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Abstract. Let Σ be a nonempty set of prime numbers. In the
present paper, we continue the study, initiated in a previous paper
by the second author, of the combinatorial anabelian geometry of
semi-graphs of anabelioids of pro-Σ PSC-type, i.e., roughly speak-
ing, semi-graphs of anabelioids associated to pointed stable curves.
Our first main result is a partial generalization of one of the main
combinatorial anabelian results of this previous paper to the case
of nodally nondegenerate outer representations, i.e., roughly speak-
ing, a sort of abstract combinatorial group-theoretic generalization
of the scheme-theoretic notion of a family of pointed stable curves
over the spectrum of a discrete valuation ring. We then apply this
result to obtain a generalization, to the case of proper hyperbolic
curves, of a certain injectivity result, obtained in another paper by
the second author, concerning outer automorphisms of the pro-Σ
fundamental group of a configuration space associated to a hyper-
bolic curve, as the dimension of this configuration space is lowered
from two to one. This injectivity allows one to generalize a certain
well-known injectivity theorem of Matsumoto to the case of proper

hyperbolic curves.
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Introduction

Let Σ be a nonempty set of prime numbers. In the present paper,
we continue the study, initiated in [Mzk4] by the second author, of
the combinatorial anabelian geometry of semi-graphs of anabelioids of
pro-Σ PSC-type, i.e., roughly speaking, semi-graphs of anabelioids as-
sociated to pointed stable curves. In particular, it was shown in [Mzk4]
(cf. [Mzk4], Corollary 2.7, (iii)) that in the case of a semi-graph of an-
abelioids of pro-Σ PSC-type that arises from a stable log curve over a log
point (i.e., the spectrum of an algebraically closed field k of characteris-
tic p �∈ Σ equipped with the log structure determined by the morphism
of monoids N � 1 �→ 0 ∈ k), the semi-graph of anabelioids in question
may be reconstructed group-theoretically from the outer action
of the pro-Σ logarithmic fundamental group of the log point (which

is noncanonically isomorphic to the maximal pro-Σ quotient ẐΣ of Ẑ)
on the pro-Σ fundamental group of the semi-graph of anabelioids. As
discussed in the introduction to [Mzk4], this result may be regarded
as a substantial refinement of the pro-l criterion of Takayuki Oda for
a proper hyperbolic curve over a discretely valued field to have good
reduction (i.e., a special fiber whose associated semi-graph consists of
a single vertex and no edges). We shall refer to an outer action of
the type just described as an outer representation of IPSC-type (cf.
Definition 2.4, (i)).

In the present paper, the theory of [Mzk4] is generalized to the case
of nodally nondegenerate outer representations, or outer representa-
tions of NN-type, for short (cf. Definition 2.4, (iii)). Indeed, our first
main result (cf. Corollary 4.2; Remark 4.2.1) is the following partial
generalization of [Mzk4], Corollary 2.7, (iii).

Theorem A (Graphicity of certain group-theoretically cuspi-
dal isomorphisms). Let Σ be a nonempty set of prime numbers, G
and H semi-graphs of anabelioids of pro-Σ PSC-type (cf. [Mzk4], Def-
inition 1.1, (i)), ΠG (respectively, ΠH) the pro-Σ fundamental group of

G (respectively, H), α : ΠG
∼
→ ΠH an isomorphism of profinite groups,

I and J profinite groups, ρI : I → Aut(G) and ρJ : J → Aut(H) con-

tinuous homomorphisms, and β : I
∼
→ J an isomorphism of profinite

groups. Suppose that the following three conditions are satisfied:
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(i) The diagram

I −−−→ Out(ΠG)

β

⏐⏐� ⏐⏐�Out(α)

J −−−→ Out(ΠH)

— where the right-hand vertical arrow is the homomorphism
induced by α; the upper and lower horizontal arrows are the
homomorphisms determined by ρI and ρJ , respectively — com-
mutes.

(ii) ρI , ρJ are of NN-type (cf. Definition 2.4, (iii)).

(iii) Cusp(G) �= ∅, and the isomorphism α is group-theoretically
cuspidal (i.e., roughly speaking, preserves cuspidal inertia groups
— cf. [Mzk4], Definition 1.4, (iv)).

Then the isomorphism α is graphic (i.e., roughly speaking, is compat-
ible with the respective semi-graph structures — cf. [Mzk4], Definition
1.4, (i)).

The notion of an outer representation of NN-type may be regarded
as a natural outgrowth of the philosophy pursued in [Mzk4] of reducing
(various aspects of) the classical pro-Σ scheme-theoretic arithmetic
geometry of stable curves over a discrete valuation ring whose residue
characteristic is not contained in Σ to a matter of combinatorics.
Ideally, one would like to reduce the entire profinite classical scheme-
theoretic arithmetic geometry of hyperbolic curves over number fields
or p-adic local fields to a matter of combinatorics, but since this task
appears to be too formidable at the time of writing, we concentrate on
the pro-prime-to-p aspects of stable log curves over a log point. On the
other hand, whereas the outer representations of IPSC-type studied
in [Mzk4] literally arise from (log) scheme theory (i.e., a stable log
curve over a log point), the outer representations of NN-type studied
in the present paper are defined in purely combinatorial terms, without
reference to any scheme-theoretic family of stable log curves. If one
thinks of a stable log curve as a sort of “rational point” of the moduli
stack of stable curves, then this point of view may be thought of as
a sort of abandonment of the point of view implicit in the so-called
“Section Conjecture”: that is to say, instead of concerning oneself with
the issue of precisely which group-theoretic objects arise from a scheme-
theoretic rational point (as is the case with the Section Conjecture),

one takes the definition of group-theoretic objects via
purely combinatorial/group-theoretic conditions —
i.e., group-theoretic objects which do not necessarily
arise from scheme theory — as the starting point of
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one’s research, and one regards as the goal of one’s re-
search the study of the intrinsic combinatorial ge-
ometry of such group-theoretic objects (i.e., without
regard to the issue of the extent to which these objects
arise from scheme theory).

This point of view may be seen throughout the development of the
theory of the present paper, as well as in the theory of [Mzk6].

On the other hand, from a more concrete point of view, the theory
of the present paper was motivated by the goal of generalizing the in-
jectivity portion of [Mzk7], Theorem A, (i), to proper hyperbolic curves
in the case of the homomorphism induced by the projection from two-
dimensional to one-dimensional configuration spaces (cf. Theorem B
below). The main injectivity result that was proven in [Mzk7] (namely,
[Mzk7], Corollary 2.3) was obtained by applying the combinatorial an-
abelian result given in [Mzk4], Corollary 2.7, (iii). On the other hand,
this result of [Mzk4] is insufficient in the case of proper hyperbolic
curves. To see why this is so, we begin by recalling that this result of
[Mzk4] is applied in [Mzk7] (cf. the discussion of “canonical splittings”
in the Introduction to [Mzk7]) to study the degenerations of families
of hyperbolic curves that arise when

(a) a moving point on an affine hyperbolic curve collides with a
cusp.

On the other hand, since proper hyperbolic curves have no cusps, in or-
der to apply the techniques for proving injectivity — involving “canon-
ical splittings” — developed in [Mzk7], it is necessary to consider the
degenerations of families of hyperbolic curves that arise when

(b) a moving point on a (not necessarily affine) “degenerate hyper-
bolic curve” (i.e., a stable curve) collides with a node.

Since the local pro-Σ fundamental group in a neighborhood of a cusp or
a node — i.e., the profinite group that corresponds to the “fundamental
group of the base space of the degenerating family of hyperbolic curves
under consideration” — is isomorphic (in both the cuspidal and nodal

cases!) to the (same!) profinite group ẐΣ, one might at first glance
think that the situation of (b) may also be analyzed via the results of
[Mzk7]. Put another way, both (a) and (b) involve a continuous action

of a profinite group isomorphic to ẐΣ on a semi-graph of anabelioids
of pro-Σ PSC-type. On the other hand, closer inspection reveals that
there is a fundamental intrinsic difference between the situations of
(a) and (b). Indeed, in the situation of (a), we apply the reconstruction
algorithms developed in [Mzk4], which depend in an essential way on a
certain positivity, namely, the positivity of the period matrix — which
implies, in particular, the nondegeneracy of this period matrix — of the
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Jacobians of the various coverings of the degenerating family of curves
under consideration (cf. the proof of [Mzk4], Proposition 2.6). By
contrast, one verifies easily that

the symmetry in a neighborhood of a node induced
by switching the two branches of the node implies
that an analogous “positivity of the period matrix” of
the Jacobians of the various coverings of the degenerat-
ing family of curves under consideration can only hold in
the sitation of (b) if this “positivity” satisfies the prop-
erty of being invariant with respect to multiplication by
−1 — which is absurd!

In particular, one concludes that the situation of (b) can never be “ab-
stractly group-theoretically isomorphic” to the situation of (a). This
was what led the second author to seek, in cooperation with the first
author, a (partial) generalization (cf. Theorem A) of [Mzk4], Corollary
2.7, (iii), to the case of arbitrary nodally nondegenerate outer represen-
tations (which includes the situation of (b) — cf. Proposition 2.14, as
it is applied in the proof of Corollary 5.3).

In passing, we note that the sense in which Theorem A is only a
partial generalization (cf. Remark 4.2.1) of [Mzk4], Corollary 2.7, (iii),
is interesting in light of the above discussion of positivity. Indeed, in the
case of [Mzk4], Corollary 2.7, (iii), it is not necessary to assume that the
semi-graph of anabelioids of pro-Σ PSC-type under consideration has
any cusps. On the other hand, in the case of Theorem A, it is necessary
to assume that the semi-graph of anabelioids of pro-Σ PSC-type under
consideration has at least one cusp (cf. condition (iii) of Theorem A).
That is to say, this state of affairs suggests that perhaps there is some
sort of “general principle” underlying these results — which, at the time
of writing, the authors have yet to succeed in making explicit — that
requires the existence of at least one cusp, whether that cusp lie in
the “base of the degenerating family of curves under consideration” (cf.
(a); [Mzk4], Corollary 2.7, (iii)) or in the “fibers of this degenerating
family” (cf. (b); condition (iii) of Theorem A).

The content of the various sections of the present paper may be
summarized as follows. In §1, we review various “well-known” aspects
of the combinatorial group-theoretic geometry of semi-graphs of anabe-
lioids of pro-Σ PSC-type — i.e., without considering any continuous
action of a profinite group on the semi-graph of anabelioids under con-
sideration. In §2, we define and develop the basic theory surrounding
nodally nondegenerate outer representations. In §3, we discuss vari-
ous analogues of the combinatorial group-theoretic geometry reviewed
in §1 in the case of nodally nondegenerate outer representations. In
§4, we observe that the theory developed in §1, §2, and §3 is sufficient
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to prove the analogue discussed above (i.e., Theorem A) of the com-
binatorial anabelian result given in [Mzk4], Corollary 2.7, (iii), in the
case of nodally nondegenerate outer representations. In §5, we apply
this result (i.e., Theorem A) to generalize (cf. the above discussion)
[Mzk7], Corollary 2.3, to the case of not necessarily affine curves (cf.
Corollary 5.3). Finally, in §6, we discuss various consequences of the
injectivity result proven in §5. The first of these is the following partial
generalization (cf. Theorem 6.1) of [Mzk7], Theorem A.

Theorem B (Partial profinite combinatorial cuspidalization).
Let Σ be a set of prime numbers which is either of cardinality one
or equal to the set of all prime numbers, n a positive integer,
X a hyperbolic curve of type (g, r) over an algebraically closed field
of characteristic �∈ Σ, Xn the n-th configuration space of X (i.e.,
roughly speaking, the complement of the diagonals in the product of n
copies of X — cf. [MzTa], Definition 2.1, (i)), Πn the maximal pro-Σ
quotient of the fundamental group of Xn, and OutFC(Πn) ⊆ Out(Πn)
the subgroup of the group Out(Πn) consisting of the outomorphisms
(cf. the discussion entitled “Topological groups” in §0) of Πn which are
FC-admissible (i.e., roughly speaking, preserve fiber subgroups and

cuspidal inertia groups — cf. [Mzk7], Definition 1.1, (ii)). Set n0
def
= 2

if X is affine, i.e., r ≥ 1; n0
def
= 3 if X is proper, i.e., r = 0 (cf.

[Mzk7], Theorem A). Then the natural homomorphism

OutFC(Πn+1) −→ OutFC(Πn)

induced by the projection Xn+1 → Xn obtained by forgetting the (n+1)-
st factor is injective if n ≥ 1 and bijective if n ≥ n0 + 1. Moreover,
the image of the natural inclusion

Sn ↪→ Out(Πn)

— where we write Sn for the symmetric group on n letters — obtained
by permuting the various factors of the configuration space Xn is con-
tained in the centralizer ZOut(Πn)(OutFC(Πn)).

In Corollary 6.6, we also give a discrete analogue of the profinite
result constituted by Theorem B.

In passing, we observe that the injectivity portion of the pro-l case
of Theorem B may be derived from the Lie-theoretic version of Theo-
rem B that was obtained (in the mid-1990’s!) by Naotake Takao (cf.
[Tk], Corollary 2.7). In this context, we note that the point of view
of [Tk] differs quite substantially from the point of view of the present
paper and is motivated by the goal of completing the proof of a cer-
tain conjecture of Takayuki Oda concerning pro-l outer Galois actions
associated to various moduli stacks of stable curves. Nevertheless, this
point of view of [Tk] is interesting in light of the point of view discussed
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above to the effect that the content of [Mzk4] — and hence also of The-
orem A above — may be thought of as a sort of substantial refinement
of Oda’s good reduction criterion.

Theorem B allows one to obtain the following generalization (cf.
Corollaries 6.2; 6.3, (i)) to not necessarily affine hyperbolic curves of
a well-known injectivity result of Matsumoto (cf. [Mts], Theorems 2.1,
2.2).

Theorem C (Kernels of outer representations arising from hy-
perbolic curves). Let Σ be a set of prime numbers which is either of
cardinality one or equal to the set of all prime numbers, X a
hyperbolic curve over a perfect field k such that every element of Σ is
invertible in k, k an algebraic closure of k, n a positive integer, Xn

the n-th configuration space of X, Gk
def
= Gal(k/k), ΔXn the maximal

pro-Σ quotient of the fundamental group of Xn ⊗k k, and ΔP1
k\{0,1,∞}

the maximal pro-Σ quotient of the fundamental group of P1
k
\{0, 1,∞}.

Then the following hold:

(i) The kernel of the natural outer representation

ρΣ
Xn/k : Gk −→ Out(ΔXn)

is independent of n and contained in the kernel of the nat-
ural outer representation

ρΣ
P1

k\{0,1,∞}/k : Gk −→ Out(ΔP1
k
\{0,1,∞}) .

(ii) Suppose that Σ is the set of all prime numbers. (Thus, k
is necessarily of characteristic zero.) Write Q for the algebraic

closure of Q determined by k and GQ
def
= Gal(Q/Q). Then the

kernel of the homomorphism ρΣ
Xn/k is contained in the kernel

of the outer homomorphism

Gk −→ GQ

determined by the natural inclusion Q ↪→ k.

In particular, if k is a number field or p-adic local field (cf. the
discussion entitled “Numbers” in §0), and Σ is the set of all prime
numbers, then the outer representation

ρΣ
X/k : Gk −→ Out(π1(X ⊗k k))

determined by the natural exact sequence

1 −→ π1(X ⊗k k) −→ π1(X) −→ Gk −→ 1

is injective.
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Finally, we remark that in [Bg], a result that corresponds to a certain
special case of Theorem C, (i), is asserted (cf. [Bg], Theorem 2.5). At
the time of writing, the authors of the present paper were not able to
follow the proof of this result given in [Bg]. Nevertheless, in a sequel
to the present paper, we hope to discuss in more detail the relationship
between the theory of the present paper and the interesting geometric
ideas of [Bg] concerning the issue of “canonical liftings” of cycles on a
Riemann surface.

0. Notations and Conventions

Sets: If S is a set, then we shall denote by 2S the power set of S and
by S� the cardinality of S.

Numbers: The notation N will be used to denote the set or (additive)
monoid of nonnegative rational integers. The notation Z will be used
to denote the set, group, or ring of rational integers. The notation Q

will be used to denote the set, group, or field of rational numbers. The

notation Ẑ will be used to denote the profinite completion of Z. If p is
a prime number, then the notation Zp (respectively, Qp) will be used
to denote the p-adic completion of Z (respectively, Q).

A finite extension field of Q will be referred to as a number field. If
p is a prime number, then a finite extension field of Qp will be referred
to as a p-adic local field.

Monoids: We shall write Mgp for the groupification of a monoid M .

Topological groups: Let G be a topological group and H ⊆ G a
closed subgroup of G. Then we shall denote by ZG(H) (respectively,
NG(H); respectively, CG(H)) the centralizer (respectively, normalizer;
respectively, commensurator) of H in G, i.e.,

ZG(H)
def
= { g ∈ G | ghg−1 = h for any h ∈ H } ,

NG(H)
def
= { g ∈ G | g · H · g−1 = H } ,

CG(H)
def
= { g ∈ G |H∩g·H ·g−1 is of finite index in H and g·H ·g−1 } ;

we shall refer to Z(G)
def
= ZG(G) as the center of G. It is immediate

from the definitions that

ZG(H) ⊆ NG(H) ⊆ CG(H) ; H ⊆ NG(H) .

We shall say that the subgroup H is commensurably terminal in G if
H = CG(H).

We shall say that a profinite group G is slim if ZG(H) = {1} for any
open subgroup H of G.

Let Σ be a set of prime numbers, l a prime number, and G a profinite
group. Then we shall write GΣ for the maximal pro-Σ quotient of G

and G(l) def
= G{l}.
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We shall write Gab for the abelianization of a profinite group G, i.e.,
the quotient of G by the closure of the commutator subgroup of G.

If G is a profinite group, then we shall denote the group of auto-
morphisms of G by Aut(G) and the group of inner automorphisms of
G by Inn(G) ⊆ Aut(G). Conjugation by elements of G determines a
surjection of groups G � Inn(G). Thus, we have a homomorphism
of groups G → Aut(G) whose image is Inn(G) ⊆ Aut(G). We shall
denote by Out(G) the quotient of Aut(G) by the normal subgroup
Inn(G) ⊆ Aut(G) and refer to an element of Out(G) as an outomor-
phism of G. In particular, if G is center-free, then the natural ho-
momorphism G → Inn(G) is an isomorphism; thus, we have an exact
sequence of groups

1 −→ G −→ Aut(G) −→ Out(G) −→ 1 .

If, moreover, G is topologically finitely generated, then one verifies eas-
ily that the topology of G admits a basis of characteristic open sub-
groups, which thus induces a profinite topology on the groups Aut(G)
and Out(G) with respect to which the above exact sequence determines
an exact sequence of profinite groups. If ρ : J → Out(G) is a continuous
homomorphism, then we shall denote by

G
out
� J

the profinite group obtained by pulling back the above exact sequence
of profinite groups via ρ. Thus, we have a natural exact sequence of
profinite groups

1 −→ G −→ G
out
� J −→ J −→ 1 .

One verifies easily (cf. [Hsh], Lemma 4.10) that if an automorphism α

of G
out
� J preserves the subgroup G ⊆ G

out
� J and induces the identity

automorphisms of the subquotients G and J , then the automorphism

α is the identity automorphism of G
out
� J .

If M and N are topological modules, then we shall refer to a ho-
momorphism of topological modules φ : M → N as a split injection if
there exists a homomorphism of topological modules ψ : N → M such
that ψ ◦ φ : M → M is the identity automorphism of M .

Semi-graphs: Let Γ be a connected semi-graph. Then we shall say
that Γ is untangled if every closed edge of Γ abuts to two distinct
vertices.

Log stacks: Let X log and Y log be log stacks whose underlying (alge-
braic) stacks we denote by X and Y , respectively; MX and MY the
respective sheaves of monoids on X and Y defining the log structures
of X log and Y log; f log : X log → Y log a morphism of log stacks. Then
we shall refer to the quotient of MX by the image of the morphism
f−1MY → MX induced by f log as the relative characteristic sheaf of
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f log; we shall refer to the relative characteristic sheaf of the morphism
X log → X (where, by abuse of notation, we write X for the log stack
obtained by equipping X with the trivial log structure) induced by the
natural inclusion O∗

X ↪→ MX as the characteristic sheaf of X log.

Curves: We shall use the terms “hyperbolic curve”, “cusp”, “stable log
curve”, “smooth log curve”, and “tripod” as they are defined in [Mzk4],
§0; [Hsh], §0. If (g, r) is a pair of natural numbers such that 2g−2+r >
0, then we shall denote by Mg,r the moduli stack of r-pointed stable
curves of genus g over Z whose r marked points are equipped with
an ordering, Mg,r ⊆ Mg,r the open substack of Mg,r parametrizing

smooth curves, and M
log

g,r the log stack obtained by equipping Mg,r

with the log structure associated to the divisor with normal crossings
Mg,r \Mg,r ⊆ Mg,r.

Let n be a positive integer and X log a stable log curve of type (g, r)
over a log scheme S log. Then we shall refer to the log scheme obtained

by pulling back the (1-)morphism M
log

g,r+n → M
log

g,r given by forgetting

the last n points via the classifying (1-)morphism S log → M
log

g,r of X log

as the n-th log configuration space of X log.

1. Some complements concerning semi-graphs of

anabelioids of PSC-type

In this section, we give some complements to the theory of semi-
graphs of anabelioids of PSC-type developed in [Mzk4].

A basic reference for the theory of semi-graphs of anabelioids of PSC-
type is [Mzk4]. We shall use the terms “semi-graph of anabelioids of
PSC-type”, “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type”, “finite étale covering of semi-graphs of anabelioids of PSC-
type”, “vertex”, “edge”, “cusp”, “node”, “verticial subgroup”, “edge-like
subgroup”, “nodal subgroup”, “cuspidal subgroup”, and “sturdy” as they
are defined in [Mzk4], Definition 1.1. Also, we shall refer to the “PSC-
fundamental group of a semi-graph of anabelioids of PSC-type” simply
as the “fundamental group” (of the semi-graph of anabelioids of PSC-
type). That is to say, we shall refer to the maximal pro-Σ quotient
of the fundamental group of a semi-graph of anabelioids of PSC-type
(as a semi-graph of anabelioids!) as the “fundamental group of the
semi-graph of anabelioids of PSC-type”. In this section, let Σ be a
nonempty set of prime numbers, G a semi-graph of anabelioids of pro-
Σ PSC-type, and G the underlying semi-graph of G. (In particular, G

is a finite semi-graph.) Also, let us fix a universal covering G̃ → G with

underlying projective system of semi-graphs G̃ (i.e., the projective sys-
tem consisting of the underlying graphs G′ of the connected finite étale
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subcoverings G ′ of G̃ → G) and denote by ΠG the (pro-Σ) fundamental
group of G.

Definition 1.1.

(i) We shall denote by Vert(G) (respectively, Cusp(G); Node(G))
the set of the vertices (respectively, cusps; nodes) of G.

(ii) We shall write

Vert(G̃)
def
= lim←−Vert(G ′) ;

Cusp(G̃)
def
= lim←−Cusp(G ′) ;

Node(G̃)
def
= lim←−Node(G ′)

— where the projective limits are over all connected finite étale

subcoverings G ′ → G of the fixed universal covering G̃ → G.

(iii) We shall write

VCN(G)
def
= Vert(G) � Cusp(G) � Node(G) ;

Edge(G)
def
= Cusp(G) � Node(G) ;

VCN(G̃)
def
= Vert(G̃) � Cusp(G̃) � Node(G̃) ;

Edge(G̃)
def
= Cusp(G̃) � Node(G̃) .

(iv) Let

V : Edge(G) −→ 2Vert(G)

(respectively, C : Vert(G) −→ 2Cusp(G);

N : Vert(G) −→ 2Node(G);

E : Vert(G) −→ 2Edge(G))

be the map obtained by sending e ∈ Edge(G) (respectively,
v ∈ Vert(G); v ∈ Vert(G); v ∈ Vert(G)) to the set of vertices
(respectively, cusps; nodes; edges) of G to which e abuts (re-
spectively, which abut to v; which abut to v; which abut to v).
Also, we shall write

V : Edge(G̃) −→ 2Vert( eG)

(respectively, C : Vert(G̃) −→ 2Cusp( eG);

N : Vert(G̃) −→ 2Node( eG);

E : Vert(G̃) −→ 2Edge( eG))

for the map induced by the various V’s (respectively, C’s; N ’s;
E ’s) involved.
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(v) Let z̃ ∈ VCN(G̃). Suppose that G ′ → G is a connected finite

étale subcovering of G̃ → G. Then we shall denote by z̃(G ′) ∈
VCN(G ′) the image of z̃ in VCN(G ′).

(vi) Let v ∈ Vert(G), ṽ ∈ Vert(G̃) be such that ṽ(G) = v. Then it is
easily verified that there exists a unique verticial subgroup Πev

of ΠG associated to the vertex v such that for every connected

finite étale subcovering G ′ → G of G̃ → G, it holds that the
subgroup Πev ∩ ΠG′ ⊆ ΠG′ — where we write ΠG′ ⊆ ΠG for the
open subgroup corresponding to G ′ → G — is a verticial sub-
group of ΠG′ associated to ṽ(G ′) ∈ Vert(G ′); thus, the element
ṽ determines a particular verticial subgroup of ΠG associated
to the vertex v. We shall refer to this verticial subgroup of ΠG

determined by ṽ as the verticial subgroup of ΠG associated to ṽ
and denote it by Πev.

In a similar vein, for ẽ ∈ Cusp(G̃) (respectively, ẽ ∈ Node(G̃);

ẽ ∈ Edge(G̃)), by a similar argument to the argument just ap-
plied to define the verticial subgroup of ΠG associated to ṽ, the
element ẽ determines a particular cuspidal (respectively, nodal;
edge-like) subgroup of ΠG associated to the cusp (respectively,
node; edge) ẽ(G) of G. We shall refer to this cuspidal (respec-
tively, nodal; edge-like) subgroup of ΠG as the cuspidal (respec-
tively, nodal; edge-like) subgroup of ΠG associated to ẽ and de-
note it by Πee.

(vii) Let n be a natural number, and v, w ∈ Vert(G). Then we shall
write δ(v, w) ≤ n if the following conditions are satisfied:

(1) If n = 0, then v = w.

(2) If n ≥ 1, then there exist n nodes e1, · · · , en ∈ Node(G) of
G and n−1 vertices v1, · · · , vn−1 ∈ Vert(G) of G such that,
for 1 ≤ i ≤ n, it holds that V(ei) = {vi−1, vi} — where we

write v0
def
= v and vn

def
= w.

Moreover, we shall write δ(v, w) = n if δ(v, w) ≤ n and δ(v, w) �≤
n−1. If δ(v, w) = n, then we shall say that the distance between
v and w is equal to n.

(viii) Let ṽ, w̃ ∈ Vert(G̃). Then we shall write

δ(ṽ, w̃)
def
= sup

G′

{δ(ṽ(G ′), w̃(G ′))} ∈ N ∪ {∞}

— where G ′ ranges over the connected finite étale subcoverings

G′ → G of G̃ → G. If δ(ṽ, w̃) = n ∈ N ∪ {∞}, then we shall say
that the distance between ṽ and w̃ is equal to n.
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Remark 1.1.1. Let z̃ ∈ VCN(G̃), and z
def
= z̃(G) ∈ VCN(G). Then

whereas z̃ completely determines the subgroup Πez, z only determines
the ΠG-conjugacy class of the subgroup Πez.

Definition 1.2. We shall say that the semi-graph of anabelioids of
pro-Σ PSC-type G is untangled if the underlying semi-graph of G is
untangled (cf. the discussion entitled “Semi-graphs” in §0).

Remark 1.2.1.

(i) It follows from a similar argument to the argument in the dis-
cussion entitled “Curves” in [Mzk6], §0, that there exists a con-
nected finite étale covering G ′ → G of G such that G ′ is untan-
gled.

(ii) It is easily verified that if G is untangled, then every finite étale
covering G ′ → G of G is untangled.

(iii) It follows from (i) and (ii) that for every ẽ ∈ Node(G̃), we have
V(ẽ)� = 2.

Definition 1.3.

(i) We shall denote by Π
ab/edge
G the quotient of Πab

G by the closed
subgroup generated by the images in Πab

G of the edge-like sub-
groups of ΠG.

(ii) Let ṽ ∈ Vert(G̃). Then we shall denote by Π
ab/edge
ev the quotient

of the abelianization Πab
ev by the closed subgroup generated by

the images in Πab
ev of Πee ⊆ Πev — where ẽ ranges over elements

of E(ṽ). (Here, we note that it follows from [Mzk4], Proposition

1.5, (i), that for ẽ ∈ Edge(G̃), it holds that ẽ ∈ E(ṽ) if and only
if Πee ⊆ Πev.)

(iii) Let v ∈ Vert(G). Then observe that conjugation by elements
of ΠG determines natural isomorphisms between the various

Π
ab/edge
ev , as ṽ ranges over the elements of Vert(G̃) such that

v = ṽ(G). We shall denote the resulting profinite group by

Π
ab/edge
v .

Lemma 1.4 (Verticial decompositions inside ab/edge-quotients).
The natural homomorphism⊕

v∈Vert(G)

Πab/edge
v −→ Π

ab/edge
G

is a split injection (cf. the discussion entitled “Topological groups” in

§0) whose image is a free ẐΣ-module of finite rank (cf. [Mzk4], Remark
1.1.4).



14 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

Proof. It follows immediately from the well-known structure of the
maximal pro-Σ quotient of the fundamental group of a smooth curve
over an algebraically closed field of characteristic �∈ Σ that the quotient

by the image of the natural homomorphism in question is a free ẐΣ-
module. Therefore, to verify Lemma 1.4, it suffices to verify that the
natural homomorphism in question is injective. Now suppose that we
have been given, for each v ∈ Vert(G), a connected finite étale covering
Hv → Gv of the anabelioid Gv corresponding to v ∈ Vert(G) which

arises from an open subgroup of Π
ab/edge
v . Then to verify the desired

injectivity, it suffices to verify that there exists a connected finite étale

covering F → G of G which arises from an open subgroup of Π
ab/edge
G

such that, for each v ∈ Vert(G), any connected component of the re-
striction of F → G to Gv is isomorphic to Hv over Gv. To this end,

for v ∈ Vert(G), write (Π
ab/edge
v �) Av for the Galois group of the

connected finite étale covering Hv → Gv,

A�=v
def
=

∏
w∈Vert(G)\{v}

Aw ⊆ A
def
=

∏
w∈Vert(G)

Aw ,

Fv → Gv for the (not necessarily connected) finite étale covering of Gv

obtained as the disjoint union of copies of Hv indexed by the elements
of A�=v, and, for e ∈ E(v), Fv|Ge → Ge for the finite étale covering
of Ge obtained as the restriction of Fv → Gv to the anabelioid Ge

corresponding to e ∈ N (v). Then the natural action of A �=v on A�=v

and the tautological action of Av on Hv over Gv naturally determine
an action of A on Fv over Gv. Moreover, one verifies immediately
that this A-action determines a structure of A-torsor on the covering
Fv → Gv. Therefore, by gluing the various Fv (for v ∈ vert(G)) by A-
equivariant isomorphisms between the various Fv|Ge (for e ∈ Node(G)),
we obtain a finite étale covering F → G, any connected component of
which satisfies the desired condition. This completes the proof of the
injectivity of the homomorphism in question. �

Remark 1.4.1. The following two assertions follow immediately from
Lemma 1.4.

(i) If Πv ⊆ ΠG is a verticial subgroup of ΠG, then the natural

homomorphism Π
ab/edge
v → Π

ab/edge
G is injective.

(ii) If v1, v2 ∈ Vert(G) are distinct, then for any verticial subgroups
Πv1 , Πv2 ⊆ ΠG associated to v1, v2, the intersection of the images

of Πv1 and Πv2 in Π
ab/edge
G is trivial.

Lemma 1.5 (Intersections of edge-like subgroups). Let ẽ1, ẽ2 ∈

Edge(G̃). Then the following conditions are equivalent:
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(i) ẽ1 = ẽ2.

(ii) Πee1 ∩ Πee2 �= {1}.

In particular, if Πee1 ∩ Πee2 �= {1}, then Πee1 = Πee2.

Proof. The implication
(i) =⇒ (ii)

is immediate; thus, to verify Lemma 1.5, it suffices to prove the impli-
cation

(ii) =⇒ (i) .

To this end, let us assume that Πee1 ∩ Πee2 �= {1}. Since ΠG is torsion-
free (cf. [Mzk4], Remark 1.1.3), by projecting to the maximal pro-l
quotients, for some l ∈ Σ, of suitable open subgroups of the various
pro-Σ groups involved, we may assume without loss of generality that
Σ = {l}. In particular, since Πee1 and Πee2 are isomorphic to Zl, we may
assume without loss of generality that Πee1 ∩Πee2 is open in Πee1 and Πee2 .
Thus, by replacing G by a connected finite étale covering of G, we may
assume without loss of generality that Πee1 = Πee2 . Then condition (i)
follows from [Mzk4], Proposition 1.2, (i). �

Lemma 1.6 (Group-theoretic characterization of subgroups of
edge-like subgroups). Let J ⊆ ΠG be a nontrivial procyclic closed
subgroup of ΠG. Then the following conditions are equivalent:

(i) J is contained in a(n) — necessarily unique (cf. Lemma 1.5)
— edge-like subgroup.

(ii) There exists a connected finite étale covering G† → G of G such
that for any connected finite étale covering G ′ → G of G that
factors through G† → G, the image of the composite

J ∩ ΠG′ ↪→ ΠG′ � Π
ab/edge
G′

is trivial.

Proof. The implication
(i) =⇒ (ii)

is immediate; thus, to verify Lemma 1.6, it suffices to prove the impli-
cation

(ii) =⇒ (i) .

To this end, let us assume that condition (ii) holds. Now since edge-like
subgroups are commensurably terminal (cf. [Mzk4], Proposition 1.2,
(ii)), it suffices to verify condition (i) under the further assumption that
G† = G (cf. the uniqueness portion of condition (i)). Moreover, since
ΠG is torsion-free (cf. [Mzk4], Remark 1.1.3), to verify condition (i),
we may assume without loss of generality (cf. the uniqueness portion
of condition (i)) — by projecting to the maximal pro-l quotients, for



16 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

some l ∈ Σ, of suitable open subgroups of the various pro-Σ groups
involved — that Σ = {l}.

If H ⊆ ΠG is an open subgroup of ΠG, then let us denote by GH →
G the connected finite étale covering of G corresponding to the open
subgroup H ⊆ ΠG (i.e., ΠGH

= H ⊆ ΠG). Now we claim that

(∗) for any normal open subgroup N ⊆ ΠG of ΠG, there
exists an edge of GJ ·N at which the connected finite étale
covering GN → GJ ·N is totally ramified, i.e., there exists
an edge e ∈ Edge(GJ ·N) such that the composite of nat-
ural homomorphisms

Πe ↪→ ΠGJ·N
= J · N � (J · N)/N

is surjective.

Indeed, since J is procyclic, it follows that (J · N)/N is cyclic; in par-
ticular, we obtain a natural surjection Πab

GJ·N
� (J · N)/N . Moreover,

since (J ·N)/N is generated by the image of J , it follows from condition
(ii) that the composite of natural homomorphisms⊕

e′∈Edge(GJ·N )

Πe′ → Πab
GJ·N

� (J · N)/N

is surjective. Therefore, it follows from the fact that (J ·N)/N is a cyclic
l-group that there exists an edge e of GJ ·N such that the composite of
the natural homomorphisms Πe ↪→ ΠGJ·N

= J · N � (J · N)/N is
surjective, as desired. This completes the proof of (∗).

If N ⊆ ΠG is a normal open subgroup, then let us denote by EN ⊆
Edge(GN) the subset of Edge(GN ) consisting of edges which are fixed
by the natural action of J on GN . Then it follows from (∗) that for any
normal open subgroup N ⊆ ΠG , it holds that EN is nonempty; thus,
since EN is finite, the projective limit lim←−N

EN — where N ranges over
the normal open subgroups of ΠG — is nonempty. Note that since⋂

N N — where N ranges over the normal open subgroups of ΠG —
is {1}, it follows that each element of the projective limit lim←−N

EN

naturally determines an element of Edge(G̃). Let ẽ ∈ Edge(G̃) be an

element of Edge(G̃) determined by an element of lim←−N
EN �= ∅. Then

it follows from the various definitions involved that J ⊆ Πee. This
completes the proof of the implication

(ii) =⇒ (i) .

�

Remark 1.6.1. When G† = G and Node(G) = ∅, Lemma 1.6 follows
immediately from [Naka], Lemma 2.1.4.
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Lemma 1.7 (Intersections of verticial and edge-like subgroups).

Let ṽ ∈ Vert(G̃), and ẽ ∈ Edge(G̃). Then the following conditions are
equivalent:

(i) ẽ ∈ E(ṽ).

(ii) Πev ∩ Πee �= {1}.

In particular, if Πev ∩ Πee �= {1}, then Πee ⊆ Πev.

Proof. The implication
(i) =⇒ (ii)

is immediate; thus, to verify Lemma 1.7, it suffices to prove the impli-
cation

(ii) =⇒ (i) .

To this end, let us assume that Πev ∩ Πee �= {1}. Since ΠG is torsion-
free (cf. [Mzk4], Remark 1.1.3), by projecting to the maximal pro-l
quotients, for some l ∈ Σ, of suitable open subgroups of the various
pro-Σ groups involved, we may assume without loss of generality that
Σ = {l}. In particular, since Πee is isomorphic to Zl, we may assume
without loss of generality that Πev∩Πee is open in Πee. Thus, by replacing
G by a connected finite étale covering of G, we may assume without loss
of generality that Πee ⊆ Πev. Then condition (i) follows from [Mzk4],
Proposition 1.5, (i) (cf. also [Mzk4], Proposition 1.2, (i)). �

Lemma 1.8 (Nonexistence of loops). Let ṽ1, ṽ2 ∈ Vert(G̃) be such
that ṽ1 �= ṽ2. Then

(N (ṽ1) ∩N (ṽ2))
� ≤ 1 ;

{ ṽ ∈ Vert(G̃) | δ(ṽ, ṽ1) = δ(ṽ, ṽ2) = 1 }� ≤ 1 .

Proof. If the cardinality of either of the sets equipped with a super-
script “
” is ≥ 2, then the offending edges or vertices give rise to a

loop of G̃, i.e., a projective system of loops (that map isomorphically
to one another) in the various semi-graphs that appear in the projec-

tive system G̃. On the other hand, since G̃ is a universal covering of
G, one verifies immediately that no such projective system of loops
exists. Thus, we obtain a contradiction. This completes the proof of
Lemma 1.8. �

Remark 1.8.1.

(i) Let ṽ ∈ Vert(G̃). Recall that if ẽ ∈ N (ṽ), then the inclusion
Πee ⊆ Πev is strict (i.e., Πee �= Πev). In particular, it follows
immediately that either N (ṽ) = ∅ or N (ṽ)� ≥ 2.

(ii) Let ṽ1, ṽ2 ∈ Vert(G̃). Then, in light of (i), it follows immediately
from Lemma 1.8 that the following assertion holds:
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ṽ1 = ṽ2 if and only if N (ṽ1) = N (ṽ2).

(iii) Let ẽ1, ẽ2 ∈ Node(G̃). Then it follows immediately from Lemma
1.8 that the following assertion holds:

If ẽ1 �= ẽ2, then (V(ẽ1) ∩ V(ẽ2))
� ≤ 1.

In particular, it follows from Remark 1.2.1, (iii), that the fol-
lowing assertion holds:

ẽ1 = ẽ2 if and only if V(ẽ1) = V(ẽ2).

Lemma 1.9 (Graph-theoretic geometry via verticial subgroups).

For i = 1, 2, let ṽi ∈ Vert(G̃). Then the following hold:

(i) If Πev1 ∩ Πev2 �= {1}, then either Πev1 = Πev2 or Πev1 ∩ Πev2 is a
nodal subgroup of ΠG.

(ii) Consider the following three (mutually exclusive) conditions:

(1) δ(ṽ1, ṽ2) = 0.

(2) δ(ṽ1, ṽ2) = 1.

(3) δ(ṽ1, ṽ2) ≥ 2.

Then we have equivalences

(1) ⇐⇒ (1′) ; (2) ⇐⇒ (2′) ⇐⇒ (2′′) ; (3) ⇐⇒ (3′)

with the following four conditions:

(1′) Πev1 = Πev2.

(2′) Πev1 �= Πev2; Πev1 ∩ Πev2 �= {1}.

(2′′) Πev1 ∩ Πev2 is a nodal subgroup of ΠG.

(3′) Πev1 ∩ Πev2 = {1}.

Proof. First, we consider assertion (i). Suppose that H
def
= Πev1 ∩Πev2 �=

{1}, and Πev1 �= Πev2 (so ṽ1 �= ṽ2 — cf. [Mzk4], Proposition 1.2, (i)).
Note that to verify assertion (i), it suffices to show that H is a nodal
subgroup of ΠG. Also, we observe that since nodal and verticial sub-
groups of ΠG are commensurably terminal in ΠG (cf. [Mzk4], Proposi-
tion 1.2, (ii)), it follows that we may assume without loss of generality
— by replacing G by a connected finite étale covering of G — that
ṽ1(G) �= ṽ2(G).

Let J ⊆ H be a nontrivial procyclic closed subgroup of H . Then we
claim that J is contained in an edge-like subgroup of ΠG. Indeed, since
J ⊆ H = Πev1 ∩ Πev2 — where ṽ1 �= ṽ2 — it follows from Remark 1.4.1,
(ii), together with our assumption that ṽ1(G) �= ṽ2(G), that the image

of J in Π
ab/edge
G is trivial. Thus, by applying this observation to the

various connected finite étale coverings of G involved, we conclude that
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J satisfies condition (ii) in the statement of Lemma 1.6. In particular,
it follows from Lemma 1.6 that J is contained in an edge-like subgroup.
This completes the proof of the above claim. On the other hand, if Πee

is an edge-like subgroup of ΠG such that J ⊆ Πee, then it follows from
Lemma 1.7 that the inclusion J ⊆ Πee implies that Πee is in fact nodal,
and, moreover, that Πee ⊆ Πev1 ∩ Πev2 = H .

By the above discussion, it follows that

H =
⋃

ee∈N (ev1)∩N (ev2)

Πee .

On the other hand, it follows from Lemma 1.8 that the cardinality of
the intersection N (ṽ1) ∩ N (ṽ2) is ≤ 1. Therefore, it follows that H is
a nodal subgroup of ΠG. This completes the proof of assertion (i).

Next, we consider assertion (ii). The equivalence

(1) ⇐⇒ (1′)

follows from [Mzk4], Proposition 1.2, (i). In light of this equivalence,
the implications

(2) =⇒ (2′) =⇒ (2′′)

follow from assertion (i), while the implication

(2′′) =⇒ (2)

follows from Lemma 1.7. The equivalence

(3) ⇐⇒ (3′)

then follows from the equivalences

(1) ⇐⇒ (1′) ; (2) ⇐⇒ (2′) .

�

Remark 1.9.1. It follows immediately from the various definitions
involved that for any semi-graph of anabelioids of pro-Σ PSC-type G,
there exists, in the terminology of [Mzk6], Definition 1.2, (ii), an IPSC-
extension

1 −→ ΠG −→ ΠI −→ I −→ 1 .

Therefore, Lemma 1.9 may also be obtained as a consequence of [Mzk6],
Proposition 1.3, (iv).

Lemma 1.10 (Conjugates of verticial subgroups). Suppose that

G is untangled. Let ṽ, ṽ′ ∈ Vert(G̃) be such that ṽ(G) = ṽ′(G). Then
ṽ �= ṽ′ if and only if Πev ∩ Πev′ = {1}.

Proof. The sufficiency of the condition is immediate; thus, to prove
Lemma 1.10, it suffices to verify the necessity of the condition. To this
end, let us assume that ṽ �= ṽ′. Then there exists a connected finite

étale subcovering G ′ → G of G̃ → G such that ṽ(G ′) �= ṽ′(G ′). On
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the other hand, since G is untangled, and ṽ(G) = ṽ′(G), it follows that
N (ṽ(G ′)) ∩N (ṽ′(G ′)) = ∅. Thus, Πev ∩Πev′ ∩ ΠG′ = {1} by Lemma 1.9,
(ii); in particular, since Πev is torsion-free (cf. [Mzk4], Remark 1.1.3),
we obtain that Πev ∩ Πev′ = {1}, as desired. �

Remark 1.10.1. It follows immediately from Lemma 1.10 that the
following assertion holds:

Suppose that G is untangled. Let v ∈ Vert(G) be a vertex
of G, Πv ⊆ ΠG a verticial subgroup associated to v, and
γ ∈ ΠG \ Πv. Then Πv ∩ γ · Πv · γ−1 = {1}.

Definition 1.11. Suppose that G is sturdy. Then by eliminating the
cusps (i.e., the open edges) of the semi-graph G, and, for each vertex v
of G, replacing the anabelioid Gv corresponding to v by the anabelioid
Gv of finite étale coverings of Gv that restrict to a trivial covering over
the cusps of G that abut to v, we obtain a semi-graph of anabelioids
of pro-Σ PSC-type G. (Thus, the pro-Σ fundamental group of Gv may
be naturally identified, up to inner automorphism, with the quotient
of Πv by the subgroup of Πv topologically normally generated by the
Πe ⊆ Πv, for e ∈ C(v).) We shall refer to G as the compactification of
G (cf. [Mzk4], Remark 1.1.6).

Remark 1.11.1. It follows immediately from the definition of the
compactification that the quotient of ΠG by the closed subgroup of
ΠG topologically normally generated by the cuspidal subgroups of ΠG

is naturally isomorphic, up to inner automorphism, to the fundamen-
tal group ΠG of G. In particular, we have a natural outer surjection
ΠG � ΠG.

By analogy to the terms “group-theoretically verticial” and “group-
theoretically cuspidal” introduced in [Mzk4] (cf. [Mzk4], Definition 1.4,
(iv)), we make the following definition.

Definition 1.12. Let H be a semi-graph of anabelioids of pro-Σ PSC-
type, ΠH the (pro-Σ) fundamental group of H, and α : ΠG

∼
→ ΠH an

isomorphism of profinite groups. Then we shall say that α is group-

theoretically nodal if, for any ẽ ∈ Node(G̃), the image α(Πee) ⊆ ΠH is
a nodal subgroup of ΠH, and, moreover, every nodal subgroup of ΠH

arises in this fashion.

Proposition 1.13 (Group-theoretical verticiality and nodality).
Let H be a semi-graph of anabelioids of pro-Σ PSC-type, ΠH the fun-
damental group of H, and α : ΠG

∼
→ ΠH a group-theoretically ver-

ticial isomorphism. Then α is group-theoretically nodal.
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Proof. This follows immediately from Lemma 1.9, (i). �

Lemma 1.14 (Graphicity of certain group-theoretically cuspi-
dal and verticial isomorphisms). Let H be a semi-graph of anabe-
lioids of pro-Σ PSC-type, and ΠH the fundamental group of H. If an
isomorphism α : ΠG

∼
→ ΠH satisfies the following two conditions, then

α is graphic (cf. [Mzk4], Definition 1.4, (i)):

(i) α is group-theoretically cuspidal.

(ii) For any sturdy connected finite étale covering G ′ → G of G
such that the corresponding covering H′ → H of H (relative to
the isomorphism α) is sturdy, the induced isomorphism (cf.
(i), Remark 1.11.1)

ΠG
′

∼
−→ ΠH

′

— where we write G
′
(respectively, H

′
) for the semi-graph of

anabelioids of PSC-type obtained as the compactification (cf.
Definition 1.11) of G ′ (respectively, H′) — is group-theoretically
verticial.

Proof. Since the isomorphism ΠG
′

∼
→ ΠH

′ is group-theoretically ver-
ticial (cf. condition (ii)), it follows from Proposition 1.13 that the

isomorphism ΠG
′

∼
→ ΠH

′ is group-theoretically nodal. Therefore, it fol-
lows immediately from (i) that α is graphically filtration-preserving (cf.
[Mzk4], Definition 1.4, (iii)). Thus, it follows from [Mzk4], Theorem
1.6, (ii), that α is graphic, as desired. �

Lemma 1.15 (Chains of length two lifting adjacent vertices).

Let ṽ1, ṽ2 ∈ Vert(G̃) be such that if we write vi
def
= ṽi(G), then δ(v1, v2) =

1. Then there exist w̃1, ũ1, w̃2 ∈ Vert(G̃) which satisfy the following
conditions (which imply that δ(w̃1, ũ1) = 2):

(i) v1 = w̃1(G) = ũ1(G); v2 = w̃2(G).

(ii) δ(w̃1, ũ1) ≥ 2.

(iii) δ(w̃2, w̃1) = δ(w̃2, ũ1) = 1.

Proof. First, we observe that by replacing G by a connected finite étale
covering of G, we may assume without loss of generality that G is
sturdy (cf. [Mzk4], Remark 1.1.5) and untangled (cf. Remark 1.2.1,
(i)). Then it is easily verified that there exists a nontrivial connected
finite étale covering of the anabelioid Gv2 corresponding to v2 which is
unramified over the nodes and cusps of G which abut to v2. In light
of the unramified nature of this connected finite étale covering of Gv2 ,
by gluing this covering to a split covering over the remaining portion
of G, we obtain a connected finite étale covering H → G. Then it
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follows immediately from the various definitions involved that the set
V1 (respectively, V2) of vertices of H which lie over v1 (respectively,
v2) is of cardinality ≥ 2 (respectively, of cardinality 1). Thus, there
exist vertices w1, u1 ∈ V1, w2 ∈ V2 such that w1 �= u1 (which, since
G is untangled, implies that δ(w1, u1) ≥ 2 — cf. condition (ii)), and,
moreover, δ(w2, w1) = δ(w2, u1) = 1 (cf. condition (iii)). In particular,

it follows immediately that there exist elements w̃1, ũ1, w̃2 ∈ Vert(G̃)
which satisfy the three conditions in the statement of Lemma 1.15.
This completes the proof of Lemma 1.15. �

2. Nodally nondegenerate outer representations

In this section, we define the notion of an outer representation of
NN-type and verify various fundamental properties of such outer rep-
resentations.

If G is a semi-graph of anabelioids of pro-Σ PSC-type for some
nonempty set of prime numbers Σ, then since the fundamental group
ΠG of G is topologically finitely generated, the profinite topology of ΠG

induces (profinite) topologies on Aut(ΠG) and Out(ΠG) (cf. the discus-
sion entitled “Topological groups” in §0). Moreover, if we write

Aut(G)

for the group of automorphisms of G, then by the discussion preceding
[Mzk4], Lemma 2.1, the natural homomorphism

Aut(G) −→ Out(ΠG)

is an injection with closed image. (Here, we recall that an automor-
phism of a semi-graph of anabelioids consists of an automorphism of
the underlying semi-graph, together with a compatible system of iso-
morphisms between the various anabelioids at each of the vertices and
edges of the underlying semi-graph which are compatible with the var-
ious morphisms of anabelioids associated to the branches of the under-
lying semi-graph — cf. [Mzk3], Definition 2.1; [Mzk3], Remark 2.4.2.)
Thus, by equipping Aut(G) with the topology induced via this homo-
morphism by the topology of Out(ΠG), we may regard Aut(G) as being
equipped with the structure of a profinite group.

Definition 2.1.

(i) Let I be a profinite group, Σ a nonempty set of prime numbers,
G a semi-graph of anabelioids of pro-Σ PSC-type, ΠG the fun-
damental group of G, and ρ : I → Aut(G) a homomorphism of
profinite groups. Then we shall refer to the pair(

G, ρ : I → Aut(G) (↪→ Out(ΠG))
)

as an outer representation of pro-Σ PSC-type. Moreover, we
shall refer to an outer representation of pro-Σ PSC-type for
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some nonempty set of prime numbers Σ as an outer represen-
tation of PSC-type. For simplicity, we shall also refer to the
underlying homomorphism “ρ” of an outer representation of
pro-Σ PSC-type (respectively, of PSC-type) as an outer repre-
sentation of pro-Σ PSC-type (respectively, outer representation
of PSC-type).

(ii) Let (G, ρI : I → Aut(G)), (H, ρJ : J → Aut(H)) be outer repre-
sentations of PSC-type. Then we shall refer to a pair

(α : G
∼

−→ H, β : I
∼

−→ J)

consisting of an isomorphism α of semi-graphs of anabelioids
and an isomorphism β of profinite groups such that the diagram

I
ρI−−−→ Aut(G)

β

⏐⏐� ⏐⏐�Aut(α)

J −−−→
ρJ

Aut(H)

— where the right-hand vertical arrow is the isomorphism in-
duced by α — commutes as an isomorphism of outer represen-
tations of PSC-type.

Remark 2.1.1. It follows immediately that a “pro-Σ IPSC-extension”

1 −→ ΠG −→ ΠI −→ I −→ 1

(i.e., roughly speaking, an extension that arises from a stable log curve
over a log point — cf. [Mzk6], Definition 1.2, (ii)) gives rise to an outer
representation I → Out(ΠG) that factors through Aut(G) ⊆ Out(ΠG);
in particular, we obtain an outer representation of pro-Σ PSC-type
I → Aut(G).

In the following, let us fix a nonempty set of prime numbers Σ and
an outer representation of pro-Σ PSC-type(

G, ρI : I → Aut(G) (↪→ Out(ΠG))
)

and write ΠI
def
= ΠG

out
� I (cf. the discussion entitled “Topological

groups” in §0); thus, we have an exact sequence

1 −→ ΠG −→ ΠI −→ I −→ 1 .

Definition 2.2.

(i) Let v ∈ Vert(G) be a vertex of G and Πv ⊆ ΠG a verticial
subgroup of ΠG associated to v. Then we shall write

Dv
def
= NΠI

(Πv) ⊆ ΠI (respectively, Iv
def
= ZΠI

(Πv) ⊆ Dv)

and refer to Dv (respectively, Iv) as a decomposition (respec-
tively, an inertia) subgroup of ΠI associated to the vertex v,
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or, alternatively, the decomposition (respectively, inertia) sub-
group of ΠI associated to the verticial subgroup Πv ⊆ ΠG. If,
moreover, the verticial subgroup Πv is the verticial subgroup

associated to an element ṽ ∈ Vert(G̃) (cf. Definition 1.1, (vi)),

then we shall write Dev
def
= Dv (respectively, Iev

def
= Iv) and re-

fer to Dev (respectively, Iev) as the decomposition (respectively,
inertia) subgroup of ΠI associated to ṽ.

(ii) Let e ∈ Cusp(G) be a cusp of G and Πe ⊆ ΠG an edge-like
subgroup of ΠG associated to e. Then we shall write

De
def
= NΠI

(Πe) ⊆ ΠI (respectively, Ie
def
= Πe ⊆ De)

and refer to De (respectively, Ie) as a decomposition (respec-
tively, an inertia) subgroup of ΠI associated to the cusp e, or,
alternatively, the decomposition (respectively, inertia) subgroup
of ΠI associated to the edge-like subgroup Πe ⊆ ΠG. If, more-
over, the edge-like subgroup Πe is the edge-like subgroup as-
sociated to an element ẽ ∈ Cusp(G̃) (cf. Definition 1.1, (vi)),

then we shall write Dee
def
= De (respectively, Iee

def
= Ie) and refer to

Dee (respectively, Iee) as the decomposition (respectively, inertia)
subgroup of ΠI associated to ẽ.

(iii) Let e ∈ Node(G) be a node of G and Πe ⊆ ΠG an edge-like
subgroup of ΠG associated to e. Then we shall write

De
def
= NΠI

(Πe) ⊆ ΠI (respectively, Ie
def
= ZΠI

(Πe) ⊆ De)

and refer to De (respectively, Ie) as a decomposition (respec-
tively, an inertia) subgroup of ΠI associated to the node e, or,
alternatively, the decomposition (respectively, inertia) subgroup
of ΠI associated to the edge-like subgroup Πe ⊆ ΠG. If, more-
over, the edge-like subgroup Πe is the edge-like subgroup as-

sociated to an element ẽ ∈ Node(G̃) (cf. Definition 1.1, (vi)),

then we shall write Dee
def
= De (respectively, Iee

def
= Ie) and refer to

Dee (respectively, Iee) as the decomposition (respectively, inertia)
subgroup of ΠI associated to ẽ.

Lemma 2.3 (Basic properties of inertia subgroups).

(i) Let ṽ ∈ Vert(G̃). Then {1} = Iev ∩ ΠG; in particular, the homo-
morphism Iev → I induced by the surjection ΠI � I is injec-
tive.

(ii) Let ẽ ∈ Node(G̃), ṽ ∈ V(ẽ). Then Iev ⊆ Iee.

Proof. Assertion (i) follows from the commensurable terminality of Πev

in ΠG (cf. [Mzk4], Proposition 1.2, (ii)), together with the slimness of
Πev (cf. [Mzk4], Remark 1.1.3). Assertion (ii) follows from the fact that
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Πee ⊆ Πev, together with the definitions of inertia subgroups of vertices
and nodes. �

The following definition will play a central role in the present paper.

Definition 2.4.

(i) We shall say that the outer representation of pro-Σ PSC-type ρI

is of IPSC-type (where the “IPSC” stands for “inertial pointed
stable curve”) if ρI is isomorphic, as an outer representation
of PSC-type (cf. Definition 2.1, (ii)), to the outer representa-
tion of PSC-type determined by (cf. Remark 2.1.1) an “IPSC-
extension” (i.e., roughly speaking, an extension that arises from
a stable log curve over a log point — cf. [Mzk6], Definition 1.2,
(ii)).

(ii) We shall say that the outer representation of pro-Σ PSC-type ρI

of VA-type (where the “VA” stands for “verticially admissible”)
if the following two conditions are satisfied:

(1) I is isomorphic to ẐΣ as an abstract profinite group.

(2) For every ṽ ∈ Vert(G̃), the image of the injection Iev ↪→ I
(cf. Lemma 2.3, (i)) is open in I.

We shall say that the outer representation of pro-Σ PSC-type
ρI is of SVA-type (where the “SVA” stands for “strictly ver-
ticially admissible”) if, in addition to the above condition (1),
the following condition is satisfied:

(2′) For every ṽ ∈ Vert(G̃), the injection Iev ↪→ I is bijective.

(iii) We shall say that the outer representation of pro-Σ PSC-type ρI

is of NN-type (where the “NN” stands for “nodally nondegener-
ate”) if ρI is of VA-type, and, moreover, the following condition
is satisfied:

(3) For every ẽ ∈ Node(G̃), the homomorphism Iev1 × Iev2 → Iee

— where we write {ṽ1, ṽ2} = V(ẽ) ⊆ Vert(G̃) — induced by
the inclusions Iev1 , Iev2 ⊆ Iee (cf. Lemma 2.3, (ii)) is injective,
and its image is open in Iee.

We shall say that the outer representation of pro-Σ PSC-type
ρI is of SNN-type (where the “SNN” stands for “strictly nodally
nondegenerate”) if ρI is of SVA-type and of NN-type.

Remark 2.4.1. Note that it is not the case that condition (2) of Defini-
tion 2.4 is implied by conditions (1) and (3) of Definition 2.4. Indeed, it
is easily verified that if Vert(G) = {v}, and Node(G) = ∅ (so Πv = ΠG),

then any injection ẐΣ ↪→ Out(ΠG) satisfies conditions (1) and (3), but
fails to satisfy condition (2). (Moreover, it is also easily verified that
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such an injection exists.) On the other hand, when Node(G) �= ∅,
it is not clear to the authors at the time of writing whether or not
condition (2) of Definition 2.4 is implied by conditions (1) and (3) of
Definition 2.4.

Remark 2.4.2. It follows from [Mzk6], Proposition 1.3, (ii), (iii), that
if ρI is of IPSC-type, then ρI is of SNN-type, i.e.,

IPSC-type =⇒ SNN-type =⇒ NN-type

⇓ ⇓

SVA-type =⇒ VA-type .

Lemma 2.5 (Group structure of inertia subgroups). If ρI is of
VA-type, then the following hold:

(i) Let ṽ ∈ Vert(G̃). Then as an abstract profinite group, Iev is

isomorphic to ẐΣ.

(ii) Let ẽ ∈ Cusp(G̃). Then as an abstract profinite group, Iee is

isomorphic to ẐΣ.

(iii) Let ẽ ∈ Node(G̃). Then as an abstract profinite group, Iee is

isomorphic to ẐΣ × ẐΣ.

(iv) Let ẽ ∈ Node(G̃). Then Πee = Iee ∩ ΠG; thus, we have an exact
sequence

1 −→ Πee −→ Iee −→ Im(Iee → I) −→ 1

— where we write Im(Iee → I) for the image of the composite
Iee ↪→ ΠI � I. Moreover, the subgroup Im(Iee → I) ⊆ I is open
in I.

In particular, for ṽ ∈ V(ẽ), the image of the homomorphism
Iev × Πee → Iee induced by the natural inclusions Iev, Πee ⊆ Iee is
open in Iee. If, moreover, for ṽ ∈ V(ẽ), the composite Iev ↪→
ΠI � I is surjective (or, equivalently, bijective), then the
homomorphism Iev × Πee → Iee induced by the natural inclusions
Iev, Πee ⊆ Iee is bijective.

Proof. Assertion (i) (respectively, (ii)) follows from conditions (1) and
(2) of Definition 2.4 (respectively, from Definition 2.2, (ii)). Asser-
tion (iv) follows from the commensurable terminality of Πee in ΠG (cf.
[Mzk4], Proposition 1.2, (ii)), together with condition (2) of Defini-
tion 2.4. Assertion (iii) follows from the fact that Iee is an extension of

ẐΣ by ẐΣ and abelian (cf. assertion (iv)). �
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Lemma 2.6 (Stability of verticial admissibility and nodal non-
degeneracy). Suppose that ρI is of VA-type (respectively, of NN-
type). Then the following hold:

(i) Let ΠI′ ⊆ ΠI be an open subgroup of ΠI , ΠG′

def
= ΠI′ ∩ΠG, and

I ′ the image of the composite ΠI′ ↪→ ΠI � I. Thus, we have
an exact sequence

1 −→ ΠG′ −→ ΠI′ −→ I ′ −→ 1 ;

the open subgroup ΠG′ ⊆ ΠG determines a covering G ′ → G of
G; the outer representation I ′ → Out(ΠG′) determined by ΠI′

factors through ρI′ : I ′ → Aut(G ′). Then ρI′ is of VA-type
(respectively, of NN-type).

(ii) Suppose that G is sturdy. Then the outer representation of
pro-Σ PSC-type ρI : I → Aut(G) — where we write G for the
compactification of G — induced by ρI is of VA-type (re-
spectively, of NN-type).

Proof. First, we prove assertion (i). It follows immediately from the
various definitions involved that ρI′ is of VA-type. Moreover, it follows
from Lemma 2.5, (i), (iv), that the various “Iev” (respectively, “Iee”)
are torsion-free, and, moreover, that the commensurability class of the
subgroup “Iev” (respectively, “Iee”) is unaffected by passing from ΠI to
ΠI′. Thus, condition (3) of Definition 2.4 for ρI′ follows from condition
(3) of Definition 2.4 for ρI . This completes the proof of assertion (i).

Next, we verify assertion (ii). First, let us observe that condition (1)
of Definition 2.4 for ρI follows from condition (1) of Definition 2.4 for ρI .
Next, let us observe that it follows from Lemma 2.3, (i) (respectively,

Lemma 2.5, (iv)), that for ṽ ∈ Vert(G̃) (respectively, ẽ ∈ Node(G̃)),
the natural surjection ΠG � ΠG induces an open injection between
the respective subgroups “Iev” (respectively, “Iee”). Thus, condition (2)
(respectively, (3)) of Definition 2.4 for ρI follows from condition (2)
(respectively, (3)) of Definition 2.4 for ρI . This completes the proof of
assertion (ii). �

Lemma 2.7 (Group structure of decomposition subgroups). If
ρI is of VA-type, then the following hold:

(i) Let ṽ ∈ Vert(G̃). Then Πev = Dev ∩ ΠG; thus, we have an exact
sequence

1 −→ Πev −→ Dev −→ Im(Dev → I) −→ 1

— where we write Im(Dev → I) for the image of the composite
Dev ↪→ ΠI � I. Moreover, the subgroup Im(Dev → I) ⊆ I is
open in I.
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In particular, the image of the homomorphism Iev ×Πev → Dev

induced by the natural inclusions Iev, Πev ⊆ Dev is open in Dev.
If, moreover, the composite Iev ↪→ ΠI � I is surjective (or,
equivalently, bijective), then the homomorphism Iev×Πev → Dev

is bijective.

(ii) Let ẽ ∈ Cusp(G̃). Then Πee = Dee ∩ ΠG; thus, we have an exact
sequence

1 −→ Πee −→ Dee −→ Im(Dee → I) −→ 1

— where we write Im(Dee → I) for the image of the composite
Dee ↪→ ΠI � I. Moreover, the subgroup Im(Dee → I) ⊆ I is
open in I.

In particular, for ṽ ∈ V(ẽ), the image of the homomorphism
Iev × Πee → Dee induced by the natural inclusions Iev, Πee ⊆ Dee is
open in Dee. If, moreover, for ṽ ∈ V(ẽ), the composite Iev ↪→
ΠI � I is surjective (or, equivalently, bijective), then the
homomorphism Iev ×Πee → Dee induced by the natural inclusions
Iev, Πee ⊆ Dee is bijective.

(iii) Let ẽ ∈ Node(G̃). Then Πee = Dee ∩ ΠG; thus, we have an exact
sequence

1 −→ Πee −→ Dee −→ Im(Dee → I) −→ 1

— where we write Im(Dee → I) for the image of the composite
Dee ↪→ ΠI � I. Moreover, the subgroup Im(Dee → I) ⊆ I is
open in I.

In particular, the image of the natural inclusion Iee ↪→ Dee is
open in Dee. If, moreover, for ṽ ∈ V(ẽ), the composite Iev →
I is surjective (or, equivalently, bijective), then the natural
inclusion Iee ↪→ Dee is bijective.

Proof. The computation of the intersection with ΠG in assertion (i)
(respectively, (ii); (iii)) follows from the commensurable terminality of
Πev (respectively, Πee; Πee) in ΠG (cf. [Mzk4], Proposition 1.2, (ii)). The
fact that the images of the respective decomposition subgroups in I
are open follows from condition (2) of Definition 2.4. The final portion
of assertion (i) (respectively, (ii); (iii)) then follows immediately from
Lemma(s) 2.3, (i) (respectively, 2.3, (i); 2.3, (i), and 2.5, (iv)) �

Remark 2.7.1. It follows immediately from Lemmas 2.5, 2.7 that the
following assertion holds:

Let ṽ ∈ Vert(G̃) (respectively, ẽ ∈ Cusp(G̃); ẽ ∈ Node(G̃)).
If ρI is of SVA-type, then

Dev = Iev · Πev = Iev × Πev

(respectively, Dee = Iev · Πee = Iev × Πee , for any ṽ ∈ V(ẽ) ;
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Dee = Iee = Iev · Πee = Iev × Πee , for any ṽ ∈ V(ẽ) ).

Remark 2.7.2. Let ẽ1, ẽ2 ∈ Edge(G̃). If ρI is of VA-type, then the
following three conditions are equivalent:

(i) ẽ1 = ẽ2.

(ii) Iee1 = Iee2 .

(iii) Dee1 = Dee2 .

Indeed, the implications

(i) =⇒ (ii) ; (i) =⇒ (iii)

are immediate. On the other hand, if condition (ii) (respectively, (iii))
is satisifed, then Πee1 = Iee1 ∩ ΠG = Iee2 ∩ ΠG = Πee2 [cf. Definition 2.2,
(ii); Lemma 2.5, (iv)] (respectively, Πee1 = Dee1 ∩ ΠG = Dee2 ∩ ΠG = Πee2

[cf. Lemma 2.7, (ii), (iii)]). Thus, it follows from [Mzk4], Proposition
1.2, (i), that ẽ1 = ẽ2.

Definition 2.8. Suppose that ρI is of SVA-type. Then we shall denote
by

G[ρI ]

the connected semi-graph of anabelioids (cf. [Mzk3], Definition 2.1) de-
fined as follows: The underlying graph of G[ρI ] is the underlying graph
of G. The anabelioid corresponding to a vertex v ∈ Vert(G) (respec-
tively, an edge e ∈ Edge(G)) is the connected anabelioid determined
by the decomposition subgroup, regarded up to inner automorphism,
Dv ⊆ ΠI (respectively, De ⊆ ΠI) associated to v (respectively, e); for
v ∈ V(e), the associated morphism of anabelioids is the morphism de-
termined by the natural inclusion De (= Iv ·Πe) ↪→ Dv (= Iv ·Πv) (cf.
Remark 2.7.1).

Remark 2.8.1.

(i) Note that the fundamental group of the anabelioid correspond-
ing to a vertex of G[ρI ] (i.e., the decomposition subgroup, re-
garded up to inner automorphism, associated to the vertex) is
not center-free (cf. Lemma 2.7, (i)). In particular, the semi-
graph of anabelioids G[ρI ] is not of PSC-type.

(ii) Let ΠG[ρI ] be the pro-Σ fundamental group (i.e., the maximal
pro-Σ quotient of the fundamental group) of the connected
semi-graph of anabelioids G[ρI ] (cf. the discussion following
[Mzk3], Definition 2.1). Then it follows from the definition of
ΠG[ρI ] that the inductive system of homomorphisms determined
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by the natural outer inclusions Dv ↪→ ΠI and De ↪→ ΠI gives
rise to a natural outer homomorphism

ΠG[ρI ] −→ ΠI .

Lemma 2.9 (An isomorphism of fundamental groups). Suppose
that ρI is of SVA-type. Let ΠG[ρI ] be the pro-Σ fundamental group of
the connected semi-graph of anabelioids G[ρI ]. Then the homomorphism
ΠG[ρI ] → ΠI defined in Remark 2.8.1, (ii), is an isomorphism.

Proof. First, we observe (cf. Remark 2.7.1) that the decomposition
subgroup Dz — where z ∈ VCN(G) — is an extension of I by Πz. Now
it is easily verified that the profinite Galois covering of G[ρI ] determined
by the various quotients Dz � I (i.e., that arise as composites Dz ↪→
ΠI � I) is isomorphic to G; thus, we obtain an exact sequence

1 −→ ΠG −→ ΠG[ρI ] −→ I −→ 1 .

On the other hand, it follows from the construction of this profinite
covering G → G[ρI ], together with the definition of the homomorphism
ΠG[ρI ] → ΠI , that the composite ΠG → ΠG[ρI ] → ΠI coincides with the
natural inclusion ΠG ↪→ ΠI . Thus, the bijectivity of the homomorphism
ΠG[ρI ] → ΠI follows from the “Five Lemma”. This completes the proof
of Lemma 2.9. �

Definition 2.10. Let (g, r) be a pair of natural numbers such that
2g− 2+ r > 0, k an algebraically closed field of characteristic �∈ Σ, s ∈
Mg,r(k) a k-valued geometric point of Mg,r (cf. the discussion entitled

“Curves” in §0), and slog : Spec (k)log → M
log

g,r the strict morphism
of log stacks whose underlying morphism of stacks is the morphism
corresponding to s.

(i) We shall denote by X log
s the stable log curve determined by slog.

(ii) We shall denote by Gs the semi-graph of anabelioids of pro-Σ
PSC-type determined by the stable log curve X log

s (cf. [Mzk4],
Example 2.5).

(iii) Write Qs for the monoid obtained as the stalk of the charac-
teristic sheaf (cf. the discussion entitled “Log stacks” in §0) of

M
log

g,r at s, and

Is
def
= Hom(Qgp

s , Ẑ(1)Σ)

— where the “(1)” denotes a “Tate twist”. Recall (cf. [Knud],
Theorem 2.7) that it follows from the well-known geometry of
the irreducible components of the divisor that defines the log



NODALLY NONDEGENERATE OUTER REPRESENTATIONS 31

structure of M
log

g,r that we have a natural decomposition

Qs �
⊕

e∈Node(Gs)

Ne

— where we write Ne for a copy of N indexed by e ∈ Node(Gs);
thus, we obtain a decomposition

Is �
⊕

e∈Node(Gs)

Λ[e]

— where we write Λ[e] for a copy of Ẑ(1)Σ indexed by e ∈
Node(Gs).

(iv) It follows from the various definitions involved that, if we write
πΣ

1 (X log
s ) for the maximal pro-Σ quotient of the logarithmic fun-

damental group of X log
s , then we have a natural exact sequence

of profinite group

1 −→ ΠGs −→ πΣ
1 (X log

s ) −→ Is −→ 1

— which gives rise to an outer representation Is → Out(ΠGs)
that factors through Aut(Gs) ⊆ Out(ΠGs). Write

ρs : Is −→ Aut(Gs)

for the resulting homomorphism of profinite groups and ΠIs

def
=

ΠGs

out
� Is. Thus, we have a natural isomorphism of profinite

groups πΣ
1 (X log

s )
∼
→ ΠIs.

(v) Let s′ ∈ Mg,r+1(k) be a k-valued geometric point of Mg,r+1

that corresponds to a node of Xs. Then it follows immediately
from the various definitions involved that the quotient of ΠGs′

— where we use the notation obtained by applying (ii) to s′ —
by the closed subgroup of ΠGs′

topologically normally generated
by the edge-like subgroups of ΠGs′

associated to the (r + 1)-st
cusp is naturally isomorphic to ΠGs; in particular, we have a
natural surjection ΠGs′

� ΠGs . We shall denote by

Ns′/s : Node(Gs′) −→ Node(Gs)

the map which — as is easily verified — is uniquely determined
by the following condition:

If e ∈ Node(Gs′), and Πe ⊆ ΠGs′
is an edge-like sub-

group associated to e, then the image of Πe via the
above surjection ΠGs′

� ΠGs is an edge-like subgroup
associated to Ns′/s(e) ∈ Node(Gs′).

Lemma 2.11 (Log fundamental groups in a neighborhood of a
node). In the notation of Definition 2.10, let e ∈ Node(Gs) be a node
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of Gs, and s′ ∈ Mg,r+1(k) a k-valued geometric point that corresponds
to the node of Xs determined by e. Then the following hold:

(i) The inverse image N
−1
s′/s(e) consists of precisely two elements

e1, e2 ∈ Node(Gs′); the map

Node(Gs′) \ {e1, e2} −→ Node(Gs) \ {e}

determined by Ns′/s is bijective.

(ii) Write Is′ for the result of applying Definition 2.10, (iii), to s′.
Then the homomorphism Is′ → ΠIs induced on maximal pro-
Σ quotients of log fundamental groups by (the strict morphism
of log schemes whose underlying morphism of schemes is the
morphism corresponding to) s′ is injective, and its image is
an inertia subgroup Ie of ΠIs associated to e. Moreover, if,
in the notation of (i), we write

M�=e1,e2

def
=

⊕
f∈Node(Gs′ )\{e1,e2}

Λ[f ] ⊆ Is′ ,

then for i = 1, 2, there exists a vertex vi ∈ V(e) ⊆ Vert(Gs) of
Gs such that the subgroup obtained as the image of the composite
of the injections

Λ[ei] ⊕ M�=e1,e2 ↪→ Is′ ↪→ ΠIs

is an inertia subgroup Ivi
of ΠIs associated to vi. In this

situation, we shall refer to vi as the vertex associated to ei.

(iii) Let

M�=e
def
=

⊕
f∈Node(Gs)\{e}

Λ[f ] ⊆ Is .

Then the homomorphism Is′ → Is induced by M
log

g,r+1 → M
log

g,r

(i.e., the composite Is′ ↪→ ΠIs � Is) coincides with the homo-
morphism

Λ[e1] ⊕ Λ[e2] ⊕ M�=e1,e2 = Is′ −→ Is = Λ[e] ⊕ M�=e

determined by the homomorphism

Λ[e1] ⊕ Λ[e2] −→ Λ[e]
(a, b) �→ a + b

and the isomorphism

M�=e1,e2

∼
−→ M�=e

induced by the bijective portion of Ns′/s (cf. (i)).

Proof. Assertion (i) follows immediately from the various definitions
involved. Assertions (ii) and (iii) follow by computing the log structures
involved by means of a chart for the morphism X log

s → Spec (k)log at
the k-valued point s′ of Xs. �
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Remark 2.11.1. In the notation of Definition 2.10, let ẽ ∈ Node(G̃s),

e
def
= ẽ(Gs) ∈ Node(Gs), s′ ∈ Mg,r+1(k) a k-valued geometric point

that corresponds to the node of Xs determined by e, and {e1, e2} =
N

−1
s′/s(e) ⊆ Node(Gs′) (cf. Lemma 2.11, (i)). Moreover, for i = 1, 2, let

us denote by ṽi the (unique!) element of Vert(G̃s) such that ṽi ∈ V(ẽ),
and, moreover, ṽi(Gs) is the vertex associated to ei (cf. Lemma 2.11,
(ii)). (Thus, V(ẽ) = {ṽ1, ṽ2}.) Then it follows from Lemma 2.11 that
if we identify M �=e with M�=e1.e2 via the isomorphism of Lemma 2.11,
(iii), then the following assertion holds:

The isomorphisms Ievi

∼
→ Λ[ei] ⊕ M�=e (cf. Lemma 2.11,

(ii)), Iee
∼
→ Is′

∼
→ Λ[e1] ⊕ Λ[e2] ⊕ M�=e (cf. Lemma 2.11,

(ii), (iii); Definition 2.10, (iii)), and Is
∼
→ Λ[e] ⊕ M�=e

(cf. Lemma 2.11, (iii); Definition 2.10, (iii)) fit into the
following commutative diagram

Iev1 × Iev2 −−−→ Iee −−−→ Is

	

⏐⏐� 	

⏐⏐� ⏐⏐�	(
Λ[e1] ⊕ M�=e

)
×

(
Λ[e2] ⊕ M�=e

)
−−−→ Λ[e1] ⊕ Λ[e2] ⊕ M�=e −−−→ Λ[e] ⊕ M �=e

(a, m, b, n) �→ (a, b, m + n)

(a, b, m) �→ (a+b, m)

— where the upper left-hand horizontal arrow Iev1 ×
Iev2 → Iee is the homomorphism induced by the natu-
ral inclusions Iev1 , Iev2 ⊆ Iee (cf. Lemma 2.3, (ii)), and
the upper right-hand horizontal arrow Iee → Is is the
composite Iee ↪→ ΠIs � Is.

Lemma 2.12 (The invertibility of a certain homomorphism of
free modules). Let A be a commutative ring with unity, M a free
A-module of finite rank, N a free A-module of rank 1, ρ : N → N ⊕M
a homomorphism of A-modules, ρ1 : N → N the composite of ρ and
the first projection N ⊕ M � N , and

N1 × N2
def
=

{
(N ⊕ M) ×N⊕M N

}
×

{
(N ⊕ M) ×N⊕M N

}

−→ N0
def
= (N ⊕ N ⊕ M) ×N⊕M N −→ (N ⊕ M) ×N⊕M N

— where the definition of “N1” (respectively, “N2”) is to be understood
as the first (respectively, second) module in brackets “{−}”; the nota-
tion “(−)×N⊕M (−)” denotes the fiber product of modules over N ⊕M
— the diagram obtained via ρ from the diagram

(N ⊕ M) × (N ⊕ M) −→ N ⊕ N ⊕ M −→ N ⊕ M

(a, m, b, n) �→ (a, b, m + n)
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(a, b, m) �→ (a + b, m) .

Then the following hold:

(i) N1 and N2 are free A-modules of rank 1, and N0 is a free A-
module of rank 2.

(ii) If φ is a homomorphism of free A-modules of rank 1, then let us
denote by D(φ) ⊆ Spec (A) the open subscheme of Spec (A) on
which (the homomorphism of OSpec (A)-modules determined by)
φ is an isomorphism. Then D(ρ1) = D(det(N1 × N2 → N0))
(cf. (i)).

Proof. Assertion (i) is immediate from the definition of N1, N2, and
N0. Thus, to complete the proof of Lemma 2.12, it suffices to verify
assertion (ii). To this end, since the various definitions of modules
and homomorphisms in the statement of Lemma 2.12 are compatible
with base-change, we may assume without loss of generality that A is
a field. On the other hand, if A is a field, then ρ1 is either zero or an
isomorphism, so it follows immediately from an easy computation that
D(ρ1) and D(det(N1 × N2 → N0)) coincide. This completes the proof
of assertion (ii). �

Lemma 2.13 (Injectivity and images of homomorphisms of

ẐΣ-modules). In the notation of Definition 2.10, let ρ : I
def
= ẐΣ → Is

be a homomorphism of profinite groups, and

Jev1 × Jev2

def
=

(
Iev1 ×Is I

)
×

(
Iev2 ×Is I

)
−→ Jee

def
= Iee ×Is I −→ I

the diagram of homomorphisms of profinite groups obtained via ρ from
the upper row of the diagram in Remark 2.11.1. Then the following
conditions are equivalent:

(i) The image of the composite

I
ρ

−→ Is � Λ[e] ⊕ M�=e
pr
−→ Λ[e]

is open in Λ[e].

(ii) The first arrow Jev1 × Jev2 → Jee of the above sequence is injec-
tive, and its image is open in Jee.

Proof. It follows immediately from the various definitions involved that
the implication

(i) =⇒ (ii) (respectively, (ii) =⇒ (i))

follows from the inclusion “D(ρ) ⊆ D(det(N1 × N2 → N0))” (respec-
tively, “D(det(N1 ×N2 → N0)) ⊆ D(ρ)”) implicit in Lemma 2.12, (ii).
Here, we consider the case of “D(−)” that arise from an open ideal of

the topological ring ẐΣ, i.e., an ideal generated by a nonzero element
of Z. �
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Proposition 2.14 (Nodal nondegeneracy of certain outer rep-

resentations). In the notation of Definition 2.10, let ρ : I
def
= ẐΣ → Is

be a homomorphism of profinite groups, ρI : I → Aut(Gs) the outer
representation of pro-Σ PSC-type obtained as the composite

I
ρ

−→ Is
ρs
−→ Aut(Gs) ,

and ΠI
def
= ΠGs

out
� I. In the following, for z̃ ∈ VCN(G̃s), we shall write

Jez for the inertia subgroup “Iez” of ΠI (i.e., to avoid confusion with the
corresponding inertia subgroups of ΠIs). Then the following hold:

(i) ρI is of SVA-type.

(ii) If ẽ ∈ Node(G̃s), then the following two conditions are equiva-
lent:

(1) The image of the composite

I
ρ

−→ Is �
⊕

e∈Node(Gs)

Λ[e]
pree(Gs)
−→ Λ[ẽ(Gs)]

is open in Λ[ẽ(Gs)].

(2) If V(ẽ) = {ṽ1, ṽ2}, then the homomorphism Jev1 × Jev2 → Jee

induced by the inclusions Jev1, Jev2 ⊆ Jee is injective, and
its image is open in Jee.

In particular, if the image of the composite

I
ρ

−→ Is �
⊕

e∈Node(Gs)

Λ[e]
prf
−→ Λ[f ]

is open in Λ[f ] for every f ∈ Node(G), then ρI is of SNN-type.

Proof. The various assertions of Proposition 2.14 follow immediately
from the various definitions involved, together with Lemma 2.13. �

Remark 2.14.1. In the notation of Proposition 2.14, it is not difficult
to show — by applying various well-known group-theoretic construc-
tions of certain natural isomorphisms between the various copies of

Ẑ(1)Σ involved — that the condition on the homomorphism ρ : I → Is

that the composite ρs ◦ρ be of IPSC-type is equivalent to the condition
on ρ that there exists an isomorphism

I � Hom(Ngp, Ẑ(1)Σ)

with respect to which ρ is positive definite in the sense that it arises

(by applying the functor “Hom(−, Ẑ(1)Σ)”) from a homomorphism of
monoids Qs → N such that for any f ∈ Node(Gs), the composite

Nf ↪→
⊕

e∈Node(Gs)

Ne � Qs → N
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is nonzero. On the other hand, it follows from Proposition 2.14 that
the (necessarily strict) nodal nondegeneracy of ρI is equivalent to the
nondegeneracy of ρ, i.e., the condition that the image of the composite

I
ρ

−→ Is �
⊕

e∈Node(Gs)

Λ[e]
prf
−→ Λ[f ]

be open for every f ∈ Node(Gs). That is to say,

IPSC-type =⇒ (S)NN-type

� �

positive definite =⇒ nondegenerate.

3. Group-theoretic aspects of the geometry of the

underlying semi-graphs

In this section, we consider the geometry of the underlying semi-
graph associated to a semi-graph of anabelioids of PSC-type from a
group-theoretic point of view in the context of outer representations of
NN-type (cf. [Mzk6], Proposition 1.3, for an analogous discussion in
the case of outer representations of IPSC-type).

In this section, let Σ be a nonempty set of prime numbers, G a semi-
graph of anabelioids of pro-Σ PSC-type, ΠG the fundamental group

of G, ρI : I → Aut(G) an outer representation of NN-type, and ΠI
def
=

ΠG

out
� I.

Lemma 3.1 (Contagious conditions). Let (C) be a condition on an

element of Vert(G̃) which satisfies the following property (∗):

(∗) : Let ṽ1, ṽ2 ∈ Vert(G̃) be such that δ(ṽ1(G), ṽ2(G)) ≤
1. Then ṽ1 satisfies the condition (C) if and only if ṽ2

satisfies the condition (C).

Suppose that there exists an element of Vert(G̃) which satisfies the con-

dition (C). Then every element of Vert(G̃) satisfies the condition (C).

Proof. This follows immediately from the connectedness of the under-
lying semi-graph of a semi-graph of anabelioids of PSC-type. �

Lemma 3.2 (Verticial decompositions inside ab/(edge+iner)-

quotients). Let Π
ab/edge
I be the quotient of the abelianization Πab

I by
the closed subgroup generated by the images in Πab

I of the edge-like
subgroups of ΠG. Suppose that ρI is of SNN-type. Then the following
hold:

(i) For ṽ ∈ Vert(G̃), write Mev for the image of the composite Iev ↪→

ΠI � Π
ab/edge
I . Then the closed subgroup Mev ⊆ Π

ab/edge
I is
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independent of the choice of the element ṽ ∈ Vert(G̃). Denote
this closed subgroup by M . In the following, we shall write

Π
ab/(edge+iner)
I

def
= Π

ab/edge
I /M .

(ii) The composite of the injection of Lemma 1.4 with the natural
inclusion ΠG ↪→ ΠI induces a split injection (cf. the discus-
sion entitled “Topological groups” in §0)⊕

v∈Vert(G)

Πab/edge
v ↪→ Π

ab/(edge+iner)
I

(cf. Definition 1.3, (i)) whose image is a free ẐΣ-module of
finite rank.

Proof. First, we verify assertion (i). If Node(G) = ∅, then assertion
(i) is immediate; thus, assume that Node(G) �= ∅. Next, let us fix an

element ṽ0 ∈ Vert(G̃). For ṽ ∈ Vert(G̃), we shall say that ṽ satisfies

the condition (∗triv) if the image of Iev in the quotient Π
ab/edge
I /Mev0 is

trivial. To verify assertion (i), it is immediate that it suffices to show

that any ṽ ∈ Vert(G̃) satisfies (∗triv). Therefore, to verify assertion (i),
it follows from Lemma 3.1 that it suffices to show that the condition
(∗triv) satisfies the property (∗) in the statement of Lemma 3.1. To

this end, let ṽ, ṽ′ ∈ Vert(G̃) be such that δ(ṽ(G), ṽ′(G)) ≤ 1, and ṽ
satisfies (∗triv). Let De ⊆ ΠI be a decomposition subgroup associated

to e ∈ N (ṽ(G))∩N (ṽ′(G)). Then since the image of Iev in Π
ab/edge
I /Mev0

is trivial, and De is generated by an edge-like subgroup and a conjugate

of Iev (cf. Remark 2.7.1), it follows that the image of De in Π
ab/edge
I /Mev0

is trivial. Therefore, since there exists a conjugate of Iev′ contained in

De, we conclude that the image of Iev′ in Π
ab/edge
I /Mev0 is trivial; in

particular, ṽ′ satisfies (∗triv). This completes the proof of assertion (i).
Finally, we observe that assertion (ii) follows from a similar argument

involving coverings — this time of G[ρI ] (cf. Definition 2.8) as opposed
to G — to the argument applied in the proof of Lemma 1.4. �

Remark 3.2.1. Suppose that ρI is of SNN-type. Let ṽ1, ṽ2 ∈ Vert(G̃).
Then it follows immediately from Remark 1.4.1, (ii); Lemma 3.2 that
the following assertion holds:

If ṽ1(G) �= ṽ2(G), then the image of the intersection

(Iev1 · Dev2) ∩ Πev1 ⊆ ΠG

in Π
ab/edge
G is trivial.

Indeed, it follows from Lemma 3.2, (i); Remark 2.7.1, together with
the various definitions involved, that the image of Iev1 (respectively,

Dev2) in Π
ab/(edge+iner)
I is trivial (respectively, coincides with the image

of Πev2 ⊆ ΠG). But, by Lemmas 1.4; 3.2, (ii), this implies that the
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image of (Iev1 · Dev2) ∩ Πev1 in Π
ab/edge
G is contained in the intersection of

the images of Πev2 and Πev1 in Π
ab/edge
G . Therefore, the above assertion

follows from Remark 1.4.1, (ii).

Remark 3.2.2. In fact, it is not difficult to verify that both the state-
ment and the proof of Lemma 3.2 remain valid even under the weaker
assumption that ρI is of SVA-type.

Lemma 3.3 (Submodules of free Zl-modules). Let l be a prime
number, r a positive integer; also, for 1 ≤ j ≤ r, let cj ∈ Zl \ {0}.

For 1 ≤ i ≤ l, 1 ≤ j ≤ r, set Mi,j
def
= Zl, M0

def
= Zl; write ιi,j ∈ Mi,j,

ι0 ∈ M0 for the generators corresponding to the element “1”. Next, let
us write Mdiag ⊆

⊕
i,j Mi,j for the submodule obtained as the image of

the diagonal homomorphism Zl ↪→
⊕

i,j Mi,j,

N
def
=

{(⊕
i,j

Mi,j

)
/Mdiag

}
⊕ M0

and regard M0 as a submodule of N via the inclusion M0 � 0⊕M0 ↪→
N . Then if we denote by H the submodule of N generated by the
elements of N determined by the (lr + 1)-tuples of the form

(0, · · · , 0, cj · ιi,j , 0, · · · , 0, ι0)

— where (i, j) ranges over pairs of natural numbers such that 1 ≤ i ≤ l,
1 ≤ j ≤ r — then H ∩ M0 ⊆ l · M0.

Proof. Suppose that the element h ∈ H determined by∑
i,j

di,j(0, · · · , 0, cj · ιi,j , 0, · · · , 0, ι0)

= (· · · , di,jcj · ιi,j, · · · ,
∑
i,j

di,j · ι0) ∈
(⊕

i,j

Mi,j

)
⊕ M0

— where di,j ∈ Zl — is contained in M0. Now let us observe that the
homomorphism φ

N =
{(⊕

i,j Mi,j

)
/Mdiag

}
⊕ M0 −→

(⊕
(i,j)�=(1,1) Mi,j

)
⊕ M0

([(λi,j)i,j], λ0) �→ ((λi,j − λ1,1)(i,j)�=(1,1), λ0)

— where we write “[?]” for the image of “?” in the module “{−}”,

and “λ(−)” is an element of “M(−)” — is an isomorphism. Thus, by
applying φ to h ∈ H ∩ M0, we conclude that di,jcj − d1,1c1 = 0, for
1 ≤ i ≤ l, 1 ≤ j ≤ r; in particular, it follows that di,jcj is independent
of the pair (i, j), hence that (di,j − di′,j)cj = 0. But, since cj �= 0, this
implies that di,j is independent of i, hence — since i ranges over the
integers from 1 to l — that

∑
i,j di,j ∈ l · Zl, as desired. �
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Lemma 3.4 (Existence of certain coverings). Suppose that the
following two conditions are satisfied:

(a) ρI is of SNN-type.

(b) G is sturdy and untangled (cf. Definition 1.2).

If, by abuse of notation, we write G for the underlying semi-graph of
G[ρI ] (cf. Definition 2.8), then, for a vertex v (respectively, an edge
e) of G, let us write Dv (respectively, De) for the connected anabelioid
corresponding to v (respectively, e), and ΠDv (respectively, ΠDe) for
the fundamental group of the connected anabelioid Dv (respectively, De)
[so it follows from the definition of G[ρI ] that ΠDv, ΠDe are naturally
isomorphic, up to inner automorphism, to Dv, De, respectively]. Fix
a vertex v0 ∈ Vert(G). Then there exists a connected covering of
semi-graphs of anabelioids (cf. [Mzk3], Definition 2.2, (i))

H −→ G[ρI ]

of G[ρI ] such that if we denote the underlying semi-graph of H by H

and use analogous notation for H to the notation introduced above for
G[ρI ], then the following conditions are satisfied:

(1) The set of vertices of H which lie over v0 consists of precisely
one element w0, and the image of the outer injection ΠDw0

↪→
ΠDv0

� Dv0 induced by the morphism Dw0 → Dv0 does not
contain the normal subgroup Iv0 ⊆ Dv0 , i.e., “Iv0 �⊆ ΠDw0

”.

(2) For any v1 ∈ Vert(G) such that δ(v0, v1) = 1, the set of ver-
tices of H which lie over v1 consists of precisely one element
w1, and the image of the outer injection ΠDw1

↪→ ΠDv1
� Dv1

induced by the morphism Dw1 → Dv1 contains the normal sub-
group Iv1 ⊆ Dv1, i.e., “Iv1 ⊆ ΠDw1

”.

(3) For any v ∈ Vert(G) such that δ(v0, v) ≥ 2, and any vertex w
of H which lies over v, the morphism Dw → Dv is an isomor-
phism.

(4) For any e ∈ Node(G) such that v0 �∈ V(e), and any closed
edge f of H which lies over e, the morphism Df → De is an
isomorphism.

(5) For any e ∈ Cusp(G), and any open edge f of H which lies over
e, the image of the outer injection ΠDf

↪→ ΠDe � De induced
by the morphism Df → De contains the normal subgroup Πe ⊆
De, i.e., “Πe ⊆ ΠDf

”.

Proof. To verify Lemma 3.4, by replacing G by the compactification of
G (cf. Definition 1.11), we may assume without loss of generality that
Cusp(G) = ∅, and hence that condition (5) is satisfied automatically.
Moreover, by projecting to the maximal pro-l quotients, for some l ∈ Σ,
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of the various pro-Σ groups involved, to verify Lemma 3.4, we may
assume without loss of generality that Σ = {l}.

Write

V≤1 ⊆ Vert(G)

for the set of vertices v of G such that δ(v0, v) ≤ 1,

V=1 ⊆ V≤1

for the set of vertices v of G such that δ(v0, v) = 1 (i.e., V=1 = V≤1 \
{v0}),

N0 ⊆ Node(G)

for the set of nodes of G which abut to v0 (i.e., N0
def
= N (v0)), and

N1 ⊆ Node(G)

for the set of nodes e of G such that V(e) ∩ V=1 �= ∅ and v0 �∈ V(e).
Then we claim that there exists a connected finite étale covering of
semi-graphs of anabelioids F → G[ρI ] of G[ρI ] such that if we denote
the underlying semi-graph of F by F and use analogous notation for
F to the notation introduced in the statement of Lemma 3.4, then the
following conditions are satisfied:

(i) The connected finite étale covering of semi-graphs of anabelioids
F → G[ρI ] of G[ρI ] is Galois, and its Galois group is isomorphic
to Z/lZ.

(ii) For any v ∈ V≤1, the set of vertices of F which lie over v consists
of precisely one element u, and the image of the outer injection
ΠDu ↪→ ΠDv � Dv induced by the morphism Du → Dv contains
the normal subgroup Iv ⊆ Dv, i.e., “Iv ⊆ ΠDu”.

(iii) For any v ∈ Vert(G) such that δ(v0, v) ≥ 2, and any vertex u of
F which lies over v, the morphism Du → Dv is an isomorphism.

(iv) For any e ∈ Node(G), and any edge h of F which lies over e,
the morphism Dh → De is an isomorphism.

Indeed, since G is sturdy (cf. condition (b)), it follows that Π
ab/edge
v �=

{1} (cf. Definition 1.3, (iii)) for any v ∈ Vert(G). Thus, the above claim
follows immediately from the existence of the natural split injection⊕

v∈Vert(G)

Πab/edge
v ↪→ Π

ab/(edge+iner)
I

of Lemma 3.2, (ii).
In light of the above claim, to complete the proof of Lemma 3.4, we

may replace G[ρI ] by F and assume in the following that

(∗1) there exists an action of a group Φ isomorphic to
Z/lZ on G[ρI ] such that the induced action of Φ on
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Vert(G) fixes every element of V≤1, and the induced ac-
tion of Φ on N0 is free.

Now let Πv0 ⊆ ΠG be a verticial subgroup associated to v0; write
Dv0 ⊆ ΠI (respectively, Iv0 ⊆ ΠI) for the decomposition (respectively,
inertia) subgroup associated to Πv0 . Next, for e ∈ N0, write ve for the
unique element of V(e) \ {v0} ⊆ V=1 (cf. assumption (b)); let Πe ⊆ ΠG

be an edge-like subgroup associated to e such that Πe ⊆ Πv0 ; write Ie

for the inertia subgroup associated to Πe. Next, let Ive ⊆ ΠI be an
inertia subgroup associated to ve such that Ive ⊆ Ie. (Here, we note
that it is easily verified that such an Ive exists.) Thus, Ie = Πe × Iv0 ⊆
Πv0 × Iv0 = Dv0 (cf. Remark 2.7.1); in particular, Ive ⊆ Dv0 .

Next, write H for the Zl-submodule of the free Zl-module Dab
v0

(�
Πab

v0
× Iv0) generated by the images of the composite homomorphisms

Ive ↪→ Dv0 � Dab
v0

— where e ranges over elements of N0. Then we claim that

(∗2) H ∩ Im(Iv0) ⊆ l · Im(Iv0)

— where we write Im(Iv0) for the image of the composite Iv0 ↪→ Dv0 �

Dab
v0

. Indeed, by the well-known structure of the maximal pro-l quotient
of the fundamental group of a smooth curve over an algebraically closed
field of characteristic �= l, there exists a topological generator ιe ∈ Πe

of Πe such that the inclusions Iv0 ↪→ Dab
v0

and Πe ↪→ Dab
v0

determine a
split injection {( ⊕

e∈N0

Πe

)
/Zl · (ιe)e∈N0

}
⊕ Iv0 ↪→ Dab

v0

into Dab
v0

. Now let us fix a topological generator ιv0 ∈ Iv0 and denote by
ιve ∈ Ive the topological generator of Ive obtained as the image of ιv0 ∈
Iv0 via the composite isomorphism Iv0

∼
→ I

∼
← Ive (cf. Definition 2.4,

(2′)). Then it follows from condition (3) of Definition 2.4 that the
natural inclusions Iv0 , Ive ↪→ Ie determine an open subgroup Iv0 ×Ive ⊆
Ie (cf. condition (a)); in particular, there exists an element cve ∈ Zl\{0}
such that ιve = cveιe + ιv0 . Moreover, since we have an action of Φ on
G[ρI ] as in (∗1), we obtain, for any e ∈ N0 and σ ∈ Φ, that cve = cveσ .
Therefore, (∗2) follows immediately from Lemma 3.3.

In light of (∗2), there exists an open subgroup H ′ ⊆ Dab
v0

such that
H ⊆ H ′ and Im(Iv0) �⊆ H ′. Thus, since H is stabilized by the action of
Φ on Dab

v0
, it follows (for instance, by replacing H ′ by the intersection of

the translates of H ′ by the action of Φ) that we may assume that H ′ is
stabilized by the action of Φ on Dab

v0
. Write Dw0 ⊆ Dv0 for the inverse

image of H ′ ⊆ Dab
v0

via the natural surjection Dv0 � Dab
v0

. Then it
follows immediately from the definition of Dw0 that the following hold:

(v) Dw0 is open and normal in Dv0 , and, moreover, Dw0 is stabilized
by the induced outer action of Φ on Dv0 .
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(vi) For any e ∈ N0, we have Ive ⊆ Dw0; in particular, by (v), for
any e ∈ N0, every Dv0-conjugate of Ive is contained in Dw0 .

(vii) Iv0 �⊆ Dw0 .

Write Dw0 → Dv0 for the connected finite étale covering of anabelioids
corresponding to the open subgroup Dw0 ⊆ Dv0 of Dv0 ;

Gsub

for the connected sub-semi-graph of G whose set of vertices is V≤1 ⊆
Vert(G), and whose set of edges is N0 ∪N1; and

G[ρI ]
sub

for the semi-graph of anabelioids determined by restricting G[ρI ] to
Gsub (cf. the discussion preceding [Mzk3], Definition 2.2). Then since
we have an action of Φ on G[ρI ] as in (∗1), it follows from (v) that
for any e ∈ N0 and σ ∈ Φ, the ramification indices of this covering
Dw0 → Dv0 at the cusps of Dv0 determined by e and eσ coincide. Thus,
it follows from (vi) (together with the elementary fact that there exist
l − 1 elements ai ∈ Z — where 1 ≤ i ≤ l − 1 — such that the ai’s and∑l−1

i=1 ai are prime to l) that one may extend this covering Dw0 → Dv0

to a connected finite étale covering Hsub → G[ρI ]
sub which satisfies the

following conditions:

(viii) The set of vertices of Hsub (i.e., the underlying semi-graph of
Hsub) which lie over an element of V≤1 consists of precisely one
element.

(ix) For any e ∈ N0, if we denote by we the — necessarily unique
(cf. (viii)) — vertex of Hsub which lies over ve ∈ V=1, by Dwe the
anabelioid corresponding to we, and by ΠDwe

the fundamental
group of Dwe, then the image of the outer injection ΠDwe

↪→
ΠDve

� Dve contains the normal subgroup Ive ⊆ Dve .

(x) Hsub → G[ρI ]
sub restricts to the trivial covering over every edge

corresponding to an element of N1.

Moreover, it follows immediately from (x) that one may extend the
covering Hsub → G[ρI ]

sub obtained above to a connected finite étale
covering H → G[ρI ] of G[ρI ] such that

(xi) H → G[ρI ] restricts to the trivial covering over the vertices v of
G such that δ(v0, v) ≥ 2.

Now by (vii) and (viii) (respectively, (viii) and (ix); (xi); (x) and (xi)),
this covering H → G[ρI ] satisfies condition (1) (respectively, (2); (3);
(4)). This completes the proof of Lemma 3.4. �
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Remark 3.4.1. In light of the isomorphism of Lemma 2.9, the content
of Lemma 3.4 admits the following interpretation:

Suppose that ρI is of SNN-type, and that G is sturdy and
untangled. Let ṽ0 ∈ Vert(G̃). Then there exists an open
subgroup Π ⊆ ΠI of ΠI which satisfies the following
conditions:

(i) If ṽ ∈ Vert(G̃) satisfies δ(ṽ0(G), ṽ(G)) = 0 (i.e.,
v0(G) = v(G)), then Iev �⊆ Π.

(ii) If ṽ ∈ Vert(G̃) satisfies δ(ṽ0(G), ṽ(G)) = 1, then
Iev ⊆ Π.

(iii) If ṽ ∈ Vert(G̃) satisfies δ(ṽ0(G), ṽ(G)) ≥ 2, then
Dev ⊆ Π.

(iv) If ẽ ∈ Edge(G̃) satisfies ẽ(G) �∈ E(ṽ0(G)), then Dee ⊆
Π.

(v) If ẽ ∈ Cusp(G̃), then Πee ⊆ Π.

Remark 3.4.2. Let Π ⊆ ΠI be the open subgroup of Remark 3.4.1.
Then the following assertion holds:

For ẽ ∈ Node(G̃), consider the following conditions:

(i) ẽ ∈ N (ṽ0).

(i′) ẽ(G) ∈ N (ṽ0(G)).

(ii) Πee �⊆ Π.

(ii′) ∃ γ ∈ ΠG such that γ · Πee · γ−1 �⊆ Π.

Then
(i) =⇒ (ii) =⇒ (ii′) ⇐⇒ (i′) .

Indeed, if condition (i) is satisfied, but condition (ii) is not satisfied,
then it follows from condition (ii) in Remark 3.4.1 that Iee = Iev ·Πee ⊆ Π
(cf. Remark 2.7.1), where we write ṽ for the unique element of V(ẽ) \
{ṽ0}; thus, since Iev0 ⊆ Iee, we obtain that Iev0 ⊆ Π — in contradiction
to condition (i) in Remark 3.4.1. This completes the proof of the
implication

(i) =⇒ (ii) .

The implication
(ii) =⇒ (ii′)

is immediate. Next, if condition (i′) is not satisfied, then by applying
condition (iv) in Remark 3.4.1 to the ΠG-conjugates of ẽ, we conclude
(since Πee ⊆ Dee) that condition (ii′) is not satisfied. This completes the
proof of the implication

(ii′) =⇒ (i′) .
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Finally, by applying the implication “(i) ⇒ (ii)” to a suitable ΠG-
conjugate of ẽ, we obtain the implication

(i′) =⇒ (ii′) .

Proposition 3.5 (Graph-theoretic geometry via inertia sub-

groups). Let ṽ ∈ Vert(G̃), ẽ ∈ Edge(G̃). Then the following conditions
are equivalent:

(i) ṽ ∈ V(ẽ).

(ii) Iev ∩ Dee �= {1}.

In particular, if Iev ∩ Dee �= {1}, then Iev ⊆ Dee.

Proof. The implication
(i) =⇒ (ii)

is immediate from the various definitions involved; thus, to complete
the proof of Proposition 3.5, it suffices to verify the implication

(ii) =⇒ (i) .

To this end, let us assume that condition (ii) is satisfied. Then since
Iev is torsion-free (cf. Lemma 2.5, (i)), to verify condition (i), by re-
placing ΠI by an open subgroup of ΠI , we may assume without loss
of generality that ρI is of SNN-type, and that G is sturdy (cf. [Mzk4],
Remark 1.1.5) and untangled (cf. Remark 1.2.1, (i)); moreover, by pro-
jecting to the maximal pro-l quotients, for some l ∈ Σ, of suitable open
subgroups of the various pro-Σ groups involved, to verify condition (i),
we may assume without loss of generality that Σ = {l}. On the other
hand, since Iev is isomorphic to Zl as an abstract profinite group (cf.
Lemma 2.5, (i)), by replacing I by an open subgroup of I, to verify
condition (i), we may assume without loss of generality that Iev ⊆ Dee.

Assume that ṽ �∈ V(ẽ), i.e., that condition (i) is not satisfied. Then by
applying Remark 3.4.1, where we take “ṽ0” to be ṽ, there exists an open
subgroup Π ⊆ ΠI such that Iev �⊆ Π (cf. condition (i) in Remark 3.4.1),
and, moreover, Dee ⊆ Π (cf. condition (iv) in Remark 3.4.1); in par-
ticular, Iev �⊆ Dee — in contradiction to our assumption that Iev ⊆ Dee.
This completes the proof of the implication in question. �

Remark 3.5.1. Let ṽ1, ṽ2 ∈ Vert(G̃). Then it follows immediately
from Proposition 3.5 that the following assertion holds:

If Iev1 ∩ Iev2 �= {1}, then N (ṽ1) = N (ṽ2).

Indeed, suppose that Iev1 ∩ Iev2 �= {1}. Now if ẽ ∈ N (ṽ1), then it follows
from Proposition 3.5 that Iev1 ⊆ Dee; thus, since Iev1∩Iev2 �= {1}, it follows
that Iev2 ∩Dee �= {1}. In particular, again by Proposition 3.5, we obtain
that ẽ ∈ N (ṽ2). This completes the proof of the above assertion.
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In particular, it follows from Remark 1.8.1, (ii), that the following
assertion holds:

ṽ1 = ṽ2 if and only if Iev1 ∩ Iev2 �= {1}.

Lemma 3.6 (Centralizers, normalizers, and commensurators
of verticial inertia subgroups). Let J ⊆ Iev be a nontrivial closed

subgroup of Iev, where ṽ ∈ Vert(G̃). Then the following hold:

(i) Πev = ZΠI
(J) ∩ ΠG = NΠI

(J) ∩ ΠG = CΠI
(J) ∩ ΠG.

(ii) If ρI is of SNN-type, then Dev = ZΠI
(J) = NΠI

(J) = CΠI
(J).

Proof. First, we prove assertion (i). If Node(G) = ∅, then assertion
(i) is immediate from the various definitions involved; thus, assume
that Node(G) �= ∅. Since it is immediate that Πev ⊆ ZΠI

(J) ∩ ΠG,
to prove assertion (i), it suffices to verify that CΠI

(J) ∩ ΠG ⊆ Πev.
To this end, let us assume that (CΠI

(J) ∩ ΠG) \ Πev �= ∅ (where “\”
denotes the set-theoretic complement). Let γ ∈ (CΠI

(J) ∩ ΠG) \ Πev;

write ṽγ for the element of Vert(G̃) that corresponds to the verticial
subgroup γ · Πev · γ−1 ⊆ ΠG. Then since γ �∈ Πev, it follows from the
commensurable terminality of Πev in ΠG (cf. [Mzk4], Proposition 1.2,
(ii)) that Πev �= γ ·Πev · γ−1; in particular, it follows that ṽ �= ṽγ. On the
other hand, since γ ∈ CΠI

(J), it follows that J ∩ (γ · J · γ−1) �= {1};
thus, it follows from Remark 3.5.1 that ṽ = ṽγ — a contradiction. This
completes the proof of assertion (i).

Next, we prove assertion (ii). Since ρI is of SNN-type, it follows from
Remark 2.7.1 (cf. also Lemma 2.5, (i)) that Dev ⊆ ZΠI

(Iev) ⊆ ZΠI
(J),

and that the composite Dev ⊆ ΠI � I is surjective. Thus, assertion (ii)
follows from assertion (i), together with Remark 2.7.1. �

Lemma 3.7 (Centralizers, normalizers, and commensurators of

edge-like inertia subgroups). Let ẽ ∈ Edge(G̃). Then the following
hold:

(i) Πee = ZΠI
(Iee) ∩ ΠG = NΠI

(Iee) ∩ ΠG = CΠI
(Iee) ∩ ΠG.

(ii) If ρI is of SNN-type, then Dee = ZΠI
(Iee) = NΠI

(Iee) = CΠI
(Iee).

Proof. Assertion (i) in the case where ẽ ∈ Cusp(G̃) follows from the
commensurable terminality of Πee in ΠG (cf. [Mzk4], Proposition 1.2,
(ii)), together with the definition of an inertia subgroup of a cusp.

Assertion (i) in the case where ẽ ∈ Node(G̃) follows from a similar
argument to the argument used in the proof of Lemma 3.6, (i), together
with Remark 2.7.2. Assertion (ii) follows from a similar argument to
the argument used in the proof of Lemma 3.6, (ii). �
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Proposition 3.8 (Graph-theoretic geometry via edge-like de-

composition subgroups). For i = 1, 2, let ẽi ∈ Edge(G̃). Then the
following hold:

(i) Consider the following three (mutually exclusive) conditions:

(1) ẽ1 = ẽ2.

(2) ẽ1 �= ẽ2; V(ẽ1) ∩ V(ẽ2) �= ∅.

(3) V(ẽ1) ∩ V(ẽ2) = ∅ (which implies that ẽ1 �= ẽ2).

Then we have equivalences

(1) ⇐⇒ (1′) ; (2) ⇐⇒ (2′) ; (3) ⇐⇒ (3′)

with the following three (mutually exclusive [cf. Lemma 1.5])
conditions:

(1′) Dee1 = Dee2 (so Πee1 = Dee1 ∩ ΠG = Dee2 ∩ ΠG = Πee2 — cf.
Lemma 2.7, (ii), (iii)).

(2′) Πee1 ∩ Πee2 (= Dee1 ∩ Dee2 ∩ ΠG) = {1}; Dee1 ∩ Dee2 �= {1}.

(3′) Dee1 ∩ Dee2 = {1}.

(ii) Suppose that ρI is of SNN-type. Then if condition (2′) is
satisfied, then V(ẽ1)∩V(ẽ2) �= ∅, and, moreover, Dee1 ∩Dee2 = Iev

— where we write ṽ for the unique element of V(ẽ1) ∩ V(ẽ2)
(cf. Lemmas 1.5, 1.8).

Proof. First, we verify assertion (i). The equivalence

(1) ⇐⇒ (1′)

follows from [Mzk4], Proposition 1.2, (i). The implication

(2) =⇒ (2′)

follows from Lemma 1.5, together with the fact that Iev ⊆ Dee1 ∩ Dee2 ,
where ṽ ∈ V(ẽ1) ∩ V(ẽ2) (cf. Proposition 3.5). Thus, since it is imme-
diate that the equivalence

(3) ⇐⇒ (3′)

follows from the equivalences

(1) ⇐⇒ (1′) ; (2) ⇐⇒ (2′) ,

together with Lemma 1.5, to complete the proof of assertion (i), it
suffices to verify the implication

(†) (2′) =⇒ (2)

under the assumption that ẽ1 �= ẽ2 (cf. Lemma 1.5).
If Node(G) = ∅, then (†) is immediate; thus, assume that Node(G) �=

∅. Now if condition (2′) is satisfied, then since Dee1 ∩Dee2 ∩ΠG = {1} —
which implies, in particular, that the composite Dee1 ∩ Dee2 ↪→ ΠI � I
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is injective — and I is torsion-free, it follows that the intersection
Dee1 ∩ Dee2 is torsion-free. Thus, to prove (†), by replacing ΠI by an
open subgroup of ΠI , we may assume without loss of generality that G is
sturdy (cf. [Mzk4], Remark 1.1.5) and untangled (cf. Remark 1.2.1, (i)),
and that ρI is of SNN-type; moreover, by projecting to the maximal
pro-l quotients, for some l ∈ Σ, of suitable open subgroups of the
various pro-Σ groups involved, to prove (†), we may assume without

loss of generality that Σ = {l}. Write J
def
= Dee1 ∩ Dee2.

Now we verify (†) in the case where {ẽ1, ẽ2} ⊆ Cusp(G̃). To this
end, let us assume that condition (2′) is satisfied. Then it follows from

Lemma 2.7, (ii), that the image of the composite Deei
↪→ ΠI = ΠG

out
�

I � ΠG

out
� I — where we write G for the compactification of G (cf.

Definition 1.11) — coincides with the inertia subgroup Ievi
of ΠG

out
� I

associated to the element ṽi of Vert((G)∼) determined by the unique

element of V(ẽi) ⊆ Vert(G̃). Thus, since J �= {1} and J ∩ ΠG = {1}
(cf. condition (2′)), it follows that Iev1 ∩ Iev2 �= {1}; in particular, it
follows from Remark 3.5.1 that ṽ1 = ṽ2, hence — by applying this
conclusion to the various open subgroups of ΠI — that V(ẽ1) = V(ẽ2).

This completes the proof of (†) in the case where {ẽ1, ẽ2} ⊆ Cusp(G̃).

Next, we verify (†) in the case where {ẽ1, ẽ2} �⊆ Cusp(G̃). Thus,

we may assume without loss of generality that ẽ1 ∈ Node(G̃). Write
V(ẽ1) = {ṽ, ṽ′}.

Now we claim that if condition (2′) is satisfied (i.e., ẽ1 �= ẽ2 and J �=
{1}), and J ∩ Iev = {1}, then condition (2) is satisfied. Indeed, suppose
that condition (2′) is satisfied and J∩Iev = {1}, but that condition (2) is

not satisfied. Then since J∩Iev = {1} and ẽ1 ∈ Node(G̃), it follows that
(J ·Iev)∩ΠG = (J×Iev)∩ΠG (� Zl) is an open subgroup of Dee1∩ΠG = Πee1

(� Zl) (cf. Remark 2.7.1; Lemma 3.7); thus, by replacing ΠI by an
open subgroup of ΠI , we may assume without loss of generality that
(J ·Iev)∩ΠG = Πee1. In particular, we obtain that Πee1 ⊆ J ·Iev ⊆ Dee2 ·Iev.
On the other hand, since ṽ′ �∈ V(ẽ2) (by the assumption that condition
(2) is not satisfied), by applying Remark 3.4.1, where we take “ṽ0” to
be ṽ′, we obtain an open subgroup Π ⊆ ΠI such that Πee1 �⊆ Π (cf. the
implication “(i) ⇒ (ii)” in Remark 3.4.2), and, moreover, Iev, Dee2 ⊆ Π
(cf. conditions (ii), (iv) in Remark 3.4.1) — in contradiction to the
inclusion Πee1 ⊆ Dee2 · Iev. This completes the proof of the above claim.

Next, we claim that if condition (2′) is satisfied (i.e., ẽ1 �= ẽ2 and
J �= {1}), and J ∩ Iev �= {1}, then condition (2) is satisfied. Indeed,
suppose that condition (2′) is satisfied, and J ∩ Iev �= {1}. Then since
Σ = {l}, by replacing I by an open subgroup of I, we may assume that
Iev = J ; thus, Iev = J ⊆ Dee2. Therefore, it follows from Proposition 3.5
that ṽ ∈ V(ẽ2); in particular, since ṽ ∈ V(ẽ1) ∩ V(ẽ2), condition (2) is
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satisfied. This completes the proof of the above claim, hence also of
the proof of (†).

Next, we verify assertion (ii). Since condition (2′) in assertion (i)
is satisfied, we have Iev ⊆ Dee1 ∩ Dee2 (cf. Proposition 3.5). Moreover,
since Dee1 ∩ Dee2 ∩ ΠG = {1}, the composite Dee1 ∩ Dee2 ↪→ ΠI � I is
injective. On the other hand, since ρI is of SNN-type, the composite
Iev ↪→ ΠI � I is bijective. Therefore, we obtain that Iev = Dee1 ∩Dee2 , as
desired. �

Proposition 3.9 (Graph-theoretic geometry via verticial de-

composition subgroups). For i = 1, 2, let ṽi ∈ Vert(G̃). Then the
following hold:

(i) Consider the following four (mutually exclusive) conditions:

(1) δ(ṽ1, ṽ2) = 0.

(2) δ(ṽ1, ṽ2) = 1.

(3) δ(ṽ1, ṽ2) = 2.

(4) δ(ṽ1, ṽ2) ≥ 3.

Then we have equivalences

(1) ⇐⇒ (1′) ; (2) ⇐⇒ (2′) ; (3) ⇐⇒ (3′) ; (4) ⇐⇒ (4′)

with the following four (mutually exclusive [cf. Lemma 1.9,
(ii)]) conditions:

(1′) Πev1 = Πev2 (so Dev1 = Dev2 , Iev1 = Iev2).

(2′) Πev1 �= Πev2; Πev1 ∩ Πev2 (= Dev1 ∩ Dev2 ∩ ΠG) �= {1}.

(3′) Πev1 ∩ Πev2 (= Dev1 ∩ Dev2 ∩ ΠG) = {1}; Dev1 ∩ Dev2 �= {1}.

(4′) Dev1 ∩ Dev2 = {1}.

(ii) Suppose that ρI is of SNN-type. Then if condition (2′) is
satisfied, then N (ṽ1) ∩N (ṽ2) �= ∅, and, moreover, Dev1 ∩Dev2 =
Dee — where we write ẽ for the unique element of N (ṽ1)∩N (ṽ2)
(cf. Lemmas 1.8; 1.9, (ii)).

(iii) Suppose that ρI is of SNN-type. Then if condition (3′) is sat-
isfied, then there exists a(n) — necessarily unique (cf. Lemmas

1.8; 1.9, (ii)) — element of ṽ3 ∈ Vert(G̃) such that δ(ṽ1, ṽ3) =
δ(ṽ2, ṽ3) = 1, and, moreover, Dev1 ∩ Dev2 = Iev3.

Proof. First, we verify assertion (ii). To this end, suppose that ρI is
of SNN-type, and that condition (2′) is satisfied. Then it follows from

Lemma 1.9, (ii), that there exists an element ẽ ∈ Node(G̃) such that
V(ẽ) = {ṽ1, ṽ2} (i.e., ẽ ∈ N (ṽ1) ∩ N (ṽ2)). Thus, it follows from Re-
mark 2.7.1 that Dee ⊆ Dev1 ∩ Dev2 . Therefore, since Πee = Dee ∩ ΠG =
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Dev1 ∩Dev2 ∩ΠG (cf. Lemmas 1.9, (ii); 2.7, (i), (iii)), and the composite
Dee ↪→ ΠI � I is surjective (since ρI is of SNN-type), it follows im-
mediately that Dee = Dev1 ∩ Dev2 . This completes the proof of assertion
(ii).

Next, we verify assertion (iii). To this end, suppose that ρI is of SNN-

type, and that condition (3′) is satisfied, i.e., that J
def
= Dev1∩Dev2 �= {1},

and J ∩ ΠG = {1}. Note that it follows from Lemma 1.9, (ii), that
ṽ1 �= ṽ2; in particular, Node(G) �= ∅.

Now we claim that

(∗1) J ∩ Iev1 = J ∩ Iev2 = {1}.

Indeed, if J ∩ Iev1 �= {1}, then (since Iev1 is isomorphic to ẐΣ — cf.
Lemma 2.5, (i)) by projecting to the maximal pro-l quotients, for some
l ∈ Σ, of suitable open subgroups of the various pro-Σ groups involved,
we may assume without loss of generality that J = Iev1 . But this implies
that Iev1 = J ⊆ Dev2 = ZΠI

(Iev2) (cf. Lemma 3.6, (ii)), hence that
Iev2 ⊆ ZΠI

(Iev1) = Dev1 (cf. Lemma 3.6, (ii)). Therefore, we obtain that
Iev2 ⊆ Dev1 ∩ Dev2 = J = Iev1 ; in particular, it follows from Remark 3.5.1
that ṽ1 = ṽ2 — a contradiction. This completes the proof of (∗1).

Next, for i = 1, 2, let us write Ji
def
= (Ievi

· J) ∩ ΠG (= (Ievi
× J) ∩ ΠG

— cf. (∗1)). Then for any pair of integers i, j such that {i, j} = {1, 2},
since J ⊆ Devj

, it follows that Ji = (Ievi
·J)∩ΠG ⊆ (Ievi

·Devj
)∩ΠG; since,

moreover, J ⊆ Devi
, it follows that Ji = (Ievi

·J)∩ΠG ⊆ (Ievi
·Devi

)∩ΠG =
Πevi

(cf. Lemma 2.7, (i)). In particular, it follows that for any pair of
integers i, j such that {i, j} = {1, 2}, we have Ji ⊆ (Ievi

· Devj
) ∩ Πevi

.
On the other hand, it follows immediately from (∗1) that Ji �= {1}.

Next, we claim that

(∗2) for i = 1, 2, there exists an element ẽi ∈ E(ṽi) such
that Ji ⊆ Πeei

.

Indeed, let us first observe that, for any pair of integers i, j such that
{i, j} = {1, 2}, since Ji ⊆ (Ievi

· Devj
) ∩ Πevi

, it follows immediately from

Remark 3.2.1 that if ṽ1(G) �= ṽ2(G), then the image of Ji in Π
ab/edge
G

is trivial. Moreover, by applying this observation to arbitrary open
subgroups H ⊆ ΠI corresponding to connected finite étale coverings of
G[ρI ] that determine outer representations of SNN-type, we conclude
that, if we write G ′ → G for the connected finite étale covering of G
determined by H , then the image of(

(Ievi
∩ H) · (J ∩ H)

)
∩ ΠG′

in Π
ab/edge
G′ is trivial; but since, for a suitable positive integer n (that

depends on H !), we have

(Ji ∩ ΠG′)n ⊆
(
In

evi
· Jn

)
∩ ΠG′ ⊆

(
(Ievi

∩ H) · (J ∩ H)
)
∩ ΠG′ ,
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it follows from the fact that Π
ab/edge
G′ is torsion-free (cf. [Mzk4], Remark

1.1.4) that the image of Ji ∩ ΠG′ in Π
ab/edge
G′ is trivial. Thus, we may

apply Lemma 1.6, together with Lemma 1.7, to conclude the existence
of an ẽi ∈ E(ṽi), as desired. This completes the proof of (∗2). Note that
since E(ṽ1) ∩ E(ṽ2) = ∅ (cf. Lemma 1.9, (ii)), it follows that ẽ1 �= ẽ2.

Now it follows immediately from the definition of Ji that J ⊆ Ji · Ievi
.

Thus, by (∗2), we obtain that J ⊆ J · Ievi
⊆ Ji · Ievi

⊆ Πeei
· Ievi

= Deei

(cf. Remark 2.7.1); in particular, J ⊆ Dee1 ∩ Dee2 . Now since J �= {1},
and ẽ1 �= ẽ2, it follows from Proposition 3.8, (i), (ii), that there exists

an element ṽ3 ∈ Vert(G̃) such that ṽ3 ∈ V(ẽ1) ∩ V(ẽ2), and, moreover,
(J ⊆) Dee1 ∩ Dee2 = Iev3 . Moreover, since E(ṽ1) ∩ E(ṽ2) = ∅, it follows

that ẽ1, ẽ2 ∈ Node(G̃), and that ṽ3 �= ṽ1, ṽ2; in particular, it follows
that δ(ṽ3, ṽ1) = δ(ṽ3, ṽ2) = 1. Thus, since Iev3 ⊆ Ieei

⊆ Deei
⊆ Devi

(cf.
Remark 2.7.1) for i = 1, 2, it follows that Iev3 ⊆ Dev1 ∩ Dev2 = J . This
completes the proof of assertion (iii).

Finally, we verify assertion (i). First, let us observe that the equiva-
lences

(1) ⇐⇒ (1′) ; (2) ⇐⇒ (2′)

follow from Lemma 1.9, (ii). Now since the equivalence

(4) ⇐⇒ (4′)

follows from the equivalences

(1) ⇐⇒ (1′) ; (2) ⇐⇒ (2′) ; (3) ⇐⇒ (3′)

— together with the mutual exclusivity observed in the statement of
Proposition 3.9, (i) — to complete the proof of assertion (i), it suffices
to verify the equivalence

(3) ⇐⇒ (3′) .

To this end, assume that condition (3) is satisfied. Then it follows
from Lemma 1.9, (ii), that Dev1 ∩ Dev2 ∩ ΠG = {1}. Now to verify
condition (3′), by replacing I by an open subgroup of I, we may assume
without loss of generality that ρI is of SNN-type (so that we may apply
Remark 2.7.1). Since condition (3) is satisfied, there exists an element

ṽ3 ∈ Vert(G̃) such that δ(ṽ1, ṽ3) = δ(ṽ2, ṽ3) = 1. For i = 1, 2, let
ẽi ∈ N (ṽi) ∩ N (ṽ3). Then it follows that Iev3 ⊆ Ieei

⊆ Deei
⊆ Devi

(cf.
Remark 2.7.1); in particular, Iev3 ⊆ Dev1 ∩ Dev2 . Thus, condition (3′) is
satisfied.

Next, let us assume that condition (3′) is satisfied. Then since Dev1 ∩
Dev2 ∩ ΠG = {1} — which implies, in particular, that the composite
Dev1 ∩Dev2 ↪→ ΠI � I is injective — and I is torsion-free (cf. condition
(1) of Definition 2.4), it follows that Dev1∩Dev2 is torsion-free. Therefore,
to verify condition (3), by replacing I by an open subgroup of I, we
may assume without loss of generality that ρI is of SNN-type. Then it
follows immediately from assertion (iii), together with Lemma 1.9, (ii),
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that condition (3) is satisfied. This completes the proof of assertion
(i). �

4. A combinatorial anabelian theorem for nodally

nondegenerate outer representations

In this section, we prove two combinatorial anabelian results in the
style of [Mzk4] for outer representations of NN-type.

Theorem 4.1 (Group-theoretic verticiality and nodality of cer-
tain isomorphisms). Let Σ be a nonempty set of prime numbers, G

and H semi-graphs of anabelioids of pro-Σ PSC-type, ṽG ∈ Vert(G̃),

ṽH ∈ Vert(H̃), ΠG (respectively, ΠH) the fundamental group of G (re-

spectively, H), α : ΠG
∼
→ ΠH an isomorphism of profinite groups, I and

J profinite groups, ρI : I → Aut(G) and ρJ : J → Aut(H) continuous

homomorphisms, and β : I
∼
→ J an isomorphism of profinite groups.

Suppose that the following three conditions are satisfied:

(i) The diagram

I −−−→ Out(ΠG)

β

⏐⏐� ⏐⏐�Out(α)

J −−−→ Out(ΠH)

— where the right-hand vertical arrow is the homomorphism
induced by α; the upper and lower horizontal arrows are the
homomorphisms determined by ρI and ρJ , respectively — com-
mutes.

(ii) ρI , ρJ are of NN-type.

(iii) α(ΠevG ) = ΠevH .

Then the isomorphism α is group-theoretically verticial, hence, in
particular, group-theoretically nodal (cf. Proposition 1.13).

Proof. Note that to verify Theorem 4.1, it is immediate that by re-
placing I by an open subgroup of I, we may assume without loss of

generality that ρI and ρJ are of SNN-type. Let us denote by α̃ : ΠI
def
=

ΠG

out
� I

∼
→ ΠJ

def
= ΠH

out
� J (cf. the discussion entitled “Topological

groups” in §0) the isomorphism determined by α and β (cf. assumption
(i)).

For ṽ ∈ Vert(G̃), we shall say that ṽ satisfies the condition (∗pres) if
α(Πev) ⊆ ΠH is a verticial subgroup of ΠH. First, we claim that this con-
dition (∗pres) satisfies the property (∗) in the statement of Lemma 3.1.

To this end, let ṽ1, ṽ2 ∈ Vert(G̃) be such that δ(ṽ1(G), ṽ2(G)) ≤ 1 and,
moreover, ṽ1 satisfies the condition (∗pres). Now if ṽ1(G) = ṽ2(G), then
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it is immediate that ṽ2 satisfies the condition (∗pres); thus, we may as-
sume that ṽ1(G) �= ṽ2(G). Then it follows from Lemma 1.15 that there

exist w̃1, ũ1, w̃2 ∈ Vert(G̃) which satisfy the following conditions:

(1) ṽ1(G) = w̃1(G) = ũ1(G); ṽ2(G) = w̃2(G).

(2) δ(w̃1, ũ1) ≥ 2.

(3) δ(w̃2, w̃1) = δ(w̃2, ũ1) = 1.

Now it follows from condition (1), together with the assumption that
ṽ1 satisfies the condition (∗pres), that w̃1 and ũ1 also satisfy (∗pres); in

particular, there exist w̃′
1, ũ′

1 ∈ Vert(H̃) such that α̃(D ew1) = D ew′
1

and
α̃(Deu1) = Deu′

1
. Moreover, it follows from Proposition 3.9, (iii), together

with conditions (2), (3), that D ew1 ∩Deu1 = I ew2; in particular, it follows
that D ew′

1
∩ Deu′

1
�= {1} and D ew′

1
∩ Deu′

1
∩ ΠH = {1}. Thus, again by

Proposition 3.9, (iii), there exists an element w′
2 ∈ Vert(H̃) such that

D ew′
1
∩ Deu′

1
= I ew′

2
. Now since α̃(D ew1) = D ew′

1
and α̃(Deu1) = Deu′

1
, it

follows that α̃(I ew2) = I ew′
2
; thus, it follows from Lemma 3.6, (i), that

α(Π ew2) = Π ew′
2
. In particular, it follows from condition (1) that ṽ2

satisfies the condition (∗pres). This completes the proof of the above
claim.

Now in light of the above claim, together with assumption (iii), we
may apply Lemma 3.1 to conclude that the isomorphism α is group-
theoretically verticial. This completes the proof of Theorem 4.1. �

Corollary 4.2 (Graphicity of certain group-theoretically cusp-
idal isomorphisms). Let Σ be a nonempty set of prime numbers, G
and H semi-graphs of anabelioids of pro-Σ PSC-type (cf. [Mzk4], Def-
inition 1.1, (i)), ΠG (respectively, ΠH) the pro-Σ fundamental group of

G (respectively, H), α : ΠG
∼
→ ΠH an isomorphism of profinite groups,

I and J profinite groups, ρI : I → Aut(G) and ρJ : J → Aut(H) con-

tinuous homomorphisms, and β : I
∼
→ J an isomorphism of profinite

groups. Suppose that the following three conditions are satisfied:

(i) The diagram
I −−−→ Out(ΠG)

β

⏐⏐� ⏐⏐�Out(α)

J −−−→ Out(ΠH)

— where the right-hand vertical arrow is the homomorphism
induced by α; the upper and lower horizontal arrows are the
homomorphisms determined by ρI and ρJ , respectively — com-
mutes.

(ii) ρI , ρJ are of NN-type (cf. Definition 2.4, (iii)).
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(iii) Cusp(G) �= ∅, and the isomorphism α is group-theoretically
cuspidal (cf. [Mzk4], Definition 1.4, (iv)).

Then the isomorphism α is graphic (cf. [Mzk4], Definition 1.4, (i)).

Proof. It is immediate that to verify Corollary 4.2, by replacing ΠI by
an open subgroup of ΠI , we may assume without loss of generality that
G and H are sturdy (cf. [Mzk4], Remark 1.1.5), and that ρI and ρJ are

of SNN-type. Let us denote by α̃ : ΠI
def
= ΠG

out
� I

∼
→ ΠJ

def
= ΠH

out
� J

(cf. the discussion entitled “Topological groups” in §0) the isomorphism
determined by α and β (cf. assumption (i)).

Now it follows from Lemma 1.14 that to prove the graphicity of α,
it suffices to show that the isomorphism α satisfies condition (ii) in the
statement of Lemma 1.14. Moreover, by replacing G by the “G ′” in
the statement of Lemma 1.14, it suffices to show that the isomorphism
ΠG

∼
→ ΠH — where we write G (respectively, H) for the compacti-

fication (cf. Definition 1.11) of G (respectively, H) — induced by α
is group-theoretically verticial. The rest of the proof of Corollary 4.2
is devoted to the proof of the fact that the isomorphism ΠG

∼
→ ΠH

induced by α is group-theoretically verticial.
Write I → Out(ΠG) (respectively, J → Out(ΠH)) for the outer rep-

resentation of pro-Σ PSC-type determined by ρI (respectively, ρJ) and

ΠI
def
= ΠG

out
� I (respectively, ΠJ

def
= ΠH

out
� J). Let ẽG ∈ Cusp(G̃) (cf.

assumption (iii)). Then it follows from assumption (iii) that there ex-

ists an element ẽH ∈ Cusp(H̃) such that α̃(DeeG) = DeeH . Moreover, if
we denote by ṽG (respectively, ṽH) the unique element of V(eG) (respec-
tively, V(eH)), then it follows from Remark 2.7.1 that the image of the
composite DeeG ↪→ ΠI � ΠI (respectively, DeeH ↪→ ΠJ � ΠJ) coincides
with IevG (respectively, IevH). Therefore, it follows from Lemma 3.6, (i),
that α(ΠevG) = ΠevH . In particular, we may apply Theorem 4.1 to con-

clude that the isomorphism ΠG
∼
→ ΠH is group-theoretically verticial.

This completes the proof of Corollary 4.2. �

Remark 4.2.1. One may verify the following assertion by applying
[Mzk4], Corollary 2.7, (iii), as in the proof of [Mzk4], Corollary 2.8:

In the notation of Corollary 4.2, if the following three
conditions are satisfied, then α is graphic:

(i) The diagram

I −−−→ Out(ΠG)

β

⏐⏐� ⏐⏐�Out(α)

J −−−→ Out(ΠH)
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— where the right-hand vertical arrow is the homo-
morphism induced by α; the upper and lower hor-
izontal arrows are the homomorphisms determined
by ρI and ρJ , respectively — commutes.

(ii) ρI , ρJ are of IPSC-type.

(iii) The isomorphism α is group-theoretically cuspidal.

That is to say, one may think of Corollary 4.2 as a partial (cf. the
condition “Cusp(G) �= ∅” of Corollary 4.2, (iii)) generalization of the
above assertion — whose proof is independent of the methods of [Mzk4].

5. Injectivity via nodally nondegenerate degenerations

In this section, we apply Corollary 4.2, together with a similar ar-
gument to the argument used in the proof of [Mzk7], Corollary 2.3,
to prove a certain injectivity result concerning FC-admissible outomor-
phisms (cf. the discussion entitled “Topological groups” in §0) of pro-Σ
fundamental groups of configuration spaces (cf. Corollary 5.3).

Definition 5.1. Let Σ be a set of prime numbers which is either of
cardinality one or equal to the set of all prime numbers, (g, r) a pair
of natural numbers such that 2g − 2 + r > 0, n a natural number,
S log an fs log scheme whose underlying scheme is the spectrum of an
algebraically closed field of characteristic �∈ Σ, and X log an r-pointed
stable log curve of genus g over S log, i.e., the log scheme obtained by
pulling back the universal r-pointed stable log curve of genus g over

M
log

g,r (cf. the discussion entitled “Curves” in §0) via a (1-)morphism

S log → M
log

g,r.

(i) We shall denote by X log
n the n-th log configuration space of X log

(cf. the discussion entitled “Curves” in §0).

(ii) We shall denote by Πn the maximal pro-Σ quotient of the kernel
of the surjection π1(X

log
n ) � π1(S

log).

(iii) For i = 1, 2, we shall denote by

prlog
i : X log

2 −→ X log
1 = X log

the projection to the factor labeled i, and by

pi : Π2 � Π1

the surjection induced by prlog
i .

(iv) We shall denote by Π2/1 the kernel of the surjection p1 : Π2 �

Π1.
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(v) We shall denote by G the connected semi-graph of anabelioids
of pro-Σ PSC-type arising from the pointed stable curve de-
termined by the stable log curve X log over S log (cf. [Mzk4],
Example 2.5), and by ΠG the fundamental group of G. Note
that by the various definitions involved, there exists a natural
isomorphism Π1 � ΠG. In the following, we shall assume that

(Vert(G)�, Node(G)�) = (2, 1)

(cf. Remark 5.1.1 below) and write

Vert(G) = {v1, v2} ; Node(G) = {e}

(cf. Figure 1). Also, we observe that (it follows immediately
from the various definitions involved that) we have Cusp(G)� =
r.

Figure 1: G, G/e, and “Πsub
2/1”

•
•

•

“Πsub
2/1”

�

•
•

•

•

(= the fiber of the second

log configuration

space at e)
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e◦1 e◦2

e◦0

G/e

�

•
•

•

v1 v2

e
G
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(vi) We shall denote by G/e the connected semi-graph of anabelioids
of pro-Σ PSC-type arising from the pointed stable curve deter-
mined by the fiber of prlog

1 : X log
2 → X log at the unique node e

of X log (cf. Figure 1), and by ΠG/e
the fundamental group of

G/e. Note that by the various definitions involved, we have

(Vert(G/e)
�, Cusp(G/e)

�, Node(G/e)
�) = (3, r + 1, 2) ;

moreover, there exists a natural isomorphism Π2/1 � ΠG/e
.

(vii) For i = 1, 2, there exists a unique vertex of G/e such that the
image via the surjection ΠG/e

� Π2/1 � Π1 � ΠG induced by
p2 of a verticial subgroup of ΠG/e

associated to the vertex is a

verticial subgroup of ΠG associated to vi ∈ Vert(G). We shall
denote this vertex by v◦

i ∈ Vert(G/e). On the other hand, there
exists a unique vertex of G/e such that the image via the sur-
jection ΠG/e

� Π2/1 � Π1 � ΠG induced by p2 of a verticial
subgroup of ΠG/e

associated to the vertex is an edge-like sub-

group of ΠG associated to the unique node e ∈ node(G). We
shall denote this vertex by v◦

0 ∈ Vert(G/e). Thus, in summary,
we have

Vert(G/e) = {v◦
1, v

◦
2, v

◦
0} .

(viii) For i = 1, 2, there exists a unique node of G/e such that the
subset of vertices of G/e to which the node abuts is {v◦

i , v
◦
0}. We

shall denote this node by e◦i ∈ Node(G/e), i.e., V(e◦i ) = {v◦
i , v

◦
0}.

On the other hand, there exists a unique cusp which abuts to
v◦

0 . We shall denote this cusp by e◦0 ∈ Cusp(G/e). Thus, in
summary, we have

Node(G/e) = {e◦1, e
◦
2} ; V(e◦i ) = {v◦

i , v
◦
0} ; V(e◦0) = {v◦

0} .

(ix) Let Y ⊆ X be the irreducible component of the underlying
scheme X of X log corresponding to v1, UY ⊆ Y the open sub-
scheme of Y obtained as the complement of the nodes and cusps
which abut to v1, and Y log the smooth log curve (whose under-
lying scheme is Y ) over S log determined by the hyperbolic curve
UY . (Thus, UY ⊆ Y is the open subscheme of points at which
the log structure of Y log coincides with the pull-back of the log
structure of S log.) Write gY for the genus of UY and rY for
the number of cusps of UY . Let Y log

n be the n-th log config-
uration space of Y log (cf. the discussion entitled “Curves” in
§0). Note that the natural closed immersion Y ↪→ X induces a
commutative diagram

Y2 −−−→ X2⏐⏐� ⏐⏐�pr1

Y −−−→ X
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— where the left-hand vertical arrow is the morphism induced
by pr1 (cf. the discussion of [Mzk7], Definition 2.1, (iii)).

(x) We shall denote by Πsub
n the maximal pro-Σ quotient of the

kernel of the surjection π1(Y
log
n ) � π1(S

log), and by Πsub
2/1 the

kernel of the surjection Πsub
2 � Πsub

1 induced by the first pro-

jection Y log
2 → Y log. Note that if we denote by UYn ⊆ Yn the

open subscheme of points at which the log structure of Y log
n

coincides with the pull-back of the log structure of S log, then
recall that by the log purity theorem (cf. [Mzk7], the discussion
of §0), the inclusion UYn ↪→ Yn induces a natural isomorphism
π1(UYn)(Σ) ∼

→ Πsub
n . Thus, by restricting coverings of X log

n to
UYn for n = 1, 2, we obtain a commutative diagram (cf. the
discussion of [Mzk7], Definition 2.1, (vi))

1 −−−→ Πsub
2/1 −−−→ Πsub

2 −−−→ Πsub
1 −−−→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −−−→ Π2/1 (� ΠG/e
) −−−→ Π2 −−−→

p1

Π1 (� ΠG) −−−→ 1

— where the right-hand upper horizontal arrow is the surjection
induced by p1, the vertical arrows are injective outer homomor-
phisms, the horizontal sequences are exact, and the image of
the right-hand vertical arrow is a verticial subgroup of ΠG as-
sociated to v1 (cf. Figure 1).

Remark 5.1.1. One verifies easily that if 2g − 2 + r > 1 (i.e., (g, r) �=
(0, 3), (1, 1)), then there exists a stable log curve X log as in Defini-
tion 5.1 (cf., especially, the assumption in Definition 5.1, (v)).

Lemma 5.2 (Basic properties of verticial subgroups). In the
notation of Definition 5.1: For i = 1, 2, let us fix an edge-like subgroup
Πe◦i

⊆ ΠG/e
associated to e◦i ∈ Node(G/e) (Definition 5.1, (viii)). Then

the following hold:

(i) There exists a unique verticial subgroup Πv◦i
(respectively, Πv◦0

)
of ΠG/e

associated to v◦
i ∈ Vert(G/e) (respectively, v◦

0 ∈ Vert(G/e))

[cf. Definition 5.1, (vii)] that contains Πe◦i
.

(ii) There exists a unique Π2/1-conjugate of the image of Πsub
2/1 via

the left-hand vertical arrow in the diagram of Definition 5.1, (x),
that contains and is topologically generated by the verticial
subgroups Πv◦1

, Πv◦0
⊆ ΠG/e

obtained in (i) in the case where
i = 1. By abuse of notation, we shall denote this particular
Π2/1-conjugate of the image of Πsub

2/1 by means of the notation

“Πsub
2/1”.
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(iii) Suppose that Πe◦2
was chosen so that (in the notation of (ii)) we

have Πe◦2
⊆ Πsub

2/1. Then (in the notation of (i) and (ii)) Π2/1 is

topologically generated by Πv◦2
and Πsub

2/1.

Proof. These assertions follow from similar arguments to the arguments
used in the proofs of [Mzk7], Proposition 2.2, (ii), (iii). �

The following result is the main result of the present section.

Corollary 5.3 (Injectivity for not necessarily affine hyperbolic
curves). In the notation of Definition 5.1, the natural homomorphism

OutFC(Π2) −→ OutFC(Π1)

— where we write “OutFC(−)” for the subgroup of the group “Out(−)”
of outomorphisms (cf. the discussion entitled “Topological groups” in
§0) of “(−)” defined in [Mzk7], Definition 1.1, (ii) — induced by p1 is
injective.

Proof. If 2g−2+ r = 1, then Corollary 5.3 follows from [Mzk7], Corol-
lary 2.3, (ii); thus, to verify Corollary 5.3, we may assume without loss
of generality that 2g − 2 + r > 1. Note that since 2g − 2 + r > 1, there
exists a stable log curve X log as in Definition 5.1 (cf. Remark 5.1.1).
Thus, in the following, we assume that we are in the situation described
in Definition 5.1.

To complete the proof of Corollary 5.3, it suffices, by [Mzk7], Proposi-
tion 1.2, (iii), to verify the assertion that if an automorphism α of Π2 is
IFC-admissible (cf. [Mzk7], Definition 1.1, (ii)), i.e., α satisfies the fol-
lowing three conditions (i), (ii), and (iii), then the automorphism α is a

Ξ2-inner automorphism — where we write Ξ2
def
= Ker(p1)∩Ker(p2) ⊆ Π2

(cf. Definition 5.1, (iii)):

(i) α preserves Ker(p1) (= Π2/1) and Ker(p2).

(ii) The automorphism of ΠG/e
(� Π2/1) obtained as the restriction

α|Π2/1
of α (cf. (i)) is group-theoretically cuspidal.

(iii) The automorphism of the quotient (p1, p2) : Π2 � Π1×Π1 of Π2

induced by α (cf. (i)) is the identity automorphism of Π1 ×Π1.

The rest of the proof of Corollary 5.3 is devoted to verifying this as-
sertion.

It follows immediately from (i) and (iii) that we have a commutative
diagram

Π1
ρ

−−−→ Out(Π2/1)∥∥∥ ⏐⏐�Out(α|Π2/1
)

Π1 −−−→
ρ

Out(Π2/1)
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— where the right-hand vertical arrow is the homomorphism induced
by α|Π2/1

, and we write ρ for the outer representation determined by
the exact sequence

1 −→ Π2/1 −→ Π2
p1−→ Π1 −→ 1 .

Let Πe ⊆ Π1 be an edge-like subgroup of Π1 (� ΠG) associated to
the unique node e of G. Then it follows immediately from the various

definitions involved that the composite Πe ↪→ Π1
ρ
→ Out(Π2/1) factors

through Aut(G/e) ⊆ Out(Π2/1); moreover, in light of the well-known
local structure of X log in a neighborhood of the node corresponding to
e, it follows immediately from Proposition 2.14 that the resulting outer
representation of pro-Σ PSC-type Πe → Aut(G/e) is of SNN-type. In
particular, it follows immediately from (ii), together with the fact that
G/e has at least one cusp (cf. Definition 5.1, (vi)), that we may apply
Corollary 4.2 to conclude that the restriction α|Π2/1

is graphic.
Next, let us fix an edge-like subgroup Πe◦1

⊆ Π2/1 associated to
e◦1 ∈ Node(G/e) (cf. Definition 5.1, (viii)). Then we claim that there
exists an element γ ∈ Ξ2 such that α(Πe◦1

) = γ · Πe◦1
· γ−1. Indeed,

it follows from the graphicity of α|Π2/1
, together with (iii), that α|Π2/1

induces the identity automorphism of the underlying semi-graph of G/e

(cf. Definition 5.1, (vii), (viii)), hence that there exists an element
γ′ ∈ Π2/1 such that α(Πe◦1

) = γ′ · Πe◦1
· γ′−1; in particular, again by

(iii), we obtain that p2(Πe◦1
) = p2(γ

′) · p2(Πe◦1
) · p2(γ

′−1). On the other
hand, it follows immediately from the various definitions involved that
p2(Πe◦1

) ⊆ Π1 is an edge-like subgroup of Π1 associated to e ∈ Node(G).
Thus, it follows from the commensurably terminality of p2(Πe◦1

) in Π1

(cf. [Mzk4], Proposition 1.2, (ii)) that p2(γ
′) ∈ p2(Πe◦1

). In particu-
lar, by multiplying γ ′ by an appropriate element of Πe◦1

, we obtain an
element γ, as desired. This completes the proof of the above claim.

In light of the above claim, we may assume without loss of generality
— by composing α with an appropriate Ξ2-inner automorphism — that
α(Πe◦1

) = Πe◦1
. Let Πv◦1

, Πv◦0
⊆ Π2/1 be the unique verticial subgroups

associated, respectively, to v◦
1 , v◦

0 ∈ Vert(G/e) that contain the fixed
edge-like subgroup Πe◦1

(cf. Lemma 5.2, (i)); Πsub
2/1 ⊆ Π2/1 the unique

Π2/1-conjugate of the image of the left-hand vertical arrow in the dia-
gram in Definition 5.1, (x), that contains and is topologically generated
by these verticial subgroups Πv◦1

, Πv◦0
. (cf. Lemma 5.2, (ii)). Then in

light of the graphicity of α, it follows from the fact that α(Πe◦1
) = Πe◦1

,
together with Lemma 5.2, (i), (ii), that α(Πv◦1

) = Πv◦1
, α(Πv◦0

) = Πv◦0
,

and α(Πsub
2/1) = Πsub

2/1.

Next, let us observe that Πsub
2/1 is commensurably terminal in Π2/1.

(Indeed, this follows by applying [Mzk4], Proposition 1.2, (ii) — where

we think of the fiber of Y log
2 → Y log over e [by, for instance, deform-

ing the unique node of this fiber] as a single irreducible component of
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the fiber of X log
2 → X log.) Note that in light of this commensurable

terminality, the compatibility of α2/1 with the outer action of Π1 on
Π2/1 (relative to the identity automorphism of Π1 — cf. condition (iii))
implies the compatibility of α2/1|Πsub

2/1
with the outer action of Πsub

1 on

Πsub
2/1 (relative to the identity automorphism of Πsub

1 ). Thus, it follows

from the commutative diagram in Definition 5.1, (x) (i.e., by apply-

ing the natural isomorphism Πsub
2 � Πsub

2/1

out
� Πsub

1 [cf. the discussion

entitled “Topological groups” in §0]), that the automorphism α2/1|Πsub
2/1

arises from an automorphism αsub of Πsub
2 . Moreover, it follows imme-

diately from the construction of αsub (cf. also [Mzk4], Proposition 1.5,
(i)) that αsub is IFC-admissible (cf. [Mzk7], Definition 1.1, (ii)), i.e.,
that αsub satisfies the analogue for Πsub

2 of the above three conditions
(i), (ii), and (iii). Therefore, since the stable log curve Y log [unlike the
stable log curve X log!] necessarily has at least one cusp, we may apply
[Mzk7], Corollary 1.12, (i), and [Mzk7], Corollary 2.3, (i) (cf. also Re-
mark 5.3.1 below), to conclude that αsub is a Ξsub

2 -inner automorphism

— where we write Ξsub
2

def
= Ξ2 ∩ Πsub

2 for the analogue of “Ξ2” for Πsub
2 .

In particular, it follows that α2/1|Πsub
2/1

is a Ξ2-inner automorphism.

Now from the point of view of verifying the assertion that α is a
Ξ2-inner automorphism, we may assume without loss of generality —
by composing with an appropriate Ξ2-inner automorphism — that α
stabilizes and restricts to the identity automorphism of Πsub

2/1; in partic-

ular, since Πv◦0
⊆ Πsub

2/1, it follows that α stabilizes and restricts to the
identity automorphism of Πv◦0

.
Let Πe◦2

⊆ Π2/1 be an edge-like subgroup associated to e◦2 ∈ Node(G/e)
which is contained in Πv◦0

, and Πv◦2
⊆ Π2/1 the unique (cf. Lemma 5.2,

(i)) verticial subgroup associated to v◦
2 ∈ Vert(G/e) that contains Πe◦2

.
Now since α stabilizes and restricts to the identity automorphism of
Πv◦0

, it follows that α(Πe◦2
) = Πe◦2

. Thus, in light of the graphicity of α,
we may apply Lemma 5.2, (i), to conclude that α(Πv◦2

) = Πv◦2
. Next,

let us observe that the surjection Πv◦2
� p2(Πv◦2

) determined by p2 is
an isomorphism. Thus, it follows immediately from condition (iii) that
α|Πv◦

2
is the identity automorphism.

Since Π2/1 is topologically generated by Πsub
2/1 and Πv◦2

(cf. Lemma 5.2,

(iii)), the fact (cf. the above discussion) that α|Πsub
2/1

and α|Πv◦
2

are equal

to the respective identity automorphisms on Πsub
2/1 and Πv◦2

implies that

α|Π2/1
is the identity automorphism. But this implies that α is the

identity automorphism (cf. the discussion entitled “Topological groups”
in §0). This completes the proof of Corollary 5.3. �
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Remark 5.3.1.

(i) An alternative approach to the portion in the latter half of the
proof of Corollary 5.3 where one applies [Mzk7], Corollary 2.3,
(i), may be given, at least when (g, r) �= (2, 0), as follows. One
verifies easily that 3gY − 3 + rY < 3g − 3 + r, and, moreover
that, at least when (g, r) �= (2, 0), one may always choose X log

(in the situation of Definition 5.1, so (g, r) �= (0, 3), (1, 1) —
cf. Remark 5.1.1) so that (gY , rY ) �= (1, 1). Thus, by applying
induction on 3g − 3 + r, one may reduce this portion of the
proof of Corollary 5.3 to the case where 3g − 3 + r = 0, i.e.,
the case of a tripod. That is to say, instead of applying [Mzk7],
Corollary 2.3, (i), it suffices to apply [Mzk7], Corollary 1.12, (i).
In particular, this alternative approach yields a new proof — at
least in the case of (g, r) �= (1, 1) — of [Mzk7], Corollary 2.3,
(ii) (i.e., via Corollary 4.2, as opposed to [Mzk4], Corollary 2.7,
(iii) — cf. Remark 4.2.1).

(ii) In passing, we recall that [Mzk4], Corollary 2.7, (iii), is applied
in various situations throughout [Mzk7]. In fact, however, (cf.
the discussion of (i)) it is not difficult to verify that the par-
tial generalization of [Mzk4], Corollary 2.7, (iii), constituted by
Corollary 4.2 (cf. Remark 4.2.1) is sufficient (i.e., in the sense
that the condition “Cusp(G) �= ∅” of Corollary 4.2, (iii), is al-
ways satisfied) for verifying the various assertions in [Mzk7] (cf.
the proof of [Mzk7], Proposition 1.3, (iv)) that are derived from
[Mzk4], Corollary 2.7, (iii).

6. Consequences of injectivity

In this section, we discuss various consequences of the injectivity
result proven in §5.

The following theorem is a generalization of [Mzk7], Theorem A, (i),
(ii).

Theorem 6.1 (Partial profinite combinatorial cuspidalization).
Let Σ be a set of prime numbers which is either of cardinality one
or equal to the set of all prime numbers, n a positive integer,
X a hyperbolic curve of type (g, r) over an algebraically closed field
of characteristic �∈ Σ, Xn the n-th configuration space of X (cf.
[MzTa], Definition 2.1, (i)), Πn the maximal pro-Σ quotient of the
fundamental group of Xn, and OutFC(Πn) ⊆ Out(Πn) the subgroup of
the group Out(Πn) consisting of the outomorphisms (cf. the discussion
entitled “Topological groups” in §0) of Πn which are FC-admissible

(cf. [Mzk7], Definition 1.1, (ii)). Set n0
def
= 2 if X is affine, i.e., r ≥ 1;

n0
def
= 3 if X is proper, i.e., r = 0 (cf. [Mzk7], Theorem A). Then the
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natural homomorphism

OutFC(Πn+1) −→ OutFC(Πn)

induced by the projection Xn+1 → Xn obtained by forgetting the (n+1)-
st factor is injective if n ≥ 1 and bijective if n ≥ n0 + 1. Moreover,
the image of the natural inclusion

Sn ↪→ Out(Πn)

— where we write Sn for the symmetric group on n letters — obtained
by permuting the various factors of the configuration space Xn is con-
tained in the centralizer ZOut(Πn)(OutFC(Πn)).

Proof. First, we consider the surjectivity portion of the bijectivity asser-
tion in the statement of Theorem 6.1. This surjectivity already follows
from [Mzk7], Theorem A, (i), if n ≥ 4. Thus, we may assume that
n = 3, which implies that r ≥ 1. Now by [Mzk7], Lemma 2.4; [Mzk7],
Theorem 4.1, (ii), (a), it suffices (cf. the proof of the surjectivity por-
tion of [Mzk7], Theorem 4.1, (i)) to verify (in the notation of [Mzk7])
that OutFC(Π3)

cusp = OutFCP(Π3)
cusp ⊆ OutFC(Π3)

Δ+ — where the
first equality follows from [Mzk7], Theorem A, (ii). But this follows
from a similar argument to the argument applied to prove [Mzk7],
Corollary 3.4, (iii), by taking the section “ξ ∈ X2(X)” of loc. cit. to
be the section determined by the diagonal and applying the symmetry
observed in the proof of [Mzk7], Corollary 3.4, (i).

Next, we observe that the assertion concerning the centralizer fol-
lows immediately from the injectivity assertion, together with [Mzk7],
Theorem A, (ii); [Mzk7], Proposition 1.2, (iii). Thus, to complete the
proof of Theorem 6.1, it suffices to verify the injectivity assertion. To
this end, write Π†

2 (respectively, Π†
1) for the kernel of the surjection

Πn+1 � Πn−1 (respectively, Πn � Πn−1) induced by the projection
obtained by forgetting the n-th and (n+1)-st factors (respectively, the

n-th factor). Here, if n = 1, then we set Πn−1 = Π0
def
= {1}. Then recall

(cf. e.g., the proof of [Mzk7], Theorem 4.1, (i)) that we have natural
isomorphisms

Πn+1 � Π†
2

out
� Πn−1 ; Πn � Π†

1

out
� Πn−1

(cf. the discussion entitled “Topological groups” in §0). Also, we recall
(cf. [MzTa], Proposition 2.4, (i)) that one may interpret the surjec-

tion Π†
2 � Π†

1 induced by the surjection Πn+1 � Πn in question as
the surjection “Π2 � Π1” of Definition 5.1 (i.e., the surjection that

arises from the projection pr2 : X log
2 → X log) in the case of an “X log”

of type (g, r + n − 1). Moreover, one verifies easily that this inter-
pretation is compatible with the definition of the various “Out(−)’s”
involved. Thus, the above natural isomorphisms allow one to reduce
the injectivity in question to the case where n = 1 (cf. the discussion
entitled “Topological groups” in §0), which follows immediately from
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Corollary 5.3 when 2g−2+ r > 1 (cf. Remark 5.1.1) and from [Mzk7],
Theorem A, (i), when 2g − 2 + r = 1. This completes the proof of
Theorem 6.1. �

The following corollary is a generalization of [Mts], Theorem 2.2.
Note that [Mts], Theorem 2.2, corresponds to the following corollary
in the case where k is a subfield of the field of complex numbers, and,
moreover, X is a curve of positive genus that has at least one cusp
defined over k.

Corollary 6.2 (Kernels of outer representations arising from
hyperbolic curves). Let Σ be a set of prime numbers which is either
of cardinality one or equal to the set of all prime numbers, X
a hyperbolic curve over a perfect field k such that every element of Σ is
invertible in k, k an algebraic closure of k, n a positive integer, Xn

the n-th configuration space of X, Gk
def
= Gal(k/k), ΔXn the maximal

pro-Σ quotient of the fundamental group of Xn ⊗k k, and ΔP1
k\{0,1,∞}

the maximal pro-Σ quotient of the fundamental group of P1
k
\{0, 1,∞}.

Then the following hold:

(i) The kernel of the natural outer representation

ρΣ
Xn/k : Gk −→ Out(ΔXn)

is independent of n and contained in the kernel of the nat-
ural outer representation

ρΣ
P1

k\{0,1,∞}/k : Gk −→ Out(ΔP1
k
\{0,1,∞}) .

(ii) Suppose that Σ is the set of all prime numbers. (Thus, k
is necessarily of characteristic zero.) Write Q for the algebraic

closure of Q determined by k and GQ
def
= Gal(Q/Q). Then the

kernel of the homomorphism ρΣ
Xn/k is contained in the kernel

of the outer homomorphism

Gk −→ GQ

determined by the natural inclusion Q ↪→ k.

Proof. Assertion (ii) follows immediately from assertion (i), together
with a well-known injectivity result of Belyi (cf., e.g., the discussion
surrounding [Mts], Theorem 2.2). Thus, to complete the proof of Corol-
lary 6.2, it suffices to verify assertion (i). It follows immediately from
Theorem 6.1 that the kernel of ρΣ

Xn/k is independent of n. Moreover,

if we denote by k′ ⊆ k the minimal Galois extension of k over which
every cusp of X is defined, then by considering the action of Gk on
the set of conjugacy classes of edge-like subgroups of ΔX associated to
cusps of X — a set which admits a natural bijection with the set of
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cusps of X (cf. e.g., [Mzk4], Proposition 1.2, (i)) — it follows imme-
diately from the various definitions involved that for any n, the kernel
of the homomorphism ρΣ

Xn/k is contained in Gk′ ⊆ Gk, and that the

restriction of ρΣ
Xn/k to Gk′ factors through the subgroup

OutFC(ΔXn)cusp ⊆ OutFC(ΔXn)

defined in [Mzk7], Definition 1.1, (v). Thus, we have continuous homo-
morphisms

(Ker(ρΣ
Xn/k) ⊆) Gk′ −→ OutFC(ΔX3)

cusp −→ OutFC(ΔP1
k
\{0,1,∞})

— where the first arrow is the homomorphism induced by ρΣ
X3/k, and

the second arrow is the homomorphism determined by the diagonal in
X2 (cf. [Mzk7], Theorem A, (iii)). Moreover, one verifies easily that
the composite of these homomorphisms coincides with ρΣ

P1
k′
\{0,1,∞}/k′ (cf.

the construction of the homomorphism

OutFC(ΔX3)
cusp −→ OutFC(ΔP1

k
\{0,1,∞})

in [Mzk7]). Now assertion (i) follows immediately. �

The injectivity portion of assertion (i) (in the case where n = 1) of
the following corollary is a generalization of [Mts], Theorem 2.1. Note
that [Mts], Theorem 2.1, corresponds to the following corollary in the
case where X is affine.

Corollary 6.3 (Injectivity and commensurable terminality for
outer representations arising from hyperbolic curves). In the
situation of Corollary 6.2, suppose that k is a number field or p-adic
local field (cf. the discussion entitled “Numbers” in §0), and that Σ

is the set of all prime numbers. Write k0
def
= Q if k is a number

field; k0
def
= Qp if k is a p-adic local field; Aut(Xk/k0) for the group

of k0-linear automorphisms of the scheme Xk
def
= X ⊗k k; ρn

def
= ρΣ

Xn/k.
Then the following hold:

(i) The outer representation

ρn : Gk −→ Out(ΔXn)

is injective. Moreover, the outer representations ρn+1 and
ρn are compatible, in the evident sense, with the injection
OutFC(ΔXn+1) ↪→ OutFC(ΔXn) of Theorem 6.1.

(ii) Every α ∈ Aut(Xk/k0) induces a k0-linear automorphism of

(Xn)k
def
= Xn ⊗k k. In particular, we have a natural outer rep-

resentation

ρn/0 : Aut(Xk/k0) −→ Out(ΔXn)



NODALLY NONDEGENERATE OUTER REPRESENTATIONS 65

which factors through OutFC(ΔXn) ⊆ Out(ΔXn) and is com-
patible with ρn relative to the natural injection Gk ↪→ Aut(Xk/k0)
determined by taking the fiber product over Spec (k) with X.
Moreover, the outer representations ρn+1/0 and ρn/0 are com-

patible, in the evident sense, with the injection OutFC(ΔXn+1) ↪→
OutFC(ΔXn) of Theorem 6.1.

(iii) The outer representation ρn/0 of (ii) is injective.

(iv) Suppose that the hyperbolic curve X is of quasi-Belyi type
[cf. [Mzk5], Definition 2.3, (iii)] (respectively, affine; proper).

Set n0
def
= 1 (respectively, n0

def
= 2; n0

def
= 3). Then the image of

ρn/0 is commensurably terminal in OutF(ΔXn) (cf. [Mzk7],
Definition 1.1, (ii)) for all n ≥ n0.

Proof. The injectivity portion of assertion (i) follows immediately from
Corollary 6.2, (ii), together with the injectivity of the outer homomor-
phism “Gk → GQ” in the statement of Corollary 6.2, (ii), when k is a
number field or p-adic local field. The compatibility portion of assertion
(i) follows immediately from the various definitions involved. Assertion
(ii) follows immediately from the various definitions involved. Next, we
consider assertion (iii). In light of the compatibility portion of asser-
tion (ii), it suffices to verify assertion (iii) in the case where n = 1.
Write Aut(Xk/k) ⊆ Aut(Xk/k0) for the subgroup of k-linear automor-
phisms. Then the injectivity of the restriction of ρ1/0 to Aut(Xk/k)
is well-known (cf. e.g., the injectivity portion of [Mzk1], Theorem A).
On the other hand, one verifies immediately that by restricting an au-
tomorphism α ∈ Aut(Xk/k0) to the base field k, one obtains a natural
exact sequence

1 −→ Aut(Xk/k) −→ Aut(Xk/k0) −→ Gal(k/k0)

such that the image of the homomorphism Aut(Xk/k0) → Gal(k/k0)

contains Gk = Gal(k/k), hence is open. Thus, it follows immediately
from the injectivity portion of assertion (i) (cf. also the first compat-
ibility discussed in assertion (ii)) that the kernel of ρ1/0 maps isomor-
phically to a finite normal closed subgroup of some open subgroup of
the slim profinite group Gal(k/k0) (cf. e.g., [Mzk2], Theorem 1.1.1,
(ii)), hence is trivial, as desired. This completes the proof of asser-
tion (iii). Finally, we consider assertion (iv). First, let us observe
that it follows immediately from [Mzk4], Corollary 2.7, (i) (cf. also
[Mzk7], Remark 1.1.3), that the commensurator of the image of ρn/0

in OutF(ΔXn) is in fact contained in OutFC(ΔXn). Thus, it suffices to
verify assertion (iv) with “OutF(−)” replaced by “OutFC(−)”. Next,
let us observe that by the injectivity portion of Theorem 6.1, it suffices
to verify assertion (iv) in the case where n = n0. Thus, let us assume
that n = n0. Then in light of assertion (iii), together with the fact



66 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

that ΔXn is slim (cf. the discussion entitled “Topological Groups” in
§0; [MzTa], Proposition 2.2, (ii)), assertion (iv) follows immediately —
in the case where the hyperbolic curve X is of quasi-Belyi type (re-
spectively,is affine; proper) — from the “Grothendieck Conjecture-type
result” given in [Mzk5], Corollary 2.3 (respectively, [Mzk6], Corollary
1.11, (iii), (iv); [Mzk6], Corollary 1.11, (iii), (iv)). �

The following corollary is a generalization of [MtTa], Theorem 1.1.
Note that [MtTa], Theorem 1.1, corresponds to the following corollary
in the case where r ≥ 1.

Corollary 6.4 (Triviality of simultaneously arithmetic-geomet-
ric actions). Let k be a field of characteristic zero, k an algebraic clo-
sure of k, (g, r) a pair of natural numbers such that 2g − 2 + r > 0,
(Mg,r)k the moduli stack of r-pointed smooth curves of genus g over
k whose marked points are equipped with an ordering, ΠMg,r the profi-
nite fundamental group of the stack (Mg,r)k, and ΔMg,r the profinite

fundamental group of the stack (Mg,r)k ⊗k k; thus, we have an exact
sequence

1 −→ ΔMg,r −→ ΠMg,r −→ Gal(k/k) −→ 1 .

Moreover, let X be a hyperbolic curve of type (g, r) over k,

ρX/k : Gal(k/k) −→ Out(π1(X ⊗k k))

the outer representation arising from the hyperbolic curve X
over k, i.e., the outer representation arising from the natural exact
sequence

1 −→ π1(X ⊗k k) −→ π1(X) −→ Gal(k/k) −→ 1 ,

and

ρg,r : ΠMg,r −→ Out(π1(X ⊗k k))

the profinite universal monodromy outer representation over
k, i.e., the outer representation arising from the natural exact sequence

1 −→ π1(X ⊗k k) −→ ΠMg,r+1 −→ ΠMg,r −→ 1 .

Then the subgroup

ρ−1
X/k(ρg,r(ΔMg,r)) ⊆ Gal(k/k)

of Gal(k/k) is contained in the kernel of the outer homomorphism

Gal(k/k) −→ Gal(Q/Q)

determined by the natural inclusion Q ↪→ k.
In particular, if k is a number field or p-adic local field, then

the intersection of the image of the outer representation

ρX/k : Gal(k/k) −→ Out(π1(X ⊗k k))
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and the image of the restriction

ρg,r|ΔMg,r
: ΔMg,r −→ Out(π1(X ⊗k k))

of ρg,r to ΔMg,r ⊆ ΠMg,r is trivial.

Proof. The various assertions of Corollary 6.4 follow from Theorem 6.1
via a similar argument to the argument used in the proof of Corol-
lary 6.2, (i), (ii). Alternatively, one may derive Corollary 6.4 directly
from Corollary 6.2, (ii) — where we take “k” to be the function field
of Mg,r — via a similar argument to the argument used in the proof
of [MtTa], Theorem 1.1, i.e., by considering, in effect, the semi-direct
product decomposition ΠMg,r � ΔMg,r � Gal(k/k) determined by the
k-valued point of Mg,r corresponding to X. �

Corollary 6.5 (Outer representations arising from moduli stacks
of stable curves). Let k be a number field or p-adic local field,
k an algebraic closure of k, (g, r) a pair of natural numbers such that
2g − 2 + r > 0, (Mg,r)k the moduli stack of r-pointed smooth curves
of genus g over k whose marked points are equipped with an ordering,
ΠMg,r the profinite fundamental group of the stack (Mg,r)k, ΔMg,r the

profinite fundamental group of the stack (Mg,r)k ⊗k k, Πg,r the profi-
nite completion of the surface group of type (g, r) (i.e., the topological
fundamental group of the complement of r distinct points in a compact
oriented topological surface of genus g), and

ρg,r : ΠMg,r −→ Out(Πg,r)

the profinite universal monodromy outer representation over
k. Then the congruence subgroup problem for the pair (g, r) may be re-
solved in the affirmative (i.e., the restriction of ρg,r to ΔMg,r ⊆ ΠMg,r

is injective) if and only if the homomorphism ρg,r is injective.

Proof. This follows immediately from Corollary 6.4, by considering a
hyperbolic curve “X” of type (g, r) that is defined over k (as in the
statement of Corollary 6.4). Alternatively, one may deduce Corol-
lary 6.5 directly from Corollary 6.2, (ii), by applying Corollary 6.2,
(ii), to the function field of Mg,r. �

The following corollary is a generalization of [Mzk7], Corollary 5.1,
(ii), (iv).

Corollary 6.6 (Discrete combinatorial cuspidalization). Let (g, r)
be a pair of natural numbers such that 2g − 2 + r > 0, n a positive in-
teger, X a topological surface of type (g, r) (i.e., the complement of r
distinct points in a compact oriented topological surface of genus g), Xn

the n-th configuration space of X , Πn the topological fundamental group
of Xn, and OutFC(Πn) ⊆ Out(Πn) the subgroup of the group Out(Πn)
of outomorphisms (cf. the discussion entitled “Topological groups” in
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§0) of Πn defined in the statement of [Mzk7], Corollary 5.1. Then the
natural homomorphism

OutFC(Πn+1) −→ OutFC(Πn)

induced by the projection Xn+1 → Xn obtained by forgetting the (n+1)-
st factor is bijective. Moreover, the image of the natural inclusion

Sn ↪→ Out(Πn)

— where we write Sn for the symmetric group on n letters — obtained
by permuting the various factors of the configuration space Xn is con-
tained in the centralizer ZOut(Πn)(OutFC(Πn)).

Proof. The assertion concerning the centralizer follows immediately
from the bijectivity assertion, together with [Mzk7], Corollary 5.1, (iv),
and the easily verified discrete analogue of [Mzk7], Proposition 1.2, (iii)
(which may be verified, for instance, by applying [Mzk7], Corollary 5.1,
(i); [Mzk7], Proposition 1.2, (iii)). Thus, to complete the proof of The-
orem 6.1, it suffices to verify the bijectivity assertion. Moreover, it
follows from [Mzk7], Corollary 5.1, (ii), that to complete the proof of
the bijectivity assertion, it suffices to verify the injectivity portion of
this bijectivity assertion. On the other hand, this injectivity follows
from Theorem 6.1, together with [Mzk7], Theorem 5.1, (i). That is to
say, the injectivity of the homomorphism OutFC(Πn+1) → OutFC(Πn)
follows from the commutativity of the diagram of natural homomor-
phisms

OutFC(Πn+1) −−−→ OutFC(Π̂n+1)⏐⏐� ⏐⏐�
OutFC(Πn) −−−→ OutFC(Π̂n)

— where we write “Π̂(−)” for the profinite completion of “Π(−)” —
together with the injectivity of the upper horizontal and right-hand
vertical arrows of the diagram. �

Remark 6.6.1. Just as in the case of [Mzk7], Corollary 5.1, there
is a partial overlap between the content of Corollary 6.6 above and
Theorems 1, 2 of [IIM].
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