such non-isomorphic objects may be naturally — i.e.,
algorithmically — related to another only via indeterminate isomorphisms
[cf. (d)!]. This point of view is precisely the starting point of the discussion of
— for instance, “constant multiple indeterminacy” in — [EtTh], Remarks 5.12.2,
5.12.3.

(iii) Next, we recall that the significance of constant multiple rigidity [i.e.,
(c)] in the context of the present series of papers lies in the construction of the
canonical splittings of theta monoids via restriction to the zero section
discussed, for instance, in [IUTchII], Corollary 1.12, (ii); [IUTchII], Proposition 3.3,
(i); [IUTchII], Remark 1.12.2, (iv) [cf. also Remark 1.2.3, (i), of the present paper].

(iv) Next, we review the significance of cyclotomic rigidity [i.e., (a)] in the
context of the present series of papers. First, we recall that this cyclotomic rigidity
is essentially a consequence of the nondegenerate nature of the commutator “[−,−]”
of the theta groups involved [cf. the discussion of [EtTh], Introduction; [EtTh],
Remark 2.19.2]. Put another way, since this commutator is quadratic in nature,
one may think of this nondegenerate nature of the commutator as a statement to
the effect that “the degree of the commutator is precisely 2”. At a more concrete
level, the cyclotomic rigidity arising from a mono-theta environment consists of
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a certain specific isomorphism between the interior and exterior cyclotomes [cf.
the discussion of [IUTchII], Definition 1.1, (ii); [IUTchII], Remark 1.1.1]. Put
another way, one may think of this cyclotomic rigidity isomorphism as a sort of
rigidification of a certain “projective line of cyclotomes”, i.e., the projectivization
of the direct sum of the interior and exterior cyclotomes [cf. the computations that
underlie [EtTh], Proposition 2.12]. In particular, this rigidification is fundamentally
nonlinear in nature. Indeed, if one attempts to compose it with an N -th power
morphism, then one is obliged to sacrifice constant multiple rigidity [i.e., (c)] — cf.
the discussion of [EtTh], Remark 5.12.3. That is to say, the distinguished nature of
the “first power” of the cyclotomic rigidity isomorphism is an important theme
in the theory of [EtTh] [cf. the discussion of [EtTh], Remark 5.12.5; [IUTchII],
Remark 3.6.4, (iii), (iv)]. The multiradiality of mono-theta-theoretic cyclotomic
rigidity [cf. [IUTchII], Corollary 1.10] — which lies in stark contrast with the
indeterminacies that arise when one attempts to give a multiradial formulation [cf.
[IUTchII], Corollary 1.11; the discussion of [IUTchII], Remark 1.11.3] of the more
classical “MLF-Galois pair cyclotomic rigidity” arising from local class field theory
— will play a central role in the theory of the present §2 [cf. Theorem 2.2, Corollary
2.3 below].

(v) Finally, we review the significance of discrete rigidity [i.e., (b)] in the context
of the present series of papers. First, we recall that, at a technical level, whereas
cyclotomic rigidity may be regarded [cf. the discussion of (iv)] as a consequence of
the fact that “the degree of the commutator is precisely 2”, discrete rigidity may be
regarded as a consequence of the fact that “the degree of the commutator is ≤ 2”
[cf. the statements and proofs of [EtTh], Proposition 2.14, (ii), (iii)]. At a more
concrete level, discrete rigidity assures one that one may restrict one’s attentions

to Z-multiples/powers — as opposed to Ẑ-multiples/powers — of divisors,
line bundles, and rational functions [such as, for instance, the q-parameter!] on the
tempered coverings of a Tate curve that occur in the theory of [EtTh] [cf. [EtTh],
Remark 2.19.4]. This prompts the following question:

Can one develop a theory of Ẑ-divisors/line bundles/rational functions in,
for instance, a parallel fashion to the way in which one considers perfections
and realifications of Frobenioids in the theory of [FrdI]?

As far as the author can see at the time of writing, the answer to this question is
“no”. Indeed, unlike the case with Q or R, there is no notion of positivity [or nega-

tivity] in Ẑ. For instance, −1 ∈ Ẑ may be obtained as a limit of positive integers. In

particular, if one had a theory of Ẑ-divisors/line bundles/rational functions, then
such a theory would necessarily require one to “confuse” positive [i.e., effective]
and negative divisors, hence to work birationally. But to work birationally means,
in particular, that one must sacrifice the conventional structure of isomorphisms
[e.g., automorphisms] between line bundles — which plays an indispensable role,
for instance, in the constructions underlying the Frobenioid-theoretic version of
the mono-theta environment [cf. [EtTh], Proposition 1.1; [EtTh], Lemma 5.9; the
crucial role played by the commutator “[−,−]” in the theory of cyclotomic rigidity
[i.e., (a)] reviewed in (iv) above].
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Remark 2.1.2.

(i) In the context of the discussion of Remark 2.1.1, (v), it is of interest to recall
[cf. [IUTchII], Remark 4.5.3, (iii); [IUTchII], Remark 4.11.2, (iii)] that the essen-
tial role played, in the context of the F�±

l -symmetry, by the “global bookkeeping
operations” involving the labels of the evaluation points gives rise, in light of the
profinite nature of the global étale fundamental groups involved, to a situation
in which one must apply the “complements on tempered coverings” developed in
[IUTchI], §2. That is to say, in the notation of the discussion given in [IUTchII],

Remark 2.1.1, (i), of the various tempered coverings that occur at v ∈ Vbad, these
“complements on tempered coverings” are applied precisely so as to allow one to
restrict one’s attention to the [discrete!] Z-conjugates — i.e., as opposed to [profi-

nite!] Ẑ-conjugates [where we write Ẑ for the profinite completion of Z] — of the
theta functions involved. In particular, although such “evaluation-related issues”,
which will become relevant in the context of the theory of §3 below, do not play
a role in the theory of the present §2, the role played by the theory of [IUTchI],
§2, in the theory of the present series of papers may also be thought of as a sort of
“discrete rigidity” — which we shall refer to as “evaluation discrete rigidity”
— i.e., a sort of rigidity that is concerned with similar issues to the issues discussed
in the case of “mono-theta-theoretic discrete rigidity” in Remark 2.1.1, (v), above.

(ii) Next, let us suppose that we are in the situation discussed in [IUTchII],

Proposition 2.1. Fix v ∈ Vbad. Write Π
def
= Πv; Π̂ for the profinite completion of

Π. Thus, we have natural surjections Π � l · Z (⊆ Z), Π̂ � l · Ẑ (⊆ Ẑ). Write

Π† def
= Π̂ ×

Ẑ
Z ⊆ Π̂. Next, we observe that from the point of view of the evaluation

points, the evaluation discrete rigidity discussed in (i) corresponds to the issue of
whether, relative to some arbitrarily chosen basepoint, the “coordinates” [i.e.,
element of the “torsor over Z” discussed in [IUTchII], Remark 2.1.1, (i)] of the

evaluation point lie ∈ Z or ∈ Ẑ. Thus, if one is only concerned with the issue of
arranging for these coordinates to lie ∈ Z, then one is led to pose the following
question:

Is it possible to simply use the “partially tempered fundamental group” Π†

instead of the “full” tempered fundamental group Π in the theory of the
present series of papers?

The answer to this question is “no”. One way to see this is to consider the [easily
verified] natural isomorphism

N
Π̂
(Π†)/Π† ∼→ Ẑ/Z

involving the normalizer N
Π̂
(Π†) of Π† in Π̂. One consequence of this isomorphism

is that — unlike the tempered fundamental group Π [cf., e.g., [SemiAnbd], The-
orems 6.6, 6.8] — the topological group Π† fails to satisfy various fundamental
absolute anabelian properties which play a crucial role in the theory of [EtTh],
as well as in the present series of papers [cf., e.g., the theory of [IUTchII], §2]. At
a more concrete level, unlike the case with the tempered fundamental group Π,

the profinite conjugacy indeterminacies that act on Π† give rise to Ẑ-translation
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indeterminacies acting on the coordinates of the evaluation points involved. That

is to say, in the case of Π, such Ẑ-translation indeterminacies are avoided precisely
by applying the “complements on tempered coverings” developed in [IUTchI], §2
— i.e., in a word, as a consequence of the “highly anabelian nature” of the [full!]
tempered fundamental group Π.

Theorem 2.2. (Kummer-compatible Multiradiality of Theta Monoids)
Fix a collection of initial Θ-data

(F/F, XF , l, CK , V, Vbad
mod, ε)

as in [IUTchI], Definition 3.1. Let †HT Θ±ellNF be a Θ±ellNF-Hodge theater
[relative to the given initial Θ-data — cf. [IUTchI], Definition 6.13, (i)]. For � ∈
{�,� 	 ×μ,�×μ}, write AutF�(−) for the group of automorphisms of the F�-
prime-strip in parentheses [cf. [IUTchI], Definition 5.2, (iv); [IUTchII], Definition
4.9, (vi), (vii), (viii)].

(i) (Automorphisms of Prime-strips) The natural functors determined by
assigning to an F�-prime-strip the associated F��×μ- and F�×μ-prime-strips [cf.
[IUTchII], Definition 4.9, (vi), (vii), (viii)] and then composing with the natural
isomorphisms of Proposition 2.1, (vi), determine natural homomorphisms

AutF�(F�
env(

†D>)) → AutF��×μ(F��×μ
env (†D>)) � AutF�×μ(F�×μ


 (†D�
))

AutF�(†F�
env) → AutF��×μ(†F��×μ

env ) � AutF�×μ(†F�×μ

 )

— where the second arrows in each line are surjections — that are compatible
with the Kummer isomorphisms of Proposition 2.1, (ii), and Theorem 1.5, (iii)
[cf. the final portions of Proposition 2.1, (iv), (v), (vi)].

(ii) (Kummer Aspects of Multiradiality at Bad Primes) Let v ∈ Vbad.
Write

∞Ψ⊥env(
†D>)v ⊆ ∞Ψenv(

†D>)v; ∞Ψ⊥Fenv
(†HT Θ)v ⊆ ∞ΨFenv(

†HT Θ)v

for the submonoids corresponding to the respective splittings [cf. [IUTchII], Corol-
laries 3.5, (iii); 3.6, (iii)], i.e., the submonoids generated by “∞θι

env
(MΘ

∗ )” [cf. the

notation of [IUTchII], Proposition 3.1, (i)] and the respective torsion subgroups.
Now consider the commutative diagram

∞Ψ⊥env(
†D>)v ⊇ ∞Ψenv(

†D>)
μ
v ⊆ ∞Ψenv(

†D>)
×
v⏐⏐� ⏐⏐� ⏐⏐�

∞Ψ⊥Fenv
(†HT Θ)v ⊇ ∞ΨFenv(

†HT Θ)μv ⊆ ∞ΨFenv(
†HT Θ)×v

� ∞Ψenv(
†D>)

×μ
v

∼→ Ψss
cns(

†D�
)
×μ
v⏐⏐� ⏐⏐�

� ∞ΨFenv(
†HT Θ)×μ

v
∼→ Ψss

cns(
†F�
)

×μ
v
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— where the inclusions “⊇”, “⊆” are the natural inclusions; the surjections “�”
are the natural surjections; the superscript “μ” denotes the torsion subgroup; the
superscript “×” denotes the group of units; the superscript “×μ” denotes the quo-
tient “(−)×/(−)μ”; the first four vertical arrows are the isomorphisms determined
by the inverse of the second Kummer isomorphism of the third display of Propo-
sition 2.1, (ii); †D�
 is as discussed in Theorem 1.5, (iii); †F�
 is as discussed

in [IUTchII], Corollary 4.10, (i); the final vertical arrow is the inverse of the
“Kummer poly-isomorphism” determined by the second displayed isomorphism
of [IUTchII], Corollary 4.6, (ii); the final upper horizontal arrow is the poly-
isomorphism determined by composing the isomorphism determined by the in-
verse of the second displayed natural isomorphism of Proposition 2.1, (vi), with the
poly-automorphism of Ψss

cns(
†D�
)

×μ
v induced by the full poly-automorphism of

the D�-prime-strip †D�
; the final lower horizontal arrow is the poly-automorphism
determined by the condition that the final square be commutative. This commuta-
tive diagram is compatible with the various group actions involved relative to the
following diagram

ΠX(MΘ
∗ (
†D>,v)) � Gv(M

Θ
∗ (
†D>,v)) = Gv(M

Θ
∗ (
†D>,v))

= Gv(M
Θ
∗ (
†D>,v))

∼→ Gv(M
Θ
∗ (
†D>,v))

[cf. the notation of [IUTchII], Proposition 3.1; [IUTchII], Remark 4.2.1, (iv);

[IUTchII], Corollary 4.5, (iv)] — where “�” denotes the natural surjection; “
∼→ ”

denotes the full poly-automorphism of Gv(M
Θ
∗ (
†D>,v)). Finally, each of the various

composite maps

∞Ψenv(
†D>)

μ
v → Ψss

cns(
†F�
)

×μ
v

is equal to the zero map [cf. (bv) below; the final portion of Proposition 2.1, (iii)].
In particular, the identity automorphism on the following objects is compati-
ble, relative to the various natural morphisms involved [cf. the above commutative
diagram], with the collection of automorphisms of Ψss

cns(
†F�
)

×μ
v induced by arbi-

trary automorphisms ∈ AutF�×μ(†F�×μ

 ) [cf. [IUTchII], Corollary 1.12, (iii);

[IUTchII], Proposition 3.4, (i)]:

(av) ∞Ψ⊥env(
†D>)v ⊇ ∞Ψenv(

†D>)
μ
v ;

(bv) Πμ(M
Θ
∗ (
†D>,v))⊗Q/Z [cf. the discussion of Proposition 2.1, (iii)], rela-

tive to the natural isomorphism Πμ(M
Θ
∗ (
†D>,v))⊗Q/Z

∼→ ∞Ψenv(
†D>)

μ
v

of [IUTchII], Remark 1.5.2 [cf. (av)];

(cv) the projective system of mono-theta environments MΘ
∗ (
†D>,v) [cf.

(bv)];

(dv) the splittings ∞Ψ⊥env(
†D>)v � ∞Ψenv(

†D>)
μ
v [cf. (av)] by means of re-

striction to zero-labeled evaluation points [cf. [IUTchII], Proposition
3.1, (i)].

Proof. The various assertions of Theorem 2.2 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ©
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Remark 2.2.1. In light of the central importance of Theorem 2.2, (ii), in the
theory of the present §2, we pause to examine the significance of Theorem 2.2, (ii),
in more conceptual terms.

(i) In the situation of Theorem 2.2, (ii), let us write [for simplicity] Πv
def
=

ΠX(MΘ
∗ (
†D>,v)), Gv

def
= Gv(M

Θ
∗ (
†D>,v)), Πμ

def
= Πμ(M

Θ
∗ (
†D>,v)) [cf. (bv)]. Also,

for simplicity, we write (l ·ΔΘ)
def
= (l ·ΔΘ)(M

Θ
∗ (
†D>,v)) [cf. [IUTchII], Proposition

1.5, (iii)]. Here, we recall that in fact, (l · ΔΘ) may be thought of as an object
constructed from Πv [cf. [IUTchII], Proposition 1.4]. Then the projective system

of mono-theta environments MΘ
∗ (
†D>,v) [cf. (cv)] may be thought of as a sort of

“amalgamation of Πv and Πμ”, where the amalgamation is such that it allows the
reconstruction of the mono-theta-theoretic cyclotomic rigidity isomorphism

(l ·ΔΘ)
∼→ Πμ

[cf. [IUTchII], Proposition 1.5, (iii)] — i.e., not just the Ẑ×-orbit of this isomor-
phism!

(ii) Now, in the notation of (i), the Kummer classes ∈ ∞Ψ⊥env(
†D>)v [cf. (av)]

constituted by the various étale theta functions may be thought of, for a suitable
characteristic open subgroup H ⊆ Πv, as twisted homomorphisms

(Πv ⊇) H → Πμ

whose restriction to (l · ΔΘ) coincides with the cyclotomic rigidity isomorphism

(l ·ΔΘ)
∼→ Πμ discussed in (i). Then the essential content of Theorem 2.2, (ii),

lies in the observation that

since theKummer-theoretic link between étale-like data and Frobenius-
like data at v ∈ Vbad is established by means of projective systems of
mono-theta environments [cf. the discussion of Proposition 2.1, (iii)]
— i.e., which do not involve the various monoids “(−)×μ”! — the mono-
theta-theoretic cyclotomic rigidity isomorphism [i.e., not just the

Ẑ×-orbit of this isomorphism!] is immune to the various automorphisms
of the monoids “(−)×μ” which, from the point of view of the multiradial
formulation to be discussed in Corollary 2.3 below, arise from isomor-
phisms of coric data.

Put another way, this “immunity” may be thought of as a sort of decoupling of the
“geometric” [i.e., in the sense of the geometric fundamental group Δv ⊆ Πv] and
“base-field-theoretic” [i.e., associated to the local absolute Galois group Πv � Gv]
data which allows one to treat the exterior cyclotome Πμ — which, a priori, “looks
base-field-theoretic” — as being part of the “geometric” data. From the point of
view of the multiradial formulation to be discussed in Corollary 2.3 below [cf. also
the discussion of [IUTchII], Remark 1.12.2, (vi)], this decoupling may be thought
of as a sort of splitting into purely radial and purely coric components — i.e.,
with respect to which Πμ is “purely radial”, while the various monoids “(−)×μ”
are “purely coric”.
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(iii) Note that the immunity to automorphisms of the monoids “(−)×μ” dis-

cussed in (ii) lies in stark contrast to the Ẑ×-indeterminacies that arise in the case
of the cyclotomic rigidity isomorphisms constructed from MLF-Galois pairs in a
fashion that makes essential use of the monoids “(−)×μ”, as discussed in [IUTchII],
Corollary 1.11; [IUTchII], Remark 1.11.3. In the following discussion, let us write
“O×μ” for the various monoids “(−)×μ” that occur in the situation of Theorem

2.2; also, we shall use similar notation “Oμ”, “O×”, “O�”, “Ogp”, “Oĝp” [cf. the
notational conventions of [IUTchII], Example 1.8, (ii), (iii), (iv), (vii)]. Thus, we
have a diagram

Oμ ⊆ O× ⊆ O� ⊆ Ogp ⊆ Oĝp

↘
⏐⏐�
O×μ

of natural morphisms between monoids equipped with Πv-actions. Relative to
this notation, the essential input data for the cyclotomic rigidity isomorphism con-
structed from an MLF-Galois pair is given by “O�” [cf. [IUTchII], Corollary 1.11,

(a)]. On the other hand — unlike the case with Oμ — a Ẑ×-indeterminacy act-

ing on O×μ does not lie under an identity action on O×! That is to say, a Ẑ×-
indeterminacy acting on O×μ can only be lifted naturally to Ẑ×-indeterminacies on

O×, Oĝp [cf. Fig. 2.1 below; [IUTchII], Corollary 1.11, (a), in the case where one

takes “Γ” to be Ẑ×; [IUTchII], Remark 1.11.3, (ii)]. In the presence of such Ẑ×-
indeterminacies, one can only recover the Ẑ×-orbit of the MLF-Galois-pair-theoretic
cyclotomic rigidity isomorphism.

Ẑ× � Ẑ× � Ẑ× �

O×μ � O× ⊆ O� ⊆ Ogp ⊆ Oĝp

(⊇ Oμ)

Fig. 2.1: Induced Ẑ×-indeterminacies in the case of
MLF-Galois pair cyclotomic rigidity

id � Ẑ× �

Πμ
∼→ Oμ → O×μ

Fig. 2.2: Insulation from Ẑ×-indeterminacies in the case of
mono-theta-theoretic cyclotomic rigidity

(iv) Thus, in summary, [cf. Fig. 2.2 above]
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mono-theta-theoretic cyclotomic rigidity plays an essential role in
the theory of the present §2 — and, indeed, in the theory of the present
series of papers! — in that it serves to insulate the étale theta function

from the Ẑ×-indeterminacies which act on the coric log-shells [i.e., the
various monoids “(−)×μ”].

The techniques that underlie the resultingmultiradiality of theta monoids [cf. Corol-
lary 2.3 below], cannot, however, be applied immediately to the case of Gaussian
monoids. That is to say, the corresponding multiradiality of Gaussian monoids, to
be discussed in §3 below, requires one to apply the theory of log-shells developed
in §1 [cf. [IUTchII], Remark 2.9.1, (iii); [IUTchII], Remark 3.4.1, (ii); [IUTchII],
Remark 3.7.1]. On the other hand, as we shall see in §3 below, the multiradiality
of Gaussian monoids depends in an essential way on the multiradiality of theta
monoids discussed in the present §2 as a sort of “essential first step” constituted by
the decoupling discussed in (ii) above. Indeed, if one tries to consider the Kummer

theory of the theta values [i.e., the “q
j2

v
” — cf. [IUTchII], Remark 2.5.1, (i)] just

as elements of the base field — i.e., without availing oneself of the theory of the étale
theta function — then it is difficult to see how to rigidify the cyclotomes involved
by any means other than the theory of MLF-Galois pairs discussed in (iii) above.
But, as discussed in (iii) above, this approach to cyclotomic rigidity gives rise to

Ẑ×-indeterminacies — i.e., to confusion between the theta values “q
j2

v
” and their

Ẑ×-powers, which is unacceptable from the point of view of the theory of the present
series of papers! For another approach to understanding the indispensability of the
multiradiality of theta monoids, we refer to Remark 2.2.2 below.

Remark 2.2.2.

(i) One way to understand the very special role played by the theta values
[i.e., the values of the theta function] in the theory of the present series of papers
is to consider the following naive question:

Can one develop a similar theory to the theory of the present series of
papers in which one replaces the Θ×μ

gau-link

q �→ q

(
12
...

(l�)2

)

[cf. [IUTchII], Remark 4.11.1] by a correspondence of the form

q �→ qλ

— where λ is some arbitrary positive integer?

The answer to this question is “no”. Indeed, such a correspondence does not come
equipped with the extensive multiradiality machinery — such as mono-theta-
theoretic cyclotomic rigidity and the splittings determined by zero-labeled



70 SHINICHI MOCHIZUKI

evaluation points — that has been developed for the étale theta function [cf. the
discussion of Step (vi) of the proof of Corollary 3.12 of §3 below]. For instance, the
lack of mono-theta-theoretic cyclotomic rigidity means that one does not have an
apparatus for insulating the Kummer classes of such a correspondence from the

Ẑ×-indeterminacies that act on the various monoids “(−)×μ” [cf. the discussion
of Remark 2.2.1, (iv)]. The splittings determined by zero-labeled evaluation points
also play an essential role in decoupling these monoids “(−)×μ” — i.e., the coric
log-shells — from the “purely radial” [or, put another way, “value group”]
portion of such a correspondence “q �→ qλ” [cf. the discussion of (iii) below; Remark

2.2.1, (ii); [IUTchII], Remark 1.12.2, (vi)]. Note, moreover, that if one tries to
realize such a multiradial splitting via evaluation — i.e., in accordance with the
principle of “Galois evaluation” [cf. the discussion of [IUTchII], Remark 1.12.4]
— for a correspondence “q �→ qλ” by, for instance, taking λ to be one of the “j2”

[where j is a positive integer] that appears as a value of the étale theta function, then
one must contend with issues of symmetry between the zero-labeled evaluation
point and the evaluation point corresponding to λ — i.e., symmetry issues that
are resolved in the theory of the present series of papers by means of the theory
surrounding the F�±

l -symmetry [cf. the discussion of [IUTchII], Remarks 2.6.2,
3.5.2]. As discussed in [IUTchII], Remark 2.6.3, this sort of situation leads to
numerous conditions on the collection of evaluation points under consideration. In
particular, ultimately, it is difficult to see how to construct a theory as in the present
series of papers for any collection of evaluation points other than the collection that
is in fact adopted in the definition of the Θ×μ

gau-link.

(ii) As discussed in Remark 2.2.1, (iv), we shall be concerned, in §3 below, with
developing multiradial formulations for Gaussian monoids. These multiradial for-
mulations will be subject to certain indeterminacies, which — although sufficiently
mild to allow the execution of the volume computations that will be the subject of
[IUTchIV] — are, nevertheless, substantially more severe than the indeterminacies
that occur in the multiradial formulation given for theta monoids in the present §2
[cf. Corollary 2.3 below]. Indeed, the indeterminacies in the multiradial formulation
given for theta monoids in the present §2 — which essentially consist of multiplica-
tion by roots of unity [cf. [IUTchII], Proposition 3.1, (i)] — are essentially negligible
and may be regarded as a consequence of the highly nontrivial Kummer theory
surrounding mono-theta environments [cf. Proposition 2.1, (iii); Theorem 2.2,
(ii)], which, as discussed in Remark 2.2.1, (iv), cannot be mimicked for “theta val-
ues regarded just as elements of the base field”. That is to say, the quite exact
nature of the multiradial formulation for theta monoids — i.e., which contrasts
sharply with the somewhat approximate nature of the multiradial formulation
for Gaussian monoids to be developed in §3 — constitutes another important ingre-
dient of the theory of the present paper that one must sacrifice if one attempts to
work with correspondences q �→ qλ as discussed in (i), i.e., correspondences which

do not come equipped with the extensive multiradiality machinery that arises as a
consequence of the theory of the étale theta function developed in [EtTh].

(iii) One way to understand the significance, in the context of the discussions
of (i) and (ii) above, of the multiradial coric/radial decouplings furnished
by the splittings determined by the zero-labeled evaluation points is as follows.
Ultimately, in order to establish, in §3 below, multiradial formulations for Gaussian
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monoids, it will be of crucial importance to pass from the Frobenius-like theta
monoids that appear in the domain of the Θ×μ

gau-link to vertically coric étale-
like objects by means of Kummer theory [cf. the discussions of Remarks 1.2.4,
(i); 1.5.4, (i), (iii)], in the context of the relevant log-Kummer correspondences,
as discussed, for instance, in Remark 3.12.2, (iv), (v), below [cf. also [IUTchII],
Remark 1.12.2, (iv)]. On the other hand, in order to obtain formulations expressed
in terms that are meaningful from the point of view of the codomain of the Θ×μ

gau-
link, it is necessary [cf. the discussion of Remark 3.12.2, (iv), (v), below] to relate
this Kummer theory of theta monoids in the domain of the Θ×μ

gau-link to the
Kummer theory constituted by the ×μ-Kummer structures that appear in the
horizontally coric portion of the data that constitutes the Θ×μ

gau-link [cf. Theorem
1.5, (ii)]. This is precisely what is achieved by the Kummer-compatibility of
the multiradial splitting via evaluation — i.e., in accordance with the principle of
“Galois evaluation” [cf. the discussion of [IUTchII], Remark 1.12.4]. This state
of affairs [cf., especially, the two displays of [IUTchII], Corollary 1.12, (ii); the final
arrow of the diagram “(†μ,×μ)” of [IUTchII], Corollary 1.12, (iii)] is illustrated in
Fig. 2.3 below.

id � Aut(G), Ism �

∞θ � Π ←↩ Π/Δ → G � O×μ

⋂ ‖

id � Aut(G), Ism �

O× ·∞θ � Π ←↩ Π/Δ
→
...
→

G � O×μ

∞θ �→ 1 ∈ O×μ

Fig. 2.3: Kummer-compatible splittings via evaluation
at zero-labeled evaluation points [i.e., “Π ←↩ Π/Δ”]

Here, themultiple arrows [i.e., indicated by means of the “→’s” separated by vertical
dots] in the lower portion of the diagram correspond to the fact that the “O×”
on the left-hand side of this lower portion is related to the “O×μ” on the right-
hand side via an Ism-orbit of morphisms; the analogous arrow in the upper portion
of the diagram consists of a single arrow [i.e., “→”] and corresponds to the fact
that the restriction of the multiple arrows in the lower portion of the diagram to
“∞θ” amounts to a single arrow, i.e., precisely as a consequence of the fact that

∞θ �→ 1 ∈ O×μ [cf. the situation illustrated in Fig. 2.2]. On the other hand,

the “Π/Δ’s” on the left-hand side of both the upper and the lower portions of the
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diagram are related to the “G’s” on the right-hand side via the unique tautological
Aut(G)-orbit of isomorphisms. Thus, from the point of view of Fig. 2.3, the crucial
Kummer-compatibility discussed above may be understood as the statement
that

the multiradial structure [cf. the lower portion of Fig. 2.3] on the “theta
monoid O× ·∞θ” furnished by the splittings via Galois evaluation into
coric/radial components is compatible with the relationship between
the respective Kummer theories of the “O×” portion of “O× ·∞θ” [on

the left] and the coric “O×μ” [on the right].

This state of affairs lies in stark contrast to the situation that arises in the case of
a naive correspondence of the form “q �→ qλ” as discussed in (i): That is to say,

in the case of such a naive correspondence, the corresponding arrows “→” of the
analogue of Fig. 2.3 map

qλ �→ 1 ∈ O×μ

and hence are fundamentally incompatible with passage to Kummer classes,
i.e., since the Kummer class of qλ in a suitable cohomology group of Π/Δ is by no

means mapped, via the poly-isomorphism Π/Δ
∼→ G, to the trivial element of the

relevant cohomology group of G.

We conclude the present §2 with the following multiradial interpretation [cf.
[IUTchII], Remark 4.1.1, (iii); [IUTchII], Remark 4.3.1] — in the spirit of the étale-
picture of D-Θ±ellNF-Hodge theaters of [IUTchII], Corollary 4.11, (ii) — of the
theory surrounding Theorem 2.2.

Corollary 2.3. (Étale-picture of Multiradial Theta Monoids) In the
notation of Theorem 2.2, let

{n,mHT Θ±ellNF}n,m∈Z

be a collection of distinct Θ±ellNF-Hodge theaters [relative to the given initial
Θ-data] — which we think of as arising from a Gaussian log-theta-lattice [cf.

Definition 1.4]. Write n,mHT D-Θ±ellNF for the D-Θ±ellNF-Hodge theater associated

to n,mHT Θ±ellNF. Consider the radial environment [cf. [IUTchII], Example 1.7,
(ii)] defined as follows. We define a collection of radial data

†R = (†HT D-Θ±ellNF,F�
env(

†D>),
†Rbad,F�×μ


 (†D�
),F
�×μ
env (†D>)

∼→ F�×μ

 (†D�
))

to consist of

(aR) a D-Θ±ellNF-Hodge theater †HT D-Θ±ellNF;

(bR) the F�-prime-strip F�
env(

†D>) associated to †HT D-Θ±ellNF [cf. Proposi-
tion 2.1, (ii)];
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(cR) the data (av), (bv), (cv), (dv) of Theorem 2.2, (ii), for v ∈ Vbad, which

we denote by †Rbad;

(dR) the F�×μ-prime-strip F�×μ

 (†D�
) associated to †HT D-Θ±ellNF [cf. The-

orem 1.5, (iii)];

(eR) the full poly-isomorphism of F�×μ-prime-strips F�×μ
env (†D>)

∼→ F�×μ

 (†D�
).

We define a morphism between two collections of radial data †R → ‡R [where we
apply the evident notational conventions with respect to “†” and “‡”] to consist of
data as follows:

(aMorR) an isomorphism of D-Θ±ellNF-Hodge theaters †HT D-Θ±ellNF ∼→ ‡HT D-Θ±ellNF;

(bMorR) the isomorphism of F�-prime-strips F�
env(

†D>)
∼→ F�

env(
‡D>) induced

by the isomorphism of (aMorR);

(cMorR) the isomorphism between collections of data †Rbad ∼→ ‡Rbad induced by
the isomorphism of (aMorR);

(dMorR) an isomorphism of F�×μ-prime-strips F�×μ

 (†D�
)

∼→ F�×μ

 (‡D�
);

(eMorR) we observe that the isomorphisms of (bMorR) and (dMorR) are necessarily
compatible with the poly-isomorphisms of (eR) for “†”, “‡”.

We define a collection of coric data

†C = (†D�,F�×μ(†D�))

to consist of

(aC) a D�-prime-strip †D�;

(bC) the F�×μ-prime-strip F�×μ(†D�) associated to †D� [cf. [IUTchII],
Corollary 4.5, (ii); [IUTchII], Definition 4.9, (vi), (vii)].

We define a morphism between two collections of coric data †C → ‡C [where we
apply the evident notational conventions with respect to “†” and “‡”] to consist of
data as follows:

(aMorC) an isomorphism of D�-prime-strips †D� ∼→ ‡D�;

(bMorC) an isomorphism of F�×μ-prime-strips F�×μ(†D�) ∼→ F�×μ(‡D�) that

induces the isomorphism †D� ∼→ ‡D� on associated D�-prime-strips of
(aMorC).

The radial algorithm is given by the assignment

†R = (†HT D-Θ±ellNF,F�
env(

†D>),
†Rbad,F�×μ


 (†D�
),F
�×μ
env (†D>)

∼→ F�×μ

 (†D�
))

�→ †C = (†D�
,F
�×μ

 (†D�
))
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— together with the assignment on morphisms determined by the data of (dMorR).
Then:

(i) The functor associated to the radial algorithm defined above is full and
essentially surjective. In particular, the radial environment defined above is
multiradial.

(ii) Each D-Θ±ellNF-Hodge theater n,mHT D-Θ±ellNF, for n,m ∈ Z, defines, in
an evident way, an associated collection of radial data n,mR. The poly-isomorphisms
induced by the vertical arrows of the Gaussian log-theta-lattice under consid-
eration [cf. Theorem 1.5, (i)] induce poly-isomorphisms of radial data . . .

∼→ n,mR
∼→ n,m+1R

∼→ . . . . Write
n,◦R

for the collection of radial data obtained by identifying the various n,mR, for m ∈ Z,
via these poly-isomorphisms and n,◦C for the collection of coric data associated, via
the radial algorithm defined above, to the radial data n,◦R. In a similar vein,
the horizontal arrows of the Gaussian log-theta-lattice under consideration induce
full poly-isomorphisms . . .

∼→ n,mD�

∼→ n+1,mD�


∼→ . . . of D�-prime-strips [cf.

Theorem 1.5, (ii)]. Write
◦,◦C

for the collection of coric data obtained by identifying the various n,◦C, for n ∈ Z,
via these poly-isomorphisms. Thus, by applying the radial algorithm defined above to
each n,◦R, for n ∈ Z, we obtain a diagram — i.e., an étale-picture of radial data
— as in Fig. 2.4 below. This diagram satisfies the important property of admitting
arbitrary permutation symmetries among the spokes [i.e., the labels n ∈ Z]
and is compatible, in the evident sense, with the étale-picture of D-Θ±ellNF-Hodge
theaters of [IUTchII], Corollary 4.11, (ii).

F�
env(

n,◦D>)
+ n,◦Rbad + . . .

. . .
|

. . .

F�
env(

n′,◦D>)

+ n′,◦Rbad + . . .

. . .

—
F�×μ

 (◦,◦D�
)

|

— F�
env(

n′′,◦D>)

+ n′′,◦Rbad + . . .

. . .

F�
env(

n′′′,◦D>)

+ n′′′,◦Rbad + . . .

Fig. 2.4: Étale-picture of radial data
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(iii) The [poly-]isomorphisms of F�×μ-prime-strips of/induced by (eR), (bMorR),
(dMorR) [cf. also (eMorR)] are compatible, relative to the Kummer isomor-
phisms of Proposition 2.1, (ii) [cf. also Proposition 2.1, (vi)], and Theorem 1.5,
(iii), with the poly-isomorphisms — arising from the horizontal arrows of the
Gaussian log-theta-lattice — of Theorem 1.5, (ii).

(iv) The algorithmic construction of the isomorphisms F�
env(

†D>)
∼→ F�

env(
‡D>),

†Rbad ∼→ ‡Rbad of (bMorR), (cMorR), as well as of the Kummer isomorphisms
and poly-isomorphisms of projective systems of mono-theta environments
discussed in Proposition 2.1, (ii), (iii) [cf. also Proposition 2.1, (vi); the second
display of Theorem 2.2, (ii)], and Theorem 1.5, (iii), (v), are compatible [cf.
the final portions of Theorems 1.5, (v); 2.2, (ii)] with the horizontal arrows of
the Gaussian log-theta-lattice [cf., e.g., the full poly-isomorphisms of Theorem 1.5,
(ii)], in the sense that these constructions are stabilized/equivariant/functorial
with respect to arbitrary automomorphisms of the domain and codomain of these
horizontal arrows of the Gaussian log-theta-lattice.

Proof. The various assertions of Corollary 2.3 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ©

Remark 2.3.1.

(i) In the context of the étale-picture of Fig. 2.4, it is of interest to recall the
point of view of the discussion of [IUTchII], 1.12.5, (i), (ii), concerning the analogy
between étale-pictures in the theory of the present series of papers and the polar
coordinate representation of the classical Gaussian integral.

(ii) The étale-picture discussed in Corollary 2.3, (ii), may be thought of as
a sort of canonical splitting of the portion of the Gaussian log-theta-lattice
under consideration that involves theta monoids [cf. the discussion of [IUTchI],
§I1, preceding Theorem A].

(iii) The portion of the multiradiality discussed in Corollary 2.3, (iv), at

v ∈ Vbad corresponds, in essence, to the multiradiality discussed in [IUTchII],
Corollary 1.12, (iii); [IUTchII], Proposition 3.4, (i).

Remark 2.3.2. A similar result to Corollary 2.3 may be formulated concern-
ing the multiradiality properties satisfied by the Kummer theory of ∞κ-coric
structures as discussed in [IUTchII], Corollary 4.8. That is to say, the Kummer
theory of the localization poly-morphisms{

{πκ-sol
1 (†D�) � †M�

∞κ}j → †M∞κvj ⊆ †M∞κ×vj

}
v∈V

discussed in [IUTchII], Corollary 4.8, (iii), is based on the cyclotomic rigidity
isomorphisms for ∞κ-coric structures discussed in [IUTchI], Example 5.1, (v);
[IUTchI], Definition 5.2, (vi), (viii) [cf. also the discussion of [IUTchII], Corol-
lary 4.8, (i)], which satisfy “insulation” properties analogous to the properties
discussed in Remark 2.2.1 in the case of mono-theta-theoretic cyclotomic rigidity.
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Moreover, the reconstruction of ∞κ-coric structures from ∞κ×-structures via
restriction of Kummer classes

‡M∞κvj ⊆ ‡M∞κ×vj → ‡M×
∞κ×vj

∼→ ‡M×
vj

as discussed in [IUTchI], Definition 5.2, (vi), (viii) — i.e., a reconstruction in ac-
cordance with the principle of Galois evaluation [cf. [IUTchII], Remark 1.12.4]
— may be regarded as a decoupling into

· radial [i.e., {πκ-sol
1 (†D�) � †M�

∞κ}j ; †M∞κvj ;
‡M∞κvj ] and

· coric [i.e., the quotient of ‡M×
∞κ×vj

∼→ ‡M×
vj by its torsion subgroup]

components, i.e., in an entirely analogous fashion to the mono-theta-theoretic case
discussed in Remark 2.2.2, (iii). The Galois evaluation that gives rise to the

theta values “q
j2

v
” in the case of theta monoids corresponds to the construction via

Galois evaluation of the monoids “†M�
mod”, i.e., via the operation of restricting

Kummer classes associated to elements of ∞κ-coric structures, as discussed in
[IUTchI], Example 5.1, (v); [IUTchII], Corollary 4.8, (i) [cf. also [IUTchI], Defini-
tion 5.2, (vi), (viii)]. We leave the routine details of giving a formulation in the
style of Corollary 2.3 to the reader.

Remark 2.3.3. In the context of Remark 2.3.2, it is of interest to compare and
contrast the multiradiality properties that hold in the theta [cf. Remarks 2.2.1,
2.2.2; Corollary 2.3] and number field [cf. Remark 2.3.2] cases, as follows.

(i) One important similarity between the theta and number field cases lies in the
establishment of multiradiality properties, i.e., such as the radial/coric decou-
pling discussed in Remarks 2.2.2, (iii); 2.3.2, by using the geometric dimension
of the elliptic curve under consideration as a sort of

“multiradial geometric container” for the radial arithmetic data

of interest, i.e., theta values “q
j2

v
” or copies of the number field “Fmod”.

That is to say, in the theta case, the theory of theta functions on Tate curves
as developed in [EtTh] furnishes such a geometric container for the theta values,
while in the number field case, the absolute anabelian interpretation developed in
[AbsTopIII] of the theory of Belyi maps as Belyi cuspidalizations [cf. [IUTchI],
Remark 5.1.4] furnishes such a geometric container for copies of Fmod. In this
context, another important similarity is the passage from such a geometric container
to the radial arithmetic data of interest by means ofGalois evaluation [cf. Remark
2.2.2, (i), (iii); Remark 2.3.2].

(ii) One important theme of the present series of papers is the point of view of
dismantling the two underlying combinatorial dimensions of [the ring of inte-
gers of] a number field — cf. the discussion of Remark 3.12.2 below. As discussed
in [IUTchI], Remark 6.12.3 [cf. also [IUTchI], Remark 6.12.6], this dismantling may
be compared to the dismantling of the single complex holomorphic dimension
of the upper half-plane into two underlying real dimensions. If one considers
this dismantling from such a classical point of view, then one is tempted to attempt
to understand the dismantling into two underlying real dimensions, by, in effect,
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base-changing from R to C, so as to obtain two-dimensional complex
holomorphic objects, which we regard as being equipped with some sort
of descent data arising from the base-change from R to C.

Translating this approach back into the case of number fields, one obtains a situ-
ation in which one attempts to understand the dismantling of the two underlying
combinatorial dimensions of [the ring of integers of] a number field by working with
two-dimensional scheme-theoretic data — i.e., such as an elliptic curve over [a
suitable localization of the ring of integers of] a number field — equipped with
“suitable descent data”. From this point of view, one may think of

the “multiradial geometric containers” discussed in (i) as a sort of
realization of such two-dimensional scheme-theoretic data,

and of

the accompanying Galois evaluation operations, i.e., the multiradial
representations up to certain mild indeterminacies obtained in The-
orem 3.11, below [cf. also the discussion of Remark 3.12.2, below], as a
sort of realization of the corresponding “suitable descent data”.

This sort of interpretation is reminiscent of the interpretation of multiradiality in
terms of parallel transport via a connection as discussed in [IUTchII], Remark
1.7.1, and the closely related interpretation given in the discussion of [IUTchII],
Remark 1.9.2, (iii), of the tautological approach to multiradiality in terms of
PD-envelopes in the style of the p-adic theory of the crystalline site.

(iii) Another fundamental similarity between the theta and number field cases
may be seen in the fact that the associated Galois evaluation operations — i.e.,

that give rise to the theta values “q
j2

v
” [cf. [IUTchII], Corollary 3.6] or copies of the

number field “Fmod” [cf. [IUTchII], Corollary 4.8, (i), (ii)] — are performed in the
context of the log-link, which depends, in a quite essential way, on the arithmetic
holomorphic [i.e., ring!] structures of the various local fields involved — cf., for
instance, the discussion of the relevant log-Kummer correspondences in Remark
3.12.2, (iv), (v), below. On the other hand, one fundamental difference between
the theta and number field cases may be observed in the fact that whereas

· the output data in the theta case — i.e., the theta values “q
j2

v
” —

depends, in an essential way, on the labels j ∈ F�
l ,

· the output data in the number field case — i.e., the copies of the number
field “Fmod” — is independent of these labels j ∈ F�

l .

In this context, let us recall that these labels j ∈ F�
l correspond, in essence, to

collections of cuspidal inertia groups [cf. [IUTchI], Definition 4.1, (ii)] of the local
geometric fundamental groups that appear [i.e., in the notation of the discussion of
Remark 2.2.2, (iii), the subgroup “Δ (⊆ Π)” of the local arithmetic fundamental
group Π]. On the other hand, let us recall that, in the context of these local
arithmetic fundamental groups Π, the arithmetic holomorphic structure also
depends, in an essential way, on the geometric fundamental group portion [i.e.,
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“Δ ⊆ Π”] of Π [cf., e.g., the discussion of [AbsTopIII], Theorem 1.9, in [IUTchI],
Remark 3.1.2, (ii); the discussion of [AbsTopIII], §I3]. In particular, it is a quite
nontrivial fact that

the Galois evaluation and Kummer theory in the theta case may
be performed [cf. [IUTchII], Corollary 3.6] in a consistent fashion that is
compatible with both the labels j ∈ F�

l [cf. also the associated sym-
metries discussed in [IUTchII], Corollary 3.6, (i)] and the arithmetic
holomorphic structures involved

— i.e., both of which depend on “Δ” in an essential way. By contrast,

the corresponding Galois evaluation and Kummer theory operations
in the number field case are performed [cf. [IUTchII], Corollary 4.8,
(i), (ii)] in a way that is compatible with the arithmetic holomorphic
structures involved, but yields output data [i.e., copies of the number
field “Fmod”] that is free of any dependence on the labels j ∈ F�

l .

Of course, the global realified Gaussian Frobenioids constructed in [IUTchII],
Corollary 4.6, (v), which also play an important role in the theory of the present
series of papers, involve global data that depends, in an essential way, on the
labels j ∈ F�

l , but this dependence occurs only in the context of global realified
Frobenioids, i.e., which [cf. the notation “�” as it is used in [IUTchI], Definition
5.2, (iv); [IUTchII], Definition 4.9, (viii), as well as in Definition 2.4, (iii), below]
are mono-analytic in nature [i.e., do not depend on the arithmetic holomorphic
structure of copies of the number field “Fmod”].

(iv) In the context of the observations of (iii), we make the further obser-
vation that it is a highly nontrivial fact that the construction algorithm for the
mono-theta-theoretic cyclotomic rigidity isomorphism applied in the theta
case admits F�±

l -symmetries [cf. the discussion of [IUTchII], Remark 1.1.1, (v);
[IUTchII], Corollary 3.6, (i)] in a fashion that is consistent with the dependence
of the theta values on the labels j ∈ F�

l . As discussed in [IUTchII], Remark
1.1.1, (v), this state of affairs differs quite substantially from the state of affairs
that arises in the case of the approach to cyclotomic rigidity taken in [IUTchI],
Example 5.1, (v), which is based on a rather “straightforward” or “naive” utiliza-
tion of the Kummer classes of rational functions. That is to say, the “highly
nontrivial” fact just observed in the theta case would amount, from the point of
view of this “naive Kummer approach” to cyclotomic rigidity, to the existence of a
rational function [or, alternatively, a collection of rational functions without “la-
bels”] that is invariant [up to, say, multiples by roots of unity] with respect to the
F�±
l -symmetries that appear, but nevertheless attains values on some F�±

l -orbit
of points that have distinct valuations at distinct points — a situation that is
clearly self-contradictory!

(v) One way to appreciate the nontriviality of the “highly nontrivial” fact ob-
served in (iv) is as follows. One possible approach to realizing the apparently “self-
contradictory” state of affairs constituted by a “symmetric rational function with
non-symmetric values” consists of replacing the local arithmetic fundamental group
“Π” [cf. the notation of the discussion of (iii)] by some suitable closed subgroup
of infinite index of Π. That is to say, if one works with such infinite index closed
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subgroups of Π, then the possibility arises that the Kummer classes of those ratio-
nal functions that constitute the obstruction to symmetry in the case of some given
rational function of interest [i.e., at a more concrete level, the rational functions
that arise as quotients of the given rational function by its F�±

l -conjugates] vanish
upon restriction to such infinite index closed subgroups of Π. On the other hand,
this approach has the following “fundamental deficiencies”, both of which relate to
an apparently fatal lack of compatibility with the arithmetic holomorphic
structures involved:

· It is not clear that the absolute anabelian results of [AbsTopIII], §1
— i.e., which play a fundamental role in the theory of the present series
of papers — admit generalizations to the case of such infinite index closed
subgroups of Π.

· The vanishing of Kummer classes of certain rational functions that
occurs when one restricts to such infinite index closed subgroups of Π will
not, in general, be compatible with the ring structures involved [i.e., of
the rings/fields of rational functions that appear].

In particular, this approach does not appear to be likely to give rise to a meaningful
theory.

(vi) Another possible approach to realizing the apparently “self-contradictory”
state of affairs constituted by a “symmetric rational function with non-symmetric
values” consists of working with distinct rational functions, i.e., one symmetric
rational function [or collection of rational functions] for constructing cyclotomic
rigidity isomorphisms via the Kummer-theoretic approach of [IUTchI], Example
5.1, (v), and one non-symmetric rational function to which one applies Galois
evaluation operations to construct the analogue of “theta values”. On the other
hand, this approach has the following “fundamental deficiency”, which again relates
to a sort of fatal lack of compatibility with the arithmetic holomorphic
structures involved: The crucial absolute anabelian results of [AbsTopIII], §1
[cf. also the discussion of [IUTchI], Remark 3.1.2, (ii), (iii)], depend, in an essential

way, on the use of numerous cyclotomes [i.e., copies of “Ẑ(1)”] — which, for
simplicity, we shall denote by

μ∗et
in the present discussion — that arise from the various cuspidal inertia groups
at the cusps “∗” of [the various cuspidalizations associated to] the hyperbolic curve
under consideration. These cyclotomes “μ∗et” [i.e., for various cusps “∗”] may be
naturally identified with one another, i.e., via the natural isomorphisms of [Ab-
sTopIII], Proposition 1.4, (ii); write

μ∀et
for the cyclotome resulting from this natural identification. Moreover, since the
various [pseudo-]monoids constructed by applying these anabelian results are con-
structed as sub[-pseudo-]monoids of first [group] cohomology modules with coeffi-
cients in the cyclotome μ∀et, it follows [cf. the discussion of [IUTchII], Remark 1.5.2]
that the cyclotome

μFr

determined by [i.e., the cyclotome obtained by applying Hom(Q/Z,−) to the tor-
sion subgroup of] such a [pseudo-]monoid may be tautologically identified — i.e.,
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whenever the [pseudo-]monoid under consideration is regarded [not just as an ab-
stract “Frobenius-like” [pseudo-]monoid, but rather] as the “étale-like” output data
of an anabelian construction of the sort just discussed — with the cyclotome μ∀et.
In the context of the relevant log-Kummer correspondences [i.e., as discussed in
Remark 3.12.2, (iv), (v), below; Theorem 3.11, (ii), below], we shall work with var-
ious Kummer isomorphisms between such Frobenius-like and étale-like versions
of various [pseudo-]monoids, i.e., in the notation of the final display of Proposi-
tion 1.3, (iv), between various objects associated to the Frobenius-like “•’s” and
corresponding objects associated to the étale-like “◦”. Now so long as one re-
gards these various Frobenius-like “•’s” and the étale-like “◦” as distinct labels
for corresponding objects, the diagram constituted by the relevant log-Kummer
correspondence does not result in any “vicious circles” or “loops”. On the other
hand, ultimately in the theory of §3 [cf., especially, the final portion of Theorem
3.11, (iii), (c), (d), below; the proof of Corollary 3.12 below], we shall be interested
in applying the theory to the task of constructing algorithms to describe objects of
interest of one arithmetic holomorphic structure in terms of some alien arithmetic
holomorphic structure [cf. Remark 3.11.1] by means of “multiradial containers”
[cf. Remark 3.12.2, (ii)]. These multiradial containers arise from étale-like versions
of objects, but are ultimately applied as containers for Frobenius-like versions of
objects. That is to say,

in order for such multiradial containers to function as containers, it is
necessary to contend with the consequences of identifying the Frobenius-
like and étale-like versions of various objects under consideration, e.g.,
in the context of the above discussion, of identifying μFr with μ∀et.

On the other hand, let us recall that the approach to constructing cyclotomic rigid-
ity isomorphisms associated to rational functions via the Kummer-theoretic ap-
proach of [IUTchI], Example 5.1, (v), amounts in effect [i.e., in the context of the
above discussion], to “identifying” various “μ∗et’s” with various “sub-cyclotomes”
of “μFr” via morphisms that differ from the usual natural identification precisely
by multiplication by the order [∈ Z] at “∗” of the zeroes/poles of the rational
function under consideration. That is to say,

to execute such a cyclotomic rigidity isomorphism construction in
a situation subject to the further identification of μFr with μ∀et [which,
we recall, was obtained by identifying the various “μ∗et’s”!] does indeed
result — at least in an a priori sense! — in “vicious circles”/“loops”

[cf. the discussion of [IUTchIV], Remark 3.3.1, (i); the reference to this discussion
in [IUTchI], Remark 4.3.1, (ii)]. That is to say, in order to avoid any possible
contradictions that might arise from such “vicious circles”/“loops”, it is necessary to
work with objects that are “invariant”, or “coric”, with respect to such “vicious
circles”/“loops”, i.e., to regard

the cyclotome μ∀et as being subject to indeterminacies with respect to
multiplication by elements of the submonoid

Iord ⊆ ±N≥1
def
= N≥1 × {±1}

generated by the orders [∈ Z] of the zeroes/poles of the rational func-
tion(s) that appear in the cyclotomic rigidity isomorphism construction
under consideration.
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In the following discussion, we shall also write Iord≥1 ⊆ N≥1, I
ord
± ⊆ {±1} for the

respective images of Iord via the natural projections to N≥1, {±1}. This sort of
indeterminacy is fundamentally incompatible, for numerous reasons, with any
sort of construction that purports to be analogous to the construction of the “theta
values” in the theory of the present series of papers, i.e., at least whenever the
resulting indeterminacy submonoid Iord ⊆ ±N≥1 is nontrivial. For instance, it
follows immediately, by considering the effect of independent indeterminacies of
this type on valuations at distinct v ∈ V, that such independent indeterminacies
are incompatible with the “product formula” [i.e., with the structure of the
global realified Frobenioids involved — cf. [IUTchI], Remark 3.5.1, (ii)]. Here, we
observe that this sort of indeterminacy does not occur in the theta case [cf. Fig.
2.5 below] — i.e., the resulting indeterminacy submonoid

(±N≥1 ⊇) Iord = {1}
— precisely as a consequence of the fact [which is closely related to the symmetry
properties discussed in [IUTchII], Remark 1.1.1, (v)] that

the order [∈ Z] of the zeroes/poles of the theta function at every
cusp is equal to 1

[cf. [EtTh], Proposition 1.4, (i); [IUTchI], Remark 3.1.2, (ii), (iii)] — a state of
affairs that can never occur in the case of an algebraic rational function [i.e., since
the sum of the orders [∈ Z] of the zeroes/poles of an algebraic rational function is
always equal to 0]! On the other hand, in the number field case [cf. Fig. 2.6
below], the portion of the indeterminacy under consideration that is constituted
by Iord≥1 is avoided precisely [cf. the discussion of [IUTchI], Example 5.1, (v)] by
applying the property

Q>0

⋂
Ẑ× = {1}

[cf. also the discussion of (vii) below!], which has the effect of isolating the Ẑ×-
torsor of interest [i.e., some specific isomorphism between cyclotomes] from the
subgroup of Q>0 generated by Iord≥1 . This technique for avoiding the indeterminacy

constituted by Iord≥1 remains valid even after the identification discussed above of

μFr with μ∀et. By contrast, the portion of the indeterminacy under consideration
that is constituted by Iord± is avoided in the construction of [IUTchI], Example 5.1,
(v), precisely by applying the fact that the inverse of a nonconstant κ-coric rational
function is never κ-coric [cf. the discussion of [IUTchI], Remark 3.1.7, (i)] — a
technique that depends, in an essential way, on distinguishing cusps “∗” at which
the orders [∈ Z] of the zeroes/poles of the rational function(s) under consideration
are distinct. In particular, this technique is fundamentally incompatible with
the identification discussed above of μFr with μ∀et. That is to say, in summary,

in the number field case, in order to regard étale-like versions of objects
as containers for Frobenius-like versions of objects, it is necessary to
regard the relevant cyclotomic rigidity isomorphisms — hence also
the output data of interest in the number field case, i.e., copies of
[the union with {0} of] the group “F×mod” — as being subject to an
indeterminacy constituted by [possible] multiplication by {±1}.

This does not result in any additional technical obstacles, however, since
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the output data of interest in the number field case — i.e., copies of
[the union with {0} of] the group “F×mod” — is [unlike the case with the

theta values “q
j2

v
”!] stabilized by the action of {±1}

— cf. the discussion of Remark 3.11.4 below. Moreover, we observe in passing, in
the context of the Galois evaluation operations in the number field case, that the
copies of [the group] “F×mod” are constructed globally and in a fashion compatible

with the F�
l -symmetry [cf. [IUTchII], Corollary 4.8, (i), (ii)], hence, in particular,

in a fashion that does not require the establishment of compatibility properties [e.g.,
relating to the “product formula”] between constructions at distinct v ∈ V.

+1 +1 +1 +1 +1 +1 +1 +1
. . . ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗ . . .

Fig. 2.5: Orders [∈ Z] of zeroes/poles of the theta function at the cusps “∗”

0 0 +8 −5 −6 +3 0 0
. . . ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗ . . .

Fig. 2.6: Orders [∈ Z] of zeroes/poles of an algebraic rational function
at the cusps “∗”

(vii) In the context of the discussion of (vi), we observe that the indeterminacy
issues discussed in (vi) may be thought of as a sort of “multiple cusp version”
of the “N-th power versus first power” and “linearity” issues discussed in
[IUTchII], Remark 3.6.4, (iii). Also, in this context, we recall from the discussion
at the beginning of Remark 2.1.1 that the theory of mono-theta-theoretic cy-
clotomic rigidity satisfies the important property of being compatible with the
topology of the tempered fundamental group. Such a compatibility contrasts
sharply with the cyclotomic rigidity algorithms discussed in [IUTchI], Example 5.1,
(v), which depend [cf. the discussion of (vi) above!], in an essential way, on the
property

Q>0

⋂
Ẑ× = {1}

— i.e., which is fundamentally incompatible with the topology of the profinite
groups involved [as can be seen, for instance, by considering the fact that N≥1 forms

a dense subset of Ẑ]. This close relationship between cyclotomic rigidity and [a
sort of] discrete rigidity [i.e., the property of the above display] is reminiscent of
the discussion given in [IUTchII], Remark 2.8.3, (ii), of such a relationship in the
case of mono-theta environments.

(viii) In the context of the discussion of (vi), (vii), we observe that the inde-
terminacy issues discussed in (vi) also occur in the case of the cyclotomic rigidity
algorithms discussed in [IUTchI], Definition 5.2, (vi), i.e., in the context of mixed-
characteristic local fields. On the other hand, [cf. [IUTchII], Proposition 4.2, (i)]
these algorithms in fact yield the same cyclotomic rigidity isomorphism as the cy-
clotomic rigidity isomorphisms that are applied in [AbsTopIII], Proposition 3.2, (iv)
[i.e., the cyclotomic rigidity isomorphisms discussed in [AbsTopIII], Proposition 3.2,
(i), (ii); [AbsTopIII], Remark 3.2.1]. Moreover, these cyclotomic rigidity isomor-
phisms discussed in [AbsTopIII] are manifestly compatible with the topology
of the profinite groups involved. From the point of view of the discussion of (vi),
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this sort of “de facto” compatibility with the topology of the profinite groups involved
may be thought of as a reflection of the fact that these cyclotomic rigidity isomor-
phisms discussed in [AbsTopIII] amount, in essence, to applying the approach to
cyclotomic rigidity by considering the Kummer theory of algebraic rational func-
tions [i.e., the approach of (vi), or, alternatively, of [IUTchI], Example 5.1, (v)], in
the case where the algebraic rational functions are taken to be the uniformizers
— i.e., “rational functions” [any one of which is well-defined up to a unit] with pre-
cisely one zero of order 1 and no poles [cf. the discussion of the theta function
in (vi)!] — of the mixed-characteristic local field under consideration. Put
another way, this sort of “de facto” compatibility may be regarded as a reflection of
the fact that, unlike number fields [i.e., “NF’s”] or one-dimensional function fields
[i.e., “one-dim. FF’s”], mixed-characteristic local fields [i.e., “MLF’s”] are equipped
with a uniquely determined “canonical valuation” — a situation that is rem-
iniscent of the fact that the order [∈ Z] of the zeroes/poles of the theta function at
every cusp is equal to 1 [i.e., the fact that “the set of equivalences classes of cusps
relative to the equivalence relationship on cusps determined by considering the or-
der [∈ Z] of the zeroes/poles of the theta function is of cardinality one”]. From the
point of view of “geometric containers” discussed in (i) and (ii), this state of affairs
may be summarized as follows:

the indeterminacy issues that occur in the context of the discussion of
cyclotomic rigidity isomorphisms in (vi) exhibit similar qualitative
behavior in the

MLF/mono-theta (←→ one valuation/cusp)

[i.e., where the expression “one cusp” is to be understood as referring to
“one equivalence class of cusps”, as discussed above] cases, as well as in
the

NF/one-dim. FF (←→ global collection of valuations/cusps)

cases.

Put another way, at least at the level of the theory of valuations,

the theory of theta functions (respectively, one-dimensional function
fields) serves as an accurate “qualitative geometric model” of the the-
ory of mixed-characteristic local fields (respectively, number fields).

Finally, we observe that in this context, the crucial property “Q>0

⋂
Ẑ× = {1}”

that occurs in the discussion of the number field/one-dimensional function field
cases is highly reminiscent of the global nature of number fields [i.e., such as Q! —
cf. the discussion of Remark 3.12.1, (iii), below].

(ix) The comparison given in (viii) of the special properties satisfied by the
theta function with the corresponding properties of the algebraic rational func-
tions that appear in the number field case is reminiscent of the analogy discussed
in [IUTchI], Remark 6.12.3, (iii), with the classical upper half-plane. That is
to say, the eigenfunction for the additive symmetries of the upper half-plane [i.e.,
which corresponds to the theta case]

q
def
= e2πiz
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Aspect Theta Number field
of the theory case case

multiradial theta functions Belyi maps/
geometric on Tate curves cuspidalizations
container

radial arithmetic theta values copies of

data via “q
j2

v
” number field “Fmod”

Galois evaluation
(
⊇ F×mod � {±1}

)

Galois evaluation simultaneously indep. of labels,
output data dependent on dependent on
dependence labels, holomorphic str.

on “Δ” holomorphic str.

cyclotomic compatible with incompatible with
rigidity F�±

l -symmetry, F�±
l -symmetry,

isomorphism tempered profinite
topology topology

approach to order [∈ Z] of Q>0

⋂
Ẑ× = {1},

eliminating zeroes/poles of non-invertibility of
cyclo. rig. isom. theta function at nonconstant κ-coric
indeterminacies every cusp = 1 rational functions

qualitative MLF/mono-theta NF/one-dim. FF
geometric model (←→ one (←→ global collection
for arithmetic valuation/cusp) of valuations/cusps)

analogy analogy

analogy with highly algebraic
eigenfunctions for transcendental rational
symmetries of function in z: function of z:

upper half-plane q
def
= e2πiz w

def
= z−i

z+i

Fig. 2.7: Comparison between the theta and number field cases



INTER-UNIVERSAL TEICHMÜLLER THEORY III 85

is highly transcendental in the coordinate z, whereas the eigenfunction for the
multiplicative symmetries of the upper half-plane [i.e., which corresponds to the
number field case]

w
def
= z−i

z+i

is an algebraic rational function in the coordinate z.

(x) The various properties discussed above in the theta and number field cases
are summarized in Fig. 2.7 above.

Remark 2.3.4. Before proceeding, it is perhaps of interest to review once more
the essential content of [EtTh] in light of the various observations made in Remark
2.3.3.

(i) The starting point of the relationship between the theory of [EtTh] and the
theory of the present series of papers lies [cf. the discussion of Remark 2.1.1, (i);
[IUTchII], Remark 3.6.2, (ii)] in the various non-ring/scheme-theoretic filters
[i.e., log-links and various types of Θ-links] between distinct ring/scheme theories
that are constructed in the present series of papers. Such non-scheme-theoretic fil-
ters may only be constructed by making use of Frobenius-like structures. On the
other hand, étale-like structures are important in light of their ability to relate
structures on opposite sides of such non-scheme-theoretic filters. Then Kummer
theory is applied to relate corresponding Frobenius-like and étale-like structures.
Moreover, it is crucial that this Kummer theory be conducted in a multiradial
fashion. This is achieved by means of certain radial/coric decouplings, by mak-
ing use of multiradial geometric containers, as discussed in Remark 2.3.3, (i),
(ii). That is to say, it is necessary to make use of such multiradial geometric
containers and then to pass to theta values or number fields by means of Galois
evaluation, since direct use of such theta values or number fields results in a Kum-
mer theory that does not satisfy the desired multiradiality properties [cf. Remarks
2.2.1, 2.3.2].

(ii) The most naive approach to the Kummer theory of the “functions” that
are to be used as “multiradial geometric containers” may be seen in the approach
involving algebraic rational functions on the various algebraic curves under
consideration, i.e., in the fashion of [IUTchI], Example 5.1, (v) [cf. also [IUTchI],
Definition 5.2, (vi)]. On the other hand, in the context of the local theory at

v ∈ Vbad, this approach suffers from the fatal drawback of being incompatible
with the profinite topology of the profinite fundamental groups involved [cf. the
discussion of Remark 2.3.3, (vi), (vii), (viii); Figs. 2.5, 2.6]. Thus, in order to main-
tain compatibility with the profinite/tempered topology of the profinite/tempered
fundamental groups involved, one is obliged to work with the Kummer theory
of theta functions, truncated modulo N . On the other hand, the naive ap-
proach to this sort of [truncated modulo N ] Kummer theory of theta functions
suffers from the fatal drawback of being incompatible with discrete rigidity [cf.
Remark 2.1.1, (v)]. This incompatibility with discrete rigidity arises from a lack
of “shifting automorphisms” as in [EtTh], Proposition 2.14, (ii) [cf. also [EtTh],
Remark 2.14.3], and is closely related to the incompatibility of this naive ap-
proach with the F�±

l -symmetry [cf. the discussion of [IUTchII], Remark 1.1.1,
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(iv), (v)]. In order to surmount such incompatibilities, one is obliged to consider
not the Kummer theory of theta functions in the naive sense, but rather, so to
speak, the Kummer theory of [the first Chern classes of] the line bundles
associated to theta functions [cf. the discussion of [IUTchII], Remark 1.1.1, (v)].
Thus, in summary:

[truncated] Kummer theory of theta [not algebraic rational!] functions
=⇒ compatible with profinite/tempered topologies;

[truncated] Kummer theory of [first Chern classes of] line bundles
[not rational functions!]

=⇒ compatible with discrete rigidity, F�±
l -symmetry.

(iii) To consider the “[truncated] Kummer theory of line bundles [associated
to the theta function]” amounts, in effect, to considering the [partially truncated]
arithmetic fundamental group of the Gm-torsor determined by such a line bundle in
a fashion that is compatible with the various tempered Frobenioids and tem-
pered fundamental groups under consideration. Such a “[partially truncated]
arithmetic fundamental group” corresponds precisely to the “topological group” por-
tion of the data that constitutes a mono-theta or bi-theta environment [cf. [EtTh],
Definition 2.13, (ii), (a); [EtTh], Definition 2.13, (iii), (a)]. In the context of the the-
ory of theta functions, such “[partially truncated] arithmetic fundamental groups”
are equipped with two natural distinguished [classes of ] sections, namely, theta
sections and algebraic sections. If one thinks of the [partially truncated] arith-
metic fundamental groups under consideration as being equipped neither with data
corresponding to theta sections nor with data corresponding to algebraic sections,
then the resulting mathematical object is necessarily subject to indeterminacies
arising from multiplication by constant units [i.e., “O×” of the base local field],
hence, in particular, suffers from the drawback of being incompatible with constant
multiple rigidity [cf. Remark 2.1.1, (iii)]. On the other hand, if one thinks of the
[partially truncated] arithmetic fundamental groups under consideration as being
equipped both with data corresponding to theta sections and with data correspond-
ing to algebraic sections, then the resulting mathematical object suffers from the
same lack of symmetries as the [truncated] Kummer theory of theta functions [cf.
the discussion of (ii)], hence, in particular, is incompatible with discrete rigidity
[cf. Remark 2.1.1, (v)]. Finally, if one thinks of the [partially truncated] arith-
metic fundamental groups under consideration as being equipped only with data
corresponding to algebraic sections [i.e., but not with data corresponding to theta
sections!], then the resulting mathematical object is not equipped with sufficient
data to apply the crucial commutator property of [EtTh], Proposition 2.12 [cf. also
the discussion of [EtTh], Remark 2.19.2], hence, in particular, is incompatible with
cyclotomic rigidity [cf. Remark 2.1.1, (iv)]. That is to say, it is only by thinking
of the [partially truncated] arithmetic fundamental groups under consideration as
being equipped only with data corresponding to theta sections [i.e., but not with
data corresponding to algebraic sections!] — i.e., in short, by working with mono-
theta environments — that one may achieve a situation that is compatible
with the tempered topology of the tempered fundamental groups involved, the
F�±
l -symmetry, and all three types of rigidity [cf. the initial portion of Remark

2.1.1; [IUTchII], Remark 3.6.4, (ii)]. Thus, in summary:

working neither with theta sections nor with algebraic sections =⇒
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incompatible with constant multiple rigidity!

working with bi-theta environments, i.e.,
working simultaneously with both theta sections and algebraic sections =⇒

incompatible with discrete rigidity, F�±
l -symmetry!

working with algebraic sections but not theta sections =⇒
incompatible with cyclotomic rigidity!

working with mono-theta environments, i.e.,
working with theta sections but not algebraic sections =⇒

compatible with tempered topology, F�±
l -symmetry, all three rigidities!

(iv) Finally, we note that the approach of [EtTh] to the theory of theta func-
tions differs substantially from more conventional approaches to the theory of theta
functions such as

· the classical function-theoretic approach via explicit series repre-
sentations, i.e., as given at the beginning of the Introduction to [IUTchII]
[cf. also [EtTh], Proposition 1.4], and

· the representation-theoretic approach, i.e., by considering irreducible
representations of theta groups.

Both of these more conventional approaches depend, in an essential way, on the
ring structures — i.e., on both the additive and the multiplicative structures
— of the various rings involved. [Here, we recall that explicit series are constructed
precisely by adding and multiplying various functions on some space, whereas rep-
resentations are, in effect, modules over suitable rings, hence, by definition, involve
both additive and multiplicative structures.] In particular, although these more
conventional approaches are well-suited to many situations in which one considers
“the” theta function in some fixed model of scheme/ring theory, they are ill-suited
to the situations treated in the present series of papers, i.e., where one must consider
theta functions that appear in various distinct ring/scheme theories, which [cf.
the discussion of (i)] may only be related to one another by means of suitable
Frobenius-like and étale-like structures such as tempered Frobenioids and tem-
pered fundamental groups. Here, we recall that these tempered Frobenioids cor-
respond essentially to multiplicative monoid structures arising from the various
rings of functions that appear, whereas tempered fundamental groups correspond
to various Galois actions. That is to say, consideration of such multiplicative
monoid structures and Galois actions is compatible with the dismantling of the
additive and multiplicative structures of a ring, i.e., as considered in the present
series of papers [cf. the discussion of Remark 3.12.2 below].

Definition 2.4.

(i) Let
‡F� = {‡F�v }v∈V
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be an F�-prime-strip. Then recall from the discussion of [IUTchII], Definition 4.9,

(ii), that at each w ∈ Vbad, the splittings of the split Frobenioid ‡F�w determine

submonoids “O⊥(−) ⊆ O�(−)”, as well as quotient monoids “O⊥(−) � O�(−)”
[i.e., by forming the quotient of “O⊥(−)” by its torsion subgroup]. In a similar vein,

for each w ∈ Vgood, the splitting of the split Frobenioid determined by [indeed,

“constituted by”, when w ∈ Vgood ⋂Vnon — cf. [IUTchI], Definition 5.2, (ii)] ‡F�w
determines a submonoid “O⊥(−) ⊆ O�(−)” whose subgroup of units is trivial

[cf. [IUTchII], Definition 4.9, (iv), when w ∈ Vgood ⋂Vnon]; in this case, we set

O�(−) def
= O⊥(−). Write

‡F�⊥ = {‡F�⊥v }v∈V; ‡F�� = {‡F��v }v∈V

for the collections of data obtained by replacing the split Frobenioid portion of
each ‡F�v by the Frobenioids determined, respectively, by the subquotient monoids

“O⊥(−) ⊆ O�(−)”, “O�(−)” just defined.

(ii) We define [in the spirit of [IUTchII], Definition 4.9, (vii)] an F�⊥-prime-
strip to be a collection of data

∗F�⊥ = {∗F�⊥v }v∈V

that satisfies the following conditions: (a) if v ∈ Vnon, then ∗F�⊥v is a Frobenioid

that is isomorphic to ‡F�⊥v [cf. (i)]; (b) if v ∈ Varc, then ∗F�⊥v consists of a

Frobenioid and an object of TM� [cf. [IUTchI], Definition 5.2, (ii)] such that ∗F�⊥v

is isomorphic to ‡F�⊥v . In a similar vein, we define an F��-prime-strip to be a
collection of data

∗F�� = {∗F��v }v∈V

that satisfies the following conditions: (a) if v ∈ Vnon, then ∗F��v is a Frobenioid

that is isomorphic to ‡F��v [cf. (i)]; (b) if v ∈ Varc, then ∗F��v consists of a

Frobenioid and an object of TM� [cf. [IUTchI], Definition 5.2, (ii)] such that ∗F��v

is isomorphic to ‡F��v . A morphism of F�⊥- (respectively, F��-) prime-strips
is defined to be a collection of isomorphisms, indexed by V, between the various
constituent objects of the prime-strips [cf. [IUTchI], Definition 5.2, (iii)].

(iii) We define [in the spirit of [IUTchII], Definition 4.9, (viii)] an F�⊥-prime-
strip to be a collection of data

∗F�⊥ = (∗C�, Prime(∗C�) ∼→ V, ∗F�⊥, {∗ρv}v∈V)

satisfying the conditions (a), (b), (c), (d), (e), (f) of [IUTchI], Definition 5.2, (iv),
for an F�-prime-strip, except that the portion of the collection of data constituted
by an F�-prime-strip is replaced by an F�⊥-prime-strip. [We leave the routine
details to the reader.] In a similar vein, we define an F��-prime-strip to be a
collection of data

∗F�� = (∗C�, Prime(∗C�) ∼→ V, ∗F��, {∗ρv}v∈V)
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satisfying the conditions (a), (b), (c), (d), (e), (f) of [IUTchI], Definition 5.2, (iv),
for an F�-prime-strip, except that the portion of the collection of data constituted
by an F�-prime-strip is replaced by an F��-prime-strip. [We leave the routine
details to the reader.] A morphism of F�⊥- (respectively, F��-) prime-strips is
defined to be an isomorphism between collections of data as discussed above.

Remark 2.4.1.

(i) Thus, by applying the constructions of Definition 2.4, (i), to the [underlying
F�-prime-strips associated to the] F�-prime-strips “F�

env(
†D>)” that appear in

Corollary 2.3, one may regard the multiradiality of Corollary 2.3, (i), as implying
a corresponding multiradiality assertion concerning the associated F�⊥-prime-
strips “F�⊥

env(
†D>)”.

(ii) Suppose that we are in the situation discussed in (i). Then at v ∈ Vbad, the
submonoids “O⊥(−) ⊆ O�(−)” may be regarded, in a natural way [cf. Proposition
2.1, (ii); Theorem 2.2, (ii)], as submonoids of the monoids “∞Ψ⊥env(

†D>)v” of The-
orem 2.2, (ii), (av). Moreover, the resulting inclusion of monoids is compatible

with the multiradiality discussed in (i) and the multiradiality of the data “†Rbad”
of Corollary 2.3, (cR), that is implied by the multiradiality of Corollary 2.3, (i).

Remark 2.4.2.

(i) One verifies immediately that, just as one may associate to an F��×μ-
prime-strip a pilot object in the global realified Frobenioid portion of the F��×μ-
prime-strip [cf. [IUTchII], Definition 4.9, (viii)], one may associate to an F��-
prime-strip a pilot object in the global realified Frobenioid portion of the F��-
prime-strip [i.e., in the notation of the final display of Definition 2.4, (iii), the global
realified Frobenioid ∗C� of the F��-prime-strip ∗F��].

(ii) For v ∈ V lying over v ∈ Vmod and vQ ∈ VQ
def
= V(Q), write

· rv
def
= [(Fmod)v : QvQ ] · log(pv) ∈ R if v ∈ Vgood,

· rv
def
= [(Fmod)v : QvQ ] · ordv(q

v
) · log(pv) ∈ R if v ∈ Vbad

— where, if v ∈ Vbad, then ordv : K×
v → Q denotes the natural pv-adic valuation

normalized so that ordv(pv) = 1, and q
v
is as in [IUTchI], Example 3.2, (iv);

r�v
def
= − rv∑

w∈Vbad

rw

[cf. the constructions of [IUTchI], Example 3.5; [IUTchI], Remark 3.5.1; the dis-
cussion of weights in Remark 3.1.1, (ii), below].

(iii) In the notation of (ii), let M be any ordered monoid isomorphic [as an
ordered monoid] to R [endowed with the usual additive and order structures]. Then
M naturally determines a collection of data

(M, {Mv}v∈V, {ρMv : Mv
∼→ M}v∈V)
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as follows: for each v ∈ V, we take Mv to be a copy of M and ρMv : Mv
∼→ M to

be the isomorphism of monoids [that reverses the ordering!] given by multiplying
by r�v ∈ R.

(iv) In the notation of (ii), (iii), suppose, further, that we have been a negative
element

ηM ∈M

[i.e., an element < 0], which we shall refer to as a pilot element. Then, since, for
v ∈ V, Mv is defined to be a copy of M , ηM determines an element ηMv ∈ Mv.

Thus, the pair (M,ηM ) naturally determines a collection of data

(M, {M�
v }v∈V, {ρM�

v
: M�

v ↪→M}v∈V)

as follows: for each v ∈ Vnon, we take M�
v ⊆Mv to be the submonoid [isomorphic

to N] generated by ηMv and ρM�
v

: M�
v ↪→ M to be the restriction of ρMv to M�

v ;

for each v ∈ Varc, we take M�
v ⊆ Mv to be the submonoid [isomorphic to R≥0]

given by the elements ≤ 0 and ρM�
v

: M�
v ↪→ M to be the restriction of ρMv

to

M�
v . In particular, it follows immediately from the construction of this data that

ρM�
v
(ηMv ) = r�v · ηM

for each v ∈ V.

(v) Now we observe that the constructions of (iii) and (iv) allow one to give
a sort of “converse” to the construction of the pilot object in (i). Indeed, consider
the F��-prime-strip ∗F�� in the final display of Definition 2.4, (iii). Next, ob-
serve that the “Picard group” constructions “PicΦ(−)” and “PicC(−)” of [FrdI],
Theorem 5.1, (i), applied to any object of the global realified Frobenioid ∗C� yield
canonically isomorphic groups for any object of ∗C�. In particular, it makes sense
to speak of “Pic(∗C�)”. Moreover, it follows from [FrdI], Theorem 6.4, (i), (ii), that
Pic(∗C�) is equipped with a canonical structure of ordered monoid, with respect to
which it is isomorphic to R [endowed with the usual additive and order structures].
Relative to this structure of ordered monoid, the pilot object discussed in (i) [cf. also
the discussion of [IUTchII], Definition 4.9, (viii)] determines a negative element
η∗C� ∈ Pic(∗C�). Thus, one verifies immediately, by recalling the various defini-

tions involved, that the collection of data “(M, {Mv}v∈V, {ρMv : Mv
∼→ M}v∈V)”

constructed in (iii) from “M” is already sufficient to reconstruct, i.e., by taking

M
def
= Pic(∗C�), the collection of data

(∗C�, Prime(∗C�) ∼→ V)

[cf. the notation of the final display of Definition 2.4, (iii)], while the collection
of data “(M, {M�

v }v∈V, {ρM�
v

: M�
v ↪→ M}v∈V)” constructed in (iv) from the

pair “(M,ηM )” is sufficient to reconstruct, i.e., by taking M
def
= Pic(∗C�) and

ηM
def
= η∗C� , the collection of data

(∗C�, Prime(∗C�) ∼→ V, {Φ∗F��
v
}v∈V, {∗ρv}v∈V)
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where, for v ∈ V, we write Φ∗F��
v

for the [constant!] divisor monoid [i.e., in effect,

a single monoid isomorphic to N or R≥0] determined by the Frobenioid structure
[cf. [FrdI], Corollary 4.11, (iii); [FrdII], Theorem 1.2, (i)] on ∗F��v [cf. the notation

of the final display of Definition 2.4, (i)].

(vi) One immediate consequence of the discussion of (v) is the following:

If one starts from M = Pic(∗C�), then the resulting collection of data

(∗C�, Prime(∗C�) ∼→ V)

yields a common container, namely, the Frobenioid ∗C� [regarded as
an object reconstructed from M = Pic(∗C�)!], in which distinct choices
of the [negative!] pilot element ∈M = Pic(∗C�) — hence also the data

(∗C�, Prime(∗C�) ∼→ V, {Φ∗F��
v
}v∈V, {∗ρv}v∈V)

[which may be thought of as a sort of “further rigidification” on ∗C�] recon-
structed from such distinct choices of pilot element — may be compared
with one another.

By contrast, if one attempts to compare the constructions of (v) applied to posi-
tive and negative “ηM ∈M” [i.e., which amounts to reversing the order structure
on M !], then already the corresponding Frobenioids “∗C�” [i.e., attached to the
same group “Pic(∗C�)”, but with reversed order structures!] involve pre-steps [i.e.,
in effect, the category-theoretic version of the notion of an inclusion of line bundles
— cf. [FrdI], Definition 1.2, (iii)] going in opposite directions. That is to say, such
Frobenioids may only be compared with one another if they are embedded in some
sort of larger ambient category in which the pre-steps are rendered invertible;
but this already implies that all objects arising from such Frobenioids become iso-
morphic in the ambient category. That is to say, working in such a larger ambient
category already renders any sort of argument that requires one to distinguish dis-
tinct elements of Pic(∗C�) — i.e., distinct arithmetic degrees/heights of arithmetic
line bundles — meaningless [cf. the discussion of positivity in Remark 2.1.1, (v)].
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Section 3: Multiradial Logarithmic Gaussian Procession Monoids

In the present §3, we apply the theory developed thus far in the present series
of papers to give [cf. Theorem 3.11 below] multiradial algorithms for a slightly
modified version of the Gaussian monoids discussed in [IUTchII], §4. This modi-
fication revolves around the combinatorics of processions, as developed in [IUTchI],
§4, §5, §6, and is necessary in order to establish the desired multiradiality. At a
more concrete level, these combinatorics require one to apply the theory of tensor
packets [cf. Propositions 3.1, 3.2, 3.3, 3.4, 3.7, 3.9, below]. Finally, we observe
in Corollary 3.12 that these multiradial algorithms give rise to certain estimates
concerning the log-volumes of the logarithmic Gaussian procession monoids
that occur. This observation forms the starting point of the theory to be developed
in [IUTchIV].

In the following discussion, we assume that we have been given initial Θ-data
as in [IUTchI], Definition 3.1. Also, we shall write

VQ
def
= V(Q)

[cf. [IUTchI], §0] and apply the notation of Definition 1.1 of the present paper. We
begin by discussing the theory of tensor packets, which may be thought of as a
sort of amalgamation of the theory of log-shells developed in §1 with the theory of
processions developed in [IUTchI], §4, §5, §6.

Proposition 3.1. (Local Holomorphic Tensor Packets) Let

{αF}α∈A =
{
{αFv}v∈V

}
α∈A

be an n-capsule, with index set A, of F-prime-strips [relative to the given initial
Θ-data — cf. [IUTchI], §0; [IUTchI], Definition 5.2, (i)]. Then [cf. the notation
of Definition 1.1, (iii)] for V � v | vQ, by considering invariants with respect to
the natural action of various open subgroups of the topological group αΠv, one may
regard log(αFv) as an inductive limit of topological modules, each of which is
of finite dimension over QvQ

; we shall refer to the correspondence

VQ � vQ �→ log(αFvQ
)

def
=

⊕
V � v | vQ

log(αFv)

as the [1-]tensor packet associated to the F-prime-strip αF and to the correspon-
dence

VQ � vQ �→ log(AFvQ
)

def
=

⊗
α∈A

log(αFvQ) =
⊕

{v
α
}α∈A

{⊗
α∈A

log(αFvα
)
}

— where the tensor products are to be understood as tensor products of ind-topological
modules [i.e., as discussed above], and the direct sum is over all collections {vα}α∈A
of [not necessarily distinct!] elements vα ∈ V lying over vQ and indexed by α ∈ A —
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as the [n-]tensor packet associated to the collection of F-prime-strips {αF}α∈A.
Then:

(i) (Ring Structures) The ind-topological field structures on the var-
ious log(αFv) [cf. Definition 1.1, (i), (ii), (iii)], for α ∈ A, determine an ind-

topological ring structure on log(AFvQ) with respect to which log(AFvQ
) may be

regarded as an inductive limit of direct sums of ind-topological fields. Such
decompositions as direct sums of ind-topological fields are uniquely determined by
the ind-topological ring structure on log(AFvQ) and, moreover, are compatible, for
α ∈ A, with the natural action of the topological group αΠv [where V � v | vQ] on
the direct summand with subscript v of the factor labeled α.

(ii) (Integral Structures) Fix elements α ∈ A, v ∈ V, vQ ∈ VQ such that
v | vQ. Relative to the tensor product in the above definition of log(AFvQ), write

log(A,αFv)
def
= log(αFv) ⊗

{ ⊗
β∈A\{α}

log(βFvQ)
}
⊆ log(AFvQ

)

for the ind-topological submodule determined by the tensor product of the factors
labeled by β ∈ A\{α} with the tensor product of the direct summand with subscript
v of the factor labeled α. Then log(A,αFv) forms a direct summand of the ind-

topological ring log(AFvQ); log(A,αFv) may be regarded as an inductive limit of
direct sums of ind-topological fields; such decompositions as direct sums of
ind-topological fields are uniquely determined by the ind-topological ring structure
on log(A,αFv). Moreover, by forming the tensor product with “1’s” in the factors
labeled by β ∈ A \ {α}, one obtains a natural injective homomorphism of
ind-topological rings

log(αFv) → log(A,αFv)

that, for suitable choices [which are, in fact, cofinal] of objects appearing in the
inductive limit descriptions given above for the domain and codomain, induces an
isomorphism of such an object in the domain onto each of the direct summand ind-
topological fields of the object in the codomain. In particular, the integral structure

Ψlog(αFv)
def
= Ψlog(αFv)

⋃
{0} ⊆ log(αFv)

[cf. the notation of Definition 1.1, (i), (ii)] determines integral structures on
each of the direct summand ind-topological fields that appear in the inductive limit
descriptions of log(A,αFv), log(

AFvQ).

Proof. The various assertions of Proposition 3.1 follow immediately from the
definitions and the references quoted in the statements of these assertions [cf. also
Remark 3.1.1, (i), below]. ©

Remark 3.1.1.

(i) Let v ∈ V. In the notation of [IUTchI], Definition 3.1, write k
def
= Kv; let k

be an algebraic closure of k. Then, roughly speaking, in the notation of Proposition
3.1,

log(αFv)
∼→ k; Ψlog(αFv)

∼→ Ok;
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log(A,αFv)
∼→

⊗
k

∼→ lim−→
⊕

k ⊇ lim−→
⊕

Ok

— i.e., one verifies immediately that each ind-topological field log(αFv) is isomor-

phic to k; each log(A,αFv) is a topological tensor product [say, over Q] of copies

of k, hence may be described as an inductive limit of direct sums of copies of k;
each Ψlog(αFv) is a copy of the set [i.e., a ring, when v ∈ Vnon] of integers Ok ⊆ k.

In particular, the “integral structures” discussed in the final portion of Proposition
3.1, (ii), correspond to copies of Ok contained in copies of k.

(ii) Ultimately, for v ∈ V, we shall be interested [cf. Proposition 3.9, (i), (ii),
below] in considering log-volumes on the portion of log(αFv) corresponding to
Kv. On the other hand, let us recall that we do not wish to consider all of the
valuations in V(K). That is to say, we wish to restrict ourselves to considering the

subset V ⊆ V(K), equipped with the natural bijection V
∼→ Vmod [cf. [IUTchI],

Definition 3.1, (e)], which we wish to think of as a sort of “local analytic section” [cf.
the discussion of [IUTchI], Remark 4.3.1, (i)] of the natural morphism Spec(K)→
Spec(F ) [or, perhaps more precisely, Spec(K)→ Spec(Fmod)]. In particular, it will
be necessary to consider these log-volumes on the portion of log(αFv) corresponding

to Kv relative to the weight [Kv : (Fmod)v]
−1, where we write v ∈ Vmod for

the element determined [via the natural bijection just discussed] by v [cf. the
discussion of [IUTchI], Example 3.5, (i), (ii), (iii), where similar factors appear].
When, moreover, we consider direct sums over all v ∈ V lying over a given vQ ∈ VQ

as in the case of log(αFvQ
), it will be convenient to use the normalized weight

1

[Kv : (Fmod)v] ·
( ∑

Vmod�w|vQ
[(Fmod)w : QvQ ]

)
— i.e., normalized so that multiplication by pvQ affects log-volumes by addition or
subtraction [that is to say, depending on whether vQ ∈ Varc

Q or vQ ∈ Vnon
Q ] of the

quantity log(pvQ
) ∈ R. In a similar vein, when we consider log-volumes on the

portion of log(AFvQ
) corresponding to the tensor product of various Kvα

, where
V � vα | vQ, it will be necessary to consider these log-volumes relative to the
weight

1∏
α∈A

[Kvα
: (Fmod)vα ]

— where we write vα ∈ Vmod for the element determined by vα. When, moreover,
we consider direct sums over all possible choices for the data {vα}α∈A, it will be
convenient to use the normalized weight

1( ∏
α∈A

[Kvα
: (Fmod)vα ]

)
·
{ ∑
{wα}α∈A

( ∏
α∈A

[(Fmod)wα : QvQ
]
)}

— where the sum is over all collections {wα}α∈A of [not necessarily distinct!] el-
ements wα ∈ Vmod lying over vQ and indexed by α ∈ A. Again, these normalized
weights are normalized so that multiplication by pvQ affects log-volumes by addition
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or subtraction [that is to say, depending on whether vQ ∈ Varc
Q or vQ ∈ Vnon

Q ] of the
quantity log(pvQ) ∈ R.

(iii) In the discussion to follow, we shall, for simplicity, use the term “measure
space” to refer to a locally compact Hausdorff topological space whose topology
admits a countable basis, and which is equipped with a complete Borel measure in
the sense of [Royden], Chapter 11, §1; [Royden], Chapter 14, §1. In particular,
one may speak of the product measure space [cf. [Royden], Chapter 12, §4] of
any finite nonempty collection of measure spaces. Then observe that care must be
exercised when considering the various weighted sums of log-volumes discussed in
(ii), since, unlike, for instance, the log-volumes discussed in [item (a) of] [AbsTopIII],
Proposition 5.7, (i), (ii),

such weighted sums of log-volumes do not, in general, arise as some
positive real multiple of the [natural] logarithm of a “volume” or “mea-
sure” in the usual sense of measure theory.

In particular, when considering direct sums of the sort that appear in the second
or third displays of the statement of Proposition 3.1, although it is clear from the
definitions how to compute a weighted sum of log-volumes of the sort discussed in
(ii) in the case of a region that arises as a direct product of, say, compact subsets
of positive measure in each of the direct summands [i.e., since the volume/measure
of such a compact subset may be computed as the infimum of the volume/measure
of the compact open subsets that contain it], it is not immediately clear from the
definitions how to compute such a weighted sum of log-volumes in the case of more
general regions. In the following, for ease of reference, let us refer to such a

region that arises as a direct product of compact subsets of positive measure
in each of the direct summands as a direct product region

and to a

region that arises as a direct product of relatively compact subsets in each
of the direct summands as a direct product pre-region.

Then we observe in the remainder of the present Remark 3.1.1 that although, in
the present series of papers,

the regions that will actually be of interest in the development of the
theory are, in fact, direct product [pre-]regions, in which case the com-
putation of weighted sums of log-volumes is completely straightforward [cf.
also the discussion of Remark 3.9.7, (ii), (iii), below],

in fact,

weighted sums of log-volumes of the sort discussed in (ii) may be
computed for, say, arbitrary Borel sets by applying the elementary
construction discussed in (iv) below.

Here, in the context of the situation discussed in the final portion of (ii), we note
that this construction in (iv) below is applied relative to the following given data:

· the finite set “V ” is taken to be the direct product∏
α∈A

VvQ
(
∼→

∏
α∈A

(Vmod)vQ)
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[where the subscript “vQ” denotes the fiber over vQ ∈ VQ];

· for “v ∈ V ”, the cardinality “Nv” is taken to be the product that appears
in the discussion of (ii) ∏

α∈A
[Kvα

: (Fmod)vα ]

[where we think of “v ∈ V ” as a collection {vα}α∈A of elements of VvQ

that lies over a collection {vα}α∈A of elements of (Vmod)vQ ], while “Mv”
is taken to be the [radial, if vQ ∈ VQ

arc] portion of the direct summand
in the third display of the statement of Proposition 3.1 indexed by v ∈ V
that corresponds to the tensor product of the {Kvα

}α∈A.
[By the “radial” portion of a topological tensor product of a finite collection of
complex archimedean fields, we mean the direct product of the copies of R>0 that
arise by forming the quotients by the units [i.e., copies of S1] of each of the complex
archimedean fields that appears in the direct sum of fields [cf. (i)] that arises
from such a topological tensor product.] Then one verifies immediately that, in
the case of “direct product regions” [as discussed above], the result of multiplying
the [natural] logarithm of the “E-weighted measure μE(−)” of (iv) by a suitable
normalization factor [i.e., a suitable positive real number] yields the weighted sums
of log-volumes discussed in (ii).

(iv) Let V a nonempty finite set; E def
= {Ev}v∈V a collection of nonempty

finite sets; M def
= {(Mv, μv)}v∈V a collection of nonempty measure spaces [cf. the

discussion of (iii) above]. For v ∈ V , write

E
def
=

∏
v′∈V

Ev′ ; E�=v
def
=

∏
V �v′ �=v

Ev′ ;

E × V � W
def
=

∐
v′∈V

E �=v′ × {v′} � V

— where the first arrow “�” is defined by the condition that, for v′ ∈ V , it restricts
to the natural projection E×{v′} � E �=v′×{v′} on E×{v′}; the second arrow “�”
is defined by the condition that, for v′ ∈ V , it restricts to the natural projection
E�=v′ × {v′} � {v′} on E �=v′ × {v′}. If W � w �→ v ∈ V via the natural surjection

W � V just discussed, then write (Mw, μw)
def
= (Mv, μv). If Z is a subset of W or

V , then we shall write

MZ
def
=

∏
z∈Z

Mz; ME×V
def
=

∏
(e,v)∈E×V

Mv =
∏
e∈E

MV ;

(ME×V ⊇) ME∗V
def
=

{
{me,v}(e,v)∈E×V | me′,v = me′′,v,

∀(e′, e′′) ∈ E ×E �=v
E ⊆ E × E

} ∼→ MW

— where the bijection ME∗V
∼→ MW is the map induced by the various natural

projections E � E �=v that constitute the natural projection E × V � W ; this

bijection ME∗V
∼→ MW is easily verified to be a homeomorphism. Thus, MW ,
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MV , and ME×V are equipped with natural product measure space structures; the

bijection ME∗V
∼→MW , together with the measure space structure on MW , induces

a measure space structure on ME∗V . In particular, if S ⊆ MV is any Borel set,
then the product ∏

e∈E
S ⊆ ME×V

is a Borel set of ME×V ; the intersection of this product with ME∗V

SE
def
=

{ ∏
e∈E

S
} ⋂

ME∗V ⊆ ME∗V

is a Borel set of ME∗V (
∼→ MW ). Thus, in summary, for any Borel set S ⊆ MV ,

one may speak of the “E-weighted measure”

μE(S) ∈ R≥0

⋃
{+∞}

of S, i.e., the measure, relative to the measure space structure of ME∗V (
∼→ MW ),

of SE . Since, moreover, one verifies immediately that the above construction is
functorial with respect to isomorphisms of the given data (V, E ,M), it follows

immediately that, in fact, μE(−) is completely determined by the cardinalities N def
=

{Nv}v∈V of the finite sets E = {Ev}v∈V , i.e., by the data (V,N ,M). Finally, we
observe that when S ⊆ MV is a “direct product region” [cf. the discussion
of (iii)], i.e., a set of the form

∏
v∈V Sv, where Sv ⊆ Mv is a compact subset of

positive measure, then a straightforward computation reveals that

1
NE
· μlog
E (S) =

∑
v∈V

1
Nv
· μlog

v (Sv)

— where we write NE =
∏

v∈V Nv, and each superscript “log” denotes the natural
logarithm of the corresponding quantity without a superscript.

Remark 3.1.2. The constructions involving local holomorphic tensor packets
given in Proposition 3.1 may be applied to the capsules that appear in the various
F-prime-strip processions obtained by considering the evident F-prime-strip
analogues [cf. [IUTchI], Remark 5.6.1; [IUTchI], Remark 6.12.1] of the holomor-
phic processions discussed in [IUTchI], Proposition 4.11, (i); [IUTchI], Proposi-
tion 6.9, (i).

Proposition 3.2. (Local Mono-analytic Tensor Packets) Let

{αD�}α∈A =
{
{αD�v }v∈V

}
α∈A

be an n-capsule, with index set A, of D�-prime-strips [relative to the given initial
Θ-data — cf. [IUTchI], §0; [IUTchI], Definition 4.1, (iii)]. Then [cf. the notation
of Proposition 1.2, (vi), (vii)] we shall refer to the correspondence

VQ � vQ �→ log(αD�vQ
)

def
=

⊕
V � v | vQ

log(αD�v )
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as the [1-]tensor packet associated to the D�-prime-strip αD� and to the corre-
spondence

VQ � vQ �→ log(AD�vQ
)

def
=

⊗
α∈A

log(αD�vQ
)

— where the tensor product is to be understood as a tensor product of ind-topological
modules — as the [n-]tensor packet associated to the collection of D�-prime-strips
{αD�}α∈A. For α ∈ A, v ∈ V, vQ ∈ VQ such that v | vQ, we shall write

log(A,αD�v ) ⊆ log(AD�vQ)

for the ind-topological submodule determined by the tensor product of the factors
labeled by β ∈ A\{α} with the tensor product of the direct summand with subscript
v of the factor labeled α [cf. Proposition 3.1, (ii)]. If the capsule of D�-prime-strips
{αD�}α∈A arises from a capsule of F�×μ-prime-strips

{αF�×μ}α∈A =
{
{αF�×μ

v }v∈V
}
α∈A

[relative to the given initial Θ-data — cf. [IUTchI], §0; [IUTchII], Definition 4.9,
(vii)], then we shall use similar notation to the notation just introduced concerning
{αD�}α∈A to denote objects associated to {αF�×μ}α∈A, i.e., by replacing “D�”
in the above notational conventions by “F�×μ” [cf. also the notation of Proposition
1.2, (vi), (vii)]. Then:

(i) (Mono-analytic/Holomorphic Compatibility) Suppose that the cap-
sule of D�-prime-strips {αD�}α∈A arises from the capsule of F-prime-strips {αF}α∈A
of Proposition 3.1; write {αF�×μ}α∈A for the capsule of F�×μ-prime-strips associ-

ated to {αF}α∈A. Then the poly-isomorphisms “log(†D�v )
∼→ log(†F�×μ

v )
∼→ log(†Fv)”

of Proposition 1.2, (vi), (vii), induce natural poly-isomorphisms of ind-topologi-
cal modules

log(αD�vQ
)
∼→ log(αF�×μ

vQ
)
∼→ log(αFvQ); log(AD�vQ

)
∼→ log(AF�×μ

vQ
)
∼→ log(AFvQ)

log(A,αD�v )
∼→ log(A,αF�×μ

v )
∼→ log(A,αFv)

between the various “mono-analytic” tensor packets of the present Proposition
3.2 and the “holomorphic” tensor packets of Proposition 3.1.

(ii) (Integral Structures) If V � v | vQ ∈ Vnon
Q , then the mono-analytic

log-shells “I†D�
v
” of Proposition 1.2, (vi), determine [i.e., by forming suitable

direct sums and tensor products] topological submodules

I(αD�vQ) ⊆ log(αD�vQ
); I(AD�vQ) ⊆ log(AD�vQ

); I(A,αD�v ) ⊆ log(A,αD�v )

— which may be regarded as integral structures on the Q-spans of these sub-
modules. If V � v | vQ ∈ Varc

Q , then by regarding the mono-analytic log-shell
“I†D�

v
” of Proposition 1.2, (vii), as the “closed unit ball” of a Hermitian metric on

“log(†D�v )”, and considering the induced direct sum Hermitian metric on log(αD�vQ
),
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together with the induced tensor product Hermitian metric on log(AD�vQ), one ob-

tains Hermitian metrics on log(αD�vQ
), log(AD�vQ), and log(A,αD�v ), whose associ-

ated closed unit balls

I(αD�vQ) ⊆ log(αD�vQ
); I(AD�vQ) ⊆ log(AD�vQ

); I(A,αD�v ) ⊆ log(A,αD�v )

may be regarded as integral structures on log(αD�vQ), log(AD�vQ
), and log(A,αD�v ),

respectively. For arbitrary V � v | vQ ∈ VQ, we shall denote by “IQ((−))” the Q-
span of “I((−))”; also, we shall apply this notation involving “I((−))”, “IQ((−))”
with “D�” replaced by “F” or “F�×μ” for the various objects obtained from the
“D�-versions” discussed above by applying the natural poly-isomorphisms of
(i).

Proof. The various assertions of Proposition 3.2 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 3.2.1. The issue of estimating the discrepancy between the holo-
morphic integral structures of Proposition 3.1, (ii), and the mono-analytic in-
tegral structures of Proposition 3.2, (ii), will form one of the main topics to be
discussed in [IUTchIV] — cf. also Remark 3.9.1 below.

Remark 3.2.2. The constructions involving local mono-analytic tensor pack-
ets given in Proposition 3.2 may be applied to the capsules that appear in the
various D�-prime-strip processions — i.e., mono-analytic processions —
discussed in [IUTchI], Proposition 4.11, (ii); [IUTchI], Proposition 6.9, (ii).

Proposition 3.3. (Global Tensor Packets) Let

†HT Θ±ellNF

be a Θ±ellNF-Hodge theater [relative to the given initial Θ-data] — cf. [IUTchI],

Definition 6.13, (i). Thus, †HT Θ±ellNF determines ΘNF- and Θ±ell-Hodge theaters
†HT ΘNF, †HT Θ±ell

as in [IUTchII], Corollary 4.8. Let {αF}α∈A be an n-capsule
of F-prime-strips as in Proposition 3.1. Suppose, further, that A is a subset of
the index set J that appears in the ΘNF-Hodge theater †HT ΘNF, and that, for each
α ∈ A, we are given a log-link

αF
log−→ †Fα

— i.e., a poly-isomorphism of F-prime-strips log(αF)
∼→ †Fα [cf. Definition 1.1,

(iii)]. Next, recall the field †M
�
mod discussed in [IUTchII], Corollary 4.8, (i); thus,

one also has, for j ∈ J , a labeled version (†M
�
mod)j of this field [cf. [IUTchII],

Corollary 4.8, (ii)]. We shall refer to

(†M
�
mod)A

def
=

⊗
α∈A

(†M
�
mod)α
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— where the tensor product is to be understood as a tensor product of modules —
as the global [n-]tensor packet associated to the subset A ⊆ J and the Θ±ellNF-

Hodge theater †HT Θ±ellNF.

(i) (Ring Structures) The field structure on the various (†M
�
mod)α, for

α ∈ A, determine a ring structure on (†M
�
mod)A with respect to which (†M

�
mod)A

decomposes, uniquely, as a direct sum of number fields. Moreover, the various
localization functors “(†F�

mod)j → †Fj” considered in [IUTchII], Corollary
4.8, (iii), determine, by composing with the given log-links, a natural injective
localization ring homomorphism

(†M
�
mod)A → log(AFVQ

)
def
=

∏
vQ∈VQ

log(AFvQ
)

to the product of the local holomorphic tensor packets considered in Proposition 3.1.

(ii) (Integral Structures) Fix an element α ∈ A. Then by forming the tensor
product with “1’s” in the factors labeled by β ∈ A \ {α}, one obtains a natural
ring homomorphism

(†M
�
mod)α → (†M

�
mod)A

that induces an isomorphism of the domain onto a subfield of each of the direct
summand number fields of the codomain. For each vQ ∈ VQ, this homomorphism
is compatible, in the evident sense, relative to the localization homomorphism
of (i), with the natural homomorphism of ind-topological rings considered in Propo-
sition 3.1, (ii). Moreover, for each vQ ∈ Vnon

Q , the composite of the above dis-
played homomorphism with the component at vQ of the localization homomorphism

of (i) maps the ring of integers of the number field (†M
�
mod)α into the submod-

ule constituted by the integral structure on log(AFvQ) considered in Proposition
3.1, (ii); for each vQ ∈ Varc

Q , the composite of the above displayed homomorphism
with the component at vQ of the localization homomorphism of (i) maps the set
of archimedean integers [i.e., elements of absolute value ≤ 1 at all archimedean

primes] of the number field (†M
�
mod)α into the direct product of subsets constituted

by the integral structures considered in Proposition 3.1, (ii), on the various direct
summand ind-topological fields of log(AFvQ).

Proof. The various assertions of Proposition 3.3 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 3.3.1. One may perform analogous constructions to the constructions

of Proposition 3.3 for the fields “M
�
mod(

†D�)j” of [IUTchII], Corollary 4.7, (ii) [cf.
also the localization functors of [IUTchII], Corollary 4.7, (iii)], constructed from

the associated D-Θ±ellNF-Hodge theater †HT D-Θ±ellNF. These constructions are
compatible with the corresponding constructions of Proposition 3.3, in the evident
sense, relative to the various labeled Kummer-theoretic isomorphisms of [IUTchII],
Corollary 4.8, (ii). We leave the routine details to the reader.
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Remark 3.3.2.

(i) One may consider the image of the localization homomorphism of Propo-
sition 3.3, (i), in the case of the various local holomorphic tensor packets arising
from processions, as discussed in Remark 3.1.2. Indeed, at the level of the labels
involved, this is immediate in the case of the “F�

l -processions” of [IUTchI], Propo-
sition 4.11, (i). On the other hand, in the case of the “|Fl|-processions” of [IUTchI],
Proposition 6.9, (i), this may be achieved by applying the identifying isomorphisms
between the zero label 0 ∈ |Fl| and the diagonal label 〈F�

l 〉 associated to F�
l dis-

cussed in [the final display of] [IUTchII], Corollary 4.6, (iii) [cf. also [IUTchII],
Corollary 4.8, (ii)].

(ii) In a similar vein, one may compose the “D-Θ±ellNF-Hodge theater version”
discussed in Remark 3.3.1 of the localization homomorphism of Proposition 3.3,
(i), with the product over vQ ∈ VQ of the inverses of the upper right-hand dis-
played isomorphisms at vQ of Proposition 3.2, (i), and then consider the image of
this composite morphism in the case of the various local mono-analytic tensor
packets arising from processions, as discussed in Remark 3.2.2. Just as in the
holomorphic case discussed in (i), in the case of the “|Fl|-processions” of [IUTchI],
Proposition 6.9, (ii), this obliges one to apply the identifying isomorphisms between
the zero label 0 ∈ |Fl| and the diagonal label 〈F�

l 〉 associated to F�
l discussed in [the

final display of] [IUTchII], Corollary 4.5, (iii).

(iii) The various images of global tensor packets discussed in (i) and (ii) above
may be identified — i.e., in light of the injectivity of the homomorphisms applied to
construct these images — with the global tensor packets themselves. These local
holomorphic/local mono-analytic global tensor packet images will play a
central role in the development of the theory of the present §3 [cf., e.g., Proposition
3.7, below].

Remark 3.3.3. The log-shifted nature of the localization homomorphism of
Proposition 3.3, (i), will play a crucial role in the development of the theory of
present §3 — cf. the discussion of [IUTchII], Remark 4.8.2, (i), (iii).

q1 � qj
2

� q(l
�)2 �

/± ↪→ /±/± ↪→ . . . ↪→ /±/± . . . /± ↪→ . . . ↪→ /±/± . . . . . . /±

S±1 S±1+1=2 S±j+1 S±1+l�=l±

Fig. 3.1: Splitting monoids of LGP-monoids acting on tensor packets

Proposition 3.4. (Local Packet-theoretic Frobenioids)

(i) (Single Packet Monoids) In the situation of Proposition 3.1, fix elements
α ∈ A, v ∈ V, vQ ∈ VQ such that v | vQ. Then the operation of forming the image
via the natural homomorphism log(αFv) → log(A,αFv) [cf. Proposition 3.1, (ii)]
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of the monoid Ψlog(αFv) [cf. the notation of Definition 1.1, (i), (ii)], together with

its submonoid of units Ψ×log(αFv)
and realification ΨR

log(αFv)
, determines monoids

Ψlog(A,αFv), Ψ×
log(A,αFv)

, ΨR
log(A,αFv)

— which are equipped with Gv(
αΠv)-actions when v ∈ Vnon and, in the case of the

first displayed monoid, with a pair consisting of an Aut-holomorphic orbispace
and a Kummer structure when v ∈ Varc. We shall think of these monoids as
[possibly realified] subquotients of

log(A,αFv)

that act [multiplicatively] on suitable [possibly realified] subquotients of log(A,αFv).
In particular, when v ∈ Vnon, the first displayed monoid, together with its αΠv-
action, determine a Frobenioid equipped with a natural isomorphism to log(αFv);
when v ∈ Varc, the first displayed monoid, together with its Aut-holomorphic orbis-
pace and Kummer structure, determine a collection of data equipped with a natural
isomorphism to log(αFv).

(ii) (Local Logarithmic Gaussian Procession Monoids) Let

‡HT Θ±ellNF log−→ †HT Θ±ellNF

be a log-link of Θ±ellNF-Hodge theaters as in Proposition 1.3, (i) [cf. also the
situation of Proposition 3.3]. Consider the F-prime-strip processions that arise
as the F-prime-strip analogues [cf. Remark 3.1.2; [IUTchI], Remark 6.12.1] of the
holomorphic processions discussed in [IUTchI], Proposition 6.9, (i), when the
functor of [IUTchI], Proposition 6.9, (i), is applied to the Θ±-bridges associated

to †HT Θ±ellNF, ‡HT Θ±ellNF; we shall refer to such processions as “†-” or “‡-”
processions. Here, we recall that for j ∈ {1, . . . , l�}, the index set of the (j + 1)-
capsule that appears in such a procession is denoted S±j+1. Then by applying the

various constructions of “single packet monoids” given in (i) in the case of
the various capsules of F-prime-strips that appear in a holomorphic ‡-procession
— i.e., more precisely, in the case of the label j ∈ {1, . . . , l�} [which we shall
occasionally identify with its image in F�

l ⊆ |Fl|] that appears in the (j+1)-capsule
of the ‡-procession — to the pull-backs, via the poly-isomorphisms that appear
in the definition [cf. Definition 1.1, (iii)] of the given log-link, of the [collections
of] monoids equipped with actions by topological groups when v ∈ Vnon and

splittings [up to torsion, when v ∈ Vbad] ΨFgau(
†HT Θ)v, ∞ΨFgau(

†HT Θ)v of
[IUTchII], Corollary 4.6, (iv), for v ∈ V, one obtains a functorial algorithm

in the log-link of Θ±ellNF-Hodge theaters ‡HT Θ±ellNF log−→ †HT Θ±ellNF for
constructing [collections of ] monoids equipped with actions by topological groups

when v ∈ Vnon and splittings [up to torsion, when v ∈ Vbad]

V � v �→ ΨFLGP(
†HT Θ±ellNF)v; V � v �→ ∞ΨFLGP(

†HT Θ±ellNF)v

— which we refer to as “[local] LGP-monoids”, or “logarithmic Gaussian proces-

sion monoids” [cf. Fig. 3.1 above]. Here, we note that the notation “(†HT Θ±ellNF)”
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constitutes a slight abuse of notation. Also, we note that this functorial algo-
rithm requires one to apply the compatibility of the given log-link with the F�±

l -

symmetrizing isomorphisms involved [cf. Remark 1.3.2]. For v ∈ Vbad, the
component labeled j ∈ {1, . . . , l�} of the submonoid of Galois invariants [cf. (i)]

of the entire LGP-monoid ΨFLGP(
†HT Θ±ellNF)v is a subset of

IQ(S
±
j+1

,j;‡Fv)

[i.e., where the notation “; ‡” denotes the result of applying the discussion of (i)
to the case of F-prime-strips labeled “‡”; cf. also the notational conventions of

Proposition 3.2, (ii)] that acts multiplicatively on IQ(S
±
j+1

,j;‡Fv) [cf. the construc-
tions of [IUTchII], Corollary 3.6, (ii)]. For any v ∈ V, the component labeled
j ∈ {1, . . . , l�} of the submodule of Galois invariants [cf. (i) when v ∈ Vnon; this

Galois action is trivial when v ∈ Varc] of the unit portion ΨFLGP(
†HT Θ±ellNF)×v

of such an LGP-monoid is a subset of

IQ(S
±
j+1

,j;‡Fv)

[cf. the discussion of (i); the notational conventions of Proposition 3.2, (ii)] that

acts multiplicatively on IQ(S
±
j+1

,j;‡Fv) [cf. the constructions of [IUTchII], Corollary
3.6, (ii); [IUTchII], Proposition 4.2, (iv); [IUTchII], Proposition 4.4, (iv)].

Proof. The various assertions of Proposition 3.4 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Proposition 3.5. (Kummer Theory and Upper Semi-compatibility for

Vertically Coric Local LGP-Monoids) Let {n,mHT Θ±ellNF}n,m∈Z be a collec-
tion of distinct Θ±ellNF-Hodge theaters [relative to the given initial Θ-data]
— which we think of as arising from a Gaussian log-theta-lattice [cf. Definition
1.4]. For each n ∈ Z, write

n,◦HT D-Θ±ellNF

for the D-Θ±ellNF-Hodge theater determined, up to isomorphism, by the various
n,mHT Θ±ellNF, where m ∈ Z, via the vertical coricity of Theorem 1.5, (i).

(i) (Vertically Coric Local LGP-Monoids and Associated Kummer
Theory) Write

F(n,◦D	)t

for the F-prime-strip associated [cf. [IUTchII], Remark 4.5.1, (i)] to the labeled
collection of monoids “Ψcns(

n,◦D	)t” of [IUTchII], Corollary 4.5, (iii) [i.e., where
we take “†” to be “n, ◦”]. Recall the constructions of Proposition 3.4, (ii), involving
F-prime-strip processions. Then by applying these constructions to the F-prime-
strips “F(n,◦D	)t” and the various full log-links associated [cf. the discussion of
Proposition 1.2, (ix)] to these F-prime-strips — which we consider in a fashion
compatible with the F�±

l -symmetries involved [cf. Remark 1.3.2; Proposition
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3.4, (ii)] — we obtain a functorial algorithm in the D-Θ±ellNF-Hodge theater
n,◦HT D-Θ±ellNF for constructing [collections of] monoids

V � v �→ ΨLGP(
n,◦HT D-Θ±ellNF)v; V � v �→ ∞ΨLGP(

n,◦HT D-Θ±ellNF)v

equipped with actions by topological groups when v ∈ Vnon and splittings [up to

torsion, when v ∈ Vbad] — which we refer to as “vertically coric [local] LGP-
monoids”. For each n,m ∈ Z, this functorial algorithm is compatible [in the
evident sense] with the functorial algorithm of Proposition 3.4, (ii) — i.e., where
we take “†” to be “n,m” and “‡” to be “n,m − 1” — relative to the Kummer
isomorphisms of labeled data

Ψcns(
n,m′

F	)t
∼→ Ψcns(

n,◦D	)t

of [IUTchII], Corollary 4.6, (iii), and the evident identification, for m′ = m,m−1,

of n,m′
Ft [i.e., the F-prime-strip that appears in the associated Θ±-bridge] with the

F-prime-strip associated to Ψcns(
n,m′

F	)t. In particular, for each n,m ∈ Z, we
obtain Kummer isomorphisms of [collections of ] monoids

ΨFLGP(
n,mHT Θ±ellNF)v

∼→ ΨLGP(
n,◦HT D-Θ±ellNF)v

∞ΨFLGP(
n,mHT Θ±ellNF)v

∼→ ∞ΨLGP(
n,◦HT D-Θ±ellNF)v

equipped with actions by topological groups when v ∈ Vnon and splittings [up

to torsion, when v ∈ Vbad], for v ∈ V.

(ii) (Upper Semi-compatibility) The Kummer isomorphisms of the final
two displays of (i) are “upper semi-compatible” — cf. the discussion of “up-
per semi-commutativity” in Remark 1.2.2, (iii) — with the various log-links of

Θ±ellNF-Hodge theaters n,m−1HT Θ±ellNF log−→ n,mHT Θ±ellNF [where m ∈ Z]
of the Gaussian log-theta-lattice under consideration in the following sense. Let
j ∈ {0, 1, . . . , l�}. Then:

(a) (Nonarchimedean Primes) For vQ ∈ Vnon
Q , the topological module

I(S
±
j+1F(n,◦D	)vQ

)

— i.e., that arises from applying the constructions of Proposition 3.4, (ii)
[where we allow “j” to be 0], in the vertically coric context of (i) above
[cf. also the notational conventions of Proposition 3.2, (ii)] — contains
the images of the submodules of Galois invariants [where we recall the
Galois actions that appear in the data of [IUTchII], Corollary 4.6, (i),
(iii)] of the groups of units (Ψcns(

n,mF	)|t|)×v , for V � v | vQ and

|t| ∈ {0, . . . , j}, via both

(1) the tensor product, over such |t|, of the [relevant] Kummer
isomorphisms of (i), and

(2) the tensor product, over such |t|, of the pre-composite of these
Kummer isomorphisms with the m′-th iterates [cf. Remark
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1.1.1] of the log-links, for m′ ≥ 1, of the n-th column of the
Gaussian log-theta-lattice under consideration [cf. the discussion
of Remark 1.2.2, (i), (iii)].

(b) (Archimedean Primes) For vQ ∈ Varc
Q , the closed unit ball

I(S
±
j+1F(n,◦D	)vQ

)

— i.e., that arises from applying the constructions of Proposition 3.4, (ii)
[where we allow “j” to be 0], in the vertically coric context of (i) above
[cf. also the notational conventions of Proposition 3.2, (ii)] — contains
the image, via the tensor product, over |t| ∈ {0, . . . , j}, of the [relevant]
Kummer isomorphisms of (i), of both

(1) the groups of units (Ψcns(
n,mF	)|t|)×v , for V � v | vQ, and

(2) the closed balls of radius π inside (Ψcns(
n,mF	)|t|)

gp
v [cf. the

notational conventions of Definition 1.1], for V � v | vQ.
Here, we recall from the discussion of Remark 1.2.2, (ii), (iii), that, if
we regard each log-link as a correspondence that only concerns the units
that appear in its domain [cf. Remark 1.1.1], then a closed ball as in (2)
contains, for each m′ ≥ 1, a subset that surjects, via the m′-th iterate
of the log-link of the n-th column of the Gaussian log-theta-lattice under
consideration, onto the subset of the group of units (Ψcns(

n,m−m′
F	)|t|)×v

on which this iterate is defined.

(c) (Bad Primes) Let v ∈ Vbad; suppose that j �= 0. Recall that the various
monoids “ΨFLGP(−)v”, “∞ΨFLGP(−)v” constructed in Proposition 3.4,
(ii), as well as the monoids “ΨLGP(−)v”, “∞ΨLGP(−)v” constructed in
(i) above, are equipped with natural splittings up to torsion. Write

Ψ⊥FLGP
(−)v ⊆ ΨFLGP(−)v; ∞Ψ⊥FLGP

(−)v ⊆ ∞ΨFLGP(−)v

Ψ⊥LGP(−)v ⊆ ΨLGP(−)v; ∞Ψ⊥LGP(−)v ⊆ ∞ΨLGP(−)v
for the submonoids corresponding to these splittings [cf. the submonoids
“O⊥(−) ⊆ O�(−)” discussed in Definition 2.4, (i), in the case of “Ψ⊥”;
the notational conventions of Theorem 2.2, (ii), in the case of “∞Ψ⊥”].
[Thus, the subgroup of units of “Ψ⊥” consists of the 2l-torsion subgroup
of “Ψ”, while the subgroup of units of “∞Ψ⊥” contains the entire torsion
subgroup of “∞Ψ”.] Then, as m ranges over the elements of Z, the
actions, via the [relevant] Kummer isomorphisms of (i), of the various

monoids Ψ⊥FLGP
(n,mHT Θ±ellNF)v (⊆ ∞Ψ⊥FLGP

(n,mHT Θ±ellNF)v) on the
ind-topological modules

IQ(S
±
j+1

,jF(n,◦D	)v) ⊆ log(S
±
j+1

,jF(n,◦D	)v)

[where j = 1, . . . , l�] — i.e., that arise from applying the constructions
of Proposition 3.4, (ii), in the vertically coric context of (i) above [cf.
also the notational conventions of Proposition 3.2, (ii)] — are mutually
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compatible, relative to the log-links of the n-th column of the Gaussian
log-theta-lattice under consideration, in the sense that the only portions of
these actions that are possibly related to one another via these log-links
are the indeterminacies with respect to multiplication by roots of
unity in the domains of the log-links, that is to say, indeterminacies at
m that correspond, via the log-link, to “addition by zero” — i.e., to no
indeterminacy! — at m+ 1.

Now let us think of the submodules of Galois invariants [cf. the discussion of
Proposition 3.4, (ii)] of the various groups of units, for v ∈ V,

(Ψcns(
n,mF	)|t|)×v , ΨFLGP(

n,mHT Θ±ellNF)×v

and the splitting monoids, for v ∈ Vbad,

Ψ⊥FLGP
(n,mHT Θ±ellNF)v

as acting on various portions of the modules, for vQ ∈ VQ,

IQ(S
±
j+1F(n,◦D	)vQ

)

not via a single Kummer isomorphism as in (i) — which fails to be com-
patible with the log-links of the Gaussian log-theta-lattice! — but rather via the
totality of the various pre-composites of Kummer isomorphisms with iterates [cf.
Remark 1.1.1] of the log-links of the Gaussian log-theta-lattice — i.e., precisely
as was described in detail in (a), (b), (c) above [cf. also the discussion of Remark
3.11.4 below]. Thus, one obtains a sort of “log-Kummer correspondence” be-
tween the totality, as m ranges over the elements of Z, of the various groups of
units and splitting monoids just discussed [i.e., which are labeled by “n,m”] and
their actions [as just described] on the “IQ” labeled by “n, ◦” which is invariant
with respect to the translation symmetries [cf. Proposition 1.3, (iv)] of the n-th
column of the Gaussian log-theta-lattice [cf. the discussion of Remark 1.2.2, (iii)].

Proof. The various assertions of Proposition 3.5 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Example 3.6. Concrete Representations of Global Frobenioids. Before
proceeding, we pause to take a closer look at the Frobenioid “†F�

mod” of [IUTchI],
Example 5.1, (iii), i.e., more concretely speaking, the Frobenioid of arithmetic line
bundles on the stack “Smod” of [IUTchI], Remark 3.1.5. Let us write

F�
mod

for the Frobenioid “†F�
mod” of [IUTchI], Example 5.1, (iii), in the case where the

data denoted by the label “†” arises [in the evident sense] from data as discussed
in [IUTchI], Definition 3.1. In the following discussion, we shall use the notation of
[IUTchI], Definition 3.1.
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(i) (Rational Function Torsor Version) For each v ∈ V, the valuation on
Kv determined by v determines a group homomorphism βv : F×mod → K×

v /O×Kv
[cf.

Remark 3.6.1 below]. Then let us define a category F�
MOD as follows. An object

T = (T, {tv}v∈V) of F�
MOD consists of a collection of data

(a) an F×mod-torsor T ;

(b) for each v ∈ V, a trivalization tv of the torsor Tv obtained from T by
executing the “change of structure group” operation determined by the
homomorphism βv

subject to the condition that there exists an element t ∈ T such that tv coincides
with the trivialization of Tv determined by t for all but finitely many v. An ele-
mentary morphism T1 = (T1, {t1,v}v∈V) → T2 = (T2, {t2,v}v∈V) between objects of

F�
MOD is defined to be an isomorphism T1

∼→ T2 of F×mod-torsors which is integral
at each v ∈ V, i.e., maps the trivialization t1,v to an element of the O�

Kv
-orbit

of t2,v. There is an evident notion of composition of elementary morphisms, as
well as an evident notion of tensor powers T ⊗n, for n ∈ Z, of an object T of
F�

MOD. A morphism T1 = (T1, {t1,v}v∈V) → T2 = (T2, {t2,v}v∈V) between objects

of F�
MOD is defined to consist of a positive integer n and an elementary morphism

(T1)⊗n → T2. There is an evident notion of composition of morphisms. Thus,
F�

MOD forms a category. In fact, one verifies immediately that, from the point of

view of the theory of Frobenioids developed in [FrdI], [FrdII], F�
MOD admits a nat-

ural Frobenioid structure [cf. [FrdI], Definition 1.3], for which the base category is
the category with precisely one arrow. Relative to this Frobenioid structure, the
elementary morphisms are precisely the linear morphisms, and the positive integer
“n” that appears in the definition of a morphism of F�

MOD is the Frobenius degree
of the morphism. Moreover, by associating to an arithmetic line bundle on Smod

the F×mod-torsor determined by restricting the line bundle to the generic point of
Smod and the local trivializations at v ∈ V determined by the various local inte-
gral structures, one verifies immediately that there exists a natural isomorphism of
Frobenioids

F�
mod

∼→ F�
MOD

that induces the identity morphism F×mod → F×mod on the associated rational func-
tion monoids [cf. [FrdI], Corollary 4.10].

(ii) (Local Fractional Ideal Version) Let us define a category F�
mod as

follows. An object

J = {Jv}v∈V

of F�
mod consists of a collection of “fractional ideals” Jv ⊆ Kv for each v ∈ V — i.e.,

a finitely generated nonzero OKv -submodule of Kv when v ∈ Vnon; a positive real

multiple of OKv

def
= {λ ∈ Kv | |λ| ≤ 1} ⊆ Kv when v ∈ Varc — such that Jv = OKv

for all but finitely many v. If J = {Jv}v∈V is an object of F�
mod, then for any element

f ∈ F×mod, one obtains an object f · J = {f ·Jv}v∈V of F�
mod by multiplying each of

the fractional ideals Jv by f . Moreover, if J = {Jv}v∈V is an object of F�
mod, then

for any n ∈ Z, there is an evident notion of the n-th tensor power J⊗n of J . An
elementary morphism J1 = {J1,v}v∈V → J2 = {J2,v}v∈V between objects of F�

mod is
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defined to be an element f ∈ F×mod that is integral with respect to J1 and J2 in the
sense that f · J1,v ⊆ J2,v for each v ∈ V. There is an evident notion of composition
of elementary morphisms. A morphism J1 = {J1,v}v∈V → J2 = {J2,v}v∈V between

objects of F�
mod is defined to consist of a positive integer n and an elementary

morphism (J1)⊗n → J2. There is an evident notion of composition of morphisms.
Thus, F�

mod forms a category. In fact, one verifies immediately that, from the point
of view of the theory of Frobenioids developed in [FrdI], [FrdII], F�

mod admits a
natural Frobenioid structure [cf. [FrdI], Definition 1.3], for which the base category
is the category with precisely one arrow. Relative to this Frobenioid structure, the
elementary morphisms are precisely the linear morphisms, and the positive integer
“n” that appears in the definition of a morphism of F�

mod is the Frobenius degree
of the morphism. Moreover, by associating to an object J = {Jv}v∈V of F�

mod the
arithmetic line bundle on Smod obtained from the trivial arithmetic line bundle
on Smod by modifying the integral structure of the trivial line bundle at v ∈ V in
the fashion prescribed by Jv, one verifies immediately that there exists a natural
isomorphism of Frobenioids

F�
mod

∼→ F�
mod

that induces the identity morphism F×mod → F×mod on the associated rational func-
tion monoids [cf. [FrdI], Corollary 4.10].

(iii) By composing the isomorphisms of Frobenioids of (i) and (ii), one thus
obtains a natural isomorphism of Frobenioids

F�
mod

∼→ F�
MOD

that induces the identity morphism F×mod → F×mod on the associated rational func-
tion monoids [cf. [FrdI], Corollary 4.10]. One verifies immediately that although the
above isomorphism of Frobenioids is not necessarily determined by the condition
that it induce the identity morphism on F×mod, the induced isomorphism between

the respective perfections [hence also on realifications] of F�
mod, F�

MOD is completely
determined by this condition.

Remark 3.6.1. Note that, as far as the various constructions of Example 3.6,
(i), are concerned, the various homomorphisms βv, for v ∈ V, may be thought of,
alternatively, as a collection of

subquotients of the perfection (F×mod)
pf of F×mod

— each of which is equipped with a submonoid of “nonnegative elements” — that
are completely determined by the ring structure of the field Fmod [i.e., equipped
with its structure as the field of moduli of XF ].

Remark 3.6.2.

(i) In the theory to be developed below, we shall be interested in relating
certain Frobenioids — which will, in fact, be isomorphic to the realification of F�

mod

— that lie on opposite sides of [a certain enhanced version of] the Θ×μ
gau-link to one

another. In particular, at the level of objects of the Frobenioids involved, it only
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makes sense to work with isomorphism classes of objects that are preserved by
the isomorphisms of Frobenioids that appear. Here, we note that the isomorphism
classes of the sort of Frobenioids that appear in this context are determined by the
divisor and rational function monoids of the [model] Frobenioid in question [cf.
the constructions given in [FrdI], Theorem 5.2, (i), (ii)]. In this context, we observe
that the rational function monoid F×mod of F�

mod satisfies the following fundamental
property:

[the union with {0} of] F×mod admits a natural additive structure.

In this context, we note that this property is not satisfied by

(a) the rational function monoids of the perfection or realification of F�
mod

(b) subgroups Γ ⊆ F×mod — such as, for instance, the trivial subgroup {1}
or the subgroup of S-units, for S ⊆ Vmod a nonempty finite subset —
that do not arise as the multiplicative group of some subfield of Fmod [cf.
[AbsTopIII], Remark 5.10.2, (iv)].

The significance of this fundamental property is that it allows one to represent the
objects of F�

mod additively, i.e., as modules — cf. the point of view of Example 3.6,
(ii). At a more concrete level, if, in the notation of (b), one considers the result of
“adding” two elements of a Γ-torsor [cf. the point of view of Example 3.6, (i)!], then
the resulting “sum” can only be rendered meaningful, relative to the given Γ-torsor,
if Γ is additively closed. The additive representation of objects of F�

mod will be
of crucial importance in the theory of the present series of papers since it will allow
us to relate objects of F�

mod on opposite sides of [a certain enhanced version of]
the Θ×μ

gau-link to one another — which, a priori, are only related to one another at
the level of realifications in a multiplicative fashion — by means of [“additive”]
mono-analytic log-shells [cf. the discussion of [IUTchII], Remark 4.7.2].

(ii) One way to understand the content of the discussion of (i) is as follows:
whereas

the construction of F�
mod depends on the additive structure of F×mod

in an essential way,

the construction of F�
MOD is strictly multiplicative in nature.

Indeed, the construction of F�
MOD given in Example 3.6, (i), is essentially the same

as the construction of F�
mod given in [FrdI], Example 6.3 [i.e., in effect, in [FrdI],

Theorem 5.2, (i)]. From this point of view, it is natural to identify F�
MOD with

F�
mod via the natural isomorphism of Frobenioids of Example 3.6, (i). We shall

often do this in the theory to be developed below.

Proposition 3.7. (Global Packet-theoretic Frobenioids)

(i) (Single Packet Rational Function Torsor Version) In the notation
of Proposition 3.3: For each α ∈ A, there is an algorithm for constructing, as
discussed in Example 3.6, (i) [cf. also Remark 3.6.1], from the [number] field given
by the image

(†M
�
MOD)α
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of the composite

(†M
�
mod)α → (†M

�
mod)A → log(AFVQ

)

of the homomorphisms of Proposition 3.3, (i), (ii), a Frobenioid (†F�
MOD)α, to-

gether with a natural isomorphism of Frobenioids

(†F�
mod)α

∼→ (†F�
MOD)α

[cf. the notation of [IUTchII], Corollary 4.8, (ii)] that induces the tautological

isomorphism (†M�
mod)α

∼→ (†M�
MOD)α on the associated rational function monoids

[cf. Example 3.6, (i)]. We shall often use this isomorphism of Frobenioids to

identify (†F�
mod)α with (†F�

MOD)α [cf. Remark 3.6.2, (ii)]. Write (†F�R
MOD)α for

the realification of (†F�
MOD)α.

(ii) (Single Packet Local Fractional Ideal Version) In the notation of
Propositions 3.3, 3.4: For each α ∈ A, there is an algorithm for constructing, as

discussed in Example 3.6, (ii), from the [number] field (†M
�
mod)α

def
= (†M

�
MOD)α [cf.

(i)] and the Galois invariants of the local monoids

Ψlog(A,αFv) ⊆ log(A,αFv)

for v ∈ V of Proposition 3.4, (i) — i.e., so the corresponding local “fractional
ideal Jv” of Example 3.6, (ii), is a subset [indeed a submodule when v ∈ Vnon] of

IQ(A,αFv) whose Q-span is equal to IQ(A,αFv) [cf. the notational conventions of

Proposition 3.2, (ii)] — a Frobenioid (†F�
mod)α, together with natural isomor-

phisms of Frobenioids

(†F�
mod)α

∼→ (†F�
mod)α; (†F�

mod)α
∼→ (†F�

MOD)α

that induce the tautological isomorphisms (†M�
mod)α

∼→ (†M�
mod)α, (

†M�
mod)α

∼→
(†M�

MOD)α on the associated rational function monoids [cf. the natural isomorphism

of Frobenioids of (i); Example 3.6, (ii), (iii)]. Write (†F�R
mod)α for the realification

of (†F�
mod)α.

(iii) (Global Realified LGP-Frobenioids) In the notation of Proposition

3.4: By applying the composites of the isomorphisms of Frobenioids “†C�j
∼→

(†F�R
mod)j” of [IUTchII], Corollary 4.8, (iii), with the realifications “(†F�R

mod)α
∼→

(†F�R
MOD)α” of the isomorphisms of Frobenioids of (i) above to the global realified

Frobenioid portion †C�gau of the F�-prime-strip †F�
gau of [IUTchII], Corollary 4.10,

(ii) [cf. Remarks 1.5.3, (iii); 3.3.2, (i)], one obtains a functorial algorithm

in the log-link of Θ±ellNF-Hodge theaters ‡HT Θ±ellNF log−→ †HT Θ±ellNF of
Proposition 3.4, (ii), for constructing a Frobenioid

C�LGP(
†HT Θ±ellNF)

— which we refer to as a “global realified LGP-Frobenioid”. Here, we note

that the notation “(†HT Θ±ellNF)” constitutes a slight abuse of notation. In par-

ticular, the global realified Frobenioid †C�LGP
def
= C�LGP(

†HT Θ±ellNF), together with
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the collection of data ΨFLGP(
†HT Θ±ellNF) constructed in Proposition 3.4, (ii), give

rise, in a natural fashion, to an F�-prime-strip

†F�
LGP = (†C�LGP, Prime(†C�LGP)

∼→ V, †F�LGP, {†ρLGP,v}v∈V)

— cf. the construction of the F�-prime-strip †F�
gau in [IUTchII], Corollary 4.10,

(ii) — together with a natural isomorphism

†F�
gau

∼→ †F�
LGP

of F�-prime-strips [i.e., that arises tautologically from the construction of †F�
LGP!].

(iv) (Global Realified lgp-Frobenioids) In the situation of (iii) above, write

ΨFlgp
(†HT Θ±ellNF)

def
= ΨFLGP(

†HT Θ±ellNF), †F�lgp
def
= †F�LGP. Then by replacing, in

the construction of (iii), the isomorphisms “(†F�R
mod)α

∼→ (†F�R
MOD)α” by the natural

isomorphisms “(†F�R
mod)α

∼→ (†F�R
mod)α” [cf. (ii)], one obtains a functorial algo-

rithm in the log-link of Θ±ellNF-Hodge theaters ‡HT Θ±ellNF log−→ †HT Θ±ellNF

of Proposition 3.4, (ii), for constructing a Frobenioid

C�lgp(†HT Θ±ellNF)

— which we refer to as a “global realified lgp-Frobenioid” — as well as an
F�-prime-strip

†F�
lgp = (†C�lgp, Prime(†C�lgp)

∼→ V, †F�lgp, {†ρlgp,v}v∈V)

— where we write †C�lgp
def
= C�lgp(†HT Θ±ellNF) — together with tautological iso-

morphisms
†F�

gau
∼→ †F�

LGP
∼→ †F�

lgp

of F�-prime-strips [cf. (iii)].

(v) (Realified Product Embeddings and Non-realified Global Frobe-

nioids) The constructions of C�LGP(
†HT Θ±ellNF), C�lgp(†HT Θ±ellNF) given in (iii)

and (iv) above give rise to a commutative diagram of categories

C�LGP(
†HT Θ±ellNF) ↪→ ∏

j∈F�

l
(†F�R

MOD)j⏐⏐� ⏐⏐�
C�lgp(†HT Θ±ellNF) ↪→ ∏

j∈F�

l
(†F�R

mod)j

— where the horizontal arrows are embeddings that arise tautologically from the
constructions of (iii) and (iv) [cf. [IUTchII], Remark 4.8.1, (i)]; the vertical arrows
are isomorphisms; the left-hand vertical arrow arises from the second isomorphism
that appears in the final display of (iv); the right-hand vertical arrow is the product
of the realifications of copies of the inverse of the second isomorphism that appears
in the final display of (ii). In particular, by applying the definition of (†F�

mod)j —
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i.e., in terms of local fractional ideals [cf. (ii)] — together with the products of
realification functors ∏

j∈F�

l

(†F�
mod)j →

∏
j∈F�

l

(†F�R
mod)j

[cf. [FrdI], Proposition 5.3], one obtains an algorithm for constructing, in a fash-
ion compatible [in the evident sense] with the local isomorphisms {†ρlgp,v}v∈V,
{†ρLGP,v}v∈V of (iii) and (iv), objects of the [global!] categories C�lgp(†HT Θ±ellNF),

C�LGP(
†HT Θ±ellNF) from the local fractional ideals generated by elements of the

monoids [cf. (iv); Proposition 3.4, (ii)]

ΨFlgp
(†HT Θ±ellNF)v

for v ∈ Vbad.

Proof. The various assertions of Proposition 3.7 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Definition 3.8.

(i) In the situation of Proposition 3.7, (iv), (v), write Ψ⊥Flgp
(−)v def

= Ψ⊥FLGP
(−)v,

for v ∈ Vbad [cf. the notation of Proposition 3.5, (ii), (c)]. Then we shall refer to
the object of ∏

j∈F�

l

(†F�
MOD)j or

∏
j∈F�

l

(†F�
mod)j

— as well as its realification, regarded as an object of †C�LGP = C�LGP(
†HT Θ±ellNF)

or †C�lgp = C�lgp(†HT Θ±ellNF) [cf. Proposition 3.7, (iii), (iv), (v)] — determined by

any collection, indexed by v ∈ Vbad, of generators up to torsion of the monoids

Ψ⊥Flgp
(†HT Θ±ellNF)v as a Θ-pilot object [cf. also Remark 3.8.1 below]. We shall

refer to the object of the [global realified] Frobenioid

†C�


of [IUTchII], Corollary 4.10, (i), determined by any collection, indexed by v ∈ Vbad,
of generators up to torsion of the splitting monoid associated to the split Frobenioid
†F�
,v [i.e., the data indexed by v of the F�-prime-strip †F�
 of [IUTchII], Corollary

4.10, (i)] — that is to say, at a more concrete level, determined by the “q
v
”, for

v ∈ Vbad [cf. the notation of [IUTchI], Example 3.2, (iv)] — as a q-pilot object
[cf. also Remark 3.8.1 below].

(ii) Let
‡HT Θ±ellNF log−→ †HT Θ±ellNF
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be a log-link of Θ±ellNF-Hodge theaters and

∗HT Θ±ellNF

a Θ±ellNF-Hodge theater [all relative to the given initial Θ-data]. Recall the F�-
prime-strip

∗F�



constructed from ∗HT Θ±ellNF in [IUTchII], Corollary 4.10, (i). Following the nota-

tional conventions of [IUTchII], Corollary 4.10, (iii), let us write ∗F��×μ

 (respec-

tively, †F��×μ
LGP ; †F��×μ

lgp ) for the F��×μ-prime-strip associated to the F�-prime-

strip ∗F�

 (respectively, †F�

LGP;
†F�

lgp) [cf. Proposition 3.7, (iii), (iv); [IUTchII],

Definition 4.9, (viii); the functorial algorithm described in [IUTchII], Definition
4.9, (vi)]. Then — in the style of [IUTchII], Corollary 4.10, (iii) — we shall refer

to the full poly-isomorphism of F��×μ-prime-strips †F��×μ
LGP

∼→ ∗F��×μ

 as the

Θ×μ
LGP-link

†HT Θ±ellNF Θ×μ
LGP−→ ∗HT Θ±ellNF

from †HT Θ±ellNF to ∗HT Θ±ellNF, relative to the log-link ‡HT Θ±ellNF log−→ †HT Θ±ellNF,

and to the full poly-isomorphism of F��×μ-prime-strips †F��×μ
lgp

∼→ ∗F��×μ

 as

the Θ×μ
lgp -link

†HT Θ±ellNF
Θ×μ

lgp−→ ∗HT Θ±ellNF

from †HT Θ±ellNF to ∗HT Θ±ellNF, relative to the log-link ‡HT Θ±ellNF log−→ †HT Θ±ellNF.

(iii) Let {n,mHT Θ±ellNF}n,m∈Z be a collection of distinct Θ±ellNF-Hodge the-
aters [relative to the given initial Θ-data] indexed by pairs of integers. Then we
shall refer to the first (respectively, second) diagram

...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

LGP−→ n,m+1HT Θ±ellNF Θ×μ
LGP−→ n+1,m+1HT Θ±ellNF Θ×μ

LGP−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

LGP−→ n,mHT Θ±ellNF Θ×μ
LGP−→ n+1,mHT Θ±ellNF Θ×μ

LGP−→ . . .�⏐⏐log

�⏐⏐log

...
...
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...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

lgp−→ n,m+1HT Θ±ellNF
Θ×μ

lgp−→ n+1,m+1HT Θ±ellNF
Θ×μ

lgp−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

lgp−→ n,mHT Θ±ellNF
Θ×μ

lgp−→ n+1,mHT Θ±ellNF
Θ×μ

lgp−→ . . .�⏐⏐log

�⏐⏐log

...
...

— where the vertical arrows are the full log-links, and the horizontal arrow of the

first (respectively, second) diagram from n,mHT Θ±ellNF to n+1,mHT Θ±ellNF is the

Θ×μ
LGP- (respectively, Θ

×μ
lgp -) link from n,mHT Θ±ellNF to n+1,mHT Θ±ellNF, relative

to the full log-link n,m−1HT Θ±ellNF log−→ n,mHT Θ±ellNF [cf. (ii)] — as the [LGP-
Gaussian] (respectively, [lgp-Gaussian]) log-theta-lattice. Thus, [cf. Definition
1.4] either of these diagrams may be represented symbolically by an oriented graph

...
...�⏐⏐ �⏐⏐

. . . −→ • −→ • −→ . . .�⏐⏐ �⏐⏐

. . . −→ • −→ • −→ . . .�⏐⏐ �⏐⏐
...

...

— where the “•’s” correspond to the “n,mHT Θ±ellNF”.

Remark 3.8.1. The LGP-Gaussian and lgp-Gaussian log-theta-lattices are, of
course, closely related, but, in the theory to be developed below, we shall mainly be
interested in the LGP-Gaussian log-theta-lattice [for reasons to be explained in

Remark 3.10.1, (ii), below]. On the other hand, our computation of the Θ×μ
LGP-link

will involve the Θ×μ
lgp -link, as well as related Θ-pilot objects, in an essential way.

Here, we note, for future reference, that both the Θ×μ
LGP- and the Θ×μ

lgp -link map
Θ-pilot objects to q-pilot objects. Also, we observe that this terminology of “Θ-
pilot/q-pilot objects” is consistent with the notion of a “pilot object” associated
to a F��×μ-prime-strip, as defined in [IUTchII], Definition 4.9, (viii).

Remark 3.8.2. One verifies immediately that the main results obtained so far
concerning Gaussian log-theta-lattices — namely, Theorem 1.5, Proposition 2.1,
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Corollary 2.3 [cf. also Remark 2.3.2], and Proposition 3.5 — generalize immediately
[indeed, “formally”] to the case of LGP- or lgp-Gaussian log-theta-lattices.
Indeed, the substantive content of these results concerns portions of the log-theta-
lattices involved that are substantively unaffected by the transition from “Gaussian”
to “LGP- or lgp-Gaussian”.

Remark 3.8.3. In the definition of the various horizontal arrows of the log-
theta-lattices discussed in Definition 3.8, (iii), it may appear to the reader, at
first glance, that, instead of working with F��×μ-prime-strips, it might in fact
be sufficient to replace the unit [i.e., F�×μ-prime-strip] portions of these prime-
strips by the associated log-shells [cf. Proposition 1.2, (vi), (vii)], on which, at
nonarchimedean v ∈ V, the associated local Galois groups act trivially. In fact,
however, this is not the case. That is to say, the nontrivial Galois action on the local
unit portions of the F��×μ-prime-strips involved is necessary in order to consider
the Kummer theory [cf. Proposition 3.5, (i), (ii), as well as Proposition 3.10,
(i), (iii); Theorem 3.11, (iii), (c), (d), below] of the various local and global objects
for which the log-shells serve as “multiradial containers” [cf. the discussion of
Remark 1.5.2]. Here, we recall that this Kummer theory plays a crucial role in the
theory of the present series of papers in relating corresponding Frobenius-like and
étale-like objects [cf. the discussion of Remark 1.5.4, (i)].

Proposition 3.9. (Log-volume for Packets and Processions)

(i) (Local Holomorphic Packets) In the situation of Proposition 3.2, (i),
(ii): Suppose that V � v | vQ ∈ Vnon

Q , α ∈ A. Then the pvQ-adic log-volume on

each of the direct summand pvQ
-adic fields of IQ(αFvQ), IQ(AFvQ), and IQ(A,αFv)

— cf. the direct sum decompositions of Proposition 3.1, (i), together with the
discussion of normalized weights in Remark 3.1.1, (ii), (iii), (iv) — determines
[cf. [AbsTopIII], Proposition 5.7, (i)] log-volumes

μlog
α,vQ

: M(IQ(αFvQ
)) → R; μlog

A,vQ
: M(IQ(AFvQ)) → R

μlog
A,α,v : M(IQ(A,αFv)) → R

— where we write “M(−)” for the set of nonempty compact open subsets of
“(−)” — such that the log-volume of each of the “local holomorphic” integral
structures of Proposition 3.1, (ii) — i.e., the elements

OαFvQ
⊆ IQ(αFvQ); OAFvQ

⊆ IQ(AFvQ
); OA,αFv

⊆ IQ(A,αFv)

of “M(−)” given by the integral structures discussed in Proposition 3.1, (ii), on each
of the direct summand pvQ

-adic fields — is equal to zero. Here, we assume that
these log-volumes are normalized so that multiplication of an element of “M(−)”
by pv corresponds to adding the quantity −log(pv) ∈ R; we shall refer to this nor-
malization as the packet-normalization. Suppose that V � v | vQ ∈ Varc

Q , α ∈ A.
Then the sum of the radial log-volumes on each of the direct summand complex
archimedean fields of IQ(αFvQ

), IQ(AFvQ
), and IQ(A,αFv) — cf. the direct sum

decompositions of Proposition 3.1, (i), together with the discussion of normalized
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weights in Remark 3.1.1, (ii), (iii), (iv) — determines [cf. [AbsTopIII], Proposi-
tion 5.7, (ii)] log-volumes

μlog
α,vQ

: M(IQ(αFvQ
)) → R; μlog

A,vQ
: M(IQ(AFvQ)) → R

μlog
A,α,v : M(IQ(A,αFv)) → R

— where we write “M(−)” for the set of compact closures of nonempty open
subsets of “(−)” — such that the log-volume of each of the “local holomorphic”
integral structures of Proposition 3.1, (ii) — i.e., the elements

OαFvQ
⊆ IQ(αFvQ); OAFvQ

⊆ IQ(AFvQ
); OA,αFv

⊆ IQ(A,αFv)

of “M(−)” given by the products of the integral structures discussed in Proposition
3.1, (ii), on each of the direct summand complex archimedean fields — is equal to
zero. Here, we assume that these log-volumes are normalized so that multiplication
of an element of “M(−)” by e = 2.71828 . . . corresponds to adding the quantity 1 =
log(e) ∈ R; we shall refer to this normalization as the packet-normalization. In

both the nonarchimedean and archimedean cases, “μlog
A,vQ

” is invariant with respect

to permutations of A. Finally, when working with collections of capsules in a
procession, as in Proposition 3.4, (ii), we obtain, in both the nonarchimedean and
archimedean cases, log-volumes on the products of the “M(−)” associated to the
various capsules under consideration, which we normalize by taking the average,
over the various capsules under consideration; we shall refer to this normalization
as the procession-normalization [cf. Remark 3.9.3 below].

(ii) (Mono-analytic Compatibility) In the situation of Proposition 3.2,
(i), (ii): Suppose that V � v | vQ ∈ VQ. Then by applying the pvQ-adic log-volume,
when vQ ∈ Vnon

Q , or the radial log-volume, when vQ ∈ Varc
Q , on the mono-analytic

log-shells “I†D�
v
” of Proposition 1.2, (vi), (vii), (viii), and adjusting appropriately

[cf. Remark 3.9.1 below for more details] to account for the discrepancy between
the “local holomorphic” integral structures of Proposition 3.1, (ii), and the
“mono-analytic” integral structures of Proposition 3.2, (ii), one obtains [by a
slight abuse of notation] log-volumes

μlog
α,vQ

: M(IQ(αD�vQ
)) → R; μlog

A,vQ
: M(IQ(AD�vQ

)) → R

μlog
A,α,v : M(IQ(A,αD�v )) → R

— where “M(−)” is as in (i) above — which are compatible with the log-volumes
obtained in (i), relative to the natural poly-isomorphisms of Proposition 3.2,
(i). In particular, these log-volumes may be constructed via a functorial algo-
rithm from the D�-prime-strips under consideration. If one considers the mono-
analyticization [cf. [IUTchI], Proposition 6.9, (ii)] of a holomorphic procession
as in Proposition 3.4, (ii), then taking the average, as in (i) above, of the packet-
normalized log-volumes of the above display gives rise to procession-normalized
log-volumes, which are compatible, relative to the natural poly-isomorphisms of
Proposition 3.2, (i), with the procession-normalized log-volumes of (i). Finally,
by replacing “D�” by “F�×μ” [cf. also the discussion of Proposition 1.2, (vi),
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(vii), (viii)], one obtains a similar theory of log-volumes for the various objects as-
sociated to the mono-analytic log-shells “I†F�×μ

v
”, which is compatible with the

theory obtained for “D�” relative to the various natural poly-isomorphisms of
Proposition 3.2, (i).

(iii) (Global Compatibility) In the situation of Proposition 3.7, (i), (ii):
Write

IQ(AFVQ
)

def
=

∏
vQ∈VQ

IQ(AFvQ
) ⊆ log(AFVQ

) =
∏

vQ∈VQ

log(AFvQ
)

and
M(IQ(AFVQ

)) ⊆
∏

vQ∈VQ

M(IQ(AFvQ))

for the subset of elements whose components, indexed by vQ ∈ VQ, have zero log-
volume [cf. (i)] for all but finitely many vQ ∈ VQ. Then, by adding the log-volumes
of (i) [all but finitely many of which are zero!] at the various vQ ∈ VQ, one obtains
a global log-volume

μlog
A,VQ

: M(IQ(AFVQ
)) → R

which is invariant with respect to multiplication by elements of

(†M�
mod)α = (†M�

MOD)α ⊆ IQ(AFVQ
)

as well as with respect to permutations of A, and, moreover, satisfies the fol-
lowing property concerning [the elements of “M(−)” determined by] objects “J =
{Jv}v∈V” of (†F�

mod)α [cf. Example 3.6, (ii); Proposition 3.7, (ii)]: the global

log-volume μlog
A,VQ

(J ) is equal to the degree of the arithmetic line bundle de-

termined by J [cf. the discussion of Example 3.6, (ii); the natural isomorphism

(†F�
mod)α

∼→ (†F�
mod)α of Proposition 3.7, (ii)], relative to a suitable normal-

ization.

(iv) (log-link Compatibility) Let {n,mHT Θ±ellNF}n,m∈Z be a collection of
distinct Θ±ellNF-Hodge theaters [relative to the given initial Θ-data] — which
we think of as arising from an LGP-Gaussian log-theta-lattice [cf. Definition
3.8, (iii)]. Then [cf. also the discussion of Remark 3.9.4 below]:

(a) For n,m ∈ Z, the log-volumes constructed in (i), (ii), (iii) above deter-
mine log-volumes on the various “IQ((−))” that appear in the construc-
tion of the local/global LGP-/lgp-monoids/Frobenioids that appear
in the F�-prime-strips n,mF�

LGP,
n,mF�

lgp constructed in Proposition 3.7,

(iii), (iv), relative to the log-link n,m−1HT Θ±ellNF log−→ n,mHT Θ±ellNF.

(b) At the level of the Q-spans of log-shells “IQ((−))” that arise from the
various F-prime-strips involved, the log-volumes of (a) indexed by (n,m)
are compatible — in the sense discussed in Propositions 1.2, (iii); 1.3,
(iii) — with the corresponding log-volumes indexed by (n,m− 1), relative

to the log-link n,m−1HT Θ±ellNF log−→ n,mHT Θ±ellNF.
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Proof. The various assertions of Proposition 3.9 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 3.9.1. In the spirit of the explicit descriptions of Remark 3.1.1, (i) [cf.
also Remark 1.2.2, (i), (ii)], we make the following observations.

(i) Suppose that vQ ∈ Vnon
Q . Write {v1, . . . , vnvQ

} for the [distinct!] elements

of V that lie over vQ. For each i = 1, . . . , nvQ , set ki
def
= Kvi

; write Oki ⊆ ki for the
ring of integers of ki,

Ii def
= (p∗vQ)

−1 · logki
(O×ki

) ⊆ ki

— where p∗vQ = pv if pvQ is odd, p∗vQ
= p2vQ

if pvQ
is even — cf. Remark 1.2.2, (i).

Then, roughly speaking, in the notation of Proposition 3.9, (i), the mono-analytic
integral structures of Proposition 3.2, (ii), in

IQ(αFvQ)
∼→

nvQ⊕
i=1

ki; IQ(AFvQ
)
∼→

⊗
α∈A

IQ(αFvQ
)

are given by

I(αFvQ)
∼→

nvQ⊕
i=1

Ii; I(AFvQ)
∼→

⊗
α∈A

I(αFvQ)

while the local holomorphic integral structures

OαFvQ
⊆ IQ(αFvQ

); OAFvQ
⊆ IQ(AFvQ)

of Proposition 3.9, (i), in the ind-topological rings IQ(αFvQ), IQ(AFvQ
) — both of

which are direct sums of finite extensions of QpvQ
— are given by the subrings of

integers in IQ(αFvQ
), IQ(AFvQ

). Thus, by applying the formula of the final display
of [AbsTopIII], Proposition 5.8, (iii), for the log-volume of Ii, [one verifies easily
that] one may compute the log-volumes

μlog
α,vQ

(I(αFvQ)), μlog
A,vQ

(I(AFvQ))

entirely in terms of the given initial Θ-data. We leave the routine details to the
reader.

(ii) Suppose that vQ ∈ Varc
Q . Write {v1, . . . , vnvQ

} for the [distinct!] elements

of V that lie over vQ. For each i = 1, . . . , nvQ
, set ki

def
= Kvi

; write Oki

def
= {λ ∈

ki | |λ| ≤ 1} ⊆ ki for the “set of integers” of ki,

Ii def
= π · Oki

⊆ ki

— cf. Remark 1.2.2, (ii). Then, roughly speaking, in the notation of Proposition
3.9, (i), the discrepancy between the mono-analytic integral structures of
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Proposition 3.2, (ii), determined by the I(†Fvi
)

∼→ Ii ⊆ ki and the local
holomorphic integral structures

OαFvQ
⊆ IQ(αFvQ)

∼→
nvQ⊕
i=1

ki

OAFvQ
⊆ IQ(AFvQ

)
∼→

⊗
α∈A

IQ(αFvQ)

of Proposition 3.9, (i), in the topological rings IQ(αFvQ
), IQ(AFvQ) — both of which

are direct sums of complex archimedean fields — determined by taking the product
[relative to this direct sum decomposition] of the respective “subsets of integers”
may be computed entirely in terms of the given initial Θ-data, by applying the
following two [easily verified] observations:

(a) Equip C with its standard Hermitian metric, i.e., the metric determined
by the complex norm. This metric on C determines a tensor product
metric on C⊗RC, as well as a direct sum metric on C⊕C. Then, relative
to these metrics, any isomorphism of topological rings [i.e., arising from
the Chinese remainder theorem]

C⊗R C
∼→ C⊕ C

is compatible with these metrics, up to a factor of 2, i.e., the metric
on the right-hand side corresponds to 2 times the metric on the left-hand
side.

(b) Relative to the notation of (a), the direct sum decomposition C⊕C,
together with its Hermitian metric, is preserved, relative to the displayed
isomorphism of (a), by the operation of conjugation on either of the two
copies of “C” that appear in C ⊗R C, as well as by the operations of
multiplying by ±1 or ±

√
−1 via either of the two copies of “C” that

appear in C⊗R C.

We leave the routine details to the reader.

(iii) The computation of the discrepancy between local holomorphic and mono-
analytic integral structures will be discussed in more detail in [IUTchIV], §1.

Remark 3.9.2. In the situation of Proposition 3.9, (iii), one may construct
[“mono-analytic”] algorithms for recovering the subquotient of the perfection
of (†M�

mod)α = (†M�
MOD)α associated to w ∈ V [cf. Remark 3.6.1], together with

the submonoid of “nonnegative elements” of such a subquotient, by considering the
effect of multiplication by elements of (†M�

mod)α = (†M�
MOD)α on the log-volumes

defined on the various IQ(A,αFv)
∼→ IQ(A,αD�v ) [cf. Proposition 3.9, (ii)].

Remark 3.9.3. With regard to the procession-normalizations discussed in
Proposition 3.9, (i), (ii), the reader might wonder the following: Is it possible to
work with
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more general weighted averages, i.e., as opposed to just averages, in the
usual sense, over the capsules that appear in the procession?

The answer to this question is “no”. Indeed, in the situation of Proposition 3.4,
(ii), for j ∈ {1, . . . , l�}, the packet-normalized log-volume corresponding to the
capsule with index set S±j+1 may be thought of as a log-volume that arises from

“any one of the log-shells whose label ∈ {0, 1, . . . , j}”. In particular, if j′, j1, j2 ∈
{1, . . . , l�}, and j′ ≤ j1, j2, then log-volumes corresponding to the same log-shell
labeled j′ might give rise to packet-normalized log-volumes corresponding to either
of [the capsules with index sets] S±j1+1, S±j2+1. That is to say, in order for the
resulting notion of a procession-normalized log-volume to be compatible with the
appearance of the component labeled j′ in various distinct capsules of the procession
— i.e., compatible with the various inclusion morphisms of the procession! —
one has no choice but to assign the same weights to [the capsules with index sets]
S±j1+1, S

±
j2+1.

Remark 3.9.4. The log-link compatibility of log-volumes discussed in Propo-
sition 3.9, (iv), may be formulated somewhat more explicitly by applying various
elementary observations, as follows.

(i) Let (M,μM ) be a measure space [i.e., in the sense of the discussion of
Remark 3.1.1, (iii)]. We shall say that a subset S ⊆ M is pre-ample if S is a
relatively compact Borel set, that a pre-ample subset S ⊆M is ample if μM (S) > 0,
and that (M,μM ) is ample if there exists an ample subset of M . In the following,
for the sake of simplicity, we assume that (M,μM ) is ample. Also, to simplify the
notation, we shall often denote the dependence of objects constructed from the pair
(M,μM ) by means of the notation “(M)” [i.e., as opposed to “(M,μM )”]. Write

Sub(M)

for the set of pre-ample subsets of M and

Fn(M)

for the set of Borel measurable functions f : M → R≥0 such that the image f(M) ⊆
R≥0 of f is a finite set, and, moreover, M ⊇ f−1(R>0) ∈ Sub(M). Observe that
Fn(M) is equipped with a natural monoid structure [induced by the natural monoid
structure on R≥0], as well as a natural action by R>0 [induced by the natural action
by multiplication of R>0 on R≥0]. By assigning to an element S ∈ Sub(M) the
characteristic function χS : M → R≥0 [i.e., which is = 1 on S and = 0 on M \S], we
shall regard Sub(M) as a subset of Fn(M). Note that integration over M , relative
to the measure μM , determines an R>0-equivariant surjection∫

M

: Fn(M) � R≥0

whose restriction to Sub(M) maps Sub(M) � S �→ μM (S) ∈ R≥0. In particular,
if we write FnRssM : Fn(M)� Rss(M) for the natural map to the quotient set of
Fn(M) [i.e., the set of equivalence classes of elements of Fn(M)] determined by

∫
M
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[so Rss(M) also admits a natural monoid structure, as well as a natural action by
R>0], then we obtain a natural R>0-equivariant isomorphism of monoids∫ Rss

M

: Rss(M)
∼→ R≥0

such that
∫
M

=
∫ Rss

M
◦FnRssM . Here,

we wish to think of integration
∫
M

— and hence of the quotient

FnRssM : Fn(M)� Rss(M)

— as a sort of “realified semi-simplification” of (M,μM )

[i.e., roughly in the spirit of the Grothendieck group associated to an additive cat-
egory], that is to say, a quotient in the category of commutative monoids with
R>0-action, whose restriction to Sub(M) ⊆ Fn(M)

· identifies S1, S2 ∈ Sub(M) such that μM (S1) = μM (S2) [such as, for
instance, additive translates of an element S ∈ Sub(M) relative to an
additive structure on M with respect to which μM is invariant];
· maps S1 ∪ S2 ∈ Sub(M) to the sum [relative to the monoid structure on
the quotient] of the images of S1, S2 ∈ Sub(M) whenever S1, S2 ∈ Sub(M)
are disjoint [i.e., as subsets of M ].

We shall refer to a subset E ⊆ Fn(M) as ample if (R≥0 ⊇) R>0∩
∫
M
(E) �= ∅. Thus,

if, for instance, S ∈ Sub(M) is ample and compact, then the pair (S, μM |S) obtained
by restricting μM to S is an ample measure space that determines compatible natural
inclusions Sub(S) ↪→ Sub(M), Fn(S) ↪→ Fn(M) [the latter of which is defined by
extension by zero] — which we shall use to regard Sub(S), Fn(S) as subsets of
Sub(M), Fn(M), respectively — such that the subsets Sub(S),Fn(S) ⊆ Fn(M)
are ample. If E ⊆ Fn(M) is ample, then the image of E in Rss(M) determines a
natural subset Rss(E) ⊆ Rss(M), whose R≥0-orbit R≥0 ·Rss(E) is equal to Rss(M).
In particular, if S ∈ Sub(M) is ample and compact, then we obtain natural R>0-
equivariant isomorphisms of monoids

Rss(S)
∼→ R≥0 · Rss(Fn(S)) ∼→ Rss(M)

— where, the notation “R≥0 · Rss(Fn(S))” is intended relative to the interpre-
tation of Fn(S) as a subset of Fn(M) — such that the composite isomorphism

Rss(S)
∼→ Rss(M) is compatible with the isomorphisms

∫ Rss

S
: Rss(S)

∼→ R≥0,∫ Rss

M
: Rss(M)

∼→ R≥0. Finally, we observe that if (M1, μM1) and (M2, μM2) are
ample measure spaces, then the product measure space (M1 ×M2, μM1×M2) is also
an ample measure space; moreover, there is a natural map

Sub(M1)× Sub(M2) → Sub(M1 ×M2)

that maps (S1, S2) �→ S1 × S2 and induces a natural R>0-equivariant isomorphism
of monoids

Rss(M1)⊗ Rss(M2)
∼→ Rss(M1 ×M2)
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that is compatible with the isomorphisms
∫ Rss

M1
⊗
∫ Rss

M2
: Rss(M1)⊗Rss(M2)

∼→ R≥0,∫ Rss

M1×M2
: Rss(M1×M2)

∼→ R≥0. [Here, we observe that there is a natural notion of
“tensor product of monoids isomorphic to R≥0” since such a monoid may be thought
of, by passing to the groupification of such a monoid, as a one-dimensional R-vector
space equipped with a subset [which forms a R>0-torsor] of “positive elements”.]

(ii) One very rough approach to understanding the log-link compatibility of log-
volumes is the following. Suppose that instead of knowing this property, one only
knows that

each application of the log-link has the effect of dilating volumes by a
factor λ ∈ R>0 \ {1}.

[Here, relative to the notation of (i), we observe that this sort of situation in which
volumes are dilated in a nontrivial fashion may be seen in the following example:

Suppose that M
def
= Qp, for some prime number p, equipped with the

[additive] Haar measure μQp normalized so that Zp ⊆ Qp has measure
1, so (Qp, μQp) is an ample measure space in the sense of (i). Then

multiplication by p induces a bijection αp : Qp
∼→ Qp. Moreover, αp

induces compatible bijections Sub(αp) : Sub(Qp)
∼→ Sub(Qp), Fn(αp) :

Fn(Qp)
∼→ Fn(Qp), Rss(αp) : Rss(Qp)

∼→ Rss(Qp). On the other hand,
[unlike the situation discussed in (i) concerning the “composite isomor-

phism Rss(S)
∼→ Rss(M)”!] in the present context, Rss(αp) is not com-

patible with the isomorphisms
∫ Rss

Qp
: Rss(Qp)

∼→ R≥0 in the domain and

codomain of Rss(αp), i.e., it is only compatible up to a factor p−1 ( �= 1)!]

Then in order to compute log-volumes in a fashion that is consistent with the various
arrows [i.e., both Kummer isomorphisms and log-links!] of the “systems” consti-
tuted by the log-Kummer correspondences discussed in Proposition 3.5, (ii), it
would be necessary to regard the various “log-volumes” computed as only giving
rise to well-defined elements [not ∈ R, but rather]

∈ R/Z · log(λ) (∼= S1)

— a situation which is not acceptable, relative to the goal of obtaining log-volume
estimates [i.e., as in Corollary 3.12 below] for the various objects for which log-shells
serve as “multiradial containers” [cf. the discussion of Remark 1.5.2; the content
of Theorem 3.11 below].

(iii) In the following discussion, we use the notation of Remark 1.2.2, (i). Thus,
we regard k as being equipped with the [additive] Haar measure μk normalized so
that μk(Ok) = 1 [cf. [AbsTopIII], Proposition 5.7, (i)]. Then (k, μk) is an ample
measure space in the sense of (i); O×k ⊆ k is an ample subset; for any compact ample

subset S ⊆ O×k on which logk : O×k → k is injective, we have μk(S) = μk(logk(S))
[cf. [AbsTopIII], Proposition 5.7, (i), (c)]. In particular, by applying the formalism
of realified semi-simplifications introduced in (i), we conclude that the diagram

k ⊇ O×k
logk−→ logk(O×k ) ⊆ k

∪ ∪

S
∼→ logk(S)
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induces a commutative diagram

Rss(k)
∼← Rss(O×k )

∼← Rss(S)
∼→ Rss(logk(S))⏐⏐�∫ Rss

k

⏐⏐�∫ Rss

O×
k

⏐⏐�∫ Rss

S

⏐⏐�∫ Rss

logk(S)

R≥0 = R≥0 = R≥0 = R≥0

∼→ Rss(logk(O×k ))
∼→ Rss(k)⏐⏐�∫ Rss

logk(O×
k

)

⏐⏐�∫ Rss

k

= R≥0 = R≥0

— where the vertical arrows are R>0-equivariant isomorphisms of monoids, and the
composite [R>0-equivariant] isomorphism [of monoids] Rss(O×k )

∼→ Rss(logk(O×k ))
is easily verified to be independent of the choice of the compact ample subset S ⊆
O×k . [Also, we observe that it is easily verified that there exist compact ample

subsets S ⊆ O×k for which the induced map S � logk(S) is injective.] One may
then compose this diagram with the bijection

log : R≥0
∼→ R ∪ {−∞}

determined by the natural logarithm and then multiply by a suitable normalization
factor ∈ R>0 to conclude that

the diagram
k ⊇ O×k

logk−→ logk(O×k ) ⊆ k

induces R>0-equivariant isomorphisms of monoids on the respective
realified semi-simplifications “Rss(−)”, all of which are compatible
with the log-volume maps on each of the “Rss(−)’s”, i.e., which restrict
to the “usual log-volume maps” on the respective “Sub(−)’s”, relative to
the natural maps “Sub(−)→ Rss(−)”.

This is one way to formulate the log-link compatibility of log-volumes discussed
in Proposition 3.9, (iv), in the case of v ∈ Vnon. Finally, we observe that this log-link
compatibility with log-volumes is itself compatible with passing to finite extensions
of k [or, more generally, Qpv ], as follows. Let k1 ⊆ k2 be finite field extensions of
Qpv . We shall use analogous notation for objects associated to k1 and k2 to the
notation that was used above for objects associated to k. Then observe that since
Ok2 is a finite free Ok1-module of rank [k2 : k1], it follows that the [additive]
compact topological group Ok2 is isomorphic to the product of [k2 : k1] copies of the
[additive] compact topological group Ok1 . In particular, since the Haar measure of
a compact topological group is invariant with respect to arbitrary automorphisms
of the topological group, we thus conclude [cf. the discussion of product measure
spaces in (i)] that the inclusion of topological fields k1 ↪→ k2 induces natural R>0-
equivariant isomorphisms of monoids

Rss(k1)
⊗[k2:k1] ∼← Rss(Ok1

)⊗[k2:k1] ∼→ Rss(Ok2
)
∼→ Rss(k2)

such that the composite isomorphism Rss(k1)
⊗[k2:k1] ∼→ Rss(k2) is compatible with

the R>0-equivariant isomorphisms of monoids(∫ Rss

k1

)⊗[k2:k1]

: Rss(k1)
⊗[k2:k1] ∼→ R≥0
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and
∫ Rss

k2
: Rss(k2)

∼→ R≥0.

(iv) In the notation of (iii), suppose that v ∈ Vbad; write q
def
= q

v
. Thus, we

have a submonoid
O×k × qN ⊆ k

of the underlying multiplicative monoid of k. Then the various arrows of the log-
Kummer correspondence discussed in Proposition 3.5, (ii), may be thought of,
from the point of view of a vertically coric étale holomorphic copy of “k” [i.e., a
copy labeled “n, ◦”, as in Proposition 3.5, (i)], as corresponding to the operations

k 
 O×k × qN (⊆ k)


 O×k (⊆ k)


 logk(O×k ) (⊆ k) 
 k

— i.e., of passing first from k to the multiplicative submonoid O×k × qN, then to the

multiplicative submonoid O×k , then applying logk to obtain an additive submonoid
of k, and finally passing from this submonoid back to k itself. Then the log-
volume compatibility discussed in (iii) may be understood, in the context of the
log-Kummer correspondence, as the statement that

the operations of the above display induce R>0-equivariant isomorphisms
of monoids

Rss(k)
∼→ Rss(O×k )

∼→ Rss(logk(O×k ))
∼→ Rss(k)

that are compatible with the respective [normalized] log-volume maps to
R ∪ {−∞} [cf. the discussion of (iii)], in such a way as to avoid any
interference, up to multiplication by roots of unity, with the submonoid
qN ⊆ k, which induces, by applying the [normalized] log-volume to the

image of Ok ⊆ k via multiplication by elements of this submonoid, an
embedding

N ↪→ Rss(k)
∼→ R ∪ {−∞}

that maps N � 1 �→ −log(q) ∈ R

[where we write log(q)
def
= ordv(q

v
) · log(pv) ∈ R — cf. the notation of Remark

2.4.2, (ii)]. A similar interpretation of log-volume compatibility in the context of

the log-Kummer correspondence may be given in the case of v ∈ Vgood ⋂Vnon by
simply omitting the portion of the above discussion concerning “q”.

(v) In the notation of Remark 3.9.1, (i), we observe that the discussion of (iii),
(iv), may be extended to topological tensor products of the form

kiA
def
=

⊗
α∈A

kiα

— where iα ∈ {1, . . . , nvQ
}, for each α ∈ A, and we regard kiA as being equipped

with the [additive] Haar measure normalized [cf. Proposition 3.9, (i)] so that the
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ring of integers OkiA
⊆ kiA [i.e., the integral structure discussed in Proposition

3.1, (ii)] has Haar measure = 1. Indeed, each of the direct summand fields of kiA
[cf. Proposition 3.1, (i)] may be taken to be a [finite extension of a] “k” as in (iii),
(iv). In particular, the measure space kiA may be regarded as a product measure
space of [finite extensions of] “k” as in (iii), (iv), so one may extend (iii), (iv) to
kiA by applying (iii), (iv) to each factor of this product measure space [cf. the
discussion of product measure spaces in (i)]. [We leave the routine details to the
reader.] On the other hand, in this context, it is also of interest to observe that
it follows immediately from the discussion of compatibility with finite extensions
in (iii), together with the discussion of product measure spaces in (i), that, for
each α ∈ A, the natural structure of kiA as a kiα-algebra determines natural R>0-
equivariant isomorphisms of monoids

Rss(Qpv )
⊗dA

∼→ Rss(kiα)
⊗dα

∼→ Rss(kiA)

— where we write dα
def
=

∏
β∈A\{α} [kiβ : Qpv ], dA

def
= dα · [kiα : Qpv ]. In

particular,

the log-link compatibility of log-volumes [as discussed above] for the
realified semi-simplification

Rss(kiA)

of the topological tensor product kiA may be understood, for any α ∈ A, as
the [functorially induced!] dα-th tensor power of the log-link compatibility
of log-volumes for the realified semi-simplification

Rss(kiα)

of kiα or, alternatively/equivalently, as the [functorially induced!] dA-th
tensor power of the log-link compatibility of log-volumes for the realified
semi-simplification

Rss(Qpv )

of Qpv

— where we note that the latter “alternative/equivalent” approach has the virtue
of being independent of the choice of α ∈ A.

(vi) In the following discussion, we use the notation of Remark 1.2.2, (ii).
We regard the complex archimedean field k as being equipped with the standard
Euclidean metric [cf. the discussion of “metrics” in Remark 1.2.1, (ii)], with respect
to which O×k ⊆ k has length 2π. This metric on k thus determines measures μ|k|
on |k| def= k/O×k and μO×

k
on O×k ⊆ k [cf. the situation discussed in [AbsTopIII],

Proposition 5.7, (ii)] such that (|k|, μ|k|) and (O×k , μO×
k
) are ample measure spaces

in the sense of (i). Moreover, by

(a) thinking of O×k as a union of closed arcs [i.e., whose interiors are disjoint]
of measure μO×

k
(−) < ε, for some positive real number ε,

(b) considering additive translates of such closed arcs that map one of the
endpoints of the arc to 0 ∈ k,
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(c) projecting such additive translates via the natural surjection k � |k|, and
(d) passing to the limit ε→ 0,

one verifies immediately that we obtain, by applying the formalism of realified
semi-simplifications introduced in (i), a natural R>0-equivariant isomorphism of

monoids ρk : Rss(O×k )
∼→ Rss(|k|), together with a commutative diagram

Rss(|k|) ∼← Rss(O×k )
∼← Rss(logk(O×k ))

∼→ Rss(|k|)⏐⏐�∫ Rss

|k|

⏐⏐�∫ Rss

O×
k

⏐⏐�∫ Rss

logk(O×
k

)

⏐⏐�∫ Rss

|k|

R≥0 = R≥0 = R≥0 = R≥0

—where the vertical arrows are R>0-equivariant isomorphisms of monoids; the first

“
∼← ” is ρk; we regard logk(O×k )

def
= exp−1

k (O×k ) as being equipped with the measure

μlogk(O×
k
) [such that (logk(O×k ), μlogk(O×

k
)) is an ample measure space] obtained by

pulling back μ|k| via the homeomorphism logk(O×k )
∼→ |k| induced by restricting

the natural surjection k � |k| to logk(O×k ) ⊆ k; the second “
∼← ” is the natural

R>0-equivariant isomorphism of monoids naturally induced [i.e., by considering
ample S ⊆ logk(O×k ) that map bijectively to expk(S) ⊆ O×k — cf. [AbsTopIII],

Proposition 5.7, (ii), (c)] by the universal covering map expk|logk(O×
k
) : logk(O×k )→

O×k ; the “
∼→ ” is the natural R>0-equivariant isomorphism of monoids induced by

the homeomorphism logk(O×k )
∼→ |k|. One may then compose this diagram with

the bijection
log : R≥0

∼→ R ∪ {−∞}
determined by the natural logarithm and then multiply by a suitable normalization
factor ∈ R>0 to conclude that

the diagram

|k| � k ⊇ O×k
expk←− logk(O×k ) ⊆ k � |k|

induces R>0-equivariant isomorphisms of monoids on the respective
realified semi-simplifications “Rss(−)” of |k|, O×k , logk(O×k ), and |k|;
each of these isomorphisms is compatible with the log-volume map
on “Rss(−)”, i.e., which restricts to the “usual radial/angular log-volume
map” on “Sub(−)” [that is to say, the map uniquely determined by the
radial/angular log-volume map of [AbsTopIII], Proposition 5.7, (ii), (a)]
relative to the natural map “Sub(−)→ Rss(−)”.

This is one way to formulate the log-link compatibility of log-volumes discussed
in Proposition 3.9, (iv), in the case of v ∈ Varc. One verifies immediately that one
also has analogues for v ∈ Varc of (iv), (v). [We leave the routine details to the
reader.]

Remark 3.9.5. In situations that involve consideration of various sorts of regions
[cf. the discussion of Remarks 3.1.1, (iii), (iv); 3.9.4] to which the log-volume may
be applied, it is often of use to consider the notion of the holomorphic hull of a
region.
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(i) Suppose that we are in the situation of Proposition 3.9, (i). Let

αU ⊆ IQ(αFvQ
) (respectively, AU ⊆ IQ(AFvQ);

A,αU ⊆ IQ(A,αFv))

be a subset that contains a relatively compact subset whose log-volume [cf. the
discussion of Remark 3.1.1, (iii), (iv), as well as Remark 3.9.7, (ii), below] is finite
[i.e., > −∞]. If αU (respectively, AU ; A,αU) is relatively compact, then we define
the holomorphic hull of αU (respectively, AU ; A,αU) to be the smallest subset of
the form

αH def
= λ · OαFvQ

(respectively, AH def
= λ · OAFvQ

; A,αH def
= λ · OA,αFv

)

— where, relative to the direct sum decomposition of IQ((−)) as a direct sum of
fields [cf. the discussion of Proposition 3.9, (i)], λ ∈ IQ((−)) is an element such
that each component of λ [i.e., relative to this direct sum decomposition] is nonzero
— that contains αU (respectively, AU ; A,αU). If αU (respectively, AU ; A,αU) is not
relatively compact, then we define the holomorphic hull of αU (respectively, AU ;
A,αU) to be IQ(αFvQ

) (respectively, IQ(AFvQ
); IQ(A,αFv)). One verifies immedi-

ately that the holomorphic hull is well-defined [under the conditions stated].

(ii) In the remainder of the discussion of the present Remark 3.9.5, for the sake
of simplicity, we shall refer to “holomorphic hulls” as “hulls”. Write

P
def
= {P ⊆ IQ((−)) | P is a direct product region [cf. Remark 3.1.1, (iii)]};

H
def
= {H � IQ((−)) | H is a hull [cf. (i)]}

— where the argument “(−)” is “αFvQ”, “AFvQ
”, or “A,αFv” [cf. (i)], and we

observe that H ⊆ P. Then it is essentially a tautology that the operation of forming
the hull discussed in (i)

�U �→ �H

— where “�” is “α”, “A”, or “A,α” — determines a map

φ : P → H

that may be characterized uniquely by the following properties

(P1) φ(H) = H, for any H ∈ H;
(P2) P ⊆ φ(P ), for any P ∈ P;
(P3) φ(P1) ⊆ φ(P2), for any P1, P2 ∈ P such that P1 ⊆ P2.

Indeed, since, as is easily verified, any intersection of elements of H which is of finite
log-volume necessarily determines an element of H, it follows formally from (P1),
(P2), (P3) that

φ(P ) =
⋂

H�H⊇P

H

for any P ∈ P. Put another way, this map φ may be thought of as a sort of adjoint,
or push forward in the opposite direction, of the inclusion H ⊆ P. Alternatively,
φ may be thought of as a sort of canonical splitting of the inclusion H ⊆ P, or,
in the spirit of the discussion of Remark 3.9.4, as a sort of integration operation.
The compatibility [cf. (P2), (P3)] of φ with the pre-order structure on P determined
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by inclusion of direct product regions will play an important role in the context of
various log-volume estimates of regions.

(iii) Now we consider the various log-volumes μlog
(−) [where the argument “(−)”

is “α, vQ”, “A, vQ”, or “A,α, v” — cf. (ii)] of Proposition 3.9, (i) [cf. also Remark
3.1.1, (iii)], in the context of the discussion of (ii). In the following, for the sake of

simplicity, we shall denote “μlog
(−)” by μlog. For P ∈ P, write

Φ(P )
def
= {H ∈ H | φ(P ) ⊇ H, (μlog(φ(P )) ≥) μlog(H) ≥ μlog(P )} ⊆ H;

Ξ(P )
def
= {H ∈ H | φ(P ) ⊇ H, (μlog(φ(P )) ≥) μlog(H) = μlog(P )} ⊆ Φ(P );

HΦ(P )
def
=

⋃
H∈Φ(P )

H ⊆ φ(P ); HΞ(P )
def
=

⋃
H∈Ξ(P )

H ⊆ HΦ(P ) ⊆ φ(P ).

Thus, one may think of elements ∈ Φ(P ) or ∈ Ξ(P ) as

“log-volume approximations” of P by means of hulls ∈ H.

If one thinks of distinct elements ∈ Φ(P ) or ∈ Ξ(P ) — i.e., of the issue of con-
structing a “log-volume hull-approximant” of P — as a sort of indeterminacy
[i.e., in the assignment to P of a specific element ∈ H!], then

this indeterminacy is compact, i.e., in the sense that all possible choices
of an element ∈ Φ(P ) or ∈ Ξ(P ) are contained in the compact set φ(P ) ∈
H.

Indeed, developing the theory in such a way that

all the indeterminacies that occur in the theory are compact

is in some sense one important theme in the present series of papers. Note that
this compactness would not be valid if, in the definition of Φ(−) or Ξ(−), one omits
the condition “H ⊆ φ(P )”.

(iv) In the context of (iii), we observe that

φ(P ) ∈ Φ(P ), so φ(P ) = HΦ(P ),

but the issue of whether or not Ξ(P ) = ∅ is not so immediate. Indeed:

(Ξ1) If either of the following conditions is satisfied, then it is easily verified
that Ξ(P ) ��= ∅:

(Ξnon1) if we write Kcl for the Galois closure of K over Q, then the
residue field extension degree of each valuation ∈ V(Kcl) that
divides vQ ∈ Vnon

Q is = 1, and, moreover, μlog(P ) = μlog(Q), for

some Q ∈ P which is a ZpvQ
-submodule of IQ((−));

(Ξarc1) vQ ∈ Varc
Q .

(Ξ2) If one allows the vQ ∈ VQ in the present discussion to vary, and one con-
siders global situations [i.e., which necessarily involve the unique valuation
∈ Varc

Q !] as in Proposition 3.9, (iii), then it is easily verified that the global
analogue of “Ξ(P )” is nonempty.
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On the other hand, in general, it is not so clear whether or not Ξ(P ) �= ∅. In this
context, it is also of interest to observe that if P ∈ H, then

{φ(P )} = Φ(P ) = Ξ(P ), so P = φ(P ) = HΦ(P ) = HΞ(P ),

but in general, even in the situation of (Ξ1), the inclusion P ⊆ φ(P ) = HΦ(P ), as

well as the induced inequality of log-volumes μlog(P ) ≤ μlog(HΦ(P )) = μlog(φ(P )),
is strict. Indeed, for instance,

(Ξ3) in the situation of (Ξ1), if (Vmod)vQ [cf. the notational conventions of
Remark 3.1.1, (iii)] and A are of cardinality ≥ 2, then one verifies easily
that there exist P ∈ P for which μlog(P ) < μlog(HΞ(P )) (≤ μlog(HΦ(P )) =

μlog(φ(P ))).

This sort of phenomenon may be seen in the following example:

Let p be a prime number. Write I
def
= Qp ×Qp;

H0
def
= Zp × Zp ⊆ I; H1

def
= (p−1 · Zp)× (p · Zp) ⊆ I;

P
def
= H0 ∪ ({p−1} × Zp) ⊆ I; HP

def
= (p−1 · Zp)× Zp ⊆ I

— where we think of I as being equipped with the Haar measure μI nor-
malized so that μI(H0) = 1. Thus, p corresponds to “pvQ

” such that

“(Vmod)vQ” is of cardinality 2; I corresponds to “IQ(αFvQ
)”; P corre-

sponds to “P”; HP corresponds to “φ(P )”; H0 and H1 correspond to
elements of “Ξ(P )”, so H0∪H1 corresponds to a subset of “HΞ(P )”, hence
also a subset of “HΦ(P ) = φ(P )”. Then

μI(P ) = μI(H0) = 1 < 2− p−1 = μI(H0 ∪H1)

— i.e., the inequality of [log-]volumes in question is strict. In fact, by
considering various translates of H0, H1 by automorphisms of the Zp-
module HP , one verifies immediately that HP corresponds not only to
“φ(P ) = HΦ(P )”, but also to “HΞ(P )”. That is to say, this is a situa-

tion in which one has “HΞ(P ) = HΦ(P ) = φ(P )”, hence also “μlog(P ) <

μlog(HΞ(P )) = μlog(HΦ(P )) = μlog(φ(P ))”.

(v) Let E be a set, S ⊆ E a proper subset of E of cardinality ≥ 2 [so S �= ∅ �=
E \ S]. Write

(E �) E � S def
= (E \ S)

∐
{S}

[i.e., “E upper S”] for the set-theoretic quotient of E by S, i.e., the quotient of
E obtained by identifying the elements of S and leaving E \ S unaffected. Write

�S def
= {S} ⊆ E � S. Then observe that

any set-theoretic map

(E ⊇) S1 → S2 (⊆ E)

between nonempty subsets S1, S2 ⊆ S (⊆ E) induces, upon passing to the
quotient E � E � S, the identity map

(E � S ⊇) �S → �S (⊆ E � S)
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between the images [i.e., both of which are equal to �S !] of S1, S2 in E�S,
hence lies over the identity map E � S → E � S on E � S.

Moreover, this map may be “extended” to the case where Si [for i ∈ {1, 2}] is empty
if this Si is treated as a “formal intersection” [cf. our hypothesis that the cardinality
of S is ≥ 2] — i.e., a “category-theoretic formal fiber product, or inverse system,
over E” — of some collection of nonempty subsets of S. That is to say, such an
inverse system induces, upon passing to the quotient E � E � S, a system that
consists of identity maps between copies of �S . In particular,

if one thinks in terms of such formal inverse systems, then “formal empty
sets” ⊆ S (⊆ E) also map to �S ⊆ E � S.

Finally, we observe that the above discussion may be thought of as an

abstract set-theoretic formalization of the notions of upper semi-
commutativity/semi-compatibility, as discussed in Remark 1.2.2, (iii);
Remark 1.5.4, (iii); Proposition 3.5, (ii)

— i.e., where [cf. the notational conventions of Propositions 3.2, (ii); 3.5, (ii)]
one takes the S ⊆ E of the present discussion to be “I((−)) ⊆ IQ((−))”, and we
observe that, in the context of upper semi-commutativity/semi-compatibility, the
empty set always arises as an intersection between a nonempty set and the domain
of definition [cf. the discussion of Remark 1.1.1] of the “set-theoretic logarithm
map” under consideration.

(vi) Let us return to the discussion of (ii), (iii), (iv). Let P ∈ P. Then let us
observe that

the abstract set-theoretic “�-formalism” of (v) — i.e., where one takes
“S ⊆ E” to be φ(P ) ⊆ IQ((−)) — yields a convenient tool for identifying
P with its various log-volume hull-approximants ∈ Φ(P ) or ∈ Ξ(P )
[all of which are nonempty subsets of φ(P ) ∈ H — cf. the discussion of
(iii)], i.e., of passing to a quotient in which the indeterminacy discussed
in (iii) is eliminated.

Moreover, one verifies easily that this identification is achieved in such a way that
images of distinct H1, H2 ∈ H map to the same subset of IQ((−)) � φ(P ) if and
only if H1, H2 ⊆ φ(P ). That is to say, the equivalence relation on H induced by the
quotient map IQ((−))� IQ((−)) � φ(P ) is the “expected equivalence relation”

H � H1 ∼ H2 ∈ H ⇐⇒ H1, H2 ⊆ φ(P )

on H. Finally, we observe that the discussion of the present (vi) may be applied

not only to single elements P ∈ P, but also to bounded families of elements PB
def
=

{Pβ}β∈B indexed by some index set B [i.e., collections of elements Pβ ∈ P such that
∪β∈B Pβ ⊆ IQ((−)) is relatively compact], by taking “S ⊆ E” in the discussion of
(v) to be

φ(PB)
def
=

⋂
H�H⊇Pβ , ∀β∈B

H ⊆ IQ((−))

[cf. the representation of φ(P ) as an intersection in (ii)].
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(vii) The operation of forming the hull will play a crucial role in the context
of Corollary 3.12 below, for the following reason:

the output of “possible images” [cf. the statement of Corollary 3.12] that
arises from applying the multiradial algorithms of Theorem 3.11 below
cannot be directly compared [i.e., at least in any a priori sense] to
the objects in the local and global Frobenioids that appear in the codomain
F��×μ-prime-strip of the Θ×μ

LGP-link [cf. Definition 3.8, (i), (ii); [IUTchII],
Definition 4.9, (viii)] determined by the arithmetic line bundle that
gives rise to the q-pilot object.

The obstructions to performing such a comparison may be eliminated in the follow-
ing way [cf., especially, the display of (Ob5)]:

(Ob1) O×-Indeterminacies acting on tensor packets of log-shells: The
various “possible images” that occur as the output of the multiradial al-
gorithms under consideration are regions — i.e., in essence, elements ∈ P

— contained in tensor packets of log-shells Ik [where, for simplicity, we
apply the notational conventions of Remark 1.2.2, (i), at nonarchimedean
valuations]. By contrast, the arithmetic line bundle that gives rise to the
q-pilot object arises, locally, as an ideal, i.e., an Ok-submodule, contained
in the Ok-module Ok, which, to avoid confusion, we denote by Omdl

k . Here,
we observe that

unlike the ringOk, theOk-moduleOmdl
k does not admit a canon-

ical generator [i.e., a canonical element corresponding to the
element 1 ∈ Ok]; by contrast, Ik ⊆ k can only be defined by using
the ring structure of Ok and is not, in general, stabilized by
the natural action [via multiplication] by O×k .

That is to say, Omdl
k only admits a “canonical generator” up to an inde-

terminacy given by multiplication by O×k , i.e., an indeterminacy that does
not stabilize Ik.

(Ob2) From arbitrary regions to arithmetic vector bundles, i.e., hulls:
Thus, by passing from an arbitrary given region ∈ P to the associated hull
φ(P ) ∈ H, we obtain a region φ(P ) ∈ H that is stabilized by the natural
action of O×k [cf. (Ob1)] and, moreover, [unlike an arbitrary element
∈ P!] may be regarded as defining the local portion of a global arithmetic
vector bundle relative to the ring structure labeled by some α ∈ A [i.e.,
which is typically taken, when 0 ∈ A ⊆ |Fl|, to be the zero label 0 ∈ |Fl|].

(Ob3) From arithmetic vector bundles to arithmetic line bundles via
“det⊗M (−)”: Moreover, by forming the determinant of the arithmetic
vector bundle constituted by a hull ∈ H, one obtains an arithmetic line
bundle, i.e., which does indeed yield objects in the local and [by allowing
vQ ∈ VQ, v ∈ V to vary] global Frobenioids that appear in the codomain

F��×μ-prime-strip of the Θ×μ
LGP-link, hence may be compared, in a

meaningful way, to the objects determined by the arithmetic line bundle
that gives rise to the q-pilot object. Here, we observe that:

(Ob3-1) Weighted tensor powers/determinant: In fact, when form-
ing such a “determinant”, it is necessary to perform the following
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operations:

(Ob3-1-1) In order to obtain a “determinant” that is consistent
with the computation of the log-volume by means of
certain weighted sums [cf. the discussion of Remark
3.1.1], it is necessary to work with suitable positive
tensor powers [i.e., corresponding to the weights —
cf. the various products of “Nv’s” in the discussion of
the final portion of Remark 3.1.1, (iv)] of the deter-
minant line bundles corresponding to the various direct
summands [as in the second and third displays of Propo-
sition 3.1] of the tensor packet of log-shells “IQ((−))”.

(Ob3-1-2) In order to obtain a “determinant” that is consistent
with the normalization of the log-volume given by
“O(−)” [cf. Proposition 3.9, (i)], it is necessary to tensor
the “determinant” of (Ob3-1-1) with the inverse of the
“determinant” [in the sense of (Ob3-1-1)] of the struc-
ture sheaf [i.e., “O(−)”], which may be thought of as a
sort of adjustment to take into account the ramification
that occurs in the various local fields involved.

[We leave the routine details to the reader.]

(Ob3-2) Positive tensor powers of the determinant: In the con-
text of (Ob3-1), we observe that there is no particular reason
to require that the various exponents [i.e., which correspond to
weights — cf. the various products of “Nv’s” in the discussion of
the final portion of Remark 3.1.1, (iv)] of these “suitable positive
tensor powers” are necessarily relatively prime. In particular,
the resulting “determinant” might in fact be more accurately de-
scribed as a “determinant raised to some positive tensor power”.
In the following, we shall denote this operation of forming the
“determinant raised to some positive tensor power” by means of
the notation

“det⊗M (−)”
— where M denotes the [uniquely determined] positive integer
[cf. the positive integer “NE” that appears in the final portion
of the discussion of Remark 3.1.1, (iv)] such that this operation
“det⊗M (−)” maps [the result of tensoring the “O(−)” of Proposi-
tion 3.9, (i), with] an arithmetic line bundle to the M-th tensor
power of the arithmetic line bundle. Thus, for instance, by tak-
ing M to be sufficiently large [in the “multiplicative sense”, i.e.,
“sufficiently divisible”], we may, for the sake of simplicity, assume

[cf. the “stack-theoretic twists” at v ∈ Vbad, arising from the
structure of the stack-theoretic quotient discussed in [IUTchI],
Remark 3.1.5] that the localization at each v ∈ V of any arith-
metic line bundle that appears as the output of the operation
det⊗M (−) is always trivial.

(Ob3-3) Determinants and log-volumes: Finally, we observe in pass-
ing that since [cf. the situation discussed in Proposition 3.9, (iii)]
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the arithmetic degree of such an arithmetic line bundlemay be in-
terpreted, by working with suitable normalization factors, as the
log-volume of the original arithmetic vector bundle [i.e., to which
the operation det⊗M (−) was applied — cf. (Ob3-1), (Ob3-2);
the discussion of Remark 3.1.1], this intermediate step of apply-
ing det⊗M (−) may be omitted in discussions in which one is only
interested in computing log-volumes.

(Ob4) Positive tensor powers of arithmetic line bundles: From the
point of view of the original goal [cf. the discussion at the beginning of
the present (vii)] of obtaining objects that may be compared to the objects
in the local and global Frobenioids that appear in the codomain F��×μ-
prime-strip of the Θ×μ

LGP-link determined by the arithmetic line bundle
that gives rise to the q-pilot object, we thus conclude from (Ob3) that

applying the operation det⊗M (−) yields objects that may indeed
be compared to the objects in the local and global Frobenioids
that appear in the codomain F��×μ-prime-strip of the Θ×μ

LGP-
link determined by the arithmetic line bundle that gives rise
to the M-th tensor power of the q-pilot object.

Since, however, the internal structure of these local and global Frobenioids
[as well of as the localization functors that relate local to global Frobe-
nioids] remains unaffected, the latter “slightly modified goal” [i.e., of
comparison with M -th tensor powers of objects that arise from the q-pilot
object, as opposed to the “original goal” of comparison with objects that
arise from the original q-pilot object] does not result in any substantive
problems such as, for instance, an indeterminacy arising from confusion
between a given arithmetic line bundle and its M -th tensor power [i.e., an
indeterminacy analogous to the indeterminacy involving “Iord” discussed
in Remark 2.3.3, (vi)]. One way to understand this situation is as follows:

(Ob4-1) From non-tensor-power to tensor-power Frobenioids
via naive Frobenius functors: One may think of the local
and global Frobenioids [as well as of the localization functors that
relate local to global Frobenioids] that appear in the “slightly
modified goal” as “M-th tensor power versions” of the local
and global Frobenioids that appear in the “original goal”. That
is to say, one may think of these “tensor-power Frobenioids” as
copies of the “non-tensor-power Frobenioids” obtained by ap-
plying the naive Frobenius functor of degree M of [FrdI],
Proposition 2.1, (i). In particular, we conclude [i.e., from [FrdI],
Proposition 2.1, (i)] that the non-tensor-power Frobenioids com-
pletely determine the tensor-power Frobenioids.

(Ob4-2) From tensor-power to non-tensor-power Frobenioids via
tensor power roots: Alternatively, one may think of the non-
tensor-power Frobenioids [i.e., that appear in the “original goal”]
as being obtained from the tensor-power Frobenioids [i.e., that
appear in the “slightly modified goal”] by “extracting M-th
power roots”. Since the rational function monoids [cf. [FrdI],



134 SHINICHI MOCHIZUKI

Theorem 5.2, (ii)] that give rise to the various local Frobenioids
under consideration [cf. [IUTchII], Definition 4.9, (vi), (vii),
(viii)] are not divisible at v ∈ Vnon, the tensor-power Frobenioids
only determine the non-tensor-power Frobenioids up to certain
twists. Of course, these twists may be eliminated [cf. (Ob4-1)!]
simply by applying the naive Frobenius functor of degree M .

(Ob4-3) Tensor-power-twist indeterminacies: In particular, if one
thinks of the output of the crucial operation det⊗M (−) [cf. (Ob3)]
as lying in the tensor-power Frobenioids, then one may always
“reconstruct” the non-tensor-power Frobenioids from the tensor-
power Frobenioids simply by considering new copies of the tensor-
power Frobenioids which are related to the given copies of tensor-
power Frobenioids by applying the naive Frobenius functor of de-
gree M whose domain is the new copies, and whose codomain is
the given copies. On the other hand, these reconstructed non-
tensor-power Frobenioids, though completely determined up to
isomorphism, are only related to one another, when regarded
over the given copies of tensor-power Frobenioids, up to certain
twists — i.e., up to a “tensor-power-twist indeterminacy”
— as discussed in (Ob4-2). Since, however, we shall ultimately
[e.g., in the context of Corollary 3.12] only be interested in es-
timates of log-volumes, such tensor-power-twist indeterminacies
will not have any substantive effect on our computations [i.e., of
log-volumes — cf. the discussion of (Ob3-3)].

(Ob5) Independence of the “indeterminacy of possibilities”: The issue
of selecting a specific element in some collection of “possible regions”
∈ P that appears in the output of the multiradial algorithm is an issue that
is internal to the algorithm. In particular, in order to compare, in a
meaningful way, the output of the algorithm to some object — i.e., such
as the arithmetic line bundle that gives rise to the q-pilot object — that is
essentially external to the algorithm, it is necessary to work with objects
that are independent of the choice of such a specific element/possibility.
This may be achieved by

working with the hull [cf. the discussion of (Ob1), (Ob2), (Ob3),
(Ob4)]

φ(PB)

associated to the [bounded] collection of possible regions PB
def
=

{Pβ}β∈B [cf. the discussion in the final portion of (vi)] that
appears as the output of the multiradial algorithms under consid-
eration and applying the abstract set-theoretic �-formalism
of (v) [cf. also (vi)].

Here, we observe that this �-formalism of (v) may be applied not only
to φ(PB) but also [cf. the discussion of (Ob3)] to det⊗M (φ(PB)) and
μlog(φ(PB)) [and in a compatible fashion].

(Ob6) Hull-approximants for the log-volume of a given region: Since
one is ultimately interested in estimating log-volumes [cf. the discussion of
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(iii), (iv)], it is tempting to consider simply replacing a given region P ∈ P

by μlog(P ). On the other hand, in order to obtain objects comparable with
the q-pilot object [cf. (Ob1), (Ob2), (Ob3), (Ob4), (Ob5)], one is obliged
to work with hulls ∈ H [cf. also the discussion of (Ob7) below]. This
state of affairs suggests working with, for instance, Ξ(P ) ⊆ H, i.e., with
hull-approximants for μlog(P ) [cf. the discussion of (iii), (vi)]. In this
context, it is useful to recall [cf. the discussion of (iv)] that, in general,
it is not so clear whether or not Ξ(P ) = ∅. This already makes it more
natural to consider Φ(P ) ⊆ H [cf. the discussion of (iii)], i.e., as opposed to
Ξ(P ) ⊆ H. On the other hand, the issue of independence of the choice
of a specific possibility internal to the algorithm under consideration [cf.
(Ob5)] already means that one must consider μlog(HΦ(P )) or μ

log(HΞ(P )),

as opposed to μlog(P ), which, in general, may be > μlog(P ) and indeed
= μlog(φ(P )) [cf. the discussion of (iv)].

(Ob7) Compatibility with log-Kummer correspondences: In (Ob6), the
discussion of the issue of simply replacing a given region P ∈ P by μlog(P )
— i.e., put another away, of passing to the quotient [cf. the discussion of
Remark 3.9.4, as well as of (viii) below] given by taking the log-volume—
was subject to the constraint that one must construct, i.e., by working
with hulls [cf. (Ob1), (Ob2), (Ob3), (Ob4), (Ob5)], objects that may
be meaningfully compared to objects in the local and global Frobenioids
that appear in the codomain F��×μ-prime-strip of the Θ×μ

LGP-link. This
constraint prompts the following question:

Why is it that one cannot simply adopt log-volumes as the
“ultimate stage for comparison” — that is to say, without
passing through hulls or objects in the local and global Frobe-
nioids referred to above?

At a more technical level, this question may be reformulated as follows:

Why is it that one cannot eliminate the F�×μ-prime-strip por-
tion [cf. [IUTchII], Definition 4.9, (vii)] — i.e., in more concrete
terms, for, say, v ∈ Vnon,

the local Galois groups “Gv” and units “O×μ

Fv
”

[cf. the notation of the discussion surrounding [IUTchI], Fig.

I1.2; here and in the following discussion, we regard “O×μ

F v
” as

being equipped with the auxiliary structure, i.e., a collection of
submodules [cf. [IUTchII], Definition 4.9, (i)] or system of com-
patible surjections [cf. [IUTchII], Definition 4.9, (v)], with which
it is equipped in the definition of an F�×μ-prime-strip] — from

the F��×μ-prime-strips that appear in the Θ×μ
LGP-link?

[Closely related issues are discussed in (ix), (x) below.] The essential
reason for this may be understood as follows:

(Ob7-1) Local Galois groups: The local Galois groups “Gv” [for, say,
v ∈ Vnon] satisfy the important property of being invariant, up
to isomorphism, with respect to the transformations constituted
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by the Θ×μ
LGP- and log-links — cf. the vertical and horizontal

coricity properties discussed in Theorem 1.5, (i), (ii), as well
as the discussion of [IUTchII], Remark 3.6.2, (ii). These coricity
properties play a fundamental role in the theory of the present
paper, i.e., by allowing one to relate, via these coricity properties,
objects on either side of the Θ×μ

LGP- and log-links which do not
satisfy such invariance properties. In particular, the theory of
the present series of papers cannot function properly if the local
Galois groups are eliminated from the F��×μ-prime-strips that
appear in the Θ×μ

LGP-link.

(Ob7-2) Units: Thus, it remains to consider what happens if one elim-
inates the [Frobenius-like!] units [but not the local Galois groups
— cf. (Ob7-1)!] from the F��×μ-prime-strips that appear in the

Θ×μ
LGP-link. This amounts to replacing the F��×μ-prime-strips

that appear in the Θ×μ
LGP-link by the associated F��-prime-strips

[cf. Definition 2.4, (iii)]. Of course, since one still has the local
Galois groups, one can consider the étale-like units “O×μ(Gv)”
[i.e., “O×μ(G)”, in the case where one takes “G” to be Gv] of
[IUTchII], Example 1.8, (iv). On the other hand, these étale-like
units differ fundamentally from their Frobenius-like counter-
parts in the following respect:

· The Frobenius-like units “O×μ

F v
” in the F��×μ-

prime-strips that appear in the Θ×μ
LGP-link are [tautolog-

ically!] related only to the Frobenius-like units at the
same vertical coordinate [i.e., in a vertical column

of the log-theta-lattice] as the Θ×μ
LGP-link under consid-

eration, i.e., not to the Frobenius-like units at other
vertical coordinates in this vertical column. In particu-
lar, these Frobenius-like units arise from the same un-
derlying multiplicative structure [i.e., of the ring
structure determined, on various Frobenius-like mul-
tiplicative monoids, by the Θ±ellNF-Hodge theater to
which they belong] as the local and global [Frobenius-
like!] value group portion of the F��×μ-prime-strip
under consideration. Put another way, the splittings
of unit group and value group portions that appear in
the intrinsic structure of the F��×μ-prime-strips un-
der consideration [cf. [IUTchII], Definition 4.9, (vi),
(viii)] are consistent with the underlying multiplicative
structure of the ring structure determined [on various
Frobenius-like multiplicative monoids] by the Θ±ellNF-
Hodge theater under consideration.

· By contrast, the étale-like counterparts of these
Frobenius-like units are constrained by their vertical
coricity [cf. Theorem 1.5, (i)] to be related, via the rele-
vant log-Kummer correspondences, simultaneously to
the corresponding Frobenius-like units at every verti-
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cal coordinate in a vertical column of the log-theta-
lattice as the Θ×μ

LGP-link under consideration. In partic-
ular, the relationship between these étale-like units and
the corresponding Frobenius-like units at various verti-
cal coordinates in the vertical column under considera-
tion is subject to the action of arbitrary iterates of the
log-link, hence to a complicated confusion between
the unit group and value group portions at various verti-
cal coordinates of this vertical column. This complicated
confusion is inconsistent with the intrinsic structure
of the F��-prime-strips under consideration [cf. Def-
inition 2.4, (iii)], that is to say, with treating the lo-
cal and global value group portions of these F��-prime-
strips as objects that are not subject to any constraints
in their relationship to the étale-like units, i.e., to the
local Galois group portions of these F��-prime-strips.
Put another way, if one regards the étale-like units as
the sole access route, from the point of view of the
Frobenius-like units in the codomain of the Θ×μ

LGP-link
under consideration, to the Frobenius-like units in the
domain of this Θ×μ

LGP-link, then one obtains a situation
in which the data in the F��-prime-strips [i.e., “non-
mutually constrained local/global value group portions
and local Galois groups] is “over-constrained/over-
determined”.

Thus, in summary, one cannot eliminate the F�×μ-prime-strip portion
[cf. [IUTchII], Definition 4.9, (vii)] — i.e., in more concrete terms, for,

say, v ∈ Vnon, the local Galois groups “Gv” and units “O×μ

F v
” — from

the F��×μ-prime-strips that appear in the Θ×μ
LGP-link. One important

consequence of the fact that the local Galois group and unit portions are
indeed included in the F��×μ-prime-strips that appear in the Θ×μ

LGP-link
is the [“proper functioning”, as described in the present paper, of the]
theory of log-Kummer correspondences and log-shells — which serve
as “multiradial containers” [cf. Remarks 1.5.2, 2.3.3, 2.3.4, 3.8.3] —
both of which play a central role in the present paper.

(Ob8) Vertical shifts in the output data: One important consequence of
the theory of log-Kummer correspondences lies in the fact that it allows
one to transport/relate [i.e., by applying the theory of log-Kummer
correspondences!] the output of the multiradial algorithms under consider-
ation to different vertical coordinates within a vertical column of the
log-theta-lattice. In fact,

this output — even if one works with hulls [cf. (Ob1), (Ob2),
(Ob3), (Ob4), (Ob5)]! — yields, a priori, objects in local and
global Frobenioids that differ, strictly speaking, from the cor-
responding [multiplicative!] local and global Frobenioids that
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appear in the input data of the algorithm [i.e., the codomain

F��×μ-prime-strips of the Θ×μ
LGP-link — cf. Definition 3.8, (i),

(ii)] by a “vertical shift” in the log-theta-lattice, i.e., more con-
cretely, by an application of the log-link [that is to say, which
produces additive log-shells from the multiplicative “O×μ’s” in
the input data].

In particular, it is precisely by applying the theory of log-Kummer corre-
spondences that we will ultimately be able to obtain objects [i.e., objects
in local and global Frobenioids] arising from the output of the multiradial
algorithms under consideration that may indeed be meaningfully com-
pared with objects in the local and global Frobenioids that appear in the
input data of the algorithm [cf. Step (xi-d) of the proof of Corollary 3.12
below]. On the other hand, in this context, it is important to note that
since such comparable objects are obtained by applying the log-Kummer
correspondence, the local and global Frobenioids to which these compa-
rable objects belong are necessarily subject to the indeterminacies of the
relevant log-Kummer correspondence, i.e., in more concrete terms, to ar-
bitrary iterates of the log-link [cf. the discussion of the final portion of
Remark 3.12.2, (v)].

(Ob9) Hulls in the context of the log-link and log-volumes: In the
context of the discussion of the final portion of (Ob8), we observe that
the operation of passing to realified semi-simplications [cf. Remark
3.9.4, (iii), (iv), (v), (vi)] in situations where one considers the log-link
compatibility of the log-volume, is a quotient operation on both the
domain and the codomain of the log-link that induces a natural bijection
between log-volumes of hulls in the domain and codomain of the log-
link. That is to say, the fact that this quotient operation [i.e., of passing
to realified semi-simplifications] induces such a natural bijection is not
affected — i.e., unlike the situation considered in (Ob1), (Ob2), (Ob3),
(Ob4), (Ob5)! — by the fact that the operation of passing to realified semi-
simplications [cf. Remark 3.9.4, (iii), (iv), (v), (vi)] involves, at various
intermediate steps, the use of various regions which are not hulls. The
fundamental qualitative difference between the present situation, on the
one hand, and the situation considered in (Ob1), (Ob2), (Ob3), (Ob4),
(Ob5) [i.e., which required the formation of hulls!], on the other, may be
understood as follows:

(Ob9-1) Formal indeterminacies acting on comparable objects:
Once the passage to comparable objects via det⊗M (−) of a
suitable hull has been achieved [cf. the discussion of (Ob5)],
the various formal, or stack-theoretic/diagram-theoretic,
indeterminacies that arose from this passage to comparable
objects — i.e.,

· the tensor-power-twist indeterminacies of (Ob4-3),
· the application of the �-formalism in (Ob5), and
· the indeterminacy with respect to application of arbi-
trary iterates of the log-link of (Ob8)

— have no effect on the comparability of the objects obtained
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in (Ob5). That is to say, these indeterminacies function solely as
compatibility conditions that must be satisfied [e.g., by applying
the theory of realified semi-simplications, as developed in Remark
3.9.4, (iii), (iv), (v), (vi)] when passing to “coarse/set-theoretic
invariants” such as the log-volume.

(Ob9-2) Non-explicit relationships between comparable and non-
comparable objects: By contrast, the situation discussed in
(Ob1), (Ob2), (Ob3), (Ob4), (Ob5) was one in which — until
the “final conclusion” of this discussion in (Ob5) — compara-
ble objects had not yet been obtained. Put another way, prior
to this “final conclusion”, the precise relationship between the
non-comparable objects that occurred as the a priori output of
the multiradial algorithms under consideration, on the one hand,
and comparable objects, on the other, had not yet been explic-
itly computed.

Closely related issues are discussed in (ix) below.

(viii) In the context of (vi), (vii), it is of interest to observe that, just as in the
case of the operations of

(sQ1) Kummer-detachment, i.e., passing from Frobenius-like [that is to say,
strictly speaking, Frobenius-like structures that contain certain étale-like
structures] to [“purely”] étale-like structures [cf. Remark 1.5.4, (i), as
well as the vertical arrows of the commutative diagram of Remark 3.10.2
below], and

(sQ2) Galois evaluation [cf. [IUTchII], Remark 1.12.4, as well as the hori-
zontal arrows of the commutative diagram of Remark 3.10.2 below],

the operations of

(sQ3) passing from more general regions to positive tensor powers of de-
terminants of hulls and then applying the abstract set-theoretic �-
formalism of (v) [cf. the discussion of (Ob1), (Ob2), (Ob3), (Ob4),
(Ob5), (Ob6), (Ob7)],

(sQ4) adjusting the vertical shifts [i.e., in the vertical column of the log-

theta-lattice corresponding to the codomain of the Θ×μ
LGP-link under con-

sideration] in the output of the multiradial algorithm by applying the
log-Kummer correspondence [cf. the discussion of (Ob8)], as well as
of

(sQ5) passing to log-volumes [cf. (Ob3), (Ob4), (Ob6), (Ob7), (Ob9)], via the
formalism of realified semi-simplifications discussed in Remark 3.9.4,

may be regarded as intricate (sub)quotient — or [cf. the discussion of (ii)] push
forward/splitting/integration — operations. Indeed, from this point of view,
the content of the entire theory of the present series of papers may be regarded as
the development of

a suitable collection of (sub)quotient operation algorithms for con-
structing a
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relatively simple, concrete (sub)quotient

of the complicated apparatus constituted by the full log-theta-lattice.

The goal of this construction of (sub)quotient operation algorithms — i.e., of the
entire theory of the present series of papers — may then be understood as

the computation of the projection, via the resulting relatively simple,
concrete (sub)quotient, of

the “Θ-intertwining” [i.e., the structure on an abstract F��×μ-
prime-strip as the F��×μ-prime-strip arising from the Θ-pilot
object appearing in the domain of the Θ×μ

LGP-link of Definition
3.8, (ii)]

onto structures arising from the vertical column in the codomain of the
Θ×μ

LGP-link, that is to say, where

the “q-intertwining” [i.e., the structure on an abstract F��×μ-
prime-strip as the F��×μ-prime-strip arising from the q-pilot
object appearing in the codomain of the Θ×μ

LGP-link of Definition
3.8, (ii)]

is in force [cf. the discussion of Remark 3.12.2, (ii), below].

This computation, when suitably interpreted, amounts, essentially tautologically,
to the inequality of Corollary 3.12 below. Here, we observe that each of these
(sub)quotient operations (sQ1), (sQ2), (sQ3), (sQ4), (sQ5) may be understood as
an operation whose purpose is to simplify the quite complicated apparatus con-
stituted by the full log-theta-lattice by allowing the introduction of various inde-
terminacies. Put another way, the nontriviality of these various (sub)quotient
operations lies

in the very delicate balance between minimizing the indetermina-
cies that arise from passing to a quotient, while at the same time ensuring
compatibility with the structures that exist prior to formation of the
quotient.

Indeed:

· In the case of (sQ1), i.e., the case of Kummer-detachment indetermina-
cies, this delicate balance is discussed in detail in Remarks 1.5.4, 2.1.1,
2.2.1, 2.2.2, 2.3.3, as well as Remark 3.10.1, (ii), (iii), below.

· In the case of (sQ2), i.e., the case of Galois evaluation, the delicate issue
of compatibility with Kummer theory is discussed in [IUTchII], Remark
1.12.4.

· In the case of (sQ3), i.e., the case of passing to hulls, various delicate
issues — such as, for instance, the delicate issues of tensor-power-twist in-
determinacies [cf. (Ob4-3)], the �-formalism [cf. (Ob5)], and compatibility
with log-Kummer correspondences [cf. (Ob7)] — are discussed in (Ob1),
(Ob2), (Ob3), (Ob4), (Ob5), (Ob6), (Ob7) [cf. also (ix), (x) below].

· In the case of (sQ4), the adjustment of vertical shifts via log-Kummer
correspondences results in an indeterminacy with respect to application
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of arbitrary iterates of the log-link, i.e., in the vertical column of the
log-theta-lattice corresponding to the codomain of the Θ×μ

LGP-link under
consideration [cf. (Ob8)].

· In the case of (sQ5), i.e., the case of passing to log-volumes, various
subtleties surrounding the compatibility of the log-volume with the log-
link are discussed in detail in Remark 3.9.4, as well as in (vii) of the
present Remark 3.9.5 [cf., especially, the discussion of (Ob9)].

Finally, in this context, we observe that, in light of the rigidity of étale-like struc-
tures [cf. the discussion of [IUTchII], Remark 3.6.2, (ii)], i.e., at a more concrete
level, of objects constructed via anabelian algorithms, the construction of suit-
able subquotients of the étale-like portion of the log-theta-lattice — that is to say,
as in the case of (sQ2), (sQ3), (sQ4), (sQ5) — is a particularly nontrivial issue.

(ix) In the context of the discussion of (vii) [cf., especially, (Ob7), (Ob8),
(Ob9)], (viii), it is important to observe that there is a fundamental qualitative
difference between (sQ3), (sQ4), on the one hand, and (sQ5), on the other:

(cQ3) Compatibility of (sQ3) with F�×μ-prime-strip data: The fact that
[in the notation of (Ob1), (Ob2)] hulls ∈ H are stabilized by multiplica-
tion by elements of Ok implies that, by taking [a suitable positive tensor
power of] the determinant [cf. (Ob3)], they determine objects [i.e., the
“det⊗M (φ(PB))” of (Ob5)] in the local and [by allowing vQ ∈ VQ, v ∈ V to
vary] global Frobenioids that appear in the codomain F��×μ-prime-strip

of the Θ×μ
LGP-link. In particular, by considering suitable pull-back mor-

phisms in these local Frobenioids [i.e., which correspond to base-change
morphisms in conventional scheme theory — cf. [FrdI], Definition 1.3,
(i)], one obtains objects equipped with natural faithful actions by the local

Galois groups “Gv” and units “O×μ

Fv
” [cf. the notation of (Ob7)], i.e., the

data that corresponds to the F�×μ-prime-strip portion of the F��×μ-
prime-strips that appear in the Θ×μ

LGP-link. Moreover, as discussed in (vi),
the quotient induced on H by the set-theoretic �-formalism of (v) [cf. the
display of (Ob5)] may be understood as corresponding to the consideration
of the “�-category” consisting of

(�lc1 ) objects in the local Frobenioid under consideration equipped
with a “structure poly-morphism” to the original object aris-
ing from a hull, i.e., the “det⊗M (φ(PB))” of (Ob5), given by
the Aut(det⊗M (φ(PB)))-orbit of a linear morphism in the local
Frobenioid [cf. [FrdI], Definition 1.2, (i)] to det⊗M (φ(PB)) and

(�lc2 ) morphisms between such objects that are compatible with the
structure poly-morphism.

[Alternatively, one could consider a slightly modified version of this “�-
category” by restricting the objects to be objects that arise from hull-
approximants for the log-volume, i.e., as in the discussion of (Ob6).] By
considering suitable pull-back morphisms in this �-category, we again ob-
tain objects equipped with mutually compatible [i.e., relative to varying the
object within the �-category] natural faithful actions by the local Galois

groups “Gv” and units “O×μ

F v
” [cf. the notation of (Ob7)], i.e., the data
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that corresponds to the F�×μ-prime-strip portion of the F��×μ-prime-
strips that appear in the Θ×μ

LGP-link. Next, we observe that one may
consider categories of “local-global �-collections of objects”, i.e., categories
whose objects are collections consisting of

(�lc-gl1 ) a “local” object in the �-category at each v ∈ V,

(�lc-gl2 ) a “global” object in the global realified Frobenioid of the F��×μ-
prime-strip under consideration, and

(�lc-gl3 ) localization isomorphisms between the image of the local object
at each v ∈ V in the realification of the local Frobenioid at v and
the localization of the global object at the element ∈ Prime(−) of
the global realified Frobenioid corresponding to v

[and whose morphisms are compatible collections of morphisms between

the respective portions of the data �lc-gl1 and �lc-gl2 ] — cf. the discussion of
the [closely related] functors in the final displays of [FrdII], Example 5.6,
(iii), (iv). In particular, just as the tensor-power-twist indeterminacies of
(sQ3) [cf. (Ob4-3)] and the indeterminacy with respect to application of
arbitrary iterates of the log-link of (sQ4) [cf. (Ob8)] may be understood
as “formal, or stack-theoretic/diagram-theoretic, quotients” [i.e.,
as opposed to “coarse/set-theoretic quotients” given by set-theoretic in-
variants such as the log-volume — cf. the discussion of (Ob9-1)], the pair
consisting of

(�fQ1 ) such a category of “local-global �-collections” [cf. �lc-gl1 , �lc-gl2 ,

�lc-gl3 ] and

(�fQ2 ) the analogous category of “local-global collections”, i.e., where

the “�-category” at each v ∈ V [cf. �lc-gl1 ] is replaced by the
original local Frobenioid [portion of the F��×μ-prime-strip under
consideration] at each v ∈ V,

may also be regarded as the “formal, or stack-theoretic, quotient” corre-

sponding to the operation of considering “�fQ2 modulo �fQ1 ”.

(cQ4) Compatibility of (sQ4) with F�×μ-prime-strip data: Since the
adjustment of vertical shifts in (sQ4) is obtained precisely by applying the
log-Kummer correspondence, this adjustment operation is tautologically
compatible [cf. the vertical coricity of Theorem 1.5, (i)] with suitable iso-
morphisms between the local Galois groups “Gv” and the étale-like units
“O×μ(Gv)” [cf. the notation of (Ob7-1), (Ob7-2)] that appear. Alterna-
tively, this adjustment operation is tautologically compatible with suitable
isomorphisms between the local Galois groups “Gv” and the Frobenius-

like units “O×μ

Fv
” [cf. the notation of (Ob7)], so long as one allows for

an indeterminacy with respect to application of arbitrary iterates of the
log-link [cf. the discussion of (Ob8)].

(iQ5) Incompatibility of (sQ5) with F�×μ-prime-strip data: By con-
trast, unlike the situation with (sQ3), (sQ4), passing to log-volumes [i.e.,
(sQ5)] amounts precisely to forgetting the local Galois groups and Frobenius-
like units, i.e., the data that corresponds to the F�×μ-prime-strip portion
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of the F��×μ-prime-strips that appear in the Θ×μ
LGP-link [cf. the discus-

sion of (Ob7)].

Here, we recall that (sQ3), (sQ4), (sQ5) all occur within the vertical column of the

log-theta-lattice corresponding to the codomain of the Θ×μ
LGP-link under consider-

ation. In particular, the various local Galois groups “Gv” are all equipped with
rigidifications as quotients of [isomorphs of] “Πv” [cf. the notation of the discussion
surrounding [IUTchI], Fig. I1.2]. Put another way [cf. also the discussion of (Ob9)]:

· One may think of the compatibility properties (cQ3), (cQ4) as a sort
of arithmetic holomorphicity [relative to the vertical column under
consideration] or, alternatively, as a sort of compatibility with the log-
Kummer correspondence of this vertical column. This point of view
is reminiscent of the use of the descriptive “holomorphic” in the term
“holomorphic hull”.

· Conversely, one may think of the incompatibility property (iQ5) as corre-
sponding to the operation of forgetting this arithmetic holomorphic struc-
ture or, alternatively, as a sort of incompatibility with the log-Kummer
correspondence of this vertical column.

From the point of view of the computation of the projection of the Θ-intertwining
onto the q-intertwining discussed in (viii), this fundamental qualitative difference
— i.e., (cQ3), (cQ4) versus (iQ5) — has a very substantive consequence:

It is precisely by passing through (sQ3), (sQ4) — i.e., before applying
(sQ5)! [cf. also the discussion of (Ob7)] — that the chain of poly-
isomorphisms of F��×μ-prime-strips [i.e., including the F�×μ-prime-strip
portion of these F��×μ-prime-strips!] that

· begins with the F��×μ-prime-strip arising from the q-pilot
object in the codomain of the Θ×μ

LGP-link,

· passes through the Θ×μ
LGP-link to the domain of the Θ×μ

LGP-link,

· passes through the various poly-isomorphisms of F��×μ-prime-
strips [cf. the diagram of Remark 3.10.2 below; the discussion of
“IPL” in Remark 3.11.1, (iii), below] induced by (sQ1), (sQ2),
and

· finally, passes through (sQ3), (sQ4), which satisfy the compat-
ibility property with the log-Kummer correspondence discussed
above [i.e., (cQ3), (cQ4)]

forms a closed loop, i.e., up to the introduction of the “formal quotient
indeterminacies” discussed in (cQ3), (cQ4) [cf. also the discussion of
(Ob9-1)].

In this context, we observe that a non-closed loop would yield a situation from which
no nontrivial conclusions may be drawn, for essentially the same reason [that no
nontrivial conclusions may be drawn] as in the case of the “distinct labels approach”
of Remark 3.11.1, (vii), below [cf. also the discussion of (Ob9-2); Remark 3.12.2,
(ii), (citw), (ctoy), below]. That it to say, it is only by constructing such a closed
loop that one can complete the computation of the projection [that is to say, as
discussed in (viii)] of the Θ-intertwining onto the q-intertwining, i.e.,
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complete the computation of the Θ-intertwining structure, up to suitable
indeterminacies, on a F��×μ-prime-strip that is constrained to be
subject to the q-intertwining.

Here, we recall from the discussion of (Ob7) [cf. also (x) below for a discussion of
a related topic] that the construction of this sort of mathematical structure — i.e.,

a F��×μ-prime-strip that is simultaneously equipped with two in-
tertwinings, namely, the Θ-intertwining, up to indeterminacies, and the
q-intertwining

— cannot be achieved if one omits various subportions of the F�×μ-prime-strip por-
tion of the F��×μ-prime-strip. It is this computation/construction that will allow
us, in Corollary 3.12 below, to conclude nontrivial, albeit essentially tautological,
consequences from the theory of the present series of papers, such as the inequality
of Corollary 3.12 [cf. Substeps (xi-d), (xi-e), (xi-f), (xi-g) of the proof of Corollary
3.12; Fig. 3.8 below]. Put another way, if one attempts to skip either (sQ3) or
(sQ4) and pass directly from (sQ2) to (sQ4) or (sQ5) [or from (sQ3) to (sQ5)], then
the resulting chain of poly-isomorphisms of F��×μ-prime-strips no longer forms a
closed loop, and one can no longer conclude any nontrivial consequences from the
theory of the present series of papers.

(x) In the context of the discussion of (vii), (viii), (ix), it is of interest to
observe that it is not possible [at least in any immediate sense!] to

work with regions ∈ P that do not necessarily belong to H — and hence
avoid the operation of passing to the hull! — by replacing the local and
global Frobenioids [i.e., categories of local and global arithmetic line bun-
dles] that appear in the definition of an F��×μ-prime-strip [cf. [IUTchII],
Definition 4.9, (viii)] by “more general categories of regions ∈ P”.

Indeed, any sort of category of regions ∈ P necessarily requires consideration of
the multi-dimensional underlying space of IQ((−)) [cf. (ii)], i.e., in essence,
an additive module of rank > 1. Put another way, the only natural way to
relate various “lines” [i.e., rank 1 submodules] within this space to one another is
by invoking the additive structure of this module. On the other hand, since the
Θ×μ

LGP-link is not compatible with the additive structures in its domain and
codomain, it is of crucial importance that the categories that are glued together via
the Θ×μ

LGP-link be purely multiplicative in nature, i.e., independent, at least in
an a priori sense, of the additive structures in the domain and codomain of the
Θ×μ

LGP-link. In particular, one must, in effect, work with arithmetic line bundles
[which — unlike arithmetic vector bundles of rank > 1! — may indeed be defined
in a way that only uses the multiplicative structures of the rings involved] — cf. the
discussion of (Ob1), (Ob2), (Ob3), (Ob4). Of course, instead of working [as we in
fact do in the present series of papers] with arithmetic line bundles over Fmod, up

to certain “stack-theoretic twists” at v ∈ Vbad [cf. [IUTchI], Remark 3.1.5], where
we work with local arithmetic line bundles over Kv [which are necessary in order to
accommodate the use of various powers of q

v
! — cf. [IUTchI], Example 3.2, (iv)],

one could instead consider working with arithmetic line bundles over Q. Relative
to the arithmetic line bundles over Fmod or Kv, for v ∈ Vbad, that in fact appear in
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the present series of papers, working with arithmetic line bundles over Q amounts,
in effect, to applying some sort of

norm, or determinant operation, from Fmod down to Q or, at v ∈ Vbad,
from Kv down to Qpv

[followed by tensor product with a certain fixed arithmetic line bundle on Q or Qpv ,
in order to take into account the ramification of Fmod over Q or Kv over Qpv

— cf.

the discussion of (Ob3-1-2)]. On the other hand, if we writeGpv ⊆ Gal(F/Q) for the
unique decomposition group of pv that contains Gv, then one verifies immediately
that the fact that Gpv does not admit a splitting

“Gpv

∼→ Gv × (Gpv/Gv)”

implies that this sort of norm operation from Kv down to Qpv
cannot be extended,

in any meaningful sense, to any sort of Galois-equivariant [i.e., Gv-equivariant]
operation on algebraic closures of Kv and Qpv . Since the faithful action of Gv on

the unit portion of the local Frobenioids in an F��×μ-prime-strip plays a central
role [cf. the discussion of (Ob7)] in the theory of log-Kummer correspondences
and log-shells [which play a central role in the present paper!], the incompatibility
of any sort of norm operation with the local Galois group Gv makes such a norm

operation fundamentally unsuited for defining the gluings that constitute the Θ×μ
LGP-

link.

Remark 3.9.6. In the context of Proposition 3.9, (iii), (iv) [cf. also Remark
3.9.4], we make the following observation. The log-link compatibility of Proposition
3.9, (iv) [cf. also Proposition 1.2, (iii); Proposition 1.3, (iii); Remark 3.9.4] amounts
to a coincidence of log-volumes— not of arbitrary regions that appear in the domain
and codomain of the log-link, but rather — of certain types of “sufficiently small”
regions that appear in the domain and codomain of the log-link. On the other hand,
the “product formula” — i.e., at a more concrete level, the “ratios of conversion”
[cf. [IUTchI], Remark 3.5.1, (ii)] between log-volumes at distinct v ∈ V — may be
formulated [without loss of generality!] in terms of such “sufficiently small” regions.
Thus, in summary, we conclude that

the log-link compatibility of Proposition 3.9, (iv), implies a compati-
bility of “product formulas”, i.e., of “ratios of conversion” between
log-volumes at distinct v ∈ V, in the domain and codomain of the log-link.

In particular, in the context of Proposition 3.9, (iii), we conclude that Proposition
3.9, (iv), implies a compatibility between global arithmetic degrees in the
domain and codomain of the log-link.

Remark 3.9.7. When computing log-volumes of various regions of the sort con-
sidered in Proposition 3.9, it is useful to keep the following elementary observations
in mind:

(i) In the context of Proposition 3.9, (iii), the defining condition “zero log-
volume for all but finitely many vQ ∈ VQ” for

M(IQ(AFVQ
)) ⊆

∏
vQ∈VQ

M(IQ(AFvQ
))
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that is imposed on the various components indexed by vQ ∈ VQ of the direct product
of the above display may be satisfied by considering elements of this direct product
such that for all but finitely many of the elements wQ ∈ Vnon

Q for which pwQ
is

unramified in K, the component at wQ is given by I(AFvQ) ⊆ IQ(AFvQ). Indeed,
for each such wQ ∈ Vnon

Q , the subset

O(−) = I((−)) ⊆ IQ((−))

[cf. the notation of Proposition 3.2, (ii); Proposition 3.9, (i); the final sentence
of [AbsTopIII], Definition 5.4, (iii)] has zero log-volume. Finally, in the context
of Proposition 3.9, (ii), we observe that, for each such wQ ∈ Vnon

Q , the subset

I((−)) ⊆ IQ((−)) is a mono-analytic invariant, which, moreover, [cf. Remark
3.9.5, (i)] is equal to its own holomorphic hull.

(ii) In the context of Proposition 3.9, (i), (ii), we observe that one may consider
the log-volume ofmore general, say, relatively compact subsets E ⊆ IQ((−))
[cf. the discussion of Remark 3.1.1, (iii)] than the sets which belong to M(IQ((−))),
i.e.,

simply by defining the log-volume of E to be the infimum of the log-
volumes of the sets E∗ ∈M(IQ((−))) such that E ⊆ E∗.

This definition means that one must allow for the possibility that the log-volume
of E is −∞. Alternatively [and essentially equivalently!], one can treat such E by
thinking of such an E as corresponding to the

inverse system of E∗ ∈M(IQ((−))) such that E ⊆ E∗.

Here, when E is a direct product pre-region, it is natural to consider instead the
inverse system of direct product regions E∗ ∈ M(IQ((−))) such that E ⊆ E∗

[cf. the discussion of Remark 3.1.1, (iii)]. This approach via inverse systems of
regions each of which has finite log-volume has the advantage that it allows one to
always work with finite log-volumes.

(iii) In a similar vein, in the context of Proposition 3.9, (iii), we observe that
one may consider the log-volume of more general collections of relatively
compact subsets [cf. the discussion of Remark 3.1.1, (iii)] than the collections of
sets of the sort considered in the discussion of (i) above. Indeed, if

{EvQ ⊆ IQ(AFvQ)}vQ∈VQ

is a collection of subsets such that, for some collection of sets {E∗vQ}vQ
of the sort

considered in the discussion of (i), it holds that EvQ ⊆ E∗vQ
, for each vQ ∈ VQ, then

one may

simply define the log-volume of {EvQ
}vQ to be the infimum of the log-

volumes of the collections of sets {E∗vQ
}vQ of the sort considered in the

discussion of (i) above such that EvQ ⊆ E∗vQ , for each vQ ∈ VQ

[in which case one must allow for the possibility that the log-volume of E is −∞]; al-
ternatively [and essentially equivalently!], one may think of such a collection {EvQ

}vQ
as corresponding to the
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inverse system of collections {E∗vQ
}vQ of the sort considered in the dis-

cussion of (i) above such that EvQ
⊆ E∗vQ , for each vQ ∈ VQ

[an approach that has the advantage that it allows one to always work with finite
log-volumes]. Here, in the case where each EvQ , for vQ ∈ VQ, is a direct product
pre-region, it is natural to consider instead inverse systems {E∗vQ

}vQ as above such

that each E∗vQ
, for vQ ∈ VQ, is a direct product region [cf. the discussion of

Remark 3.1.1, (iii)].

Proposition 3.10. (Global Kummer Theory and Non-interference with

Local Integers) Let {n,mHT Θ±ellNF}n,m∈Z be a collection of distinct Θ±ellNF-
Hodge theaters [relative to the given initial Θ-data] — which we think of as aris-
ing from an LGP-Gaussian log-theta-lattice [cf. Definition 3.8, (iii); Proposi-
tion 3.5; Remark 3.8.2]. For each n ∈ Z, write

n,◦HT D-Θ±ellNF

for the D-Θ±ellNF-Hodge theater determined, up to isomorphism, by the various
n,mHT Θ±ellNF, where m ∈ Z, via the vertical coricity of Theorem 1.5, (i) [cf.
Remark 3.8.2].

(i) (Vertically Coric Global LGP-, lgp-Frobenioids and Associated
Kummer Theory) Recall the constructions of various global Frobenioids in Propo-
sition 3.7, (i), (ii), (iii), (iv), in the context of F-prime-strip processions. Then by
applying these constructions to the F-prime-strips “F(n,◦D	)t” [cf. the notation
of Proposition 3.5, (i)] and the various full log-links associated [cf. the discussion
of Proposition 1.2, (ix)] to these F-prime-strips — which we consider in a fash-
ion compatible with the F�±

l -symmetries involved [cf. Remark 1.3.2; Propo-

sition 3.4, (ii)] — we obtain functorial algorithms in the D-Θ±ellNF-Hodge

theater n,◦HT D-Θ±ellNF for constructing [number] fields, monoids, and Frobe-
nioids equipped with natural isomorphisms

M
�
mod(

n,◦HT D-Θ±ellNF)α = M
�
MOD(

n,◦HT D-Θ±ellNF)α

⊇ M�
mod(

n,◦HT D-Θ±ellNF)α = M�
MOD(

n,◦HT D-Θ±ellNF)α

M
�
mod(

n,◦HT D-Θ±ellNF)α ⊇ M�
mod(

n,◦HT D-Θ±ellNF)α

F�
mod(

n,◦HT D-Θ±ellNF)α
∼→ F�

mod(
n,◦HT D-Θ±ellNF)α

∼→ F�
MOD(

n,◦HT D-Θ±ellNF)α

[cf. the number fields, monoids, and Frobenioids “M
�
mod(

†D�)j ⊇ M�
mod(

†D�)j”,
“F�

mod(
†D�)j” of [IUTchII], Corollary 4.7, (ii)] for α ∈ A, where A is a subset of

J [cf. Proposition 3.3], as well as F�-prime-strips equipped with natural isomor-
phisms

F�(n,◦HT D-Θ±ellNF)gau
∼→ F�(n,◦HT D-Θ±ellNF)LGP

∼→ F�(n,◦HT D-Θ±ellNF)lgp

— [all of ] which we shall refer to as being “vertically coric”. For each n,m ∈ Z,
these functorial algorithms are compatible [in the evident sense] with the [“non-
vertically coric”] functorial algorithms of Proposition 3.7, (i), (ii), (iii), (iv) —
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i.e., where [in Proposition 3.7, (iii), (iv)] we take “†” to be “n,m” and “‡” to be
“n,m− 1” — relative to the Kummer isomorphisms of labeled data

Ψcns(
n,m′

F	)t
∼→ Ψcns(

n,◦D	)t

(n,m
′
M�

mod)j
∼→ M�

mod(
n,◦D�)j ; (n,m

′
M

�
mod)j

∼→ M
�
mod(

n,◦D�)j

[cf. [IUTchII], Corollary 4.6, (iii); [IUTchII], Corollary 4.8, (ii)] and the evident

identification, for m′ = m,m − 1, of n,m′
Ft [i.e., the F-prime-strip that appears

in the associated Θ±-bridge] with the F-prime-strip associated to Ψcns(
n,m′

F	)t
[cf. Proposition 3.5, (i)]. In particular, for each n,m ∈ Z, we obtain “Kummer
isomorphisms” of fields, monoids, Frobenioids, and F�-prime-strips

(n,mM
�
mod)α

∼→ M
�
mod(

n,◦HT D-Θ±ellNF)α; (n,mM
�
MOD)α

∼→ M
�
MOD(

n,◦HT D-Θ±ellNF)α

(n,mM�
mod)α

∼→ M�
mod(

n,◦HT D-Θ±ellNF)α; (n,mM�
MOD)α

∼→ M�
MOD(

n,◦HT D-Θ±ellNF)α

(n,mF�
mod)α

∼→ F�
mod(

n,◦HT D-Θ±ellNF)α; (n,mF�
MOD)α

∼→ F�
MOD(

n,◦HT D-Θ±ellNF)α

(n,mM
�
mod)α

∼→ M
�
mod(

n,◦HT D-Θ±ellNF)α; (n,mM�
mod)α

∼→ M�
mod(

n,◦HT D-Θ±ellNF)α

(n,mF�
mod)α

∼→ F�
mod(

n,◦HT D-Θ±ellNF)α;
n,mF�

gau
∼→ F�(n,◦HT D-Θ±ellNF)gau

n,mF�
LGP

∼→ F�(n,◦HT D-Θ±ellNF)LGP;
n,mF�

lgp
∼→ F�(n,◦HT D-Θ±ellNF)lgp

that are compatible with the various equalities, natural inclusions, and natural
isomorphisms discussed above.

(ii) (Non-interference with Local Integers) In the notation of Proposi-
tions 3.2, (ii); 3.4, (i); 3.7, (i), (ii); 3.9, (iii), we have

(†M�
MOD)α

⋂ ∏
v∈V

Ψlog(A,αFv) = (†M�μ
MOD)α

(
⊆

∏
v∈V
IQ(A,αFv) =

∏
vQ∈VQ

IQ(AFvQ
) = IQ(AFVQ

)
)

— where we write (†M�μ
MOD)α ⊆ (†M�

MOD)α for the [finite] subgroup of torsion ele-
ments, i.e., roots of unity; for vQ ∈ VQ, we identify the product

∏
V�v|vQ I

Q(A,αFv)

with IQ(AFvQ). Now let us think of the various groups

(n,mM�
MOD)j

[of nonzero elements of a number field] as acting on various portions of the modules

IQ(S
±
j+1F(n,◦D	)VQ

)

[i.e., where the subscript “VQ” denote the direct product over vQ ∈ VQ — cf. the
notation of Proposition 3.5, (ii)] not via a single Kummer isomorphism as
in (i), but rather via the totality of the various pre-composites of Kummer iso-
morphisms with iterates [cf. Remark 1.1.1] of the log-links of the LGP-Gaussian
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log-theta-lattice — where we observe that these actions are mutually compatible
up to [harmless!] “identity indeterminacies” at an adjacent “m”, precisely as a
consequence of the equality of the first display of the present (ii) [cf. the discussion
of Remark 1.2.3, (ii); the discussion of Definition 1.1, (ii), concerning quotients by
“ΨμN

†Fv
” at v ∈ Varc; the discussion of Definition 1.1, (iv), at v ∈ Vnon] — cf. also

the discussion of Remark 3.11.4 below. Thus, one obtains a sort of “log-Kummer
correspondence” between the totality, as m ranges over the elements of Z, of
the various groups [of nonzero elements of a number field] just discussed [i.e., which
are labeled by “n,m”] and their actions [as just described] on the “IQ” labeled by
“n, ◦” which is invariant with respect to the translation symmetries [cf. Propo-
sition 1.3, (iv)] of the n-th column of the LGP-Gaussian log-theta-lattice [cf. the
discussion of Remark 1.2.2, (iii)].

(iii) (Frobenioid-theoretic log-Kummer Correspondences) The relevant
Kummer isomorphisms of (i) induce, via the “log-Kummer correspondence” of (ii)
[cf. also Proposition 3.7, (i); Remarks 3.6.1, 3.9.2], isomorphisms of Frobe-
nioids

(n,mF�
MOD)α

∼→ F�
MOD(

n,◦HT D-Θ±ellNF)α

(n,mF�R
MOD)α

∼→ F�R
MOD(

n,◦HT D-Θ±ellNF)α

that are mutually compatible, as m varies over the elements of Z, with the
log-links of the LGP-Gaussian log-theta-lattice. Moreover, these compatible iso-
morphisms of Frobenioids, together with the relevant Kummer isomorphisms of (i),
induce, via the global “log-Kummer correspondence” of (ii) and the splitting
monoid portion of the “log-Kummer correspondence” of Proposition 3.5, (ii), iso-
morphisms of associated F�⊥-prime-strips [cf. Definition 2.4, (iii)]

n,mF�⊥
LGP

∼→ F�⊥(n,◦HT D-Θ±ellNF)LGP

that are mutually compatible, as m varies over the elements of Z, with the
log-links of the LGP-Gaussian log-theta-lattice.

Proof. The various assertions of Proposition 3.10 follow immediately from the
definitions and the references quoted in the statements of these assertions. Here,
we observe that the computation of the intersection of the first display of (ii) is an
immediate consequence of the well-known fact that the set of nonzero elements of
a number field that are integral at all of the places of the number field consists of
the set of roots of unity contained in the number field [cf. the discussion of Remark
1.2.3, (ii); [Lang], p. 144, the proof of Theorem 5]. ©

Remark 3.10.1.

(i) Note that the log-Kummer correspondence of Proposition 3.10, (ii), induces
isomorphisms of Frobenioids as in the first display of Proposition 3.10, (iii), precisely
because the construction of “(†F�

MOD)α” only involves the group “(†M�
MOD)α”, to-

gether with the collection of subquotients of its perfection indexed by V [cf. Propo-
sition 3.7, (i); Remarks 3.6.1, 3.9.2]. By contrast, the construction of “(†F�

mod)α”
also involves the local monoids “Ψlog(A,αFv) ⊆ log(A,αFv)” in an essential way [cf.
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Proposition 3.7, (ii)]. These local monoids are subject to a somewhat more compli-
cated “log-Kummer correspondence” [cf. Proposition 3.5, (ii)] that revolves around
“upper semi-compatibility”, i.e., in a word, one-sided inclusions, as opposed to pre-
cise equalities. The imprecise nature of such one-sided inclusions is incompatible
with the construction of “(†F�

mod)α”. In particular, one cannot construct log-link-
compatible isomorphisms of Frobenioids for “(†F�

mod)α” as in the first display of
Proposition 3.10, (iii).

(ii) The precise compatibility of “F�
MOD” with the log-links of the LGP-

Gaussian log-theta-lattice [cf. the discussion of (i); the first “mutual compatibil-
ity” of Proposition 3.10, (iii)] makes it more suited [i.e., by comparison to “F�

mod”]
to the task of computing the Kummer-detachment indeterminacies [cf. Re-
mark 1.5.4, (i), (iii)] that arise when one attempts to pass from the Frobenius-like

structures constituted by the global portion of the domain of the Θ×μ
LGP-links of the

LGP-Gaussian log-theta-lattice to corresponding étale-like structures. That is to
say, the mutual compatibility of the isomorphisms

n,mF�⊥
LGP

∼→ F�⊥(n,◦HT D-Θ±ellNF)LGP

of the second display of Proposition 3.10, (iii), asserts, in effect, that such Kummer-
detachment indeterminacies do not arise. This is precisely the reason why we
wish to work with the LGP-, as opposed to the lgp-, Gaussian log-theta lattice
[cf. Remark 3.8.1]. On the other hand, the essentially multiplicative nature of
“F�

MOD” [cf. Remark 3.6.2, (ii)] makes it ill-suited to the task of computing the
étale-transport indeterminacies [cf. Remark 1.5.4, (i), (ii)] that occur as one
passes between distinct arithmetic holomorphic structures on opposite sides of a
Θ×μ

LGP-link.

(iii) By contrast, whereas the additive nature of the local modules [i.e., local
fractional ideals] that occur in the construction of “F�

mod” renders “F�
mod” ill-suited

to the computation of Kummer-detachment indeterminacies [cf. the discussion of
(i), (ii)], the close relationship [cf. Proposition 3.9, (i), (ii), (iii)] of these local mod-

ules to the mono-analytic log-shells that are coric with respect to the Θ×μ
LGP-link

[cf. Theorem 1.5, (iv); Remark 3.8.2] renders “F�
mod” well-suited to the computa-

tion of the étale-transport indeterminacies that occur as one passes between
distinct arithmetic holomorphic structures on opposite sides of a Θ×μ

LGP-link. That
is to say, although various distortions of these local modules arise as a result of both
[the Kummer-detachment indeterminacies constituted by] the local “upper semi-
compatibility” of Proposition 3.5, (ii), and [the étale-transport indeterminacies
constituted by] the discrepancy between local holomorphic and mono-analytic
integral structures [cf. Remark 3.9.1, (i), (ii)], one may nevertheless compute —
i.e., if one takes into account the various distortions that occur, “estimate” —
the global arithmetic degrees of objects of “F�

mod” by computing log-volumes
[cf. Proposition 3.9, (iii)], which are bi-coric, i.e., coric with respect to both the

Θ×μ
LGP-links [cf. Proposition 3.9, (ii)] and the log-links [cf. Proposition 3.9, (iv)] of

the LGP-Gaussian log-theta-lattice. This computability is precisely the topic of
Corollary 3.12 below. On the other hand, the issue of obtaining concrete estimates
will be treated in [IUTchIV].
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F�
MOD/LGP-structures F�

mod/lgp-structures

biased toward biased toward
multiplicative structures additive structures

easily related to easily related to unit group/coric

value group/non-coric portion portion “(−)�×μ” of Θ×μ
LGP-/Θ

×μ
lgp -link,

“(−)��” of Θ×μ
LGP-link i.e., mono-analytic log-shells

admits only admits
precise log-Kummer “upper semi-compatible”

correspondence log-Kummer correspondence

rigid, but not suited subject to substantial distortion,
to explicit computation but suited to explicit estimates

Fig. 3.2: F�
MOD/LGP-structures versus F�

mod/lgp-structures

(iv) The various properties of “F�
MOD” and “F�

mod” discussed in (i), (ii), (iii)
above are summarized in Fig. 3.2 above. In this context, it is of interest to observe
that the natural isomorphisms of Frobenioids

F�
mod(

n,◦HT D-Θ±ellNF)α
∼→ F�

MOD(
n,◦HT D-Θ±ellNF)α

as well as the resulting isomorphisms of F�-prime-strips

F�(n,◦HT D-Θ±ellNF)LGP
∼→ F�(n,◦HT D-Θ±ellNF)lgp

of Proposition 3.10, (i), play the highly nontrivial role of relating [cf. the discussion
of [IUTchII], Remark 4.8.2, (i)] the “multiplicatively biased F�

MOD” to the “addi-

tively biased F�
mod” by means of the global ring structure of the number field

M
�
mod(

n,◦HT D-Θ±ellNF)α = M
�
MOD(

n,◦HT D-Θ±ellNF)α. A similar statement holds

concerning the tautological isomorphism of F�-prime-strips †F�
LGP

∼→ †F�
lgp of

Proposition 3.7, (iv).

Remark 3.10.2. In the context of the various Kummer isomorphisms discussed
in the final display of Proposition 3.10, (i), it is useful to recall that the F��×μ-

prime-strips †F��×μ
LGP , †F��×μ

lgp that appear in the definition of the Θ×μ
LGP-, Θ×μ

lgp -

links in Definition 3.8, (ii), were constructed from the F��×μ-prime-strip †F��×μ
env

[associated to the F�-prime-strip †F�
env] of [IUTchII], Corollary 4.10, (ii), in a
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fashion that we review as follows. First, we remark that, in the present discussion,
it is convenient for us to think of ourselves as working with objects arising from
the LGP-Gaussian log-theta-lattice of Definition 3.8, (iii) [so “†” will be replaced by
“(n,m)” or “(n, ◦)”]. Now recall, from the theory developed so far in the present
series of papers, that we have a commutative diagram of F��×μ-prime-strips

F��×μ(n,◦)env
∼→ F��×μ(n,◦)gau

∼→ F��×μ(n,◦)LGP
∼→ F��×μ(n,◦)lgp�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐

n,mF��×μ
env

∼→ n,mF��×μ
gau

∼→ n,mF��×μ
LGP

∼→ n,mF��×μ
lgp

— where

· for simplicity, we use the abbreviated version “n,◦” of the notation

“n,◦HT D-Θ±ellNF” of Proposition 3.10, (i);

· the first vertical arrow is the induced F��×μ-prime-strip version of
the Kummer isomorphism [whose codomain includes an argument “†D>”,
which we denote here by “n,◦”] of the final display of Proposition 2.1, (ii)
[cf. also Proposition 2.1, (iii), (iv), (v)];

· the second, third, and fourth vertical arrows are the induced F��×μ-
prime-strip versions of the Kummer isomorphisms of the final display of
Proposition 3.10, (i);

· the first lower horizontal arrow is the induced F��×μ-prime-strip version
of the evaluation isomorphism of the final display of [IUTchII], Corollary
4.10, (ii);

· the second and third lower horizontal arrows are the induced F��×μ-
prime-strip versions of the tautological isomorphisms of the final displays
of Proposition 3.7, (iii), (iv);

· the first upper horizontal arrow is the induced F��×μ-prime-strip version
of the étale-like evaluation isomorphism implicit in the construction [via
[IUTchII], Corollary 4.6, (iv), (v)] of the evaluation isomorphism of the
final display of [IUTchII], Corollary 4.10, (ii);

· the second and third upper horizontal arrows are the induced F��×μ-
prime-strip versions of the natural isomorphisms of the second display of
Proposition 3.10, (i).

That is to say, in summary,

the F��×μ-prime-strips n,mF��×μ
LGP , n,mF��×μ

lgp that appear in the Θ×μ
LGP-,

Θ×μ
lgp -links of Definition 3.8, (iii), were constructed from the F��×μ-prime-

strip n,mF��×μ
env and related to this F��×μ-prime-strip n,mF��×μ

env via the
lower horizontal arrows of the above commutative diagram; moreover, each
of these lower horizontal arrows may be constructed by conjugating the
corresponding upper horizontal arrow by the relevant Kummer isomor-
phisms, i.e., by the vertical arrows in the diagram.
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We are now ready to discuss the main theorem of the present series of papers.

Theorem 3.11. (Multiradial Algorithms via LGP-Monoids/Frobenioids)
Fix a collection of initial Θ-data

(F/F, XF , l, CK , V, Vbad
mod, ε)

as in [IUTchI], Definition 3.1. Let

{n,mHT Θ±ellNF}n,m∈Z

be a collection of distinct Θ±ellNF-Hodge theaters [relative to the given initial
Θ-data] — which we think of as arising from an LGP-Gaussian log-theta-lattice
[cf. Definition 3.8, (iii)]. For each n ∈ Z, write

n,◦HT D-Θ±ellNF

for the D-Θ±ellNF-Hodge theater determined, up to isomorphism, by the various
n,mHT Θ±ellNF, where m ∈ Z, via the vertical coricity of Theorem 1.5, (i) [cf.
Remark 3.8.2].

(i) (Multiradial Representation) Consider the procession of D�-prime-
strips Prc(n,◦D�T )

{n,◦D�0} ↪→ {n,◦D�0 , n,◦D�1} ↪→ . . . ↪→ {n,◦D�0 , n,◦D�1 , . . . , n,◦D�l�}

obtained by applying the natural functor of [IUTchI], Proposition 6.9, (ii), to [the

D-Θ±-bridge associated to] n,◦HT D-Θ±ellNF. Consider also the following data:

(a) for V � v | vQ ∈ VQ, j ∈ |Fl|, the topological modules and mono-
analytic integral structures

I(S
±
j+1

;n,◦D�vQ
) ⊆ IQ(S

±
j+1

;n,◦D�vQ); I(S
±
j+1

,j;n,◦D�v ) ⊆ IQ(S
±
j+1

,j;n,◦D�v )

— where the notation “;n, ◦” denotes the result of applying the construc-
tion in question to the case of D�-prime-strips labeled “n, ◦” — of Proposi-
tion 3.2, (ii) [cf. also the notational conventions of Proposition 3.4, (ii)],
which we regard as equipped with the procession-normalized mono-
analytic log-volumes of Proposition 3.9, (ii);

(b) for Vbad � v, the splitting monoid

Ψ⊥LGP(
n,◦HT D-Θ±ellNF)v

of Proposition 3.5, (ii), (c) [cf. also the notation of Proposition 3.5, (i)],
which we regard — via the natural poly-isomorphisms

IQ(S
±
j+1

,j;n,◦D�v )
∼→ IQ(S

±
j+1

,jF�×μ(n,◦D	)v)
∼→ IQ(S

±
j+1

,jF(n,◦D	)v)



154 SHINICHI MOCHIZUKI

for j ∈ F�
l [cf. Proposition 3.2, (i), (ii)] — as a subset of∏

j∈F�

l

IQ(S
±
j+1

,j;n,◦D�v )

equipped with a(n) [multiplicative] action on
∏

j∈F�

l
IQ(S

±
j+1

,j;n,◦D�v );

(c) for j ∈ F�
l , the number field

M
�
MOD(

n,◦HT D-Θ±ellNF)j = M
�
mod(

n,◦HT D-Θ±ellNF)j

⊆ IQ(S
±
j+1

;n,◦D�VQ
)

def
=

∏
vQ∈VQ

IQ(S
±
j+1

;n,◦D�vQ)

[cf. the natural poly-isomorphisms discussed in (b); Proposition 3.9, (iii);
Proposition 3.10, (i)], together with natural isomorphisms between the
associated global non-realified/realified Frobenioids

F�
MOD(

n,◦HT D-Θ±ellNF)j
∼→ F�

mod(
n,◦HT D-Θ±ellNF)j

F�R
MOD(

n,◦HT D-Θ±ellNF)j
∼→ F�R

mod(
n,◦HT D-Θ±ellNF)j

[cf. Proposition 3.10, (i)], whose associated “global degrees” may be
computed by means of the log-volumes of (a) [cf. Proposition 3.9, (iii)].

Write
n,◦RLGP

for the collection of data (a), (b), (c) regarded up to indeterminacies of the
following two types:

(Ind1) the indeterminacies induced by the automorphisms of the procession
of D�-prime-strips Prc(n,◦D�T );

(Ind2) for each vQ ∈ Vnon
Q (respectively, vQ ∈ Varc

Q ), the indeterminacies induced
by the action of independent copies of Ism [cf. Proposition 1.2, (vi)]
(respectively, copies of each of the automorphisms of order 2 whose orbit
constitutes the poly-automorphism discussed in Proposition 1.2, (vii)) on
each of the direct summands of the j+1 factors appearing in the tensor

product used to define IQ(S
±
j+1

;n,◦D�vQ
) [cf. (a) above; Proposition 3.2, (ii)]

— where we recall that the cardinality of the collection of direct summands
is equal to the cardinality of the set of v ∈ V that lie over vQ.

Then n,◦RLGP may be constructed via an algorithm in the procession of D�-prime-
strips Prc(n,◦D�T ) that is functorial with respect to isomorphisms of processions
of D�-prime-strips. For n, n′ ∈ Z, the permutation symmetries of the étale-
picture discussed in [IUTchI], Corollary 6.10, (iii); [IUTchII], Corollary 4.11, (ii),
(iii) [cf. also Corollary 2.3, (ii); Remarks 2.3.2 and 3.8.2, of the present paper],
induce compatible poly-isomorphisms

Prc(n,◦D�T )
∼→ Prc(n

′,◦D�T );
n,◦RLGP ∼→ n′,◦RLGP
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which are, moreover, compatible with the poly-isomorphisms

n,◦D�0
∼→ n′,◦D�0

induced by the bi-coricity poly-isomorphisms of Theorem 1.5, (iii) [cf. also [IUTchII],
Corollaries 4.10, (iv); 4.11, (i)].

(ii) (log-Kummer Correspondence) For n,m ∈ Z, the Kummer isomor-
phisms of labeled data

Ψcns(
n,mF	)t

∼→ Ψcns(
n,◦D	)t

{πκ-sol
1 (n,mD�) � n,mM�

∞κ}j
∼→ {πκ-sol

1 (n,◦D�) � M�
∞κ(

n,◦D�)}j

(n,mM
�
mod)j

∼→ M
�
mod(

n,◦D�)j

— where t ∈ LabCusp±(n,◦D	) — of [IUTchII], Corollary 4.6, (iii); [IUTchII],
Corollary 4.8, (i), (ii) [cf. also Propositions 3.5, (i); 3.10, (i), of the present
paper] induce isomorphisms between the vertically coric data (a), (b), (c) of
(i) [which we regard, in the present (ii), as data which has not yet been subjected
to the indeterminacies (Ind1), (Ind2) discussed in (i)] and the corresponding data

arising from each Θ±ellNF-Hodge theater n,mHT Θ±ellNF, i.e.:

(a) for V � v | vQ, j ∈ |Fl|, isomorphisms with local mono-analytic
tensor packets and their Q-spans

I(S
±
j+1

;n,mFvQ
)

∼→ I(S
±
j+1

;n,mF�×μ
vQ

)
∼→ I(S

±
j+1

;n,◦D�vQ)

IQ(S
±
j+1

;n,mFvQ
)

∼→ IQ(S
±
j+1

;n,mF�×μ
vQ

)
∼→ IQ(S

±
j+1

;n,◦D�vQ
)

I(S
±
j+1

,j;n,mFv)
∼→ I(S

±
j+1

,j;n,mF�×μ
v )

∼→ I(S
±
j+1

,j;n,◦D�v )

IQ(S
±
j+1

,j;n,mFv)
∼→ IQ(S

±
j+1

,j;n,mF�×μ
v )

∼→ IQ(S
±
j+1

,j;n,◦D�v )

[cf. Propositions 3.2, (i), (ii); 3.4, (ii); 3.5, (i)], all of which are com-
patible with the respective log-volumes [cf. Proposition 3.9, (ii)];

(b) for Vbad � v, isomorphisms of splitting monoids

Ψ⊥FLGP
(n,mHT Θ±ellNF)v

∼→ Ψ⊥LGP(
n,◦HT D-Θ±ellNF)v

[cf. Proposition 3.5, (i); Proposition 3.5, (ii), (c)];

(c) for j ∈ F�
l , isomorphisms of number fields and global non-realified/

realified Frobenioids

(n,mM
�
MOD)j

∼→ M
�
MOD(

n,◦HT D-Θ±ellNF)j ; (n,mM
�
mod)j

∼→ M
�
mod(

n,◦HT D-Θ±ellNF)j

(n,mF�
MOD)j

∼→ F�
MOD(

n,◦HT D-Θ±ellNF)j ; (n,mF�
mod)j

∼→ F�
mod(

n,◦HT D-Θ±ellNF)j

(n,mF�R
MOD)j

∼→ F�R
MOD(

n,◦HT D-Θ±ellNF)j ; (n,mF�R
mod)j

∼→ F�R
mod(

n,◦HT D-Θ±ellNF)j
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which are compatible with the respective natural isomorphisms between
“MOD”- and “mod”-subscripted versions [cf. Proposition 3.10, (i)]; here,
the isomorphisms of the third line of the display induce isomorphisms of
the global realified Frobenioid portions

n,mC�LGP
∼→ C�LGP(

n,◦HT D-Θ±ellNF); n,mC�lgp
∼→ C�lgp(n,◦HT D-Θ±ellNF)

of the F�-prime-strips n,mF�
LGP, F�(n,◦HT D-Θ±ellNF)LGP,

n,mF�
lgp, and

F�(n,◦HT D-Θ±ellNF)lgp [cf. Propositions 3.7, (iii), (iv), (v); 3.10, (i)].

Moreover, as one varies m ∈ Z, the various isomorphisms of (b) and of the first
line in the first display of (c) are mutually compatible with one another, relative
to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice under
consideration, in the sense that the only portions of the domains of these isomor-
phisms that are possibly related to one another via the log-links consist of roots of
unity in the domains of the log-links [multiplication by which corresponds, via the
log-link, to an “addition by zero” indeterminacy, i.e., to no indeterminacy!]
— cf. Proposition 3.5, (ii), (c); Proposition 3.10, (ii). This mutual compatibility of
the isomorphisms of the first line in the first display of (c) implies a corresponding
mutual compatibility between the isomorphisms of the second and third lines in
the first display of (c) that involve the subscript “MOD” [but not between the
isomorphisms that involve the subscript “mod”! — cf. Proposition 3.10, (iii); Re-
mark 3.10.1]. On the other hand, the isomorphisms of (a) are subject to a certain
“indeterminacy” as follows:

(Ind3) as one varies m ∈ Z, the isomorphisms of (a) are “upper semi-
compatible”, relative to the log-links of the n-th column of the LGP-
Gaussian log-theta-lattice under consideration, in a sense that involves
certain natural inclusions “⊆” at vQ ∈ Vnon

Q and certain natural sur-
jections “�” at vQ ∈ Varc

Q — cf. Proposition 3.5, (ii), (a), (b), for more
details.

Finally, as one varies m ∈ Z, the isomorphisms of (a) are [precisely!] compatible,
relative to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice
under consideration, with the respective log-volumes [cf. Proposition 3.9, (iv)].

(iii) (Θ×μ
LGP-Link Compatibility) The various Kummer isomorphisms of (ii)

satisfy compatibility properties with the various horizontal arrows — i.e., Θ×μ
LGP-

links — of the LGP-Gaussian log-theta-lattice under consideration as follows:

(a) The first Kummer isomorphism of the first display of (ii) induces — by

applying the F�±
l -symmetry of the Θ±ellNF-Hodge theater n,mHT Θ±ellNF

— a Kummer isomorphism n,mF�×μ



∼→ F�×μ

 (n,◦D�
) [cf. The-

orem 1.5, (iii)]. Relative to this Kummer isomorphism, the full poly-
isomorphism of F�×μ-prime-strips

F�×μ

 (n,◦D�
)

∼→ F�×μ

 (n+1,◦D�
)

is compatible with the full poly-isomorphism of F�×μ-prime-strips

n,mF�×μ



∼→ n+1,mF�×μ
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induced [cf. Theorem 1.5, (ii)] by the horizontal arrows of the LGP-
Gaussian log-theta-lattice under consideration [cf. Theorem 1.5, (iii)].

(b) The F�-prime-strips n,mF�
env, F

�
env(

n,◦D>) [cf. Proposition 2.1, (ii)] that
appear implicitly in the construction of the F�-prime-strips n,mF�

LGP,

F�(n,◦HT D-Θ±ellNF)LGP,
n,mF�

lgp, F�(n,◦HT D-Θ±ellNF)lgp [cf. (ii), (b),

(c), above; Proposition 3.4, (ii); Proposition 3.7, (iii), (iv); [IUTchII],
Corollary 4.6, (iv), (v); [IUTchII], Corollary 4.10, (ii)] admit natural

isomorphisms of associated F�×μ-prime-strips n,mF�×μ



∼→ n,mF�×μ
env ,

F�×μ

 (n,◦D�
)

∼→ F�×μ
env (n,◦D>) [cf. Proposition 2.1, (vi)]. Relative to

these natural isomorphisms and to the Kummer isomorphism discussed in
(a) above, the full poly-isomorphism of F�×μ-prime-strips

F�×μ
env (n,◦D>)

∼→ F�×μ
env (n+1,◦D>)

is compatible with the full poly-isomorphism of F�×μ-prime-strips

n,mF�×μ



∼→ n+1,mF�×μ



induced [cf. Theorem 1.5, (ii)] by the horizontal arrows of the LGP-
Gaussian log-theta-lattice under consideration [cf. Corollary 2.3, (iii)].

(c) Recall the data “n,◦R” [cf. Corollary 2.3, (ii)] associated to the D-
Θ±ellNF-Hodge theater n,◦HT D-Θ±ellNF — data which appears implicitly

in the construction of the F�-prime-strips n,mF�
LGP, F

�(n,◦HT D-Θ±ellNF)LGP,
n,mF�

lgp, F�(n,◦HT D-Θ±ellNF)lgp [cf. (ii), (b), (c), above; Proposition

3.4, (ii); Proposition 3.7, (iii), (iv); [IUTchII], Corollary 4.6, (iv), (v);

[IUTchII], Corollary 4.10, (ii)]. This data that arises from n,◦HT D-Θ±ellNF

is related to corresponding data that arises from the projective system of
mono-theta environments associated to the tempered Frobenioids of the

Θ±ellNF-Hodge theater n,mHT Θ±ellNF at v ∈ Vbad via the Kummer
isomorphisms and poly-isomorphisms of projective systems of
mono-theta environments discussed in Proposition 2.1, (ii), (iii) [cf.
also Proposition 2.1, (vi); the second display of Theorem 2.2, (ii)] and
Theorem 1.5, (iii) [cf. also (a), (b) above], (v). The algorithmic con-
struction of these Kummer isomorphisms and poly-isomorphisms of pro-
jective systems of mono-theta environments, as well as of the poly-isomor-
phism

n,◦R ∼→ n+1,◦R

induced by any permutation symmetry of the étale-picture [cf. the fi-

nal portion of (i) above; Corollary 2.3, (ii); Remark 3.8.2] n,◦HT D-Θ±ellNF

∼→ n+1,◦HT D-Θ±ellNF is compatible with the horizontal arrows of
the LGP-Gaussian log-theta-lattice under consideration, e.g., with the full
poly-isomorphism of F�×μ-prime-strips

n,mF�×μ



∼→ n+1,mF�×μ
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induced [cf. Theorem 1.5, (ii)] by these horizontal arrows [cf. Corollary
2.3, (iv)], in the sense that these constructions are stabilized/equivari-
ant/functorial with respect to arbitrary automomorphisms of the domain
and codomain of these horizontal arrows of the LGP-Gaussian log-theta-
lattice. Finally, the algorithmic construction of the poly-isomorphisms
of the first display above, the various related Kummer isomorphisms, and
the various evaluation maps implicit in the portion of the log-Kummer
correspondence discussed in (ii), (b), are compatible with the hori-
zontal arrows of the LGP-Gaussian log-theta-lattice under consideration,
i.e., up to the indeterminacies (Ind1), (Ind2), (Ind3) described in (i), (ii)
[cf. also the discussion of Remark 3.11.4 below], in the sense that these
constructions are stabilized/equivariant/functorial with respect to ar-
bitrary automomorphisms of the domain and codomain of these horizontal
arrows of the LGP-Gaussian log-theta-lattice.

(d) The algorithmic construction of the Kummer isomorphisms of the
first display of (ii) [cf. also (a), (b) above; the gluing discussed in
[IUTchII], Corollary 4.6, (iv); the Kummer compatibilities discussed in
[IUTchII], Corollary 4.8, (iii); the relationship to the notation of [IUTchI],
Definition 5.2, (vi), (viii), referred to in [IUTchII], Propositions 4.2, (i),
and 4.4, (i)], as well as of the poly-isomorphisms between the data[ {πκ-sol
1 (n,◦D�) � M�

∞κ(
n,◦D�)}j

→ M∞κv(
n,◦Dvj

) ⊆ M∞κ×v(
n,◦Dvj

)

]
v∈V

∼→
[ {πκ-sol

1 (n+1,◦D�) � M�
∞κ(

n+1,◦D�)}j
→ M∞κv(

n+1,◦Dvj
) ⊆ M∞κ×v(

n+1,◦Dvj
)

]
v∈V

[i.e., of the second line of the first display of [IUTchII], Corollary 4.7, (iii)]
induced by any permutation symmetry of the étale-picture [cf. the fi-

nal portion of (i) above; Corollary 2.3, (ii); Remark 3.8.2] n,◦HT D-Θ±ellNF

∼→ n+1,◦HT D-Θ±ellNF are compatible [cf. the discussion of Remark
2.3.2] with the full poly-isomorphism of F�×μ-prime-strips

n,mF�×μ



∼→ n+1,mF�×μ



induced [cf. Theorem 1.5, (ii)] by the horizontal arrows of the LGP-
Gaussian log-theta-lattice under consideration, in the sense that these con-
structions are stabilized/equivariant/functorial with respect to arbi-
trary automomorphisms of the domain and codomain of these horizon-
tal arrows of the LGP-Gaussian log-theta-lattice. Finally, the algorith-
mic construction of the poly-isomorphisms of the first display above,
the various related Kummer isomorphisms, and the various evaluation
maps implicit in the portion of the log-Kummer correspondence dis-
cussed in (ii), (c), are compatible with the horizontal arrows of the
LGP-Gaussian log-theta-lattice under consideration, i.e., up to the inde-
terminacies (Ind1), (Ind2), (Ind3) described in (i), (ii) [cf. also the dis-
cussion of Remark 3.11.4 below], in the sense that these constructions
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are stabilized/equivariant/functorial with respect to arbitrary auto-
momorphisms of the domain and codomain of these horizontal arrows of
the LGP-Gaussian log-theta-lattice.

Proof. The various assertions of Theorem 3.11 follow immediately from the defi-
nitions and the references quoted in the statements of these assertions — cf. also
the various related observations of Remarks 3.11.1, 3.11.2, 3.11.3, 3.11.4 below. ©

Remark 3.11.1.

(i) One way to summarize the content of Theorem 3.11 is as follows:

Theorem 3.11 gives an algorithm for describing, up to certain relatively
mild indeterminacies, the LGP-monoids [cf. Fig. 3.1] — i.e., in
essence, the theta values {

qj
2
}
j=1,...,l�

— which are constructed relative to the scheme/ring structure, i.e.,
“arithmetic holomorphic structure”, associated to one vertical line
[i.e., “(n, ◦)” for some fixed n ∈ Z] in the LGP-Gaussian log-theta-lattice
under consideration, in terms of the a priori alien arithmetic holomorphic
structure of another vertical line [i.e., “(n + 1, ◦)”] in the LGP-Gaussian
log-theta-lattice under consideration [cf., especially, the final portion of
Theorem 3.11, (i), concerning functoriality and compatibility with the
permutation symmetries of the étale-picture].

This point of view is consistent with the point of view of the discussion of Remark
1.5.4; [IUTchII], Remark 3.8.3, (iii).

(ii) Although the various versions of the Θ-link are defined [cf. Definition 3.8,
(ii)] as gluings of

the F��×μ-prime-strip whose associated pilot object [cf. [IUTchII], Defi-
nition 4.9, (viii)] is some sort of Θ-pilot object in the domain of the Θ-link

to

the F��×μ-prime-strip whose associated pilot object is some sort of q-pilot
object in the codomain of the Θ-link,

in fact it is not difficult to see that the theory developed in the present series of
papers remains essentially unaffected

even if one replaces this q-pilot F��×μ-prime-strip in the codomain of
the Θ-link by some other F��×μ-prime-strip

such as, for instance, the F��×μ-prime-strip whose associated pilot object is the
qλ-pilot object [i.e., the λ-th power of the q-pilot object, for some positive integer
λ > 1] — cf. the discussion of Remark 3.12.1, (ii), below. One way to formulate this
observation is as follows: The Θ-link compatibility described in Theorem 3.11, (iii),
may be interpreted as an assertion to the effect that the functorial construction
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algorithm for the Θ-pilot object up to certain mild indeterminacies [i.e., (Ind1),
(Ind2), (Ind3)] that is given in Theorem 3.11 may be regarded as

an algorithm whose input data is an F��×μ-prime-strip [i.e., the
F��×μ-prime-strip that appears in the codomain of the Θ-link], and whose
functoriality is with respect to arbitrary isomorphisms of the F��×μ-
prime-strips that appear as input data of the algorithm.

From the point of view of the gluing given by the Θ-link, this functoriality in the
input data given by an F��×μ-prime-strip may be interpreted in the following way:

this functoriality allows one to regard the functorial construction al-
gorithm for the Θ-pilot object up to certain mild indeterminacies that is
given in Theorem 3.11 as an algorithm with respect to which the codomain
Θ±ellNF-Hodge theater of the Θ-link [together with the other Θ±ellNF-
Hodge theaters in the same vertical line of the log-theta-lattice as this
codomain Θ±ellNF-Hodge theater] — i.e., in effect, the q-pilot F��×μ-
prime-strip, equipped with the rigidification determined by the arith-
metic holomorphic structure constituted by this vertical line of Θ±ellNF-
Hodge theaters — is “coric”, i.e., “remains invariant”/“may be regarded
as being held fixed” throughout the execution of the various operations
of the algorithm.

This interpretation will play a crucial role in the application of Theorem 3.11 to
Corollary 3.12 below.

(iii) On the other hand, the étale-picture permutation symmetries dis-
cussed in the final portion of Theorem 3.11, (i) [cf. also the references to these
symmetries in Theorem 3.11, (iii), (c), (d)], may be interpreted as follows: The
output data of the functorial construction algorithm of Theorem 3.11 con-
sists of a representation of the data of Theorem 3.11, (i), (b), (c) [cf. also Theorem
3.11, (iii), (c), (d)], up to certain mild indeterminacies on the mono-analytic étale-
like log-shells of Theorem 3.11, (i), (a), that satisfies the following properties:

· (Input prime-strip link (IPL)) This output data is constructed
in such a way that it is linked/related, via full poly-isomorphisms of
F��×μ-prime-strips induced by operations in the algorithm, to the
input data prime-strip, i.e., the “coric”/“fixed” q-pilot F��×μ-
prime-strip, equipped with its rigidifying arithmetic holomorphic
structure [cf. the discussion of (ii)]. In particular, we note that each of
these “intermediate” F��×μ-prime-strips that appears in the construc-
tion may itself be taken to be both

the input data of the functorial algorithm of Theorem 3.11
[cf. the discussion of (ii)]

and

[by applying the full poly-isomorphisms of F��×μ-prime-strips
that link/relate it to the q-pilot F��×μ-prime-strip] the input
data for the Kummer theory surrounding the q-pilot object
F��×μ-prime-strip in its rigidifying Θ±ellNF-Hodge theater
[cf. the discussion of (ii)].
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At a more explicit level, the linking isomorphisms of “intermediate” F��×μ-
prime-strips are given by composing

· the inverses of the first two lower horizontal arrows of the com-
mutative diagram of Remark 3.10.2, followed by
· the first vertical arrow of this diagram — corresponding to the
Kummer theory portion of Theorem 3.11, (iii), (c), (d) — fol-
lowed by
· the three upper horizontal arrows of the diagram — correspond-
ing to the evaluation map portion of Theorem 3.11, (iii), (c),
(d).

Here, we observe that the final evaluation map portion of this composite
involves a construction of the Θ-pilot object up to certain indeterminacies
[i.e., (Ind1), (Ind2), (Ind3)], which, by applying the discussion of Remark
2.4.2, (v), (vi), may be interpreted — provided that certain sign conditions
[cf. the discussion of Remark 2.4.2, (iv), (vi)] are satisfied, and one takes
into account the considerations discussed in Remarks 3.9.6 [concerning
the product formula], 3.9.7 [concerning inverse systems of direct product
regions] — as a construction of the global realified Frobenioid portion of
an F��×μ-prime-strip, together with various possibilities [corresponding
to the indeterminacies] for the “further rigidification” determined by the
pilot object.

· (Simultaneous holomorphic expressibility (SHE)) The construc-
tion of this output data, as well as the output data itself, is expressed in
terms that are simultaneously valid/executable/well-defined relative to
both

the arithmetic holomorphic structure that gives rise to the
Θ-pilot object in the domain of the Θ-link — i.e., in more
technical language, in terms of/as a function of structures in
the Θ±ellNF-Hodge theater in the domain of the Θ-link —

and

the arithmetic holomorphic structure that gives rise to the
input data prime-strip [i.e., such as the q-pilot F��×μ-prime-
strip, as discussed in (ii)] in the codomain of the Θ-link — i.e., in
more technical language, in terms of/as a function of structures
in the Θ±ellNF-Hodge theater in the codomain of the Θ-link.

In passing, we observe that this property “SHE” may be understood, in
a slightly more concrete way, as corresponding to the fact that the chain
of (sub)quotients considered in Remark 3.9.5, (viii), (ix), forms a closed
loop.

These two fundamental properties of the output data of the algorithm of Theorem
3.11 will play a central role in the application of Theorem 3.11 to Corollary 3.12
below. In the context of these two fundamental properties, it is interesting to ob-
serve that, relative to the analogy between multiradiality and crystals/connections
[cf. [IUTchII], Remark 1.7.1; [IUTchII], Remark 1.9.2, (ii), (iii)],
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the distinction between abstract F��×μ-prime-strips and various specific
realizations of such F��×μ-prime-strips [e.g., arising from the structure
of a Θ±ellNF-Hodge theater]

may be understood as corresponding to

the distinction between reduced characteristic p schemes [where p is a
prime number] and thickenings of such schemes over Zp

in the context of p-adic crystals.

(iv) The SHE property discussed in (iii) may be thought of as a sort of “parallel
transport” mechanism for the Θ-pilot object [cf. the analogy between multiradiality
and connections, as discussed in [IUTchII], Remark 1.7.1; [IUTchII], Remark 1.9.2,
(ii)], up to certain mild indeterminacies, from the [arithmetic holomorphic structure
represented by the Θ±ellNF-Hodge theater in the] domain of the Θ-link to the
[arithmetic holomorphic structure represented by the Θ±ellNF-Hodge theater in
the] codomain of the Θ-link. On the other hand, in this context, it is important to
observe that:

· (Algorithmic parallel transport (APT)) This parallel transport
mechanism does not consist of a simple instance of transport of some
set-theoretic region [such as the region in the tensor packet of log-shells
determined by the Θ-pilot object in the domain of the Θ-link] via some
set-theoretic function. Rather, it consists of a construction algorithm
that is simultaneously valid/executable/well-defined with respect
to the arithmetic holomorphic structures in the domain and codomain of
the Θ-link [cf. the discussion of (iii)].

[In this context, it is important to remember that although this construction algo-
rithm may yield, as output, various “possible regions”, such possible regions cannot
necessarily be directly compared with various structures in the codomain of the
Θ-link. That is to say, such comparisons typically require the application of further
techniques, as discussed in Remark 3.9.5, (vii).] In particular, if one takes the point
of view — as will be done in Corollary 3.12 below! — that one is only interested in
considering the qualitative logical aspects/consequences of the construction
algorithm of Theorem 3.11, then:

· (Hidden internal structures (HIS)) One may [and, indeed, it is
often useful to] regard this construction algorithm of Theorem 3.11 as
a construction algorithm for producing “some sort of output data”
satisfying various properties [cf. (iii)] associated to “some sort of input
data” [cf. (ii)] and forget that this construction algorithm of Theorem
3.11 has anything to do with theta functions [e.g., the theory of [EtTh]]

or theta values [i.e., the
{
qj

2
}
j=1,...,l�

]!

That is to say, theta functions/theta values may be regarded as HIS of the con-
struction algorithm of Theorem 3.11 — somewhat like the internal structure of the
CPU or operating system of a computer! — i.e., internal structures whose technical
details are [of course, of crucial importance from the point of view of the actual
functioning of the construction algorithm, but nonetheless] irrelevant or uninterest-
ing from the point of view of the “end user”, who is only interested in applying the
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construction algorithm to certain input data to obtain certain output data. [Here,
we observe in passing that, relative to this analogy with the internal structure of the
CPU or operating system of a computer, the F��×μ-prime-strips that occur in the
Θ-link may be thought of as a sort connecting cable, i.e., of the sort that is used
to link distinct computers via the internet. That is to say, despite the fact that
such a connecting cable may have a very simple internal structure by comparison to
the computers that it connects, the connection that it furnishes has highly nontrivial
consequences [e.g., as in the case of the internet!] — cf. the discussion in (iii) of the
input prime-strip link (IPL) and the analogy with crystals/connections.] On
the other hand, we observe that, unlike Corollary 3.12 below, which only concerns
qualitative logical aspects/consequences of the construction algorithm of Theorem
3.11, the explicit computation to be performed in [IUTchIV], §1, of the log-
volumes that occur in the statement of Corollary 3.12 makes essential use of the
way in which theta values occur in the construction algorithm of Theorem 3.11.

(v) Thus, in summary, the above discussion yields a slightly different, and in
some sense more detailed, way [by comparison to (i)] to summarize the content
of the construction algorithm of Theorem 3.11 [cf. also the discussion of Remark
3.12.2, (ii), below]: The functorial construction algorithm of Theorem 3.11 is an
algorithm whose

· input data consists solely of an F��×μ-prime-strip, regarded up to
isomorphism [cf. (ii)], and whose

· output data consists of certain data that is linked/related, via full
poly-isomorphisms of F��×μ-prime-strips induced by operations in the
algorithm, to the input data prime-strip, and, moreover, whose con-
struction algorithm may be expressed in terms that are simultaneously
valid/executable/well-defined relative to both the arithmetic holomorphic
structure that gives rise to the Θ-pilot object in the domain of the Θ-link
and the arithmetic holomorphic structure that gives rise to the input
data prime-strip [i.e., such as the q-pilot F��×μ-prime-strip].

This construction algorithm of Theorem 3.11 makes crucial use of certain HIS such
as theta functions and theta values, but these HIS may be ignored, if one is only
interested in the qualitative logical aspects/consequences of the input and output
data of the algorithm.

(vi) In the context of the input prime-strip link (IPL) and simultaneous
holomorphic expressibility (SHE) properties discussed in (iii), it is perhaps of
interest to consider what happens in the case of the very simple, naive example
discussed in Remark 2.2.2, (i). That is to say, suppose that one considers the
“naive version” of the Θ-link given by a correspondence of the form

q �→ qλ

— where λ > 1 is a positive integer — relative to a single arithmetic holomorphic
structure, i.e., in effect, ring structure “R”. [Here, we remark that, unlike the
situation considered in the discussion of (ii), where “qλ” appears in the codomain

of some modified version of the Θ-link, the “qλ” in the present discussion appears

in the domain of some modified version of the Θ-link.] Then the very definition of
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this naive version of the Θ-link yields an explicit construction algorithm for “qλ”,

namely, as the λ-th power of “q”. That is to say, this [essentially tautological!]

explicit construction algorithm for “qλ” satisfies the SHE property considered in

(iii) in the sense that

the tautological construction algorithm given by taking “the λ-th power
of q” may be regarded as simultaneously executable relative to both the

arithmetic holomorphic structure [i.e., in effect, ring structure] that gives
rise to “q” and the arithmetic holomorphic structure [i.e., in effect, ring

structure] that gives rise to “qλ”.

On the other hand, we observe that this sort of [essentially tautological!] SHE
property is achieved as the cost of sacrificing the establishment of the analogue of
the IPL property of (iii), in the sense that

if one restricts oneself to considering “q” and “qλ” inside the fixed con-

tainer constituted by the given arithmetic holomorphic structure
[i.e., in effect, ring structure “R”] that gives rise to “q”, then the tauto-

logical construction algorithm considered above does not induce any sort
of identification between “q” and “qλ”.

(vii) We maintain the notation of (vi). One may then approach the issue of
establishing the analogue of the IPL property of (iii) by introducing a formal
symbol “∗” [corresponding to the abstract F��×μ-prime-strips that appear in the
Θ-link] and then considering one of the following two approaches:

· (Distinct labels) It is essentially a tautology that in order to consider
both of the assignments ∗ �→ q and ∗ �→ qλ simultaneously [i.e., in

order to establish the analogue of the IPL property of (iii)!], it is necessary
to introduce distinct labels “†” and “‡” for the arithmetic holomorphic
structures [i.e., in effect, ring structures] that give rise to “q” and “qλ”,

respectively. That is to say, it is a tautology that one may consider the
assignments

∗ �→ ‡qλ, ∗ �→ †q

simultaneously and without introducing any inconsistencies. On the
other hand, this approach via the introduction of tautologically distinct
labels — which may be summarized via the diagram

∗ �→ ‡qλ ∈ ‡R

‖
...
??...

∗ �→ †q ∈ †R

IPL: holds
SHE: ??

— has the drawback that it is by no means clear, at least in any a priori
sense, how to establish the analogue of the SHE property of (iii), since it
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is by no means clear, at least in any a priori sense, how to “compute” the
relationship between the “†” and “‡” arithmetic holomorphic structures
[i.e., in effect, ring structures].

· (Forced identification of arithmetic holomorphic structures) Of
course, one may then attempt to remedy the drawback that appeared in
the distinct labels approach by simply arbitrarily identifying the “†”
and “‡” arithmetic holomorphic structures [i.e., in effect, ring structures],
that is to say, by simply deleting/forgetting the distinct labels “†” and
“‡”. This approach — which may be summarized via the diagram

∗ �→ qλ ∈ R
...
??...

‖

∗ �→ q ∈ R

IPL: ??
SHE: holds

— allows one to apply the [tautological!] construction algorithm discussed
in (vi). On the other hand, this approach has the drawback that, in order
to consider the assignments

∗ �→ qλ, ∗ �→ q

simultaneously and consistently [i.e., in order to establish the analogue
of the IPL property of (iii)!], one is led [at least in the absence of more
sophisticated machinery!] to regard “q” as being only well-defined up

to possible confusion with “qλ
n

”, for some indeterminate n ∈ Z. That

is to say, in summary, this approach gives rise to a sort of “uninterest-
ing/trivial multiradial representation of “qλ” via

“{qλn}n∈Z”

— which [despite being uninteresting/trivial!] does indeed satisfy the
formal analogues of the IPL and SHE properties of (iii).

(viii) We conclude our discussion of the simple, naive examples discussed in
(vi) and (vii) by considering the relationship between these simple, naive examples
and the theory of the present series of papers. We begin by observing that the
“trivial multiradial representation {qλn}n∈Z” discussed in (vii) is, on the one hand,

of interest, in the context of the IPL and SHE properties of (iii), in that it consti-
tutes a useful elementary “toy model” for considering the qualitative logical
aspects of these fundamental properties satisfied by the multiradial construction
algorithm of Theorem 3.11. On the other hand, this “trivial multiradial represen-
tation” is useless from the point of view of applications such as the log-volume
estimates given in Corollary 3.12 below [cf. the discussion of the final portion of (iv)]
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for the following reasons: This “trivial multiradial representation {qλn}n∈Z”
is obtained by

· allowing for indeterminacies in the value group portion [i.e., “qZ”]

of the data under consideration,

· while the unit group portion [i.e., the “O×μ’s” associated to the local
fields that appear] of the data under consideration is held rigid [i.e., not
subject to indeterminacies];

· only working with the multiplicative structure constituted by the
value group portion of the rings involved, and

· ignoring issues related to the additive structure of the rings involved,
especially, issues related to the intertwining between the additive and
multiplicative structures of these rings [cf. the discussion of Remark 3.12.2,
(ii), below].

By contrast, the log-volume estimates of Corollary 3.12 below rely, in an essential
way, on the fact that in the multiradial construction algorithm of Theorem
3.11:

· the value group portions of the data under consideration [i.e., the
F��-prime-strips associated to the F��×μ-prime-strips that appear in
the definition of the Θ-link] are held rigid [i.e., are not subject to inde-
terminacies],

· while the unit group portions of the data under consideration [i.e., the
F�×μ-prime-strips associated to the F��×μ-prime-strips that appear in
the definition of the Θ-link] are subject to the indeterminacies (Ind1),
(Ind2), (Ind3);

· the multiradial construction algorithm makes use, via the log-Kummer
correspondence, of the structure of the intertwining between the ad-
ditive and multiplicative structures of the rings involved [cf. the dis-
cussion of Remark 3.12.2, (ii), (iii), (iv), (v), below].

Finally, we observe that the technique of assigning distinct labels that appears
in the distinct labels approach discussed in (vii) is formalized in the theory of the
present series of papers by means of the notion of Frobenius-like structures,
i.e., at a more concrete level, mathematical objects that, at least a priori, only
make sense within the Θ±ellNF-Hodge theater labeled “(n,m)” [where n,m ∈ Z] of
the log-theta-lattice. The problem of relating objects arising from Θ±ellNF-Hodge
theaters with distinct labels “(n,m)” is then resolved in the present series of papers
— not by means of “forced identification” [i.e., in the style of the discussion of
(vii)] of Θ±ellNF-Hodge theaters with distinct labels, but rather — by considering
the permutation symmetries [i.e., of the sort discussed in the final portion of
Theorem 3.11, (i)] satisfied by étale-like structures. Here, it is perhaps useful
to recall that the fundamental model for such permutation symmetries is, in the
notation of [IUTchII], Example 1.8, (i),

Π −→ G ←− Π

— where the arrows “−→” and “←−” denote the poly-morphism given by compos-
ing the natural surjection Π � Π/Δ with the full poly-isomorphism Π/Δ

∼→ G,
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and we observe that the diagram of this display admits a permutation symmetry
that switches these two arrows “−→” and “←−”.

Remark 3.11.2.

(i) In Theorem 3.11, (i), we do not apply the formalism or language developed
in [IUTchII], §1, for discussing multiradiality. Nevertheless, the approach taken in
Theorem 3.11, (i) — i.e., by regarding the collection of data (a), (b), (c) up to the
indeterminacies given by (Ind1), (Ind2) — to constructing “multiradial repre-
sentations” amounts, in essence, to a special case of the tautological approach
to constructing multiradial environments discussed in [IUTchII], Example 1.9, (ii).
That is to say, this tautological approach is applied to the vertically coric con-
structions of Proposition 3.5, (i); 3.10, (i), which, a priori, are uniradial in the sense
that they depend, in an essential way, on the arithmetic holomorphic structure
constituted by a particular vertical line — i.e., “(n, ◦)” for some fixed n ∈ Z — in
the LGP-Gaussian log-theta-lattice under consideration.

(ii) One important underlying aspect of the tautological approach to multira-
diality discussed in (i) is the treatment of the various labels that occur in the
multiplicative and additive combinatorial Teichmüller theory associated to

the D-Θ±ellNF-Hodge theater n,◦HT D-Θ±ellNF under consideration [cf. the theory
of [IUTchI], §4, §6]. The various transitions between types of labels is illustrated
in Fig. 3.3 below. Here, we recall that:

(a) the passage from the F�±
l -symmetry to labels ∈ Fl forms the content

of the associated D-Θ±ell-Hodge theater [cf. [IUTchI], Remark 6.6.1];

(b) the passage from labels ∈ Fl to labels ∈ |Fl| forms the content of the
functorial algorithm of [IUTchI], Proposition 6.7;

(c) the passage from labels ∈ |Fl| to ±-processions forms the content of
[IUTchI], Proposition 6.9, (ii);

(d) the passage from the F�
l -symmetry to labels ∈ F�

l forms the content
of the associated D-ΘNF-Hodge theater [cf. [IUTchI], Remark 4.7.2, (i)];

(e) the passage from labels ∈ F�
l to �-processions forms the content of

[IUTchI], Proposition 4.11, (ii);

(f) the compatibility between �-processions and ±-processions, relative
to the natural inclusion of labels F�

l ↪→ |Fl|, forms the content of [IUTchI],
Proposition 6.9, (iii).

Here, we observe in passing that, in order to perform these various transitions, it
is absolutely necessary to work with all of the labels in Fl or |Fl|, i.e., one does
not have the option of “arbitrarily omitting certain of the labels” [cf. the discussion
of [IUTchII], Remark 2.6.3; [IUTchII], Remark 3.5.2]. Also, in this context, it
is important to note that there is a fundamental difference between the labels ∈
Fl, |Fl|,F�

l —which are essentially arithmetic holomorphic in the sense that they
depend, in an essential way, on the various local and global arithmetic fundamental
groups involved — and the index sets of the mono-analytic ±-processions
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that appear in the multiradial representation of Theorem 3.11, (i). Indeed, these
index sets are just “naked sets” which are determined, up to isomorphism, by their
cardinality. In particular,

the construction of these index sets is independent of the various arith-
metic holomorphic structures involved.

Indeed, it is precisely this property of these index sets that renders them suitable
for use in the construction of the multiradial representations of Theorem 3.11, (i).
As discussed in [IUTchI], Proposition 6.9, (i), for j ∈ {0, . . . , l�}, there are precisely
j+1 possibilities for the “element labeled j” in the index set of cardinality j+1; this
leads to a total of (l�+1)! = l±! possibilities for the “label identification” of elements
of index sets of capsules appearing in the mono-analytic ±-processions of Theorem
3.11, (i). Finally, in this context, it is of interest to recall that the “rougher approach
to symmetrization” that arises when one works with mono-analytic processions is
[“downward”] compatible with the finer arithmetically holomorphic approach to
symmetrization that arises from the F�±

l -symmetry [cf. [IUTchII], Remark 3.5.3;
[IUTchII], Remark 4.5.2, (ii); [IUTchII], Remark 4.5.3, (ii)].

F�±
l -symmetry

⇓

F�
l -symmetry

⇓

labels ∈ Fl
=⇒

labels ∈ |Fl|

⇓

⇐=
labels ∈ F�

l

⇓

±-procession ⇐= �-procession

Fig. 3.3: Transitions from symmetries to labels to processions
in a Θ±ellNF-Hodge theater

(iii) Observe that the “Kummer isomorphism of global realified Frobe-
nioids” that appears in the theory of [IUTchII], §4 — i.e., more precisely, the

various versions of the isomorphism of Frobenioids “‡C� ∼→ D�(‡D�)” discussed
in [IUTchII], Corollary 4.6, (ii), (v) — is constructed by considering isomorphisms
between local value groups obtained by forming the quotient of the multiplica-
tive groups associated to the various local fields that appear by the subgroups of
local units [cf. [IUTchII], Propositions 4.2, (ii); 4.4, (ii)]. In particular, such
“Kummer isomorphisms” fail to give rise to a “log-Kummer correspondence”,
i.e., they fail to satisfy mutual compatibility properties of the sort discussed in
the final portion of Theorem 3.11, (ii). Indeed, as discussed in Remark 1.2.3, (i) [cf.
also [IUTchII], Remark 1.12.2, (iv)], at v ∈ Vnon, the operation of forming a multi-
plicative quotient by local units corresponds, on the opposite side of the log-link, to



INTER-UNIVERSAL TEICHMÜLLER THEORY III 169

forming an additive quotient by the submodule obtained as the pv-adic logarithm
of these local units. This is precisely why, in the context of Theorem 3.11, (ii), we

wish to work with the global non-realified/realified Frobenioids “F�
MOD”, “F�R

MOD”
that arise from copies of “Fmod” which satisfy a “log-Kummer correspondence”, as
described in the final portion of Theorem 3.11, (ii) [cf. the discussion of Remark
3.10.1]. On the other hand, the pathologies/indeterminacies that arise from work-
ing with global arithmetic line bundles by means of various local data at v ∈ V in
the context of the log-link are formalized via the theory of the global Frobenioids
“F�

mod”, together with the “upper semi-compatibility” of local units discussed
in the final portion of Theorem 3.11, (ii) [cf. also the discussion of Remark 3.10.1].

(iv) In the context of the discussion of global realified Frobenioids given in (iii),
we observe that, in the case of the global realified Frobenioids [constructed by means

of “F�R
MOD”!] that appear in the F�-prime-strips n,mF�

LGP, F
�(n,◦HT D-Θ±ellNF)LGP

[cf. Theorem 3.11, (ii), (c)], the various localization functors that appear [i.e.,
the various “‡ρv” of [IUTchI], Definition 5.2, (iv); cf. also the isomorphisms of
the second display of [IUTchII], Corollary 4.6, (v)] may be reconstructed, in the
spirit of the discussion of Remark 3.9.2, “by considering the effect of multiplication
by elements of the [non-realified] global monoids under consideration on the log-
volumes of the various local mono-analytic tensor packets that appear”. [We leave
the routine details to the reader.] This reconstructibility, together with the mutual
incompatibilities observed in (iii) above that arise when one attempts to work si-
multaneously with log-shells and with the splitting monoids of the F�-prime-strip
n,mF�

LGP at v ∈ Vgood, are the primary reasons for our omission of explicit mention

of the splitting monoids at v ∈ Vgood [which in fact appear as part of the data
“n,◦R” considered in the discussion of Theorem 3.11, (iii), (c)] from the statement
of Theorem 3.11 [cf. Theorem 3.11, (i), (b); Theorem 3.11, (ii), (b); Theorem 3.11,

(iii), (c), in the case of v ∈ Vbad].

Remark 3.11.3. Before proceeding, we pause to discuss the relationship between
the log-Kummer correspondence of Theorem 3.11, (ii), and the Θ×μ

LGP-link
compatibility of Theorem 3.11, (iii).

(i) First, we recall [cf. Remarks 1.4.1, (i); 3.8.2] that the various squares that
appear in the [LGP-Gaussian] log-theta-lattice are far from being [1-]commutative!
On the other hand, the bi-coricity of F�×μ-prime-strips and mono-analytic log-
shells discussed in Theorem 1.5, (iii), (iv), may be intepreted as the statement
that

the various squares that appear in the [LGP-Gaussian] log-theta-lattice
are in fact [1-]commutative with respect to [the portion of the data
associated to each “•” in the log-theta-lattice that is constituted by] these
bi-coric F�×μ-prime-strips and mono-analytic log-shells.

(ii) Next, let us observe that in order to relate both the unit and value group

portions of the domain and codomain of the Θ×μ
LGP-link corresponding to adjacent

vertical lines — i.e., (n− 1, ∗) and (n, ∗) — of the [LGP-Gaussian] log-theta-lattice
to one another,

it is necessary to relate these unit and value group portions to one
another by means of a single Θ×μ

LGP-link, i.e., from (n− 1,m) to (n,m).
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That is to say, from the point of view of constructing the various LGP-monoids
that appear in the multiradial representation of Theorem 3.11, (i), one is tempted
to work with correspondences between value groups on adjacent vertical lines that
lie in a vertically once-shifted position — i.e., say, at (n − 1,m) and (n,m) —
relative to the correspondence between unit groups on adjacent vertical lines, i.e.,
say, at (n− 1,m− 1) and (n,m− 1). On the other hand, such an approach fails, at
least from an a priori point of view, precisely on account of the noncommutativity
discussed in (i). Finally, we observe that in order to relate both unit and value

groups by means of a single Θ×μ
LGP-link,

it is necessary to avail oneself of the Θ×μ
LGP-link compatibility properties

discussed in Theorem 3.11, (iii) — i.e., of the theory of §2 and [IUTchI],
Example 5.1, (v); [IUTchI], Definition 5.2, (vi), (viii) — so as to insulate
the cyclotomes that appear in the Kummer theory surrounding the
étale theta function and κ-coric functions from the AutF�×μ(−)-
indeterminacies that act on the F�×μ-prime-strips involved as a result
of the application of the Θ×μ

LGP-link

— cf. the discussion of Remarks 2.2.1, 2.3.2.

(iii) As discussed in (ii) above, a “vertically once-shifted” approach to relating
units on adjacent vertical lines fails on account of the noncommutativity discussed in
(i). Thus, one natural approach to treating the units in a “vertically once-shifted”
fashion — which, we recall, is necessary in order to relate the LGP-monoids on
adjacent vertical lines to one another! — is to apply the bi-coricity of mono-
analytic log-shells discussed in (i). On the other hand, to take this approach means
that one must work in a framework that allows one to relate [cf. the discussion
of Remark 1.5.4, (i)] the “Frobenius-like” structure constituted by the Frobenioid-

theoretic units [i.e., which occur in the domain and codomain of the Θ×μ
LGP-link] to

corresponding étale-like structures simultaneously via both

(a) the usual Kummer isomorphisms — i.e., so as to be compatible with
the application of the compatibility properties of Theorem 3.11, (iii), as
discussed in (ii) — and

(b) the composite of the usual Kummer isomorphisms with [a single iterate
of] the log-link — i.e., so as to be compatible with the bi-coric treatment
of mono-analytic log-shells [as well as the closely related construction of
LGP-monoids] proposed above.

Such a framework may only be realized if one relates Frobenius-like structures to
étale-like structures in a fashion that is invariant with respect to pre-composition
with various iterates of the log-link [cf. the final portions of Propositions 3.5, (ii);
3.10, (ii)]. This is precisely what is achieved by the log-Kummer correspondences
of the final portion of Theorem 3.11, (ii).

(iv) The discussion of (i), (ii), (iii) above may be summarized as follows: The
log-Kummer correspondences of the final portion of Theorem 3.11, (ii), allow
one to

(a) relate both the unit and the value group portions of the domain and

codomain of the Θ×μ
LGP-link corresponding to adjacent vertical lines of the

[LGP-Gaussian] log-theta-lattice to one another, in a fashion that
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(b) insulates the cyclotomes/Kummer theory surrounding the étale
theta function and κ-coric functions involved from the AutF�×μ(−)-
indeterminacies that act on the F�×μ-prime-strips involved as a result
of the application of the Θ×μ

LGP-link [cf. Theorem 3.11, (iii)], and, moreover,

(c) is compatible with the bi-coricity of the mono-analytic log-shells
[cf. Theorem 1.5, (iv)], hence also with the operation of relating the
LGP-monoids that appear in the multiradial representation of Theorem
3.11, (i), corresponding to adjacent vertical lines of the [LGP-Gaussian]
log-theta-lattice to one another.

These observations will play a key role in the proof of Corollary 3.12 below.

Remark 3.11.4. In the context of the compatibility discussed in the final portion
of Theorem 3.11, (iii), (c), (d), we make the following observations.

(i) First of all, we observe that consideration of the log-Kummer corre-
spondence in the context of the compatibility discussed in the final portion of
Theorem 3.11, (iii), (c), (d), amounts precisely to forgetting the labels of the
various Frobenius-like “•’s” [cf. the notation of the final display of Proposition
1.3, (iv)], i.e., to identifying data associated to these Frobenius-like “•’s” with
the corresponding data associated to the étale-like “◦”. In particular, [cf. the
discussion of Theorem 3.11, (ii), preceding the statement of (Ind3)] multiplication
of the data considered in Theorem 3.11, (ii), (b), (c), by roots of unity must be
“identified” with the identity automorphism. Put another way, this data of Theo-
rem 3.11, (ii), (b), (c), may only be considered up to multiplication by roots of
unity. Thus, for instance, it only makes sense to consider orbits of this data rel-
ative to multiplication by roots of unity [i.e., as opposed to specific elements within
such orbits]. This does not cause any problems in the case of the theta values
considered in Theorem 3.11, (ii), (b), precisely because the theory developed so far
was formulated precisely in such a way as to be invariant with respect to such
indeterminacies [i.e., multiplication of the theta values by 2l-th roots of unity —
cf. the left-hand portion of Fig. 3.4 below]. In the case of the number fields [i.e.,
copies of Fmod] considered in Theorem 3.11, (ii), (c), the resulting indeterminacies
do not cause any problems precisely because, in the theory of the present series of
papers, ultimately one is only interested in the global Frobenioids [i.e., copies of
“F�

MOD” and “F�
mod” and their realifications] associated to these number fields by

means of constructions that only involve

· local data, together with
· the entire set — i.e., which, unlike specific elements of this set, is
stabilized by multiplication by roots of unity of the number field [cf. the
left-hand portion of Fig. 3.5 below] — constituted by the number field
under consideration

[cf. the constructions of Example 3.6, (i), (ii); the discussion of Remark 3.9.2]. In
this context, we recall from the discussion of Remark 2.3.3, (vi), that the operation
of forgetting the labels of the various Frobenius-like “•’s” also gives rise to
various indeterminacies in the cyclotomic rigidity isomorphisms applied in
the log-Kummer correspondence. On the other hand, in the case of the theta
values considered in Theorem 3.11, (ii), (b), we recall from this discussion of
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Remark 2.3.3, (vi), that such indeterminacies are in fact trivial [cf. the right-hand
portion of Fig. 3.4 below]. In the case of the number fields [i.e., copies of Fmod]
considered in Theorem 3.11, (ii), (c), we recall from this discussion of Remark
2.3.3, (vi), that such cyclotomic rigidity isomorphism indeterminacies amount to
a possible indeterminacy of multiplication by ±1 on copies of the multiplicative
group F×mod [cf. the right-hand portion of Fig. 3.5 below], i.e., indeterminacies
which do not cause any problems, again, precisely as a consequence of the fact that
such indeterminacies stabilize the entire set [i.e., as opposed to specific elements
of this set] constituted by the number field under consideration. Finally, in this
context, we observe [cf. the discussion at the beginning of Remark 2.3.3, (viii)] that,
in the case of the various local data at v ∈ Vnon that appears in Theorem 3.11, (ii),
(a), and gives rise to the holomorphic log-shells that serve as containers for
the data considered in Theorem 3.11, (ii), (b), (c), the corresponding cyclotomic
rigidity isomorphism indeterminacies are in fact trivial. Indeed, this triviality
may be understood as a consequence of the fact the following observation: Unlike
the case with the cyclotomic rigidity isomorphisms that are applied in the context of
the geometric containers [cf. the discussion of Remark 2.3.3, (i)] that appear in
the case of the data of Theorem 3.11, (ii), (b), (c), i.e., which give rise to “vicious
circles”/“loops” consisting of identification morphisms that differ from the usual
natural identification by multiplication by elements of the submonoid Iord ⊆ ±N≥1

[cf. the discussion of Remark 2.3.3, (vi)],

the cyclotomic rigidity isomorphisms that are applied in the context of
this local data — even when subject to the various identifications aris-
ing from forgetting the labels of the various Frobenius-like “•’s”! —
only give rise to natural isomorphisms between “geometric” cyclo-
tomes arising from the geometric fundamental group and “arithmetic”
cyclotomes arising from copies of the absolute Galois group of the base
[local] field [cf. [AbsTopIII], Corollary 1.10, (c); [AbsTopIII], Proposition
3.2, (i), (ii); [AbsTopIII], Remark 3.2.1].

That is to say, no “vicious circles”/“loops” arise since there is never any confu-
sion between such “geometric” and “arithmetic” cyclotomes. [A similar phenome-
non may be observed at v ∈ Varc with regard to the Kummer structures considered
in [IUTchI], Example 3.4, (i).] Thus, in summary,

the various indeterminacies that, a priori, might arise in the context
of the portions of the log-Kummer correspondence that appear in the
final portion of Theorem 3.11, (iii), (c), (d), are in fact “invisible”, i.e.,
they have no substantive effect on the objects under consideration

[cf. also the discussion of (ii) below]. This is precisely the sense in which the
“compatibility” stated in the final portion of Theorem 3.11, (iii), (c), (d), is to
be understood.

(ii) In the context of the discussion of (i), we make the following observation:

the discussion in (i) of indeterminacies that, a priori, might arise in
the context of the portions of the log-Kummer correspondence that
appear in the final portion of Theorem 3.11, (iii), (c), (d), is complete,
i.e., there are no further possible indeterminacies that might appear.
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Indeed, this observation is a consequence of the “general nonsense” observation
[cf., e.g., the discussion of [FrdII], Definition 2.1, (ii)] that, in general, “Kummer
isomorphisms” are completely determined by the following data:

(a) isomorphisms between the respective cyclotomes under consideration;
(b) the Galois action on roots of elements of the monoid under considera-

tion.

That is to say, the compatibility of all of the various constructions that appear
with the actions of the relevant Galois groups [or arithmetic fundamental groups]
is tautological, so there is no possibility that further indeterminacies might arise
with respect to the data of (b). On the other hand, the effect of the indeterminacies
that might arise with respect to the data of (a) was precisely the content of the
latter portion of the discussion of (i) [i.e., of the discussion of Remark 2.3.3, (vi),
(viii)].

(iii) In the context of the discussion of (i), we observe that the “invisible
indeterminacies” discussed in (i) in the case of the data considered in Theorem
3.11, (ii), (b), (c), may be thought of as a sort of analogue for this data of the
indeterminacy (Ind3) [cf. the discussion of the final portion of Theorem 3.11,
(ii)] to which the data of Theorem 3.11, (ii), (a), is subject. By contrast, the
multiradiality and radial/coric decoupling discussed in Remarks 2.3.2, 2.3.3
[cf. also Theorem 3.11, (iii), (c), (d)] may be understood as asserting precisely
that the indeterminacies (Ind1), (Ind2) discussed in Theorem 3.11, (i), which
act, essentially, on the data of Theorem 3.11, (ii), (a), have no effect on the
geometric containers [cf. the discussion of Remark 2.3.3, (i)] that underlie [i.e.,
prior to execution of the relevant evaluation operations] the data considered in
Theorem 3.11, (ii), (b), (c).

μ2l �
{
qj

2
}
j=1,...,l�

� {1} (⊆ ±N≥1)

Fig. 3.4: Invisible indeterminacies acting on theta values

μ(F×mod) � F×mod � {±1} (⊆ ±N≥1)

Fig. 3.5: Invisible indeterminacies acting on copies of F×mod

The following result may be thought of as a relatively concrete consequence of
the somewhat abstract content of Theorem 3.11.

Corollary 3.12. (Log-volume Estimates for Θ-Pilot Objects) Suppose
that we are in the situation of Theorem 3.11. Write

− |log(Θ)| ∈ R
⋃
{+∞}

for the procession-normalized mono-analytic log-volume [i.e., where the av-
erage is taken over j ∈ F�

l — cf. Remark 3.1.1, (ii), (iii), (iv); Proposition 3.9,
(i), (ii); Theorem 3.11, (i), (a)] of the holomorphic hull [cf. Remark 3.9.5, (i)]
of the union of the possible images of a Θ-pilot object [cf. Definition 3.8, (i)],
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relative to the relevant Kummer isomorphisms [cf. Theorem 3.11, (ii)], in the
multiradial representation of Theorem 3.11, (i), which we regard as subject to
the indeterminacies (Ind1), (Ind2), (Ind3) described in Theorem 3.11, (i), (ii).
Write

− |log(q)| ∈ R

for the procession-normalized mono-analytic log-volume of the image of a
q-pilot object [cf. Definition 3.8, (i)], relative to the relevant Kummer isomor-
phisms [cf. Theorem 3.11, (ii)], in the multiradial representation of Theorem
3.11, (i), which we do not regard as subject to the indeterminacies (Ind1), (Ind2),
(Ind3) described in Theorem 3.11, (i), (ii). Here, we recall the definition of the
symbol “�” as the result of identifying the labels

“0” and “〈F�
l 〉”

[cf. [IUTchII], Corollary 4.10, (i)]. In particular, |log(q)| > 0 is easily computed

in terms of the various q-parameters of the elliptic curve EF [cf. [IUTchI],

Definition 3.1, (b)] at v ∈ Vbad ( �= ∅). Then it holds that − |log(Θ)| ∈ R, and

− |log(Θ)| ≥ − |log(q)|

— i.e., CΘ ≥ −1 for any real number CΘ ∈ R such that − |log(Θ)| ≤ CΘ · |log(q)|.

Proof. We begin by observing that, since |log(q)| > 0, we may assume without loss

of generality in the remainder of the proof that

− |log(Θ)| < 0

whenever − |log(Θ)| ∈ R [i.e., since an inequality − |log(Θ)| ≥ 0 would imply
that − |log(Θ)| ≥ 0 > −|log(q)|]. Now suppose that we are in the situation of

Theorem 3.11. For n ∈ Z, write

n,◦U def
=

{
n,◦Uj,vQ

}
j∈|Fl|,vQ∈VQ

⊆ n,◦UQ def
=

{
n,◦UQ

j,vQ

}
j∈|Fl|,vQ∈VQ

[where we observe that the “⊆” constitutes a slight abuse of notation] for the

collection of subsets n,◦Uj,vQ ⊆ n,◦UQ
j,vQ

def
= IQ(S

±
j+1

;n,◦D�vQ) [cf. Theorem 3.11, (i),

(a)] given by the various unions, for j ∈ |Fl| and vQ ∈ VQ, of the possible images
of a Θ-pilot object [cf. Definition 3.8, (i)], relative to the relevant Kummer
isomorphisms [cf. Theorem 3.11, (ii)], in the multiradial representation of
Theorem 3.11, (i), which we regard as subject to the indeterminacies (Ind1),
(Ind2), (Ind3) described in Theorem 3.11, (i), (ii);

n,◦U =
{
n,◦U j,vQ

}
j∈|Fl|,vQ∈VQ

⊆ n,◦UQ =
{
n,◦UQ

j,vQ

}
j∈|Fl|,vQ∈VQ

[where we observe that the “⊆” constitutes a slight abuse of notation] for the col-

lection of subsets n,◦U j,vQ ⊆ n,◦UQ
j,vQ

= IQ(S
±
j+1

;n,◦D�vQ
) [cf. Theorem 3.11, (i), (a)]

given by the various holomorphic hulls [cf. Remark 3.9.5, (i)] of the subsets
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n,◦Uj,vQ
⊆ IQ(S

±
j+1

;n,◦D�vQ), relative to the arithmetic holomorphic structure labeled

“n, ◦”. Here, we observe that one concludes easily from the [easily verified] com-
pactness of the 1,◦Uj,vQ

[where j ∈ |Fl|, vQ ∈ VQ], together with the definition of the
log-volume, that the quantity − |log(Θ)| is finite, hence negative [by our assumption

at the beginning of the present proof!]. In particular, we observe [cf. Remark 2.4.2,
(iv), (v), (vi); Remark 3.9.6; Remark 3.9.7; the discussion of “IPL” in Remark
3.11.1, (iii)] that

we may restrict our attention to possible images of a Θ-pilot object
that correspond to data [i.e., collections of regions] that may be interpreted
as an F��-prime-strip.

Now we proceed to review precisely what is achieved by the various portions of
Theorem 3.11 and, indeed, by the theory developed thus far in the present series of
papers. This review leads naturally to an interpretation of the theory that gives rise
to the inequality asserted in the statement of Corollary 3.12. For ease of reference,
we divide our discussion into steps, as follows.

(i) In the following discussion, we concentrate on a single arrow — i.e., a single

Θ×μ
LGP-link

0,0HT Θ±ellNF Θ×μ
LGP−→ 1,0HT Θ±ellNF

— of the [LGP-Gaussian] log-theta-lattice under consideration. This arrow consists
of the full poly-isomorphism of F��×μ-prime-strips

0,0F��×μ
LGP

∼→ 1,0F��×μ



[cf. Definition 3.8, (ii)]. This poly-isomorphism may be thought of as consisting of
a “unit portion” constituted by the associated [full] poly-isomorphism of F�×μ-
prime-strips

0,0F�×μ
LGP

∼→ 1,0F�×μ



and a “value group portion” constituted by the associated [full] poly-isomorphism
of F��-prime-strips

0,0F��
LGP

∼→ 1,0F��



[cf. Definition 2.4, (iii)]. This value group portion of the Θ×μ
LGP-link maps Θ-pilot

objects of 0,0HT Θ±ellNF to q-pilot objects of 1,0HT Θ±ellNF [cf. Remark 3.8.1].

(ii) Whereas the units of the Frobenioids that appear in the F�×μ-prime-strip
0,0F�×μ

LGP are subject to AutF�×μ(−)-indeterminacies [i.e., “(Ind1), (Ind2)” — cf.
Theorem 3.11, (iii), (a), (b)], the cyclotomes that appear in the Kummer theory
surrounding the étale theta function and κ-coric functions, i.e., which give
rise to the “value group portion” 0,0F��

LGP, are insulated from these AutF�×μ(−)-
indeterminacies — cf. Theorem 3.11, (iii), (c), (d); the discussion of Remark
3.11.3, (iv); Fig. 3.6 below. Here, we recall that in the case of the étale theta
function, this follows from the theory of §2, i.e., in essence, from the cyclotomic
rigidity of mono-theta environments, as discussed in [EtTh]. On the other
hand, in the case of κ-coric functions, this follows from the algorithms discussed in
[IUTchI], Example 5.1, (v); [IUTchI], Definition 5.2, (vi), (viii).
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Θ-related objects NF-related objects

require
mono-analytic local LGP-monoids copies of Fmod

containers,
Kummer theory [cf. Proposition [cf. Proposition
incompatible 3.4, (ii)] 3.7, (i)]

with (Ind1), (Ind2)

independent of
mono-analytic étale theta global ∞κ-coric,
containers, function, local

Kummer theory mono-theta ∞κ-, ∞κ×-coric
compatible environments structures

with (Ind1), (Ind2) [cf. Corollary 2.3] [cf. Remark 2.3.2]
[cf. Remark 2.3.3]

Fig. 3.6: Relationship of theta- and number field-related objects
to mono-analytic containers

(iii) In the following discussion, it will be of crucial importance to relate si-

multaneously both the unit and the value group portions of the Θ×μ
LGP-link(s)

involved on the 0-column [i.e., the vertical line indexed by 0] of the log-theta-lattice
under consideration to the corresponding unit and value group portions on the
1-column [i.e., the vertical line indexed by 1] of the log-theta-lattice under con-
sideration. On the other hand, if one attempts to relate the unit portions via
one Θ×μ

LGP-link [say, from (0,m) to (1,m)] and the value group portions via another

Θ×μ
LGP-link [say, from (0,m′) to (1,m′), for m′ �= m], then the non-commutativity

of the log-theta-lattice renders it practically impossible to obtain conclusions that
require one to relate both the unit and the value group portions simultaneously [cf.
the discussion of Remark 3.11.3, (i), (ii)]. This is precisely why we concentrate on

a single Θ×μ
LGP-link [cf. (i)].

(iv) The issue discussed in (iii) is relevant in the context of the present dis-
cussion for the following reason. Ultimately, we wish to apply the bi-coricity of
the units [cf. Theorem 1.5, (iii), (iv)] in order to compute the 0-column Θ-pilot
object in terms of the arithmetic holomorphic structure of the 1-column. In order
to do this, one must work with units that are vertically once-shifted [i.e., lie at
(n,m− 1)] relative to the value group structures involved [i.e., which lie at (n,m)]
— cf. the discussion of Remark 3.11.3, (ii). The solution to the problem of si-
multaneously accommodating these apparently contradictory requirements — i.e.,
“vertical shift” vs. “impossibility of vertical shift” [cf. (iii)] — is given precisely
by working, on the 0-column, with structures that are invariant with respect to
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vertical shifts [i.e., “(0,m) �→ (0,m+ 1)”] of the log-theta-lattice [cf. the discus-
sion surrounding Remark 1.2.2, (iii), (a)] such as vertically coric structures [i.e.,
indexed by “(n, ◦)”] that are related to the “Frobenius-like” structures which are
not vertically coric by means of the log-Kummer correspondences of Theorem
3.11, (ii). Here, we note that this “solution” may be implemented only at the cost
of admitting the “indeterminacy” constituted by the upper semi-compatibility
of (Ind3).

(v) Thus, we begin our computation of the 0-column Θ-pilot object in terms of
the arithmetic holomorphic structure of the 1-column by relating the units on the
0- and 1-columns by means of the unit portion

0,0F�×μ
LGP

∼→ 1,0F�×μ



of the Θ×μ
LGP-link from (0, 0) to (1, 0) [cf. (i)] and then applying the bi-coricity of

the units of Theorem 1.5, (iii), (iv). In particular, the mono-analytic log-shell
interpretation of this bi-coricity given in Theorem 1.5, (iv), will be applied to regard
these mono-analytic log-shells as “multiradial mono-analytic containers” [cf.
the discussion of Remark 1.5.2, (i), (ii), (iii)] for the various [local and global] value
group structures that constitute the Θ-pilot object on the 0-column — cf. Fig.
3.6 above. [Here, we observe that the parallel treatment of “theta-related” and
“number field-related” objects is reminiscent of the discussion of [IUTchII], Remark
4.11.2, (iv).] That is to say, we will relate the various Frobenioid-theoretic [i.e.,
“Frobenius-like” — cf. Remark 1.5.4, (i)]

· local units at v ∈ V,
· splitting monoids at v ∈ Vbad, and
· global Frobenioids

indexed by (0,m), for m ∈ Z, to the vertically coric [i.e., indexed by “(0, ◦)”]
versions of these bi-coric mono-analytic containers by means of the log-Kummer
correspondences of Theorem 3.11, (ii), (a), (b), (c) — i.e., by varying the “Kum-
mer input index” (0,m) along the 0-column.

(vi) In the context of (v), it is useful to recall that the log-Kummer correspon-
dences of Theorem 3.11, (ii), (b), (c), are obtained precisely as a consequence of
the splittings, up to roots of unity, of the relevant monoids into unit and value
group portions constructed by applying the Galois evaluation operations dis-
cussed in Remarks 2.2.2, (iii) [in the case of Theorem 3.11, (ii), (b)], and 2.3.2 [in
the case of Theorem 3.11, (ii), (c)]. Moreover, we recall that the Kummer theory
surrounding the local LGP-monoids of Proposition 3.4, (ii), depends, in an essential
way, on the theory of [IUTchII], §3 [cf., especially, [IUTchII], Corollaries 3.5, 3.6],
which, in turn, depends, in an essential way, on the Kummer theory surrounding
mono-theta environments established in [EtTh]. Thus, for instance, we recall
that the discrete rigidity established in [EtTh] is applied so as to avoid working,

in the tempered Frobenioids that occur, with “Ẑ-divisors/line bundles” [i.e.,

“Ẑ-completions” of Z-modules of divisors/line bundles], which are fundamentally
incompatible with conventional notions of divisors/line bundles, hence, in partic-
ular, with mono-theta-theoretic cyclotomic rigidity [cf. Remark 2.1.1, (v)]. Also,
we recall that “isomorphism class compatibility” — i.e., in the terminology of



178 SHINICHI MOCHIZUKI

[EtTh], “compatibility with the topology of the tempered fundamental group”
[cf. the discussion at the beginning of Remark 2.1.1] — allows one to apply the
Kummer theory of mono-theta environments [i.e., the theory of [EtTh]] relative
to the ring-theoretic basepoints that occur on either side of the log-link [cf.
Remarks 2.1.1, (ii), and 2.3.3, (vii); [IUTchII], Remark 3.6.4, (i)], for instance, in
the context of the log-Kummer correspondence for the splitting monoids of local
LGP-monoids, whose construction depends, in an essential way [cf. the theory of
[IUTchII], §3, especially, [IUTchII], Corollaries 3.5, 3.6], on the conjugate syn-
chronization arising from the F�±

l -symmetry. That is to say,

it is precisely by establishing this conjugate synchronization arising from
the F�±

l -symmetry relative to these basepoints that occur on either side
of the log-link that one is able to conclude the crucial compatibility of
this conjugate synchronization with the log-link [cf. Remark 1.3.2].

A similar observation may be made concerning theMLF-Galois pair approach to the
cyclotomic rigidity isomorphism that is applied at v ∈ Vgood ⋂Vnon [cf. [IUTchII],
Corollary 1.11, (a); [IUTchII], Remark 1.11.1, (i), (a); [IUTchII], Proposition 4.2,
(i); [AbsTopIII], Proposition 3.2, (iv), as well as Remark 2.3.3, (viii), of the present
paper], which amounts, in essence, to

computations involving the Galois cohomology groups of various subquo-
tients — such as torsion subgroups [i.e., roots of unity] and associated
value groups — of the [multiplicative] module of nonzero elements of an
algebraic closure of the mixed characteristic local field involved

[cf. the proof of [AbsAnab], Proposition 1.2.1, (vii)] — i.e., algorithms that are
manifestly compatible with the topology of the profinite groups involved [cf. the
discussion of Remark 2.3.3, (viii)], in the sense that they do not require one to pass
to Kummer towers [cf. the discussion of [IUTchII], Remark 3.6.4, (i)], which are
fundamentally incompatible with the ring structure of the fields involved. Here, we
note in passing that the corresponding property for v ∈ Varc [cf. [IUTchII], Propo-
sition 4.4, (i)] holds as a consequence of the interpretation discussed in [IUTchI],
Remark 3.4.2, of Kummer structures in terms of co-holomorphicizations. On
the other hand, the approaches to cyclotomic rigidity just discussed for v ∈ Vbad

and v ∈ Vgood differ quite fundamentally from the approach to cyclotomic rigidity
taken in the case of [global] number fields in the algorithms described in [IUTchI],
Example 5.1, (v); [IUTchI], Definition 5.2, (vi), (viii), which depend, in an essential
way, on the property

Q>0

⋂
Ẑ× = {1}

— i.e., which is fundamentally incompatible with the topology of the profinite
groups involved [cf. the discussion of Remark 2.3.3, (vi), (vii), (viii)] in the sense
that it clearly cannot be obtained as some sort of limit of corresponding properties of
(Z/NZ)×! Nevertheless, with regard to uni-/multi-radiality issues, this approach
to cyclotomic rigidity in the case of the number fields resembles the theory of
mono-theta-theoretic cyclotomic rigidity at v ∈ Vbad in that it admits a natural
multiradial formulation [cf. Theorem 3.11, (iii), (d); the discussion of Remarks
2.3.2, 3.11.3], in sharp contrast to the essentially uniradial nature of the approach

to cyclotomic rigidity via MLF-Galois pairs at v ∈ Vgood ⋂Vnon [cf. the discussion
of [IUTchII], Remark 1.11.3]. These observations are summarized in Fig. 3.7 below.
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Finally, we recall that [one verifies immediately that] the various approaches to
cyclotomic rigidity just discussed are mutually compatible in the sense that they
yield the same cyclotomic rigidity isomorphism in any setting in which more than
one of these approaches may be applied.

Approach to Uni-/multi- Compatibility with
cyclotomic radiality F�±

l -symmetry,
rigidity profinite/tempered topologies,

ring structures, log-link

mono-theta multiradial compatible
environments

MLF-Galois pairs, uniradial compatible
via Brauer groups

number fields, via multiradial incompatible

Q>0

⋂
Ẑ× = {1}

Fig. 3.7: Three approaches to cyclotomic rigidity

(vii) In the context of the discussion in the final portion of (vi), it is of in-
terest to recall that the constructions underlying the crucial bi-coricity theory of
Theorem 1.5, (iii), (iv), depend, in an essential way, on the conjugate synchro-
nization arising from the F�±

l -symmetry, which allows one to relate the local
monoids and Galois groups at distinct labels ∈ |Fl| to one another in a fashion that
is simultaneously compatible both with

· the vertically coric structures and Kummer theory that give rise to
the log-Kummer correspondences of Theorem 3.11, (ii),

and with

· the property of distinguishing [i.e., not identifying] data indexed by
distinct labels ∈ |Fl|

— cf. the discussion of Remark 1.5.1, (i), (ii). Since, moreover, this crucial conju-
gate synchronization is fundamentally incompatible with the F�

l -symmetry, it is
necessary to work with these two symmetries separately, as was done in [IUTchI],
§4, §5, §6 [cf. [IUTchII], Remark 4.7.6]. Here, it is useful to recall that the F�

l -
symmetry also plays a crucial role, in that it allows one to “descend to Fmod” at the
level of absolute Galois groups [cf. [IUTchII], Remark 4.7.6]. On the other hand,
both the F�±

l - and F�
l -symmetries share the property of being compatible with the

vertical coricity and relevant Kummer isomorphisms of the 0-column — cf.
the log-Kummer correspondences of Theorem 3.11, (ii), (b) [in the case of the
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F�±
l -symmetry], (c) [in the case of the F�

l -symmetry]. Here, we recall that the

vertically coric versions of both the F�±
l - and the F�

l -symmetries depend, in an
essential way, on the arithmetic holomorphic structure of the 0-column, hence
give rise to multiradial structures via the tautological approach to constructing
such structures discussed in Remark 3.11.2, (i), (ii).

(viii) In the context of (vii), it is useful to recall that in order to construct
the F�±

l -symmetry, it is necessary to make use of global ±-synchronizations of
various local ±-indeterminacies. Since the local tempered fundamental groups at
v ∈ Vbad do not extend to a “global tempered fundamental group”, these global ±-
synchronizations give rise to profinite conjugacy indeterminacies in the verti-
cally coric construction of the LGP-monoids [i.e., the theta values at torsion points]
given in [IUTchII], §2, which are resolved by applying the theory of [IUTchI], §2 —
cf. the discussion of [IUTchI], Remark 6.12.4, (iii); [IUTchII], Remark 4.5.3, (iii);
[IUTchII], Remark 4.11.2, (iii).

(ix) In the context of (vii), it is also useful to recall the important role played,
in the theory of the present series of papers, by the various “copies of Fmod”,
i.e., more concretely, in the form of the various copies of the global Frobenioids
“F�

MOD”, “F�
mod” and their realifications. That is to say, the ring structure of

the global field Fmod allows one to bridge the gap — i.e., furnishes a translation
apparatus — between the multiplicative structures constituted by the global
realified Frobenioids related via the Θ×μ

LGP-link and the additive representations of
these global Frobenioids that arise from the “mono-analytic containers” furnished
by the mono-analytic log-shells [cf. (v)]. Here, the precise compatibility of
the ingredients for “F�

MOD” with the log-Kummer correspondence renders “F�
MOD”

better suited to describing the relation to the Θ×μ
LGP-link [cf. Remark 3.10.1, (ii)].

On the other hand, the local portion of “F�
mod” — i.e., which is subject to “upper

semi-compatibility” [cf. (Ind3)], hence only “approximately compatible” with the
log-Kummer correspondence — renders it better suited to explicit estimates of
global arithmetic degrees, by means of log-volumes [cf. Remark 3.10.1, (iii)].

(x) Thus, one may summarize the discussion thus far as follows. The theory of
“Kummer-detachment” — cf. Remarks 1.5.4, (i); 2.1.1; 3.10.1, (ii), (iii) — fur-
nished by Theorem 3.11, (ii), (iii), allows one to relate the Frobenioid-theoretic
[i.e., “Frobenius-like”] structures that appear in the domain [i.e., at (0, 0)] of the

Θ×μ
LGP-link [cf. (i)] to the multiradial representation described in Theorem 3.11,

(i), (a), (b), (c), but only at the cost of introducing the indeterminacies

(Ind1) — which may be thought of as arising from the requirement of com-
patibility with the permutation symmetries of the étale-picture [cf.
Theorem 3.11, (i)];

(Ind2) — which may be thought of as arising from the requirement of com-
patibility with the AutF�×μ(−)-indeterminacies that act on the do-

main/codomain of the Θ×μ
LGP-link [cf. (ii); Theorem 3.11, (i), (iii)], i.e.,

with the horizontal arrows of the log-theta-lattice;

(Ind3) — which may be thought of as arising from the requirement of compat-
ibility with the log-Kummer correspondences of Theorem 3.11, (ii),
i.e., with the vertical arrows of the log-theta-lattice.
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The various indeterminacies (Ind1), (Ind2), (Ind3) to which the multiradial repre-
sentation is subject may be thought of as data that describes some sort of “formal
quotient”, like the “fine moduli spaces” that appear in algebraic geometry.
In this context, the procession-normalized mono-analytic log-volumes [i.e.,
where the average is taken over j ∈ F�

l ] of Theorem 3.11, (i), (a), (c), furnish a
means of constructing a sort of associated “coarse space” or “inductive limit”
[of the “inductive system” constituted by this “formal quotient”] — i.e., in the
sense that [one verifies immediately — cf. Proposition 3.9, (ii) — that] the re-
sulting log-volumes ∈ R are invariant with respect to the indeterminacies (Ind1),
(Ind2), and have the effect of converting the indeterminacy (Ind3) into an in-
equality [from above]. Moreover, the log-link compatibility of the various log-
volumes that appear [cf. Proposition 3.9, (iv); the final portion of Theorem 3.11,
(ii)] ensures that these log-volumes are compatible with [the portion of the “formal
quotient”/“inductive system” constituted by] the various arrows [i.e., Kummer iso-
morphisms and log-links] of the log-Kummer correspondence of Theorem 3.11,
(ii). Here, we note that the averages over j ∈ F�

l that appear in the definition of
the procession-normalized volumes involved may be thought of as a consequence
of the F�

l -symmetry acting on the labels of the theta values that give rise to the
LGP-monoids — cf. also the definition of the symbol “�” in [IUTchII], Corollary
4.10, (i), via the identification of the symbols “0” and “〈F�

l 〉”; the discussion of
Remark 3.9.3. Also, in this context, it is of interest to observe that the various
tensor products that appear in the various local mono-analytic tensor packets
that arise in the multiradial representation of Theorem 3.11, (i), (a), have the ef-
fect of identifying the operation of “multiplication by elements of Z” — and hence
also the effect on log-volumes of such multiplication operations! — at different
labels ∈ F�

l .

(xi) For ease of reference, we divide this step into substeps, as follows.

(xi-a) Consider a q-pilot object at (1, 0), which we think of — relative to the
relevant copy of “F�

mod” — in terms of the holomorphic log-shells constructed

at (1, 0) [cf. the discussion of Remark 3.12.2, (iv), (v), below]. Then the Θ×μ
LGP-

link from (0, 0) to (1, 0) may be interpreted as a sort of gluing isomorphism
that relates the arithmetic holomorphic structure — i.e., the “conventional
ring/scheme-theory” — at (1, 0) to the arithmetic holomorphic structure at (0, 0)
in such a way that the Θ-pilot object at (0, 0) [thought of as an object of the
relevant global realified Frobenioid] corresponds to the q-pilot object at (1, 0) [cf.
(i); the discussion of Remark 3.12.2, (ii), below].

(xi-b) On the other hand, the multiradial construction algorithm of Theorem
3.11, which was summarized in the discussion of (x), yields a construction of a
collection of possibilities of output data contained in

(0,◦UQ ⊇) 0,◦U ∼→ 1,◦U (⊆ 1,◦UQ)

— where the isomorphism “
∼→ ” arises from the permutation symmetries dis-

cussed in the final portion of Theorem 3.11, (i) — that satisfies the input prime-
strip link (IPL) and simultaneous holomorphic expressibility (SHE) prop-
erties discussed in Remark 3.11.1, (iii), (iv), (v) [cf. also the discussion of “possible
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images” at the beginning of the present proof]. Here, with regard to (IPL), we ob-
serve that the F��-prime-strip portion of the link/relationship of this collection
of possibilities of output data to the input data (F��×μ-)prime-strip [cf. Re-
mark 3.11.1, (ii)] consists precisely of (full poly-)isomorphisms of F��-prime-
strips, while the corresponding link/relationship for F�×μ-prime-strips is some-
what more complicated, as a result of the indeterminacies (Ind1), (Ind2), (Ind3).
Also, in this context, we observe that, although the multiradial construction algo-
rithm of Theorem 3.11 in fact involves the Θ-pilot object at (0, 0), in the present
discussion of Step (xi), we shall only be concerned with qualitative logical as-
pects/consequences of this construction algorithm, i.e., with the

· input prime-strip link (IPL),
· simultaneous holomorphic expressibility (SHE), and
· algorithmic parallel transport (APT)

properties discussed in Remark 3.11.1, (iii), (iv), (v). That is to say, we shall
take the point of view of “temporarily forgetting” — cf. the discussion of
hidden internal structures (HIS) in Remark 3.11.1, (iv) — the fact that the
multiradial construction algorithm of Theorem 3.11 in fact involves Θ-pilot objects,
theta functions/values, mono-theta environments. Alternatively, in the discussion
to follow, we shall, roughly speaking, think of the multiradial construction algorithm
of Theorem 3.11 as

“some” algorithm that transforms a certain type of input data into a
certain type of output data and, moreover, satisfies certain properties
(IPL) and (SHE).

(xi-c) Thus, the discussion of the (IPL) and (SHE) properties in (xi-b) may be
summarized as follows:

The multiradial construction algorithm of Theorem 3.11 yields a collection
of possibilities of output data in 1,◦U (⊆ 1,◦UQ) that are linked/related
[cf. (IPL)], via isomorphisms of F��-prime-strips, to the representa-
tion [via the log-Kummer correspondence in the 1-column] of the q-pilot
object at (1, 0) on 1,◦UQ, and, moreover, whose construction may be ex-
pressed entirely relative to the arithmetic holomorphic structure in
the 1-column [cf. (SHE)].

Here, we recall that, in more concrete language, this “arithmetic holomorphic struc-
ture in the 1-column” amounts, in essence, to the ring structure labeled “1, ◦”.
Moreover, by slightly enlarging the collection of possibilities of output data under
consideration by working with the holomorphic hull 1,◦U (⊇ 1,◦U), we obtain
output data that is expressed — not in terms of regions contained in various tensor
products of local fields labeled “1, ◦” [i.e., more concretely, various isomorphs of
“Kv”, for v ∈ V], but rather — in terms of localizations of arithmetic vector
bundles over certain local rings labeled “1, ◦” [i.e., more concretely, various iso-
morphs of “OKv”, for v ∈ V] — cf. the discussion of Remarks 3.9.5, (vii), (Ob1),

(Ob2), (Ob5); 3.12.2, (v), below. Such an expression in terms of “localizations of
arithmetic vector bundles” is necessary in order to render the output data in a form
that is comparable to the representation of the q-pilot object [i.e., which arises
from a certain arithmetic line bundle] at (1, 0) on 1,◦UQ.
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(xi-d) The discussion of (xi-c) thus yields the following conclusion:

The multiradial construction algorithm of Theorem 3.11, followed by for-
mation of the holomorphic hull, yields a collection of possibilities of out-
put data in 1,◦U that are linked/related [cf. (IPL)], via isomorphisms
of F��-prime-strips, to the representation [via the log-Kummer cor-
respondence in the 1-column] of the q-pilot object at (1, 0) on 1,◦UQ,
and, moreover, whose construction may be expressed entirely relative to
localizations of arithmetic vector bundles over rings that arise in
the arithmetic holomorphic structure in the 1-column [cf. (SHE)].

Here, we observe that these “localizations of arithmetic vector bundles” are [unlike
the arithmetic line bundle that gives rise to the q-pilot object] of rank > 1. Moreover,
the q-pilot object is defined at the level of realifications of Frobenioids of [global]
arithmetic line bundles. Thus, it is only by forming [a suitable positive tensor power
of] the determinant of the localizations of arithmetic vector bundles mentioned in
the above display [cf. Remark 3.9.5, (vii), (Ob3), (Ob4)] and then applying the
[suitably normalized, with respect to j ∈ |Fl|] log-volume to various regions —
i.e., the region 1,◦U and the region that arises from the representation of the q-pilot
object at (1, 0) on 1,◦UQ — in 1,◦UQ [cf. Remark 3.9.5, (vii), (Ob3), (Ob4), (Ob6),
(Ob7), (Ob9)], that we are able to obtain completely comparable objects [cf.
Remarks 3.9.5, (vii), (Ob5), (Ob6), (Ob7), (Ob8), (Ob9); 3.9.5, (viii), (ix)], namely,

R≤−|log(Θ)|
def
= {λ ∈ R | λ ≤ −|log(Θ)|} ⊆ R; − |log(q)| ∈ R

—where we recall that, by definition, − |log(Θ)| is the [negative— cf. the discussion

of “possible images” at the beginning of the present proof] log-volume of 1,◦U , while
− |log(q)| is the log-volume of the region that arises from the representation of

the q-pilot object at (1, 0) on 1,◦UQ. In this context, it is useful to recall from
Proposition 3.9, (iii) [cf. also the discussion of Remarks 3.9.2, 3.9.6], that global
arithmetic degrees of objects of global realified Frobenioids may be interpreted
as log-volumes [cf. also the discussion of Remarks 1.5.2, (iii); 3.10.1, (iv), as
well as of Remark 3.12.2, (v), below]. Finally, in this context, we observe [cf.
the first display of the present (xi-d)] that it is of crucial importance to apply
the log-Kummer correspondence in the 1-column [cf. the discussion of log-
Kummer correspondences in Remark 3.9.5, (vii), (Ob7), (Ob8); Remark 3.9.5, (viii),
(sQ4); Remark 3.9.5, (ix); the final portion of Remark 3.9.5, (x); the discussion
of the final portion of Remark 3.12.2, (v), below], in order to rectify the vertical
shift/mismatch [cf. the discussion of (iii), (iv) in the case of the 0-column] between

the unit portion of 1,0F��×μ

 and the log-shells arising from [the image via the

relevant Kummer isomorphisms of] this unit portion, which give rise to the tensor
packets of log-shells that constitute 1,◦U .

(xi-e) Next, let us recall that the relationship, i.e., that arises by applying the
log-volume to the pilot-object, between the pilot-object log-volume − |log(q)|
∈ R and the input data (F��×μ-)prime-strip is precisely the relationship pre-
scribed/imposed by the arithmetic holomorphic structure in the 1-column,
i.e., via the representation of the input data (F��×μ-)prime-strip on 1,◦U relative
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to this 1-column arithmetic holomorphic structure. That is to say, “expressibil-
ity relative to the arithmetic holomorphic structure in the 1-column” [cf. (SHE)]
amounts precisely to

“expressibility via operations that are valid/executable/well-defined even
when subject to the condition that the pilot-object log-volume asso-
ciated to the input data (F��×μ-)prime-strip [which is, of course, linked/
related, via isomorphisms of F��-prime-strips, to the possible output data
F��-prime-strips!] be equal to the fixed value − |log(q)| ∈ R”.

In particular, the discussion of (xi-d) thus yields the following conclusion:

The multiradial construction algorithm of Theorem 3.11, followed by for-
mation of the holomorphic hull and application of the log-volume, yields a
collection of possible log-volumes of pilot-object output data

R≤−|log(Θ)| ⊆ R

that are linked/related [cf. (IPL)], via isomorphisms of F��-prime-
strips, to the pilot-object log-volume

− |log(q)| ∈ R

of the input data (F��×μ-)prime-strip [cf. (SHE)].

(xi-f) Thus, we conclude from (xi-e) that

the construction of the subset R≤−|log(Θ)| ⊆ R of possible pilot-object

log-volumes of output data is subject to the condition that this con-
struction of output data possibilities constitutes, in particular, a construc-
tion [perhaps only up to some sort of “approximation”, as a result of vari-
ous indeterminacies] of the pilot-object log-volume of the input data
(F��×μ-)prime-strip, namely, − |log(q)| ∈ R.

The inclusion − |log(q)| ∈ R≤−|log(Θ)|, hence also the inequality

− |log(q)| ≤ − |log(Θ)| ∈ R

— i.e., the conclusion that CΘ ≥ −1 for any CΘ ∈ R such that − |log(Θ)| ≤
CΘ · |log(q)| — in the statement of Corollary 3.12, then follows formally.

(xi-g) Thus, in summary,

the multiradial construction algorithm of Theorem 3.11, followed by
formation of the holomorphic hull and application of the log-volume,
yields two tautologically equivalent ways to compute the log-volume
of the q-pilot object at (1, 0) — cf. Fig. 3.8 below.
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Fig. 3.8: Two tautologically equivalent ways to compute
the log-volume of the q-pilot object at (1, 0)

(xi-h) In this context, it is useful to recall that the above argument depends, in
an essential way [cf. the discussion of (ii), (vi)], on the theory of [EtTh], which does
not admit any evident generalization to the case of N -th tensor powers of Θ-pilot
objects, for N ≥ 2. That is to say, the log-volume of such an N -th tensor power of a
Θ-pilot object must always be computed as the result of multiplying the log-volume
of the original Θ-pilot object by N — cf. Remark 2.1.1, (iv); [IUTchII], Remark
3.6.4, (iii), (iv). In particular, although the analogue of the above argument for such
an N -th tensor power would lead to sharper inequalities than the inequalities
obtained here, it is difficult to see how to obtain such sharper inequalities via a
routine generalization of the above argument. In fact, as we shall see in [IUTchIV],
these sharper inequalities are known to be false [cf. [IUTchIV], Remark 2.3.2, (ii)].

(xii) In the context of the argument of (xi), it is useful to observe the important

role played by the global realified Frobenioids that appear in the Θ×μ
LGP-link. That

is to say, since ultimately one is only concerned with the computation of log-volumes,
it might appear, at first glance, that it is possible to dispense with the use of
such global Frobenioids and instead work only with the various local Frobenioids,
for v ∈ V, that are directly related to the computation of log-volumes. On the
other hand, observe that since the isomorphism of [local or global!] Frobenioids

arising from the Θ×μ
LGP-link only preserves isomorphism classes of objects of

these Frobenioids [cf. the discussion of Remark 3.6.2, (i)], to work only with local
Frobenioids means that one must contend with the indeterminacy of not knowing
whether, for instance, such a local Frobenioid object at some v ∈ Vnon corresponds
to a given open submodule of the log-shell at v or to, say, the pNv -multiple of this
submodule, for N ∈ Z. Put another way, one must contend with the indeterminacy
arising from the fact that, unlike the case with the global Frobenioids “F�

MOD”,

“F�R
MOD”, objects of the various local Frobenioids that arise admit endomorphisms
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which are not automorphisms. This indeterminacy has the effect of rendering
meaningless any attempt to perform a precise log-volume computation as in (xi).
©

Remark 3.12.1.

(i) In [IUTchIV], we shall be concerned with obtaining more explicit upper
bounds on − |log(Θ)|, i.e., estimates “CΘ” as in the statement of Corollary 3.12.

(ii) It is not difficult to verify that, for λ ∈ Q>0, one may obtain a similar
theory to the theory developed in the present series of papers [cf. the discussion of

Remark 3.11.1, (ii)] for “generalized Θ×μ
LGP-links” of the form

qλ �→ q

(
12
...

(l�)2

)

— i.e., so the theory developed in the present series of papers corresponds to the
case of λ = 1. This sort of “generalized Θ×μ

LGP-link” is roughly reminiscent of —
but by no means equivalent to! — the sort of issues considered in the discussion
of Remark 2.2.2, (i). Here, we observe that raising to the λ-th power on the “q

side” differs quite fundamentally from raising to the λ-th power on the “q(1
2...(l�)2)

side”, an issue that is discussed briefly [in the case of λ = N ] in the final portion of

Step (xi) of the proof of Corollary 3.12. That is to say, “generalized Θ×μ
LGP-links”

as in the above display differ fundamentally both from the situation of Remark
2.2.2, (i), and the situation discussed in the final portion of Step (xi) of the proof of
Corollary 3.12 in that the theory of the first power of the étale theta function is
left unchanged [i.e., relative to the theory developed in the present series of papers]
— cf. the discussion of Remark 2.2.2, (i); Step (xi) of the proof of Corollary 3.12.

At any rate, in the case of “generalized Θ×μ
LGP-links” as in the above display, one

may apply the same arguments as the arguments used to prove Corollary 3.12 to
conclude the inequality

CΘ ≥ −λ
— i.e., which is sharper, for λ < 1, than the inequality obtained in Corollary 3.12 in
the case of λ = 1. In fact, however, such sharper inequalities will not be of interest
to us, since, in [IUTchIV], our estimates for the upper bound CΘ will be sufficiently
rough as to be unaffected by adding a constant of absolute value ≤ 1.

(iii) In the context of the discussion of (ii) above, it is of interest to note that
the multiradial theory of mono-theta-theoretic cyclotomic rigidity, and, in
particular, the theory of the first power of the étale theta function, may be
regarded as a theory that concerns a sort of “canonical profinite volume” on
the elliptic curves under consideration associated to the first power of the am-
ple line bundle corresponding to the étale theta function. This point of view is
also of interest in the context of the discussion of various approaches to cyclotomic
rigidity summarized in Fig. 3.7 [cf. also the discussion of Remark 2.3.3]. Indeed,

the elementary fact “Q>0

⋂
Ẑ× = {1}”, which plays a key role in the multi-

radial algorithms for cyclotomic rigidity isomorphisms in the number field case
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[cf. [IUTchI], Example 5.1, (v), as well as the discussion of Remarks 2.3.2, 2.3.3
of the present paper], may be regarded as an immediate consequence of an easy
interpretation of the product formula in terms of the geometry of the domain in
the archimedean completion of the number field Q determined by the inequality
“≤ 1”, i.e., a domain which may be thought of as a sort of concrete geometric
representation of a “canonical unit of volume” of the number field Q.

Remark 3.12.2.

(i) One of the main themes of the present series of papers is the issue of
dismantling the two underlying combinatorial dimensions of a number field
— cf. Remarks 1.2.2, (vi), of the present paper, as well as [IUTchI], Remarks 3.9.3,
6.12.3, 6.12.6; [IUTchII], Remarks 4.7.5, 4.7.6, 4.11.2, 4.11.3, 4.11.4. The principle
examples of this topic may be summarized as follows:

(a) splittings of various monoids into unit and value group portions;

(b) separating the “Fl” arising from the l-torsion points of the elliptic curve
— which may be thought of as a sort of “finite approximation” of Z! —
into a [multiplicative] F�

l -symmetry — which may also be thought of
as corresponding to the global arithmetic portion of the arithmetic funda-
mental groups involved — and a(n) [additive] F�±

l -symmetry — which
may also be thought of as corresponding to the geometric portion of the
arithmetic fundamental groups involved;

(c) separating the ring structures of the various global number fields
that appear into their respective underlying additive structures — which
may be related directly to the various log-shells that appear — and their
respective underlying multiplicative structures — which may be related
directly to the various Frobenioids that appear.

From the point of view of Theorem 3.11, example (a) may be seen in the “non-
interference” properties that underlie the log-Kummer correspondences of
Theorem 3.11, (ii), (b), (c), as well as in the Θ×μ

LGP-link compatibility properties
discussed in Theorem 3.11, (ii), (c), (d).

(ii) On the other hand, another important theme of the present §3 consists
of the issue of “reassembling” these two dismantled combinatorial dimensions by
means of the multiradial mono-analytic containers furnished by the mono-
analytic log-shells — cf. Fig. 3.6 — i.e., of exhibiting the extent to which these
two dismantled combinatorial dimensions cannot be separated from one another,
at least in the case of the Θ-pilot object, by describing the “structure of the
intertwining” between these two dimensions that existed prior to their separa-
tion. From this point of view, one may think of the multiradial representations
discussed in Theorem 3.11, (i) [cf. also Theorem 3.11, (ii), (iii)], as the final output
of this “reassembling procedure” for Θ-pilot objects. From the point of view of
example (a) of the discussion of (i), this “reassembling procedure” allows one to
compute/estimate the value group portions of various monoids of arithmetic
interest in terms of the unit group portions of these monoids. It is precisely
these estimates that give rise to the inequality obtained in Corollary 3.12. That is
to say, from the point of view of dismantling/reassembling the intertwining between
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value group and unit group portions, the argument of the proof of Corollary 3.12
may be summarized as follows:

(aitw) When considered from the point of view of log-volumes of Θ-pilot

and q-pilot objects, the correspondence of the Θ×μ
LGP-link [i.e., that sends

Θ-pilot objects to q-pilot objects] may seem a bit “mysterious” or even,
at first glance, “self-contradictory” to some readers.

(bitw) On the other hand, this correspondence of the Θ×μ
LGP-link is made possi-

ble by the fact that one works with Θ-pilot or q-pilot objects in terms of
“sufficiently weakened data” [namely, the F��×μ-prime-strips that

appear in the definition of the Θ×μ
LGP-link], i.e., data that is “sufficiently

weak” that one can no longer distinguish between Θ-pilot and q-pilot ob-
jects.

(citw) Thus, if one thinks of the F��×μ-prime-strips that appear in the domain

and codomain of the Θ×μ
LGP-link as a “single abstract F��×μ-prime-

strip” that is regarded/only known up to isomorphism, then the issue
of which log-volume such an abstract F��×μ-prime-strip corresponds to
[cf. (aitw)] is precisely the issue of “which intertwining between value
group and unit group portions” one considers, i.e., the issue of “which
arithmetic holomorphic structure” [of the arithmetic holomorphic struc-

tures that appear in the domain and codomain of the Θ×μ
LGP-link] that one

works in. Put another way, it is essentially a tautological consequence of
the fact that these two arithmetic holomorphic structures in the domain
and codomain of the Θ×μ

LGP-link are distinguished from one another that

the Θ×μ
LGP-link yields a situation in which both the Θ-intertwining [i.e.,

the intertwining associated to the Θ-pilot object in the domain of the
Θ×μ

LGP-link] and the q-intertwining [i.e., the intertwining associated to

the q-pilot object in the codomain of the Θ×μ
LGP-link] are simultaneously

valid, i.e., (
q-intertwining holds

)
∧

(
Θ-intertwining holds

)
— cf. the discussion of the “distinct labels approach” in Remark 3.11.1,
(vii).

(ditw) On the other hand, from the point of view of the analogy between
multiradiality and the classical theory of parallel transport via con-
nections [cf. [IUTchII], Remark 1.7.1], the multiradial representa-
tion of Theorem 3.11 [cf. also the discussion of Remark 3.11.1, especially
Remark 3.11.1, (ii), (iii)] asserts that, up to the relatively mild “mon-
odromy” constituted by the indeterminacies (Ind1), (Ind2), (Ind3), one
may “parallel transport” or “confuse” the Θ-pilot object in the do-
main of the Θ×μ

LGP-link, i.e., the Θ-pilot object represented relative to its
“native intertwining/arithmetic holomorphic structure”, with the Θ-pilot
object represented relative to the “alien intertwining/arithmetic holomor-

phic structure” in the codomain of the Θ×μ
LGP-link.

(eitw) In particular, one may fix the arithmetic holomorphic structure of the

codomain of the Θ×μ
LGP-link, i.e., the “native intertwining/arithmetic holo-

morphic structure” associated to the q-pilot object in the codomain of the
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Θ×μ
LGP-link, and then, by applying (ditw) and working up to the indeter-

minacies (Ind1), (Ind2), (Ind3) [cf. also the subtleties discussed in (iv),
(v) below; Remark 3.9.5, (vii), (viii), (ix)], construct the “native in-
tertwining/arithmetic holomorphic structure” associated to the Θ-pilot

object in the domain of the Θ×μ
LGP-link as a mathematical structure that

is intrinsically associated to the underlying structure of — hence, in
particular, simultaneously with/without invalidating the conditions
imposed by — the “native intertwining/arithmetic holomorphic structure”

associated to the q-pilot object in the codomain of the Θ×μ
LGP-link [cf.

the discussion of Remark 3.11.1, especially Remark 3.11.1, (ii), (iii)]. In-
deed, this point of view is precisely the point of view that is taken in the
proof of Corollary 3.12 [cf., especially, Step (xi)].

(fitw) One way of summarizing the situation described in (eitw) is in terms
of logical relations as follows. The multiradial representation of The-
orem 3.11 [cf. also the discussion of Remark 3.11.1] may be thought of
[cf. the first “=⇒” of the following display] as an algorithm for construct-
ing, up to suitable indeterminacies [cf. the discussion of (eitw)], the
“Θ-intertwining” as a mathematical structure that is intrinsically as-
sociated to the underlying structure of — hence, in particular, simulta-
neously with/without invalidating [cf. the logical relator “AND”, i.e.,
“∧”] the conditions imposed by — the “q-intertwining”, while holding

the “single abstract F��×μ-prime-strip” of the discussion of (bitw),
(citw) fixed, i.e., in symbols:(
q-itw.

)
=⇒

(
q-itw.

)
∧

(
Θ-itw./indets.

)
=⇒

(
Θ-itw./indets.

)
— where the second “=⇒” of the above display is purely formal; “itw.”
and “/indets.” are to be understood, respectively as abbreviations for “in-
tertwining holds” and “up to suitable indeterminacies”. Here, we observe
that

the “∧” of the above display may be regarded as the “image” of,
hence, in particular, as a consequence of, the “∧” in the display
of (citw), via the various (sub)quotient operations discussed
in Remark 3.9.5, (viii), i.e., whose subtle compatibility properties
allow one to conclude the “∧” of the above display from the “∧”
in the display of (citw).

Thus, at the level of logical relations,

the q-intertwining, hence also the log-volume of the q-pilot ob-
ject in the codomain of the Θ×μ

LGP-link, may be thought of as a
special case of the Θ-intertwining, i.e., at a more concrete
level, of the log-volume of the Θ-pilot object in the domain of the
Θ×μ

LGP-link, regarded up to suitable indeterminacies.

Corollary 3.12 then follows, essentially formally.

Alternatively, from the point of view of “[very rough!] toy models”, i.e., whose goal
lies solely in representing certain overall qualitative aspects of a situation, one may
think of the discussion of (aitw) ∼ (fitw) given above in the following terms:
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(atoy) Consider two distinct copies qR and ΘR of the topological field of
real numbers R, equipped with labels “q” and “Θ”, together with an
abstract symbol “∗” and assignments

λq : ∗ �→ q(−h) ∈ qR, λΘ : ∗ �→ Θ(−2h) ∈ ΘR,

— where, in the present discussion, we shall write “q(−)”, “Θ(−)” to
denote the respective elements/subsets of qR, ΘR determined by an ele-
ment/subset “(−)” of R; h ∈ R>0 is a positive real number that we are
interested in bounding from above. If one forgets the distinct labels “q”
and “Θ”, then these two assignments λq, λΘ are mutually incompatible
and cannot be considered simultaneously, i.e., they contradict one another
[in the sense that R � −h �= −2h ∈ R].

(btoy) One aspect of the situation of (atoy) that renders the simultaneous con-
sideration of the two assignments λq, λΘ valid — i.e., at the level of logical
relations, (

∗ �→ q(−h) ∈ qR
)
∧

(
∗ �→ Θ(−2h) ∈ ΘR

)
— is the use of the abstract symbol “∗”, i.e., which is, a priori, entirely
unrelated to any copies of R [such as qR, ΘR].

(ctoy) The other aspect of the situation of (atoy) that renders the simultaneous
consideration of the two assignments λq, λΘ valid— i.e., at the level of
logical relations,(

∗ �→ q(−h) ∈ qR
)
∧

(
∗ �→ Θ(−2h) ∈ ΘR

)
— is the use of the distinct labels “q”, “Θ” for the copies of R that
appear in the assignments λq, λΘ.

(dtoy) Now let us consider an alternative approach to constructing the assign-
ment λΘ: We construct λΘ as the “assignment with indeterminacies”

λInd
Θ : ∗ �→ ΘR≤−2h+ε ⊆ ΘR

— where R≤−2h+ε
def
= {x ∈ R | x ≤ −2h+ε} ⊆ R; ε ∈ R>0 is some positive

number.

(etoy) Now suppose that one verifies that one may construct the “assignment
with indeterminacies” λInd

Θ of (dtoy) as a mathematical structure that is
intrinsically associated to the underlying structure of the assignment
λq — hence, in particular, simultaneously with/without invalidating
the conditions imposed by — the assignment λq, even if one forgets the
labels “q”, “Θ” that were appended to copies of R, i.e., even if one identifies
qR, ΘR, in the usual way, with R [cf. the properties (IPL), (SHE) of
Remark 3.11.1, (iii)]. That is to say, we suppose that one can show that
the assignments determined, respectively, by λq, λ

Ind
Θ , by identifying copies

of R, namely,
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∗ �→ −h ∈ R, ∗ �→ R≤−2h+ε ⊆ R

— where the latter assignment may be considered as the assignment that
maps ∗ to “some [undetermined] element ∈ R≤−2h+ε” — are such that
one may construct the latter assignment as a mathematical structure that
is intrinsically associated to — hence, in particular, simultaneously
with/without invalidating the conditions imposed by — the former as-
signment. Here, we note that it is not particularly relevant that “R≤−2h+ε”
arose as some sort of “perturbation via indeterminacies of 2h” [cf. the
property (HIS) of Remark 3.11.1, (iv)].

(ftoy) The discussion of (etoy) may be summarized at the level of logical relations
[cf. the displays of (btoy), (ctoy)] as follows:

(
∗ �→ −h

)
=⇒

(
∗ �→ −h

)
∧

(
∗ �→ R≤−2h+ε

)
=⇒

(
∗ �→ R≤−2h+ε

)
— that is to say, “∗ �→ −h” may be regarded as a special case of
“∗ �→ R≤−2h+ε”, which, in turn, may be regarded as a “version with
indeterminacies” of “∗ �→ −2h”. One then concludes formally that
−h ∈ R≤−2h+ε and hence that

−h ≤ −2h+ ε, i.e., h ≤ ε

— that is to say, the desired upper bound on h.

(iii) One fundamental aspect of the theory that renders possible the “reassem-
bling procedure” discussed in (ii) [cf. the discussion of Step (iv) of the proof of
Corollary 3.12] is the “juggling of �, �” [cf. the discussion of Remark 1.2.2, (vi)]
effected by the log-links, i.e., the vertical arrows of the log-theta-lattice. This
“juggling of �, �” may be thought of as a sort of combinatorial way of represent-
ing the arithmetic holomorphic structure associated to a vertical line of the
log-theta-lattice. Indeed, at archimedean primes, this juggling amounts essentially
to multiplication by ±i, which is a well-known method [cf. the notion of an “al-
most complex structure”!] for representing holomorphic structures in the classical
theory of differential manifolds. On the other hand, it is important to recall in
this context that this “juggling of �, �” is precisely what gives rise to the up-
per semi-compatibility indeterminacy (Ind3) [cf. Proposition 3.5, (ii); Remark
3.10.1, (i)].

(iv) In the context of the discussion of (ii), (iii), it is of interest to compare,
in the cases of the 0- and 1-columns of the log-theta-lattice, the way in which the
theory of log-Kummer correspondences associated to a vertical column of the
log-theta-lattice is applied in the proof of Corollary 3.12, especially in Steps (x) and
(xi). We begin by observing that the vertical column [i.e., 0- or 1-column] under
consideration may be depicted [“horizontally”!] in the fashion of the diagram of
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the third display of Proposition 1.3, (iv)

•0
‖

. . . → • → • → • → . . .

. . . ↘ ↓ ↙ . . .

◦

— where the “•0” in the first line of the diagram denotes the portion with vertical
coordinate 0 [i.e., the portion at (0, 0) or (1, 0)] of the vertical column under consid-

eration. As discussed in Step (iii) of the proof of Corollary 3.12, since the Θ×μ
LGP-link

is fundamentally incompatible with the distinct arithmetic holomorphic
structures — i.e., ring structures — that exist in the 0- and 1-columns, one is
obliged to work with the Frobenius-like versions of the unit group and value group
portions of monoids arising from “•0” in the definition of the Θ×μ

LGP-link precisely

in order to avoid the need to contend, in the definition of the Θ×μ
LGP-link, with the

issue of describing the “structure of the intertwining” [cf. the discussion of
(ii)] between these unit group and value group portions determined by the distinct
arithmetic holomorphic structures — i.e., ring structures — that exist in the 0- and
1-columns. On the other hand, one is also obliged to work with the étale-like
“◦” versions of various objects since it is precisely these vertically coric versions
that allow one to access, i.e., by serving as containers [cf. the discussion of (ii)]
for, the other “•’s” in the vertical column under consideration. That is to say,
although the various Kummer isomorphisms that relate various portions of the
Frobenius-like “•0” to the corresponding portions of the étale-like “◦” may at first
give the impression that either “•0” or “◦” is superfluous or unnecessary in the
theory, in fact

both “•0” and “◦” play an essential and by no means superfluous role
in the theory of the vertical columns of the log-theta-lattice.

This aspect of the theory is essentially the same in the case of both the 0- and the
1-columns. The log-link compatibility of the various log-volumes that appear
[cf. the discussion of Step (x) of the proof of Corollary 3.12; Proposition 3.9,
(iv); the final portion of Theorem 3.11, (ii)] is another aspect of the theory that is
essentially the same in the case of both the 0- and the 1-columns. Also, although the
discussion of the “non-interference” properties that underlie the log-Kummer
correspondences of Theorem 3.11, (ii), (b), (c), was only given expicitly, in effect,
in the case of the 0-column, i.e., concerning Θ-pilot objects, entirely similar “non-
interference” properties hold for q-pilot objects. [Indeed, this may be seen, for
instance, by applying the same arguments as the arguments that were applied in
the case of Θ-pilot objects, or, for instance, by specializing the non-interference
properties obtained for Θ-pilot objects to the index “j = 1” as in the discussion of
“pivotal distributions” in [IUTchI], Example 5.4, (vii).] These similarities between
the 0- and 1-columns are summarized in the upper portion of Fig. 3.9 below.

(v) In the discussion of (iv), we highlighted various similarities between the
0- and 1-columns of the log-theta-lattice in the context of Steps (x), (xi) of the



INTER-UNIVERSAL TEICHMÜLLER THEORY III 193

proof of Corollary 3.12. By contrast, one significant difference between the theory
of log-Kummer correspondences in the 0- and 1-columns is

the lack of analogues for q-pilot objects of the crucial multiradiality
properties summarized in Theorem 3.11, (iii), (c)

Aspect 0-column/ 1-column/
of the theory Θ-pilot objects q-pilot objects

essential role similar similar
of both “•0” and “◦”

log-link compatibility similar similar
of log-volumes

“non-interference”
properties of similar similar
log-Kummer

correspondences

multiradiality
properties of hold do not hold

Θ-/q-pilot objects

used as tautological
treatment of mono-analytic documenting device
log-shells/ containers for logarithmic

unit group portions for relationship betw.
regions ring structures

resulting (Ind1), absorbed by applying
indeterminacies (Ind2), holomorphic hulls,

acting on log-shells (Ind3) log-volumes

Fig. 3.9: Similarities and differences, in the context of the Θ×μ
LGP-link,

between the 0- and 1-columns of the log-theta-lattice

— i.e., in effect, the lack of an analogue for the q-pilot objects of the theory of
rigidity properties developed in [EtTh] [cf. the discussion of Remark 2.2.2, (i)].
Another significant difference between the theory of log-Kummer correspondences



194 SHINICHI MOCHIZUKI

in the 0- and 1-columns lies in the way in which the associated vertically coric holo-
morphic log-shells [cf. Proposition 1.2, (ix)] are treated in their relationship to the
unit group portions of monoids that occur in the various “•’s” of the log-Kummer
correspondence. That is to say, in the case of the 0-column, these log-shells are
used as containers [cf. the discussion of (ii)] for the various regions [i.e., sub-
sets] arising from these unit group portions via various composites of arrows in the
log-Kummer correspondence. This approach has the advantage of admitting an in-
terpretation — i.e., in terms of subsets of mono-analytic log-shells — that makes
sense even relative to the distinct arithmetic holomorphic structures that appear in
the 1-column of the log-theta-lattice [cf. Remark 3.11.1]. On the other hand, it has
the drawback that it gives rise to the upper semi-compatibility indeterminacy
(Ind3) discussed in the final portion of Theorem 3.11, (ii). By contrast,

in the case of the 1-column, since the associated arithmetic holomor-
phic structure is held fixed and regarded [cf. the discussion of Step
(xi) of the proof of Corollary 3.12] as the standard with respect to which
constructions arising from the 0-column are to be computed, there is no
need [i.e., in the case of the 1-column] to require that the constructions
applied admit mono-analytic interpretations.

That is to say, in the case of the 1-column, the various unit group portions of
monoids at the various “•’s” simply serve as a means of documenting the “log-
arithmic” relationship [cf. the definition of the log-link given in Definition 1.1,
(i), (ii)!] between the ring structures in the domain and codomain of the log-link.
These ring structures give rise to the local copies of sets of integral elements “O”
with respect to which the “mod” versions [cf. Example 3.6, (ii)] of categories of
arithmetic line bundles are defined at the various “•’s”. Since the objects of these
categories of arithmetic line bundles are not equipped with local trivializations
at the various v ∈ V [cf. the discussion of isomorphism classes of objects of
Frobenioids in Remark 3.6.2, (i)],

regions in log-shells may only be related to such categories of arithmetic
line bundles at the expense of allowing for an indeterminacy with respect
to “O×”-multiples at each v ∈ V.

It is precisely this indeterminacy that necessitates the introduction, in Step (xi) of
the proof of Corollary 3.12, of holomorphic hulls, i.e., which have the effect of
absorbing this indeterminacy [cf. the discussion of Remark 3.9.5, (vii), (viii), (ix),
(x), for more details]. Finally, in Step (xi) of the proof of Corollary 3.12,

the indeterminacy in the specification of a particular member of the
collection of ring structures just discussed — i.e., arising from the choice
of a particular composite of arrows in the log-Kummer correspondence
that is used to specify a particular ring structure among its various
“logarithmic conjugates” — is absorbed by passing to log-volumes

— i.e., by applying the log-link compatibility [cf. (iv)] of the various log-volumes
associated to these ring structures [cf. the discussion of Remark 3.9.5, (vii), (viii),
(ix), (x), for more details]. Thus, unlike the case of the 0-column, where the mono-
analytic interpretation via regions of mono-analytic log-shells gives rise only to
upper bounds on log-volumes, the approach just discussed in the case of the 1-
column — i.e., which makes essential use of the ring structures that are available
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as a consequence of the fact that the arithmetic holomorphic structure is held
fixed — gives rise to precise equalities [i.e., not just inequalities!] concerning
log-volumes. These differences between the 0- and 1-columns are summarized in
the lower portion of Fig. 3.9.

Remark 3.12.3.

(i) Let S be a hyperbolic Riemann surface of finite type of genus gS with rS

punctures. Write χS
def
= −(2gS − 2 + rS) for the Euler characteristic of S and dμS

for the Kähler metric on S [i.e., the (1, 1)-form] determined by the Poincaré metric
on the upper half-plane. Recall the analogy discussed in [IUTchI], Remark 4.3.3,
between the theory of log-shells, which plays a key role in the theory developed in
the present series of papers, and the classical metric geometry of hyperbolic
Riemann surfaces. Then, relative to this analogy, the inequality obtained in
Corollary 3.12 may be regarded as corresponding to the inequality

χS = −
∫
S

dμS < 0

— i.e., in essence, a statement of the hyperbolicity of S — arising from the clas-
sical Gauss-Bonnet formula, together with the positivity of dμS . Relative to
the analogy between real analytic Kähler metrics and ordinary Frobenius liftings
discussed in [pOrd], Introduction, §2 [cf. also the discussion of [pTeich], Introduc-
tion, §0], the local property constituted by this positivity of dμS may be thought
of as corresponding to the [local property constituted by the] Kodaira-Spencer iso-
morphism of an indigenous bundle — i.e., which gives rise to the ordinarity of the
corresponding Frobenius lifting on the ordinary locus — in the p-adic theory. As
discussed in [AbsTopIII], §I5, these properties of indigenous bundles in the p-adic
theory may be thought of as corresponding, in the theory of log-shells, to the “max-
imal incompatibility” between the various Kummer isomorphisms and the corically
constructed data of the Frobenius-picture of Proposition 1.2, (x). On the other
hand, it is just this “maximal incompatibility” that gives rise to the “upper semi-
commutativity” discussed in Remark 1.2.2, (iii), i.e., [from the point of view of the
theory of the present §3] the upper semi-compatibility indeterminacy (Ind3) of
Theorem 3.11, (ii), that underlies the inequality of Corollary 3.12 [cf. Step (x) of
the proof of Corollary 3.12].

(ii) The “metric aspect” of Corollary 3.12 discussed in (i) is reminiscent of the
analogy between the theory of the present series of papers and classical complex
Teichmüller theory [cf. the discussion of [IUTchI], Remark 3.9.3] in the following
sense:

Just as classical complex Teichmüller theory is concerned with relating
distinct holomorphic structures in a sufficiently canonical way as to min-
imize the resulting conformality distortion, the canonical nature of
the algorithms discussed in Theorem 3.11 for relating alien arithmetic
holomorphic structures [cf. Remark 3.11.1] gives rise to a relatively
strong estimate of the [log-]volume distortion [cf. Corollary 3.12] re-
sulting from such a deformation of the arithmetic holomorphic structure.
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Remark 3.12.4. In light of the discussion of Remark 3.12.3, it is of interest
to reconsider the analogy between the theory of the present series of papers and
the p-adic Teichmüller theory of [pOrd], [pTeich], in the context of Theorem 3.11,
Corollary 3.12.

(i) First, we observe that the splitting monoids at v ∈ Vbad [cf. Theorem
3.11, (i), (b); Theorem 3.11, (ii), (b)] may be regarded as analogous to the canoni-
cal coordinates of p-adic Teichmüller theory [cf., e.g., [pTeich], Introduction, §0.9]
that are constructed over the ordinary locus of a canonical curve. In particular, it
is natural to regard the bad primes ∈ Vbad as corresponding to the ordinary
locus of a canonical curve and the good primes ∈ Vgood as corresponding to the
supersingular locus of a canonical curve. This point of view is reminiscent of the
discussion of [IUTchII], Remark 4.11.4, (iii).

(ii) On the other hand, the bi-coric mono-analytic log-shells — i.e., the
various local “O×μ” — that appear in the tensor packets of Theorem 3.11, (i),
(a); Theorem 3.11, (ii), (a), may be thought of as corresponding to the [multi-
plicative!] Teichmüller representatives associated to the various Witt rings
that appear in p-adic Teichmüller theory. Within a fixed arithmetic holomorphic
structure, these mono-analytic log-shells arise from “local holomorphic units”
— i.e., “O×” — which are subject to the F�±

l -symmetry. These “local holomor-
phic units” may be thought of as corresponding to the positive characteristic
ring structures on [the positive characteristic reductions of] Teichmüller repre-
sentatives. Here, the uniradial, i.e., “non-multiradial”, nature of these “local
holomorphic units” [cf. the discussion of [IUTchII], Remark 4.7.4, (ii); [IUTchII],
Figs. 4.1, 4.2] may be regarded as corresponding to the mixed characteristic nature
of Witt rings, i.e., the incompatibility of Teichmüller representatives with the
additive structure of Witt rings.

(iii) The set F�
l of l� “theta value labels”, which plays an important role in

the theory of the present series of papers, may be thought of as corresponding to
the “factor of p” that appears in the “mod p/p2 portion”, i.e., the gap separating
the “mod p” and “mod p2” portions, of the rings of Witt vectors that occur in the
p-adic theory. From this point of view, one may think of the procession-normalized
volumes obtained by taking averages over j ∈ F�

l [cf. Corollary 3.12] as corre-
sponding to the operation of dividing by p to relate the “mod p/p2 portion” of the
Witt vectors to the “mod p portion” of the Witt vectors [i.e., the characteristic p
theory]. In this context, the multiradial representation of Theorem 3.11, (i), by
means of mono-analytic log-shells labeled by elements of F�

l may be thought of as
corresponding to the derivative of the canonical Frobenius lifting on a canon-
ical curve in the p-adic theory [cf. the discussion of [AbsTopIII], §I5] in the sense
that this multiradial representation may be regarded as a sort of comparison of the
canonical splitting monoids discussed in (i) to the “absolute constants” [cf.
the discussion of (ii)] constituted by the bi-coric mono-analytic log-shells. This
“absolute comparison” is precisely what results in the indeterminacies (Ind1),
(Ind2) of Theorem 3.11, (i).

(iv) In the context of the discussion of (iii), we note that the set of labels F�
l

may, alternatively, be thought of as corresponding to the infinitesimal moduli of
the positive characteristic curve under consideration in the p-adic theory [cf. the
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discussion of [IUTchII], Remark 4.11.4, (iii), (d)]. That is to say, the “deformation
dimension” constituted by the horizontal dimension of the log-theta-lattice in the
theory of the present series of papers or by the deformations modulo various powers
of p in the p-adic theory [cf. Remark 1.4.1, (iii); Fig. 1.3] is highly canonical in
nature, hence may be thought of as being equipped with a natural isomorphism to
the “absolute moduli” — i.e., so to speak, the “moduli over F1” — of the given
number field equipped with an elliptic curve, in the theory of the present series
of papers, or of the given positive characteristic hyperbolic curve equipped with a
nilpotent ordinary indigenous bundle, in p-adic Teichmüller theory.

Inter-universal Teichmüller theory p-adic Teichmüller theory

splitting monoids canonical coordinates

at v ∈ Vbad on the ordinary locus

bad primes ∈ Vbad ordinary locus of a can. curve

good primes ∈ Vgood supersing. locus of a can. curve

mono-analytic log-shells “O×μ” [multiplicative!] Teich. reps.

uniradial “local hol. units O×” pos. char. ring structures on
subject to F�±

l -symmetry [pos. char. reductions of] Teich. reps.

set of “theta value labels” factor p in
F�
l mod p/p2 portion of Witt vectors

multiradial rep. via F�
l -labeled derivative of the

mono-analytic log-shells canonical Frobenius lifting
[cf. (Ind1), (Ind2), (Ind3)]

set of “theta value labels” F�
l implicit “absolute moduli/F1”

inequality arising from upper inequality arising from interference
semi-compatibility [cf. (Ind3)] between Frobenius conjugates

Fig. 3.10: The analogy between inter-universal Teichmüller theory
and p-adic Teichmüller theory
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(v) Let A be the ring of Witt vectors of a perfect field k of positive characteristic
p; X a smooth, proper hyperbolic curve over A of genus gX which is canonical in

the sense of p-adic Teichmüller theory; X̂ the p-adic formal scheme associated

to X; Û ⊆ X̂ the ordinary locus of X̂. Write ωXk
for the canonical bundle of

Xk
def
= X×A k. Then when [cf. the discussion of (iii)] one computes the derivative

of the canonical Frobenius lifting Φ : Û → Û on Û , one must contend with
“interference phenomena” between the various copies of some positive characteristic
algebraic geometry set-up — i.e., at a more concrete level, the various Frobenius
conjugates “tp

n

” [where t is a local coordinate on Xk] associated to various n ∈ N≥1.
In particular, this derivative only yields [upon dividing by p] an inclusion [i.e., not
an isomorphism!] of line bundles

ωXk
↪→ Φ∗ωXk

— also known as the “[square] Hasse invariant” [cf. [pOrd], Chapter II, Propo-
sition 2.6; the discussion of “generalities on ordinary Frobenius liftings” given in
[pOrd], Chapter III, §1]. Thus, at the level of global degrees of line bundles, we
obtain an inequality [i.e., not an equality!]

(1− p)(2gX − 2) ≤ 0

— which may be thought of as being, in essence, a statement of the hyperbolicity
of X [cf. the inequality of the display of Remark 3.12.3, (i)]. Since the “Frobenius
conjugate dimension” [i.e., the “n” that appears in “tp

n

”] in the p-adic theory
corresponds to the vertical dimension of the log-theta-lattice in the theory of the
present series of papers [cf. Remark 1.4.1, (iii); Fig. 1.3], we thus see that the
inequality of the above display in the p-adic case arises from circumstances that are
entirely analogous to the circumstances — i.e., the upper semi-compatibility
indeterminacy (Ind3) of Theorem 3.11, (ii) — that underlie the inequality of
Corollary 3.12 [cf. Step (x) of the proof of Corollary 3.12; the discussion of Remark
3.12.3, (i)].

(vi) The analogies of the above discussion are summarized in Fig. 3.10 above.
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Bibliography

[Lang] S. Lang, Algebraic number theory, Addison-Wesley Publishing Co. (1970).

[pOrd] S. Mochizuki, A Theory of Ordinary p-adic Curves, Publ. Res. Inst. Math. Sci.
32 (1996), pp. 957-1151.

[pTeich] S. Mochizuki, Foundations of p-adic Teichmüller Theory, AMS/IP Studies
in Advanced Mathematics 11, American Mathematical Society/International
Press (1999).

[QuCnf] S. Mochizuki, Conformal and quasiconformal categorical representation of hy-
perbolic Riemann surfaces, Hiroshima Math. J. 36 (2006), pp. 405-441.

[SemiAnbd] S. Mochizuki, Semi-graphs of Anabelioids, Publ. Res. Inst. Math. Sci. 42
(2006), pp. 221-322.

[FrdI] S. Mochizuki, The Geometry of Frobenioids I: The General Theory, Kyushu J.
Math. 62 (2008), pp. 293-400.

[FrdII] S. Mochizuki, The Geometry of Frobenioids II: Poly-Frobenioids, Kyushu J.
Math. 62 (2008), pp. 401-460.

[EtTh] S. Mochizuki, The Étale Theta Function and its Frobenioid-theoretic Manifes-
tations, Publ. Res. Inst. Math. Sci. 45 (2009), pp. 227-349.

[AbsTopIII] S. Mochizuki, Topics in Absolute Anabelian Geometry III: Global Reconstruc-
tion Algorithms, J. Math. Sci. Univ. Tokyo 22 (2015), pp. 939-1156.

[IUTchI] S. Mochizuki, Inter-universal Teichmüller Theory I: Construction of Hodge
Theaters, RIMS Preprint 1756 (August 2012), to appear in Publ. Res. Inst.
Math. Sci.

[IUTchII] S. Mochizuki, Inter-universal Teichmüller Theory II: Hodge-Arakelov-theoretic
Evaluation, RIMS Preprint 1757 (August 2012), to appear in Publ. Res. Inst.
Math. Sci.

[IUTchIV] S. Mochizuki, Inter-universal Teichmüller Theory IV: Log-volume Computa-
tions and Set-theoretic Foundations, RIMS Preprint 1759 (August 2012), to
appear in Publ. Res. Inst. Math. Sci.

[Royden] H. L. Royden, Real Analysis, Second Edition, The Macmillan Publishing Co.
(1968).

Updated versions of preprints are available at the following webpage:

http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html


