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§0 Notations

F : a number field ⊇ OF : the ring of integers

∆F : the absolute value of the discriminant of F

V(F )non: the set of nonarchimedean places of F

V(F )arc: the set of archimedean places of F

V(F )
def
= V(F )non

∪
V(F )arc

For v ∈ V(F ), write Fv for the completion of F at v

For v ∈ V(F )non, write pv ⊆ OF for the prime ideal corr. to v
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Let v ∈ V(F )non. Write ordv : F× ↠ Z for the order def’d by v.
Then for any x ∈ F , we shall write

|x|v
def
= ♯(OF /pv)

−ordv(x).

Let v ∈ V(F )arc. Write σv : F ↪→ C for the embed. det’d, up to
complex conjugation, by v. Then for any x ∈ F , we shall write

|x|v
def
= |σv(x)|[Fv :R]

C .

Note: (Product formula) For α ∈ F×, it holds that∏
v∈V(F )

|α|v = 1.

For an elliptic curve E /a field, write j(E) for the j-invariant of E
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§1 Introduction

Main theorem of IUTch:

There exist “multiradial representations”— i.e., description up to mild

indeterminacies in terms that make sense from the point of view of an

alien ring structure — of the following data:

Gv ↷ O×µ
v

{qj
2/2l

v }j=1,... ,(l−1)/2 ↷ log(O×µ
v ) [cf. §2]

Fmod ↷ log(O×µ
v )

⇒ As an application, we obtain a diophantine inequality.
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Write:

For λ ∈ Q \ {0, 1},

Aλ: the elliptic curve /Q(λ) def’d by “y2 = x(x− 1)(x− λ)”

Fλ
def
= Q(λ,

√
−1, Aλ[3 · 5](Q))

⇒ Eλ
def
= Aλ ×Q(λ) Fλ has at most split multipl. red. at ∀ ∈ V(Fλ)

qλ: the arithmetic divisor det’d by the q-parameter of Eλ/Fλ

fλ: the “reduced” arithmetic divisor det’d by qλ

dλ: the arithmetic divisor det’d by the different of Fλ/Q
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.
Theorem (Vojta Conj. — in the case of P1 \ {0, 1,∞} — for “K”)
..

......

d ∈ Z>0 ϵ ∈ R>0

K ⊆ Q \ {0, 1}: a compactly bounded subset whose “support” ∋ 2, ∞

Then ∃B(d, ϵ,K) ∈ R>0 — that depends only on d, ϵ, and K — s.t.

the function on {λ ∈ K | [Q(λ) : Q] ≤ d} given by

λ 7→ 1
6 · deg(qλ)− (1 + ϵ) · (deg(dλ) + deg(fλ))

is bounded by B(d, ϵ,K).

Then, by applying the theory of noncritical Belyi maps, we obtain

(∗): the “version with K removed” of this Theorem.

Finally, we conclude:
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.
Theorem (ABC Conjecture for number fields)
..

......

d ∈ Z>0 ϵ ∈ R>0

Then ∃C(d, ϵ) ∈ R>0 — that depends only on d and ϵ — s.t. for

• F : a number field — where d = [F : Q]

• (a, b, c) : a triple of elements ∈ F× — where a+ b+ c = 0

we have
HF (a, b, c) < C(d, ϵ) · (∆F · radF (a, b, c))1+ϵ

— where
HF (a, b, c)

def
=

∏
v∈V(F )max{|a|v, |b|v, |c|v},

radF (a, b, c)
def
=

∏
{v∈V(F )non|♯{|a|v ,|b|v ,|c|v}≥2} ♯(OF /pv).

Note: We do not know the constant “C(d, ϵ)” explicitly.

For instance, it is hard to compute noncritical Belyi maps explicitly!
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Goal of this joint work: Under certain conditions, we prove (∗) directly
[i.e., without applying the theory of noncritical Belyi maps] to compute

the constant “C(d, ϵ)” explicitly.

.
Technical Difficulties of Explicit Computations
..

......

(i) We cannot use the compactness of “K” at the place 2

⇒ We develop the theory of étale theta functions so that

it works at the place 2

(ii) We cannot use the compactness of “K” at the place ∞

⇒ By restricting our attention to “special” number fields, we

“bound” the archimedean portion of the “height” of the

elliptic curve “Eλ”
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§2 Theta Functions

p, l: distinct prime numbers — where l ≥ 5

K: a p-adic local field ⊇ OK : the ring of integers

X: an elliptic curve /K which has split multipl. red. /OK

q ∈ OK : the q-parameter of X

X log def
= (X, {o} ⊆ X): the smooth log curve /K assoc. to X

In the following, we assume that

√
−1 ∈ K

X[2l](K) = X[2l](K)

X log//{±1} is a K-core
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Now we have the following sequence of log tempered coverings:

Ÿ log µ2−−−−→ Y log l·Z−−−−→ X log Fl−−−−→ X log

— where

Y log → X log → X log is det’d by the [graph-theoretic] universal
covering of the dual graph of the special fiber of X log. Write

Z def
= Gal(Y log/X log) (∼= Z).

X log → X log corresponds to l · Z ⊆ Z. Write

Fl
def
= Gal(X log/X log) (∼= Fl).

Ÿ log → Y log is the double covering det’d by “u = ü2”.
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Write: For a curve (−) over K,

Ver(−): the set of irreducible components of the special fiber of (−)

• First, we recall the def’n of evaluation points on Ÿ log.

We fix a cusp of X log and refer to the zero cusp X log.

⇒ X admits a str. of elliptic curve whose origin is the zero cusp.

0X ∈ Ver(X log): the irreducible comp. which contain the “origin”

Then we fix a lift. ∃ ∈ Ver(Y log) of 0X ∈ Ver(X log) and write

0Y ∈ Ver(Y log).

0Ÿ ∈ Ver(Ÿ log): the irreducible comp. lying over 0Y ∈ Ver(Ÿ log)
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Note: Since Ver(Y log) is a Z-torsor, we obtain a labeling

Z ∼→ Ver(Y log)
∼→ Ver(Ÿ log).

Assume: p ̸= 2

µ− ∈ X(K): the 2-torsion point — not equal to the origin — whose
closure intersects 0X ∈ Ver(X log)

µY
− ∈ Y (K): a ∃!lift. of µ− whose closure intersects 0Y ∈ Ver(Y log)

ξYj ∈ Y (K): the image of µY
− by the action of j ∈ Z

.
Definition
..

......

an evaluation point of Ÿ log labeled by j ∈ Z

def⇔ a lifting ∈ Ÿ (K) of ξYj ∈ Y (K)
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• Next, we recall the def’n of the theta function Θ̈.

The function

Θ̈(ü)
def
= q−

1
8 ·

∑
n∈Z

(−1)n · q
1
2 (n+

1
2)

2

· ü2n+1

on Ÿ log extends uniquely to a meromorphic function Θ̈ on the stable
model of Ÿ , and satisfies the following property:

Θ̈(ξj)
−1 = ±Θ̈(ξ0)

−1 · q
j2

2 .

— where ξj ∈ Ÿ (K) is an evaluation point labeled by j ∈ Z.
.
Definition
..

......

Write
Θ̈st

def
= Θ̈(ξ0)

−1 · Θ̈

and refer to Θ̈st as a theta function of µ2-standard type.
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We want to develop the theory of Θ functions in the case of p = 2.

⇒ In this work, instead of “2-torsion points”, we consider

6-torsion points of X(K)!

.
Lemma (Well-definedness of the notion of “µ6-standard type”)
..

......

n ∈ Z>0: an even integer

k: an alg. cl. ch. zero fld. ⊇ µ×
2n: the set of pr. 2n-th roots of unity

Γ− (resp. Γ−): the group of ♯ = 2 which acts on µ×
2n as follows:

ζ 7→ −ζ (resp. ζ 7→ ζ−1)

Then the action Γ− × Γ− on µ×
2n is transitive ⇔ n ∈ {2, 4, 6}

Note: We have Θ̈(−ü) = −Θ̈(ü) and Θ̈(ü−1) = −Θ̈(ü).
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§3 Heights

First, we recall the notion of the Weil height of an algebraic number.

.
Definition
..

......

Let α ∈ F . Then for □ ∈ {non, arc}, we shall write

h□(α)
def
= 1

[F :Q]

∑
v∈V(F )□

logmax{|α|v, 1},

h(α)
def
= hnon(α) + harc(α)

and refer to h(α) as the Weil height of α.

Observe: Let n ∈ Q be a positive integer. Then we have

hnon(n) = 0, harc(n) = log(n).
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In this work, we introduce a variant of the notion of the Weil height.

.
Definition
..

......

Let α ∈ F×. Then for □ ∈ {non, arc}, we shall write

htor□ (α)
def
= 1

2[F :Q]

∑
v∈V(F )□

logmax{|α|v, |α|−1
v },

htor(α)
def
= htornon(α) + htorarc(α)

and refer to htor(α) as the toric height of α.

Observe: Let n ∈ Q be a positive integer. Then we have

hnon(n) = 1
2 log(n), harc(n) = 1

2 log(n).
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.
Remark
..
......For α ∈ F×, it holds that h(α) = htor(α).

.
Definition
..

......

A number field F is mono-complex
def⇔ ♯V(F )arc = 1

(⇔ F is either Q or an imaginary quadratic number field)

.
Proposition (Important property of htor□ )
..

......

F : a mono-complex number field

For α ∈ F×, it holds that htorarc(α) ≤ htornon(α).

Proof: This follows immediately from the product formula.
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Next, we introduce the notion of the “height” of an elliptic curve.

.
Definition
..

......

F ⊆ Q: a number field

E: an elliptic curve /F
∼→Q “y2 = x(x− 1)(x− λ)” (λ ∈ Q \ {0, 1})

Note: S3
∃ ↷ (PQ \ {0, 1,∞})(Q)

∼→ Q \ {0, 1}

For □ ∈ {non, arc}, we shall write

hS-tor
□ (E)

def
=

∑
σ∈S3

htor□ (σ · λ),

hS-tor(E)
def
= hS-tor

non (E) + hS-tor
arc (E)

and refer to hS-tor(E) as the symmetrized toric height of E.

Arata Minamide (RIMS, Kyoto University) Explicits estimates in IUTch November 2, 2018 18 / 21



.
Proposition (Important property of hS-tor

□ )
..

......

Suppose: Q(λ) is mono-complex

Then it holds that hS-tor
arc (E) ≤ hS-tor

non (E).

Proof: This follows immediately from the previous Proposition.

Now we note that we have an equality “deg(qλ) = hnon(j(Eλ))”.

.
Theorem (Comparison between hS-tor

□ (E) and h□(j(E)))
..

......

∃explicitly computable abs. const. C1, C2, C3, C4 ∈ R s.t.

C1 ≤ hS-tor
non (E)− hnon(j(E)) ≤ C2,

C3 ≤ hS-tor
arc (E)− harc(j(E)) ≤ C4.
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§4 Some Remarks on Explicit Computations

.
Theorem (Effective ver. of the PNT — due to Rosser and Schoenfeld)
..

......

∃explicitly computable ξprm ∈ R≥5 s.t. for ∀x ≥ ξprm, it holds that

2
3 · x ≤

∑
p:prime ≤ x

log(p) ≤ 4
3 · x.

.
Theorem (j-invariant of “special” elliptic curves — due to Sijsling)
..

......

k: an alg. closed field of char. zero

E: an elliptic curve /k

Suppose: E \ {o} fails to admit a k-core.

Then it holds that j(E) ∈ {488095744
125 , 1556068

81 , 1728, 0}.
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§5 Expected Main Results
.
Expected Theorem (Effective ABC for mono-complex number fields)
..

......

d ∈ {1, 2} ϵ ∈ R>0

Then ∃explicitly computable C(d, ϵ) ∈ R>0 — that depends only on

d and ϵ — s.t. for

• F : a mono-complex number field — where d = [F : Q]

• (a, b, c) : a triple of elements ∈ F× — where a+ b+ c = 0

we have
HF (a, b, c) < C(d, ϵ) · (∆F · radF (a, b, c))

3
2+ϵ.

.
Expected Corollary (Application to Fermat’s Last Theorem)
..

......

∃explicitly computable n0 ∈ Z≥3 s.t. if n ≥ n0, then no triple (x, y, z) of
positive integers satisfies

xn + yn = zn.
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