(1.) The phrase “of VA-type” that appears near the beginning of Definition 2.4, (ii), should read “is of VA-type”.

(2.) There is a slight [but substantively irrelevant] inaccuracy in the final sentence of the discussion entitled “Curves” in §0. A corrected version of this final sentence may be given as follows:

Then we shall refer to as the n-th log configuration space of X^\log the log scheme obtained by pulling back the (1-)morphism $\overline{\mathcal{M}}_{g,r+n}^\log \to \overline{\mathcal{M}}_{g,r}^\log$ given by forgetting the last n points via the classifying (1-)morphism $T^\log \to \overline{\mathcal{M}}_{g,r}^\log$ of $X^\log \times_S T$ for some finite étale covering $T \to S$ [i.e., over which the divisor of cusps splits] of the underlying scheme S of S^\log and then descending [in the evident fashion] from $T^\log \overset{\text{def}}{=} T \times_S S^\log$ to S^\log.

(3.) In the statement of Definitions 2.10, (ii); 5.1, (v), there are references to [Mzk4], Example 2.5, concerning the definition of a certain semi-graph of anabelioids of pro-Σ PSC-type determined by a stable log curve over a base [fs] log scheme whose underlying scheme is the spectrum of a field. At first glance, this may appear to be problematic since the “stable log curve over a base log scheme whose underlying scheme is the spectrum of a field” that appears in [Mzk4], Example 2.5, is subject to the condition that the log structure of this base log scheme be of a certain restricted type. In fact, this is not a problem, however, since the construction of the semi-graph of anabelioids of pro-Σ PSC-type in [Mzk4], Example 2.5, depends only on the pointed stable curve over a field determined by the given log stable curve [i.e., is independent of the log structure on the base log scheme].

(4.) In the second paragraph of the proof of Theorem 4.1, the text “there exists an element w'_2” should read “there exists an element \tilde{w}'_2.”