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��������� In this paper, we discuss various “general nonsense” aspects of

the geometry of semi-graphs of profinite groups [cf. [Mzk3], Appendix], by applying
the language of anabelioids introduced in [Mzk4]. After proving certain basic prop-

erties concerning various commensurators associated to a semi-graph of anabelioids,

we show that the geometry of a semi-graph of anabelioids may be recovered from

the category-theoretic structure of certain naturally associated categories — e.g.,

“temperoids” [in essence, the analogue of a Galois category for the “tempered funda-
mental groups” of [André]] and “categories of localizations”. Finally, we apply these

techniques to obtain certain results in the absolute anabelian geometry [cf. [Mzk3],

[Mzk8]] of tempered fundamental groups associated to hyperbolic curves over p-adic

local fields.
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Introduction

In this paper, we continue to pursue the theme of categorical representation
of scheme-theoretic geometries, which played a central role in [Mzk6], [Mzk7], as
well as in the previous anabelian work of the author [e.g., [Mzk2], [Mzk3], [Mzk5],
[Mzk8]]. The original motivation of the present work lies in the problem of finding
an appropriate and efficient way of representing, via categories, the geometry of
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“formal localizations” of hyperbolic curves over p-adic local fields. Here, we use the
term “formal localizations” to refer to the localizations of the p-adic formal comple-
tion of a stable log curve over the ring of integers of a p-adic local field obtained by
completing along the irreducible components and nodes of the geometric logarithmic
special fiber specified by some sub-semi-graph of the “dual semi-graph with compact
structure” [cf. [Mzk3], Appendix] associated to this geometric logarithmic special
fiber. Since the geometry of such formal localizations is substantially reflected in
the geometry of localizations of the semi-graph of profinite groups [cf. [Mzk3], Ap-
pendix] associated to this geometric logarithmic special fiber, it is thus natural,
from the point of view of the goal of categorical representation of this geometry of
formal localizations, to study the geometry of this semi-graph of profinite groups.
Moreover, when working with profinite groups as “geometric objects”, it is natural
to apply the language of anabelioids introduced in [Mzk4].

The main results of this paper may be summarized as follows:

(1) In §1, we study the geometry of semi-graphs, and in particular, expose
a proof related to the author by M. Matsumoto of a sort of analogue for
certain types of morphisms of finite semi-graphs of “Zariski’s main theo-
rem” in scheme theory [cf. Theorem 1.2]. This result has some interesting
group-theoretic consequences related to the author by A. Tamagawa [cf.
Corollary 1.6]; in addition, it admits an interesting interpretation from a
more “arithmetic” point of view [cf. Remark 1.5.1].

(2) In §2, we begin our study of the geometry of semi-graphs of anabeloids.
Our main result [cf. Corollary 2.7] concerns certain properties of the
commensurator in the profinite fundamental group associated to a graph
of anabelioids of the various subgroups associated to subgraphs of the
given graph of anabelioids.

(3) In §3, we take up the study of “tempered fundamental groups” [i.e.,
roughly speaking, fundamental groups that correspond to coverings dom-
inated by the composite of an arbitrary finite covering and a [not neces-
sarily finite] covering of “some” associated semi-graph — cf. [André]], by
working with “temperoids”, i.e., the analogue for tempered fundamental
groups of Galois categories [in the case of profinite groups]. Our main re-
sult [cf. Theorem 3.7; Corollary 3.9] states that for certain kinds of graphs
of anabelioids, the vertices (respectively, edges) of the underlying graph
may be recovered from the associated tempered fundamental group as the
[conjugacy classes of] maximal compact subgroups (respectively, nontriv-
ial intersections of distinct maximal compact subgroups) of this tempered
fundamental group. We then apply this result to show, in the case of
hyperbolic curves over p-adic local fields, that the entire dual semi-graph
with compact structure may be recovered solely from the geometric tem-
pered fundamental group of such a curve [cf. Corollary 3.11].

(4) Although the tempered fundamental group furnishes perhaps the most
efficient way of reconstructing a graph of anabelioids from a naturally asso-
ciated category, in §4, we examine another natural approach to this prob-
lem, via categories of localizations. This approach is motivated partly by
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the geometry of formal localizations of stable log curves referred to above,
and partly by the naive observation that given a semi-graph of anabe-
lioids, it is natural to “localize” not just by considering coverings, but also
by “physically localizing on the underlying semi-graph”. After studying
various basic properties of such categories of localizations [including some
interesting properties that follow from “Zariski’s main theorem for semi-
graphs” — cf. Proposition 4.4, (i), (ii)], we show that, given a graph of
anabelioids satisfying certain properties, the original graph of anabelioids
may be recovered functorially from its associated category of localizations
[cf. Theorem 4.8]. One recurrent theme in the theory of §4 [which is
consistent with the more general theme of “categorical representation of
scheme-theoretic geometries” referred to above] is the idea that the geom-
etry that is hidden in such a category of localizations may be developed,
using entirely category-theoretic notions, in a fashion that is remarkably
reminiscent of classical scheme theory — cf. the application of “Zariski’s
main theorem for semi-graphs” in Proposition 4.4, (i), (ii); the “valuative
criterion” of Proposition 4.6.

(5) In §3, 4, we considered semi-graphs of anabelioids that are not equipped
with “Galois actions”. Thus, in §5, we generalize the [more efficient]
theory of §3 [instead of the theory of §4, since this becomes somewhat
cumbersome] to the “arithmetic” situation that arises in the case of a hy-
perbolic curve over a p-adic local field, i.e., of a semi-graph of anabelioids
equipped with an “arithmetic action” by a profinite group. The transla-
tion of the theory of §3 into its “arithmetic analogue” in §5 is essentially
routine, once one replaces, for instance, “maximal compact subgroups” by
“arithmetically maximal compact subgroups” [cf. Theorem 5.4].

(6) In §6, we consider the tempered analogue of the absolute anabelian geom-
etry developed in [Mzk8]. In particular, we show that in many respects,
this tempered analogue is essentially equivalent to the original profinite
version [cf. Theorem 6.6], and, moreover, that the various absolute an-
abelian results of [Mzk8] concerning decomposition groups of closed points
— in particular, a sort of “weak section conjecture” — also hold in the
tempered case [cf. Theorem 6.8; Corollaries 6.9, 6.11]. This is particularly
interesting in that the tempered version exhibits, in a very explicit way,
the geometry of this “weak section conjecture” in a fashion that is quite
reminiscent of the “discrete real section conjecture” of [Mzk5], §3.2 [cf.
Remark 6.9.1], i.e., relative to the well-known analogy between geodesics
on trees [cf., e.g., Lemma 1.8, (ii); [Serre]] and geodesics in Riemannian
“straight line spaces” [i.e., Riemannian spaces satisfying the condition (*)
of [Mzk5], §3.2].

(7) In the Appendix, we discuss a slight generalization of the notions of
“temperoids” and “anabelioids” that sometimes appears in practice, espe-
cially when one wishes to consider, from the point of view of the categories
discussed in the present paper, the “stack-theoretic analogue” of various
“scheme-theoretic notions” [cf., e.g., Remarks 4.1.2, 4.8.4]. The main re-
sult of the Appendix [cf. Theorem A.4] states that a temperoid may be
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reconstructed category-theoretically from a certain type of subcategory of
the temperoid [i.e., a “quasi-temperoid”]. This sort of technical result is
also of interest, relative to the analogy between temperoids and anabe-
lioids, in the context of the theory of cores of anabelioids developed in
[Mzk4].

Finally, we remark that to a certain extent, this paper was conceived by the au-
thor as a piece of mathematical infrastructure, i.e., to develop the basic properties
and “general nonsense” of the very “primitive” [by comparison to many modern
mathematical notions] notion of a semi-graph of anabelioids in maximal possible
generality. Thus, although, for instance, the exposition of §2, §3 could be substan-
tially simplified if one restricts oneself to the sort of semi-graphs of anabelioids that
arise from stable log curves, it seemed more natural to the author to develop this
theory under minimal possible hypotheses. As a result of this choice on the part
of the author, the present paper contains a very large number of new terms, which
may be ignored to a substantial extent on a first reading of the present paper, by
assuming, for instance, that all semi-graphs of anabelioids are of the sort that arise
from stable log curves. Also, it is hoped that the Index provided at the end of the
paper may aid in the tracking down of unknown terminology.
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Section 0: Notations and Conventions

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let us
write

ZG(H) def= {g ∈ G | g · h = h · g, ∀ h ∈ H}

for the centralizer of H in G;

NG(H) def= {g ∈ G | g ·H · g−1 = H}

for the normalizer of H in G; and

CG(H) def= {g ∈ G | (g ·H · g−1)
⋂

H has finite index in H, g ·H · g−1}

for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H) are
subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H).

Note that ZG(H), NG(H) are always closed in G, while CG(H) is not nec-
essarily closed in G. If H = CG(H), then we shall say that H is commensurably
terminal in G.

If G is center-free, then we have a natural exact sequence

1 → G→ Aut(G) → Out(G) → 1

[where Aut(G) denotes the group of automorphisms of the topological group G;
the injective [since G is center-free!] homomorphism G → Aut(G) is obtained by
letting G act on G by inner automorphisms; Out(G) is defined so as to render the
sequence exact]. If J → Out(G) is a homomorphism of groups, then we shall write

G
out
� J

def= Aut(G) ×Out(G) J

for the “outer semi-direct product of J with G”. Thus, we have a natural exact

sequence: 1 → G→ G
out
� J → J → 1.

Categories:

Let C be a category. We shall denote the collection of objects of C by:

Ob(C)
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If A ∈ Ob(C) is an object of C, then we shall denote by

CA

the category whose objects are morphisms B → A of C and whose morphisms (from
an object B1 → A to an object B2 → A) are A-morphisms B1 → B2 in C. Thus,
we have a natural functor

(jA)! : CA → C
(given by forgetting the structure morphism to A). Similarly, if f : A → B is a
morphism in C, then f defines a natural functor

f! : CA → CB

by mapping an arrow (i.e., an object of CA) C → A to the object of CB given by
the composite C → A→ B with f . Also, we shall denote by

C[A] ⊆ C

the full subcategory determined by the objects of C that admit a morphism to A.

If the category C admits finite products, then (jA)! is left adjoint to the natural
functor

j∗A : C → CA
given by taking the product with A, and f! is left adjoint to the natural functor

f∗ : CB → CA

given by taking the fibered product over B with A. We shall call an object A ∈ Ob(C)
terminal if for every object B ∈ Ob(C), there exists a unique arrow B → A in C.

We shall refer to a natural transformation between functors all of whose com-
ponent morphisms are isomorphisms as an isomorphism between the functors in
question. A functor φ : C1 → C2 between categories C1, C2 will be called rigid if φ
has no nontrivial automorphisms. A category C will be called slim if the natural
functor CA → C is rigid, for every A ∈ Ob(C).

If G is a profinite group, then we shall denote by

B(G)

the category of finite sets with continuous G-action. Thus, B(G) is a Galois cate-
gory, or, in the terminology of [Mzk4], a connected anabelioid. Moreover, B(G) is
slim if and only if, for every open subgroup H ⊆ G, we have ZG(H) = {1} [cf.
[Mzk4], Corollary 1.1.6, Definition 1.2.4].

A diagram of functors between categories will be called 1-commutative if the
various composite functors in question are isomorphic. When such a diagram “com-
mutes in the literal sense” we shall say that it 0-commutes. Note that when a dia-
gram in which the various composite functors are all rigid “1-commutes”, it follows
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from the rigidity hypothesis that any isomorphism between the composite functors
in question is necessarily unique. Thus, to state that such a diagram 1-commutes
does not result in any “loss of information” by comparison to the datum of a specific
isomorphism between the various composites in question.

Given two functors Φi : Ci → Di (where i = 1, 2) between categories Ci, Di, we
shall refer to a 1-commutative diagram

C1
∼→ C2⏐⏐�Φ1

⏐⏐�Φ2

D1
∼→ D2

— where the horizontal arrows are equivalences of categories — as an abstract
equivalence from Φ1 to Φ2. If there exists an abstract equivalence from Φ1 to Φ2,
then we shall say that Φ1, Φ2 are abstractly equivalent.

We shall say that a nonempty [i.e., non-initial] object A ∈ Ob(C) is connected
if it is not isomorphic to the coproduct of two nonempty objects of C. We shall
say that an object A ∈ Ob(C) is mobile if there exists an object B ∈ Ob(C) such
that the set HomC(A,B) has cardinality ≥ 2 [i.e., the diagonal from this set to
the product of this set with itself is not bijective]. We shall say that an object
A ∈ Ob(C) is quasi-connected if it is either immobile [i.e., not mobile] or connected.
Thus, connected objects are always quasi-connected. If every object of a category C
is quasi-connected, then we shall say that C is a category of quasi-connected objects.
We shall say that a category C is totally (respectively, almost totally) epimorphic if
every morphism in C whose domain is arbitrary (respectively, nonempty) and whose
codomain is quasi-connected is an epimorphism.

We shall say that C is of finitely (respectively, countably) connected type if it is
closed under formation of finite (respectively, countable) coproducts; every object of
C is a coproduct of a finite (respectively, countable) collection of connected objects;
and, moreover, all finite (respectively, countable) coproducts

∐
Ai in the category

satisfy the condition that the natural map

∐
HomC(B,Ai) → HomC(B,

∐
Ai)

is bijective, for all connected B ∈ Ob(C). If C is of finitely or countably connected
type, then every nonempty object of C is mobile; in particular, a nonempty object
of C is connected if and only if it is quasi-connected.

If a mobile object A ∈ Ob(C) satisfies the condition that every morphism in C
whose domain is nonempty and whose codomain is equal to A is an epimorphism,
then A is connected. [Indeed, C1

∐
C2

∼→ A, where C1, C2 are nonempty, implies
that the composite map

HomC(A,B) ↪→ HomC(A,B) × HomC(A,B) ↪→ HomC(C1, B) × HomC(C2, B)

= HomC(C1

∐
C2, B) ∼→ HomC(A,B)
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is bijective, for all B ∈ Ob(C).]

If C is a category of finitely or countably connected type, then we shall write

C0 ⊆ C

for the full subcategory of connected objects. [Note, however, that in general, objects
of C0 are not necessarily connected — or even quasi-connected — as objects of C0!]
On the other hand, if, in addition, C is almost totally epimorphic, then C0 is totally
epimorphic, and, moreover, an object of C0 is connected [as an object of C0!] if and
only if [cf. the argument of the preceding paragraph!] it is mobile [as an object of
C0]; in particular, [assuming still that C is almost totally epimorphic] every object
of C0 is quasi-connected [as an object of C0].

If C is a category, then we shall write

C⊥ (respectively, C�)

for the category formed from C by taking arbitrary “formal” [possibly empty] finite
(respectively, countable) coproducts of objects in C. That is to say, we define the
“Hom” of C⊥ (respectively, C�) by the following formula:

Hom(
∐
i

Ai,
∐
j

Bj)
def=

∏
i

∐
j

HomC(Ai, Bj)

[where the Ai, Bj are objects of C]. Thus, C⊥ (respectively, C�) is a category
of finitely (respectively, countably) connected type. Note that objects of C define
connected objects of C⊥ or C�. Moreover, there are natural [up to isomorphism]
equivalences of categories

(C⊥)0 ∼→ C; (C�)0 ∼→ C; (D0)⊥ ∼→ D; (E0)� ∼→ E

if D (respectively, E) is a category of finitely connected type (respectively, cate-
gory of countably connected type). If C is a totally epimorphic category of quasi-
connected objects, then C⊥ (respectively, C�) is an almost totally epimorphic cate-
gory of finitely (respectively, countably) connected type.

In particular, the operations “0”, “⊥” (respectively, “�”) define one-to-one
correspondences [up to equivalence] between the totally epimorphic categories of
quasi-connected objects and the almost totally epimorphic categories of finitely (re-
spectively, countably) connected type.

If C is a [small] category, then we shall write G(C) for the graph associated to C.
This graph is the graph with precisely one vertex for each object of C and precisely
one edge for each arrow of C [joining the vertices corresponding to the domain and
codomain of the arrow]. We shall refer to the full subcategory of C determined by
the objects and arrows that compose a connected component of the graph G(C)
as a connected component of C. In particular, we shall say that C is connected if
G(C) is connected. [Note that by working with respect to some “sufficiently large”
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envelopping universe, it makes sense to speak of a category which is not necessarily
small as being connected.]

If C is a category, then we shall say that an object A ∈ Ob(C) is indissectible
if, for every pair of arrows A1 → A, A2 → A of C, where A1, A2 are nonempty,
there exists a pair of arrows ψ1 : B → A1, ψ2 : B → A2 such that φ1 ◦ψ1 = φ2 ◦ψ2,
where B is nonempty.

If C if a category and S is a collection of arrows in C, then we shall say that
an arrow A→ B is minimal-adjoint to S if every factorization A→ C → B of this
arrow A→ B in C such that A→ C lies in S satisfies the property that A→ C is,
in fact, an isomorphism. Often, the collection S will be taken to be the collection of
arrows satisfying a particular property P ; in this case, we shall refer to the property
of being “minimal-adjoint to S” as the minimal-adjoint notion to P .

Curves:

Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family of curves of
genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism of schemes
X → S whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall denote
the moduli stack of r-pointed stable curves of genus g (where we assume the points
to be unordered) by Mg,r [cf. [DM], [Knud] for an exposition of the theory of such
curves; strictly speaking, [Knud] treats the finite étale covering of Mg,r determined
by ordering the marked points]. The open substack Mg,r ⊆ Mg,r of smooth curves
will be referred to as the moduli stack of smooth r-pointed stable curves of genus g
or, alternatively, as the moduli stack of hyperbolic curves of type (g, r). The divisor
at infinity Mg,r\Mg,r of Mg,r determines a log structure on Mg,r ; denote the
resulting log stack by Mlog

g,r .

A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X ↪→ Y → S as the composite of an
open immersion X ↪→ Y onto the complement Y \D of a relative divisor D ⊆ Y
which is finite étale over S of relative degree r, and a family Y → S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y,D) is unique up
to canonical isomorphism. (Indeed, when S is the spectrum of a field, this fact is
well-known from the elementary theory of algebraic curves. Next, we consider an
arbitrary connected normal S on which a prime l is invertible (which, by Zariski
localization, we may assume without loss of generality). Denote by S ′ → S the fi-
nite étale covering parametrizing orderings of the marked points and trivializations
of the l-torsion points of the Jacobian of Y . Note that S ′ → S is independent of
the choice of (Y,D), since (by the normality of S), S ′ may be constructed as the
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normalization of S in the function field of S ′ (which is independent of the choice
of (Y,D) since the restriction of (Y,D) to the generic point of S has already been
shown to be unique). Thus, the uniqueness of (Y,D) follows by considering the
classifying morphism (associated to (Y,D)) from S ′ to the finite étale covering of
(Mg,r)Z[ 1l ] parametrizing orderings of the marked points and trivializations of the
l-torsion points of the Jacobian [since this covering is well-known to be a scheme,
for l sufficiently large].) We shall refer to Y (respectively, D; D; D) as the compact-
ification (respectively, divisor at infinity; divisor of cusps; divisor of marked points)
of X. A family of hyperbolic curves X → S is defined to be a morphism X → S
such that the restriction of this morphism to each connected component of S is a
family of hyperbolic curves of type (g, r) for some integers (g, r) as above.

Write
Cg,r → Mg,r

for the tautological curve over Mg,r ; Dg,r ⊆ Mg,r for the corresponding tautological
divisor of marked points. The divisor given by the union of Dg,r with the inverse
image in Cg,r of the divisor at infinity of Mg,r determines a log structure on Cg,r;
denote the resulting log stack by Clog

g,r. Thus, we obtain a morphism of log stacks

Clog

g,r → Mlog

g,r

which we refer to as the tautological log curve over Mlog

g,r . If S log is any log scheme,
then we shall refer to a morphism

C log → S log

which is obtained as the pull-back of the tautological log curve via some [necessarily
uniquely determined — cf., e.g., [Mzk1], §3] classifying morphism S log → Mlog

g,r as a
stable log curve. If C has no nodes, then we shall refer to C log → S log as a smooth
log curve.

If XK (respectively, YL) is a hyperbolic curve over a field K (respectively, L),
then we shall say that XK is isogenous to YL if there exists a hyperbolic curve ZM
over a field M together with finite étale morphisms ZM → XK , ZM → YL.
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Section 1: Zariski’s Main Theorem for Semi-graphs

In this §, we prove an analogue [cf. Theorem 1.2 below] for semi-graphs of
“Zariski’s main theorem” (for schemes).

We begin with some general remarks concerning semi-graphs [a notion defined
in [Mzk3], Appendix]. First, we recall that a semi-graph G consists of the following
collection of data:

(1) a set V — whose elements we refer to as “vertices”;

(2) a set E — whose elements we refer to as “edges” — each of whose
elements e is a set of cardinality 2 satisfying the property “e 
= e′ ∈ E =⇒
e
⋂
e′ = ∅”;

(3) a collection ζ of maps ζe [one for each edge e] — which we refer to as the
“coincidence maps” — such that ζe : e → V ⋃{V} [where we note that
V

⋂
{V} = ∅ since V /∈ V ] is a map from the set e to the set V

⋃
{V}.

We shall refer to the subset ζ−1
e (V) ⊆ e [i.e., the inverse image of the subset

V ⊆ V ⋃{V} of elements 
= V ] as the verticial portion of an edge e; to the restriction
of ζe to the verticial portion of e as the verticial restriction of ζe; and to the
cardinality of the verticial portion of e as the verticial cardinality of e. A graph G

is a semi-graph G for which every e ∈ E has verticial cardinality precisely 2. We
shall refer to an element b ∈ e as a branch of the edge e. A semi-graph will be
called finite (respectively, countable) if both its set of vertices and its set of edges
are finite (respectively, countable). A component of a semi-graph is defined to be
the datum of either an edge or a vertex of the semi-graph.

Let G = {V , E, ζ} be a semi-graph. If e ∈ E is an edge of G of verticial
cardinality 2 whose image via ζe consists of (not necessarily distinct) elements v1,
v2 of V , then we shall say that e joins v1 to v2. If v = ζe(b), for some branch b of
an edge e [so v is a vertex], then we shall say that the edge e meets or abuts to the
vertex v, and that the branch b of the edge e abuts to the vertex v. Thus, an edge
of a graph always abuts to at least one vertex, while an edge of a semi-graph may
abut to no vertices at all. A morphism between semi-graphs

G = {V , E, ζ} → G′ = {V ′, E ′, ζ ′}

is a collection of maps V → V ′; E → E ′; and for each e ∈ E mapping to e′, a
bijection e ∼→ e′ [or, equivalently — since both e and e′ are sets of cardinality 2 —
an injection e ↪→ e′] — all of which are compatible with the verticial restrictions
of the respective coincidence maps. Thus, here, we allow an edge that abuts to no
(respectively, precisely one) vertex to map to an edge that abuts to any number
≥ 0 (respectively, ≥ 1) of vertices.

A semi-graph G may be thought of as a topological space as follows: We regard
each vertex v as a point [v]. If e is an edge, consisting of branches b1, b2, then we
regard e as the “interval” given by the set of formal sums λ1 · [b1] + λ2 · [b2], where
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λ1, λ2 ∈ R [here, R denotes the topological field of real numbers]; λ1 + λ2 = 1;
for i = 1, 2, λi ≤ 1 (respectively, λi < 1) if bi abuts (respectively, does not abut)
to a vertex; moreover, if bi abuts to a vertex v, then we identify the formal sum
1 · [bi] + 0 · [b3−i] with [v]. Thus, relative to this point of view, it is natural to
think of the branch bi as the portion of the interval just defined consisting of formal
sums such that λi > 1

2 . Also, we observe that this construction of an associated
topological space is functorial: Every morphism of semi-graphs induces a continuous
morphism of the corresponding topological spaces. In the following discussion, we
shall often invoke this point of view without further explanation.

A Typical Semi-graph

v, v′: vertices; e: a closed edge; e′: an open edge that abuts to v′

b: a branch of e that abuts to v; b′: a branch of e that abuts to v′

A sub-semi-graph H of a semi-graph G is a semi-graph satisfying the following
properties: (a) the set of vertices (respectively, edges) of H is a subset of the set
of vertices (respectively, edges) of G; (b) every branch of an edge of H that abuts,
relative to G, to a vertex v of G lying in H also abuts to v, relative to H; (c) if a
branch of an edge of H either abuts, relative to G, to a vertex v of G that does not
lie in H, or does not abut to a vertex, relative to G, then this branch does not abut
to a vertex, relative to H. A morphism of semi-graphs will be called an embedding
if it induces an isomorphism of the domain onto a sub-semi-graph of the codomain.

Let G be a semi-graph. Then we shall refer to an edge of G that is of verticial
cardinality 2 (respectively, < 2; 0) as closed (respectively, open; isolated). We shall
say that two closed edges e and e′ of G are coverticial if the following condition

b

e

v b
ve
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holds: the edge e abuts to a vertex v of G if and only if the edge e′ abuts to v.
We shall say that G is locally finite if, for every vertex v of G, the set of edges
that abut to v is finite. We shall say that G is untangled if every closed edge of
G abuts to two distinct vertices. We shall refer to a connected semi-graph that
has precisely one vertex and precisely two edges, both of which are open, as a
joint. If a sub-semi-graph of a given semi-graph is a joint, then we shall refer to
this sub-semi-graph as a subjoint of the given semi-graph. We shall refer to the
sub-semi-graph of G obtained by omitting all of the open edges as the maximal
subgraph of the semi-graph. We shall refer to as the compactification of G the
graph obtained from G by appending to G, for each branch b of an edge of G that
does not abut to a vertex, a new vertex vb to which b is to abut. Thus, G forms
a sub-semi-graph of its compactification. Moreover, any morphism of semi-graphs
induces a unique morphism between the respective compactifications. Finally, we
observe that every connected component of the topological space associated to the
maximal subgraph of G (respectively, G) is a deformation retract [in the sense of
algebraic topology] of the corresponding connected component of the topological
space associated to G (respectively, the compactification of G). A semi-graph whose
associated topological space is contractible [in the sense of algebraic topology] will
be referred to as a tree.

We recall in passing that there is a semi-graph that is naturally associated
to any pointed stable curve over an algebraically closed field [cf. [Mzk3], Appen-
dix]: That is to say, the vertices (respectively, closed edges; open edges; branches
of a closed edge) of this semi-graph are precisely the irreducible components (re-
spectively, nodes; marked points; branches of a node) of the pointed stable curve.
The coincidence maps are determined in an evident fashion by the geometry of the
pointed stable curve.

Let v (respectively, e; b) be a(n) vertex (respectively, edge; branch of an edge)
of G. Then we define morphisms of semi-graphs

G[v] → G; G[e] → G; G[b] → G

as follows: G[v] consists of a single vertex v′, which maps to v, and, for each branch
bv of an edge ev of G that abuts to v, an edge e′bv

of verticial cardinality 1 that
maps to ev in such a way that the branch of e′bv

lying over bv abuts to v′. G[e]
consists of a single edge e′, which maps to e, and, for each branch be of e abutting
to a vertex vbe of G, a vertex v′be

[of G[e]] that maps to vbe and is the abutment of
the branch b′e′ of e′ that lies over be. If b is a branch of an edge eb that abuts to a
vertex vb [of G], then G[b] is the sub-semi-graph of G[eb] consisting of the unique
edge of G[eb] and the vertex of G[eb] which is the abutment of the branch of this
unique edge that lies over b. Thus, G[v], G[e], G[b] are all trees [even if G fails to
be untangled]; if the branch b is a branch of the edge e that abuts to v, then we
have natural morphisms G[b] → G[v], G[b] → G[e] over G.

A morphism
φ : GA → GB

between semi-graphs will be called an immersion [or an immersive morphism] (re-
spectively, excision [or an excisive morphism]) if it satisfies the condition that, for
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every vertex vA of GA that maps to a vertex vB of GB, the induced map from
branches abutting to vA to branches abutting to vB is injective (respectively, bijec-
tive). Thus, if we think of GA and GB as topological spaces, then an immersion
φ : GA → GB is locally [in some small neighborhood of every point of GA] an
embedding (respectively, a homeomorphism) of topological spaces.

Observe that: the five classes of morphisms G[v] → G, G[b] → G[e], G[e] → G,
G[b] → G, G[b] → G[v], are all immersive; the first two of these classes are always
excisive; the last three of these classes are not excisive in general.

Also, we observe that a morphism of sub-semi-graphs GA ⊆ GB is immersive
(respectively, excisive) if and only if, for every vertex vA of GA mapping to a vertex
vB of GB, the induced morphism of semi-graphs GA[vA] → GB[vB ] is an embedding
(respectively, isomorphism).

A morphism of semi-graphs

φ : GA → GB

will be called proper if it preserves verticial cardinalities of edges. A proper excision
will be referred to as a graph-covering. A graph-covering with finite fibers will be
referred to as a finite graph-covering. Note that if φ : GA → GB is a graph-covering,
with GA, GB connected, then the associated map of topological spaces will be a
covering in the sense of algebraic topology. Conversely, every covering, in the sense
of algebraic topology, of the topological space associated to GB arises in this way.
Also, we observe that, just as in the case of coverings of topological spaces, it makes
sense to speak of a graph-covering as Galois [i.e., “arising from a normal subgroup
of the fundamental group”] and to speak of the pull-back of a graph-covering by an
arbitrary morphism of semi-graphs.

Proposition 1.1. Any immersion from a connected graph into a tree is, in fact,
an embedding.

Proof. Indeed, suppose that we are given an immersion φ : GA → GB into a
tree GB which is not an embedding. If φ is injective on vertices, then it follows
from the definition of an immersion that φ is injective on edges, hence that φ is an
embedding. Thus, it suffices to show that φ is injective on vertices.

Suppose that there exist distinct vertices v1, v2 of GA that map to the same
vertex w of GB. Write γA for a path on GA that connects v1 to v2. Without
loss of generality, we may assume that γA has minimal length among paths on
GA that join distinct vertices of GA that map to the same vertex of GB. Write
γB

def= φ(γA). Then note that the minimality condition (together with the fact
that φ is an immersion) implies that γB does not intersect itself. Thus, γB is a
loop, starting and ending at w, and defined by a sequence of edges, all of which are
distinct. But this contradicts the fact that GB is a tree. This completes the proof.
©
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Thus, in particular, if we start with an arbitrary immersion of connected graphs
[which are not necessarily trees]

φ : GA → GB

then Proposition 1.1 implies that the induced morphism

G̃A → G̃B

on universal graph-coverings [i.e., the associated topological coverings are universal
coverings of GA, GB, respectively, in the sense of algebraic topology] — which are
well-defined up to composition with deck transformations — is an embedding [since
it is an immersion into a tree]. More generally, given an arbitrary graph-covering

GB′ → GB

one can ask when the base-changed immersion

φ′ : GA′ → GB′

is an embedding on each connected component of GA′ . Proposition 1.1 implies that
the universal graph-covering G̃B → GB is sufficient to realize this condition.

In fact, however, when GA, GB are finite, this condition may be realized by a
finite graph-covering GB′ → GB:

Theorem 1.2. (“Zariski’s Main Theorem for Semi-graphs”) Let

φ : GA → GB

be an immersion of finite semi-graphs. Then:

(i) The morphism φ factors as the composite of an embedding

GA ↪→ GB′

and a finite graph-covering GB′ → GB.

(ii) There exists a finite graph-covering GB′ → GB such that the restriction
of the base-changed morphism

φ′ : GA′ → GB′

to each connected component of GA′ is an embedding.

Remark 1.2.1. The author is indebted to M. Matsumoto for the following elegant
graph-theoretic proof of Theorem 1.2.
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Remark 1.2.2. The general form of Theorem 1.2 is reminiscent of the well-
known result in algebraic geometry (“Zariski’s Main Theorem” — cf., e.g., [Milne],
Chapter I, Theorem 1.8) that any separated quasi-finite morphism

f : X → Y

between noetherian schemes factors as the composite of an open immersion X ↪→ Y ′

and a finite morphism Y ′ → Y — cf. also Lemma 1.5 below.

Proof. First, we observe that (ii) follows formally from (i) [by taking the finite
graph-covering of (ii) to be a Galois finite graph-covering of GB that dominates the
graph-covering of (i)]. Thus, it suffices to prove (i).

Next, let us observe that:

(a) Any immersion of semi-graphs for which the induced morphism between
the respective compactifications is an embedding is itself an embedding
(of semi-graphs).

(b) Restriction from the compactification of GB to GB induces an equivalence
of categories between the respective categories of finite graph-coverings.
Moreover, the compactification of a finite graph-covering of GB is nat-
urally isomorphic to the corresponding finite graph-covering of the com-
pactification of GB.

In particular, by replacing the semi-graphs involved by their compactifications, it
suffices to prove (i) in the case where all of the semi-graphs are, in fact, graphs.
Thus, for the remainder of the proof, we assume that GA, GB are graphs.

Let us write
Hn

(where n ≥ 1 is an integer) for the graph consisting of one vertex vH and n edges
eH,1; . . . ; eH,n (all of which run from vH to vH).

Next, let us observe that by Lemma 1.4 below, there exists an immersion

ζ : GB → Hn

which we may compose with φ to form an immersion:

ψ : GA → Hn

Moreover, since pull-backs of finite graph-coverings of Hn via ζ form finite graph-
coverings of GB, it follows that in order to prove that the assertion of Theorem
1.2, (i), is true for φ, it suffices to prove that it is true for ψ. On the other hand,
Theorem 1.2, (i), follows for ψ by Lemma 1.5 below. ©

Note that, relative to the topological space point of view discussed above, the
vertex vH of the graph Hn meets precisely 2n branches.
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Lemma 1.3. Let G be a finite graph. Then:

(i) To give a morphism
φ : G → Hn

is equivalent to assigning an orientation and a “color” ∈ {1, . . . , n} to each edge
of G.

(ii) The morphism φ is an immersion if and only if for each color i ∈
{1, . . . , n}, and at each vertex v of G, the number of branches of color i that enter
(respectively, leave) v — i.e., relative to the assigned orientations — is ≤ 1.

(iii) The morphism φ is an excision [or, equivalently, a finite graph-covering]
if and only if for each color i ∈ {1, . . . , n}, and at each vertex v of G, the number of
branches of color i that enter (respectively, leave) v — i.e., relative to the assigned
orientations — is = 1.

Proof. First, we fix an orientation on each edge eH,i of Hn, and regard the edge
eH,i as being of color i.

Now let us prove (i). Given a morphism φ : G → Hn, we obtain orientations
and colors on the edges of G by pulling back the orientations and colors of Hn via
φ. Conversely, given a choice of orientations and colors on the edges of G, we obtain
a morphism φ : G → Hn by sending all the vertices of G to vH and mapping the
edges of G to the edges of Hn in the unique way which preserves orientations and
colors.

Assertions (ii) and (iii) follow immediately by considering the local structure
of Hn at vH. Note that in general, a morphism of finite graphs is always proper,
hence is a finite graph-covering if and only if it is excisive. ©

Lemma 1.4. Every finite graph G admits an immersion G → Hn for some
integer n ≥ 1.

Proof. Indeed, if we take n to be the number of edges of G and assign distinct
colors to distinct edges of G, then it is immediate from Lemma 1.3, (ii), that (for
any assignment of orientations) the resulting morphism G → Hn is an immersion.
©

Lemma 1.5. Let φ : G → Hn be an immersion of finite graphs. Then φ extends
to a finite graph-covering φ′ : G′ → Hn for some embedding G ↪→ G′.

Proof. We construct (G′, φ′) from (G, φ) by adding edges (equipped with orienta-
tions and colors) to G until the resulting φ′ is excisive, i.e., satisfies the condition
of Lemma 1.3, (iii). Suppose that there exists a vertex v of G that does not satisfy
this condition. This means that there is some color i such that either there does
not exist a branch of color i entering v or there does not exist a branch of color i
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leaving v (or both). If there do not exist any branches of color i meeting v, then we
simply add an edge of color i to G that runs from v to v. Now suppose (without
loss of generality) that there exists a branch of color i leaving v, but that there
does not exist a branch of color i entering v. Then we follow the i-colored edge
leaving v1

def= v to a new vertex v2 (necessarily distinct from v1). Now there are two
possibilities:

(1) There exists an i-colored edge leaving this vertex.

(2) There does not exist an i-colored edge leaving this vertex.

If (1) holds, then we repeat the above procedure — i.e., we follow this i-colored
edge out of v2 to another vertex v3, which is necessarily distinct from v2 since the
unique (by Lemma 1.3, (ii)) i-colored edge entering v2 originated from a vertex
which is distinct from v2. Thus, continuing in this way, we obtain a sequence

v1, v2, v3, . . .

of distinct (by Lemma 1.3, (ii)) vertices of G. Since G is finite, this sequence must
eventually terminate at some vertex vk satisfying (2). Then we add an i-colored
edge to G running from vk to v1 to form a pair (G[2], φ[2]) extending the original
(G[1], φ[1]) def= (G, φ).

Note that φ[2] is still an immersion, that G[2] has the same set of vertices as
G[1], that the set of “colors” [labeled 1, . . . , n] remains unchanged, and that the
cardinality of the [finite] set of [ordered] pairs consisting of a vertex and a color
which violate the condition of Lemma 1.3, (iii), relative to φ[2], is < the cardinality
of the [finite] set of [ordered] pairs consisting of a vertex and a color which violate
the condition of Lemma 1.3, (iii), relative to φ[1]. Thus, if we apply the procedure

(G[1], φ[1]) �→ (G[2], φ[2])

to (G[2], φ[2]) to obtain some (G[3], φ[3]), and so on, we obtain a sequence of pairs

(G[1], φ[1]); (G[2], φ[2]); (G[3], φ[3]); . . .

which — by the finiteness of the sets of vertices and colors — necessarily terminates
in a pair (G′, φ′) such that φ′ is a finite graph-covering, as desired. ©

Remark 1.5.1. Consider the case of an immersion

φ : G → H1

where G is a finite connected graph. Since the (topological) fundamental group
of H1 is equal to Z, the isomorphism class of a (connected) finite graph-covering
G′ → H1 of H1 is determined by its degree d (a positive integer) [in the sense of
algebraic topology]. Then one can ask what conditions one must place on d for the
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corresponding finite graph-covering to satisfy the property of Theorem 1.2, (ii). In
some sense, there are essentially two phenomena that may occur:

(1) The case where φ itself is a finite graph-covering, of degree n. In this
case, the resulting condition on d is nonarchimedean, i.e.:

d ≡ 0 (mod n)

(2) The case where G consists of n vertices v1, . . . , vn, and precisely one edge
joining vj to vj+1, for j = 1, . . . , n− 1 (and no other edges). In this case,
the resulting condition on d is archimedean, i.e.:

d ≥ n

The above analysis suggests that there is some interesting arithmetic “hidden” in
Theorem 1.2.

The following interesting consequence of Theorem 1.2 — which asserts, in
effect, that finitely generated subgroups of finite rank [discrete] free groups admit
bases with properties reminiscent of their abelian counterparts — was pointed out
to the author by A. Tamagawa:

Corollary 1.6. (Finitely generated Subgroups of Finite Rank Free
Groups) Let F be a finitely generated subgroup of a free group G of finite rank (so
F is also free of finite rank). Then:

(i) There exists an immersion of finite graphs φ : GA → GB whose induced
morphism on (topological) fundamental groups is isomorphic to the inclusion F ↪→
G.

(ii) There exists a finite index subgroup H ⊆ G such that H contains F , and,
moreover, there exists a set of free generators γ1, . . . , γr of H with the property that
for some s ≤ r, γ1, . . . , γs form a set of free generators of F .

Proof. First, observe that if GA ↪→ GB′ is an embedding, then any set of free gen-
erators of the fundamental group of GA may be extended to a set of free generators
of the fundamental group of GB′ . In light of this observation, assertion (ii) follows
by applying Theorem 1.2, (i), to an immersion as in assertion (i) (of the present
Corollary).

Thus, it suffices to prove (i). Let GB be any graph whose fundamental group
is equal to G. Then the subgroup F ⊆ G defines an infinite graph-covering

GA′ → GB
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of GB. In particular, GA′ has fundamental group equal to F . Although, in general,
the graph GA′ will not necessarily be finite, it follows from the fact that its funda-
mental group F is finitely generated that there exists a finite subgraph GA ⊆ GA′

such that the natural injection of fundamental groups π1(GA) ↪→ π1(GA′) is, in
fact, a bijection. Moreover, the composite GA ↪→ GA′ → GB is an immersion
(since it is a composite of immersions). This completes the proof of (i). ©

Another interesting consequence of Theorem 1.2 is the following well-known
result:

Corollary 1.7. (Residual Finiteness of Free Groups) Every discrete free
group F injects into its profinite completion.

Proof. Indeed, let G be a connected graph with π1(G) = F . If H ⊆ F is the kernel
of the map from F to its profinite completion, write H → G for the corresponding
graph-covering. If H is not a tree, then one verifies immediately that H contains a
finite connected subgraph H′ which is not a tree. In particular, H′ admits nontrivial
finite graph-coverings. Let G′ be a finite connected subgraph of G which contains
the image of H′. Then if we apply Theorem 1.2, (i), to the immersion H′ → G′, we
obtain [since finite graph-coverings of a subgraph of a given graph always extend to
finite graph-coverings of the given graph] that there exists a finite graph-covering
K′ → G′ whose pull-back to H′ is nontrivial. Thus, if we extend K′ → G′ to a finite
graph-covering K → G, we obtain a finite graph-covering of G whose pull-back to
H is nontrivial. But this contradicts the definition of H. ©

Remark 1.7.1. We recall in passing that there is also a pro-l version of this
residual finiteness result — cf., e.g., [RZ], Proposition 3.3.15.

Finally, before continuing, we note the following useful result concerning finite
group actions on semi-graphs, which is implicit in the theory of [Serre]:

Lemma 1.8. (Finite Group Actions on Semi-graphs) Let G be a con-
nected semi-graph, equipped with the action of a finite group G. Then:

(i) Every finite sub-semi-graph G′ of G is contained in a finite connected sub-
semi-graph G′′ of G that is stabilized by the action of G.

(ii) Suppose that G is a tree. Then: (a) there exists at least one vertex or edge
of G that is fixed by G; (b) if G fixes two distinct vertices w1, w2 of G, then G
acts trivially on any “geodesic” [i.e., path of closed edges of minimal length] that
joins w1, w2; (c) if G fixes three distinct vertices of G, then there exists at least
one subjoint of G on which G acts trivially.

Proof. First, we consider assertion (i). Since G is connected, we may assume
without loss of generality that G′ is connected and contains the G-orbit of some
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vertex. Then one verifies easily that if we take G′′ to be the G-orbit of G′, then
the desired properties are satisfied.

Next, we consider assertion (ii). First, we verify assertion (a). This follows
formally from [Serre], Chapter I, §6.5, Corollary 3 to Proposition 26, Proposition
27 — at least if one assumes, as in done in [Serre], that G fixes some orientation on
the tree G. On the other hand, by “splitting” each edge of G which violates this
assumption into two new edges, corresponding to the two branches of the original
edge, one sees immediately that one still obtains assertion (a), even without this
assumption. This completes the proof of (ii), (a).

Next, to prove (ii), (b), recall from [Serre], Chapter I, §2.2, Proposition 8, that
there is a unique path of minimal length from w1 to w2. Since G fixes w1, w2,
it thus follows that G fixes this path. Thus, [since it is evident that there are no
automorphisms of this path that fix w1, w2] we conclude that G acts trivially on
this path, as desired. This completes the proof of (ii), (b). Finally, we observe that
(ii), (c) follows formally from (ii), (b). ©

Remark 1.8.1. We observe, in passing, that Lemma 1.8, (ii), (a), implies [the
well-known fact — cf., e.g., [Serre], Chapter I, §3.4, Theorem 5] that a free group
[which may be thought of as the fundamental group of some graph, hence admits
a free action on some tree] does not contain any nontrivial finite subgroups.
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Section 2: Commensurability Properties

In this §, we begin our study of the geometry of semi-graphs of profinite groups
by considering various topics concerning commensurators and slimness.

In the following, we shall use the language of anabelioids of [Mzk4]— i.e.,
“multi-Galois categories” in the language of [SGA1] — which, in effect, amounts to
working with profinite groups up to inner automorphism [cf., e.g., [Mzk4], Propo-
sition 1.1.4]. If X is a connected anabelioid [i.e., a Galois category], then we shall
denote the profinite fundamental group [for some choice of basepoint] of X by:

π̂1(X )

As is well-known, this profinite group is, in a natural sense, independent of the
choice of basepoint, up to inner automorphism.

Definition 2.1. We shall refer to the following data G:

(a) a semi-graph G;

(b) for each vertex v of G, a connected anabelioid Gv;

(c) for each edge e of G, a connected anabelioid Ge, together with, for each
branch b ∈ e abutting to a vertex v, a morphism of anabelioids b∗ : Ge →
Gv

as a semi-graph of (connected) anabelioids [cf. the notion of a “semi-graph of profi-
nite groups” introduced in [Mzk3], Appendix]. We shall refer to the various Gv, Ge
as the constituent anabelioids of G. Given two semi-graphs of anabelioids, there is
an evident notion of morphism between semi-graphs of anabelioids [cf. also Remark
2.4.2 below]. If all of the b∗’s are π1-monomorphisms [i.e., induce injective homo-
morphisms on associated fundamental groups — cf. [Mzk4], Definition 1.1.12], then
we shall say that G is of injective type. When the underlying semi-graph G is a
graph, we shall refer to a semi-graph of anabelioids G as a graph of (connected)
anabelioids.

Let G be a connected semi-graph of anabelioids [i.e., the underlying semi-graph
G is assumed to be connected]. If G has at least one vertex, then let us denote by

B(G)

the category of objects given by data

{Sv, φe}

where v (respectively, e) ranges over the vertices (respectively, edges) of G; for each
vertex v, Sv ∈ Ob(Gv); for each edge e, with branches b1, b2 abutting to vertices
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v1, v2, respectively, φe : {(b1)∗}∗Sv1
∼→ {(b2)∗}∗Sv2 is an isomorphism in Ge, and

morphisms given by morphisms [in the evident sense] between such data. If G has
no vertices — and hence precisely one edge e, which is necessarily isolated — then
we shall write B(G) def= Ge. One verifies immediately that this category B(G) is a
connected anabelioid.

Now let G′ ∈ Ob(B(G)); write

B′ def= B(G)G′ → B def= B(G)

for the corresponding finite étale covering of anabelioids [cf. [Mzk4], Definition
1.2.2, (i)]. Then it follows from the definition of the anabelioid B(G) associated
to the semi-graph of anabelioids G [i.e., in terms of finite étale coverings of each
of the constituent anabelioids of G, together with gluing isomorphisms] that B′

itself arises naturally as the B(−) of some connected semi-graph of anabelioids G′

equipped with a morphism
G′ → G

of semi-graphs of anabelioids which lies over some proper morphism of semi-graphs:

G′ → G

Here, if v (respectively, e) is a vertex (respectively, edge) of G, then the vertices v′

(respectively, edges e′) of G′ are the elements of the set of connected components of
the [not necessarily connected!] anabelioid B′ ×B Gv (respectively, B′ ×B Ge). The
connected anabelioid G′

v′ (respectively, G′
e′) is the connected component anabelioid

of B′ ×B Gv (respectively, B′ ×B Ge) determined by v′ (respectively, e′).

Let us denote by
ΠG

def= π̂1(G) def= π̂1(B(G))

the fundamental group of the connected anabelioid B(G) relative to some basepoint.
Put another way, if we choose basepoints for the constituent anabelioids of G, then
G determines a “semi-graph of profinite groups” [cf. [Mzk3], Appendix, except that
here the underlying semi-graph is not necessarily finite], and one may think of ΠG

as the profinite group associated to this semi-graph of profinite groups.

For each vertex v (respectively, branch b of an edge e that abuts to the vertex v)
of G, let us write Πv (respectively, Πb) for the fundamental group of the anabelioid
Gv (respectively, Ge) for some choice of basepoint. Thus, we have natural outer
homomorphisms:

Πv → ΠG; Πb → ΠG

Moreover, the branch b determines an associated outer homomorphism:

Πb → Πv

If G is of injective type, then we shall also denote the image of Πb in Πv, which is
well-defined up to conjugation in Πv, by Πb. [Here, we note that the use of the
subscript “b” in the notation “Πb” — i.e., as opposed to “e” in, for instance, the
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notation “Ge” — is useful in discussions concerning subgroups of Πv [as opposed to
just subgroups of ΠG].]

If H ⊆ G is a [not necessarily connected] sub-semi-graph of G, then we shall
write GH for the semi-graph of anabelioids determined by restricting G to H. That
is to say, the underlying semi-graph of GH is H, and for each component c (i.e.,
either an edge or vertex) of H, we let (GH)c

def= Gc; if a branch b of an edge e of H

abuts to a vertex v of H, then we take the associated morphism b∗ : (GH)e → (GH)v
to be the morphism associated to the corresponding branch of G. If H is connected,
then we shall write

ΠH

for the fundamental group of GH, for some choice of basepoint. Thus, we have a
natural outer homomorphism ΠH → ΠG.

Definition 2.2.

(i) We shall refer to an arrow G′ → G that arises as in the above discussion
from a finite étale covering of anabelioids B′ def= B(G)G′ → B def= B(G) as a finite
étale covering [of G].

(ii) If a morphism of semi-graphs of anabelioids satisfies the property that each
of its induced morphisms between constituent anabelioids is an isomorphism (re-
spectively, is finite étale; induces an homomorphism with open image between the
respective π̂1(−)’s), then we shall say that the morphism is locally trivial (respec-
tively, locally finite étale; locally open).

Remark 2.2.1. Note that by considering collections of normal open subgroups
of ΠG whose intersection is trivial, one may think of ΠG as acting on a “universal
pro-finite étale covering” of G. In particular, ΠG acts naturally on the underlying
“pro-semi-graph” of this “universal pro-finite étale covering”. Moreover, it follows
immediately from the definitions [cf. the discussion of the universal covering asso-
ciated to a graph of groups in [Serre], Chapter I, p. 51] that the image of each Πv
(respectively, Πb) in ΠG is equal to the stabilizer of a compatible system of vertices
(respectively, edges) of this pro-semi-graph.

Definition 2.3. Let G be a semi-graph of anabelioids of injective type, with
underlying semi-graph G.

(i) We shall say that G is of bounded order if there exists an integer M ≥ 1
such that all of the π̂1(Gv)’s, where v ranges over the vertices of the underlying
semi-graph G, are finite groups of order dividing M .

(ii) We shall refer to a morphism of semi-graphs of anabelioids

G → G′
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which induces an isomorphism on underlying semi-graphs G
∼→ G′ [relative to which

we may identify G, G′] and for which G′ is a semi-graph of anabelioids of bounded
order as an approximator for G. We shall say that an approximator is π1-epimorphic
if each of the induced morphisms between the respective constituent anabelioids is
a π1-epimorphism [i.e., induces a surjective homomorphism on associated funda-
mental groups — cf. [Mzk4], Definition 1.1.12].

(iii) We shall say that G is quasi-coherent if, for every integer M ≥ 1, and every
collection of finite étale coverings Hc → Gc of degree ≤M , where c ranges over the
components of G, there exists an approximator

G → G′

such that, for each component c of G, the pull-back to Gc of the “universal covering”
H′
c → G′

c of G′
c [i.e., the finite étale covering determined by the trivial subgroup of

π̂1(G′
c)] splits Hc → Gc. In this situation, we shall say that this approximator splits

the given collection of coverings. We shall say that a quasi-coherent G is coherent
if, for each component c of G, the profinite group π̂1(Gc) is topologically finitely
generated [which, as is well-known, implies that Out(π̂1(Gc)) is equipped with a
natural profinite group structure].

Remark 2.3.1. Relative to the notation of Definition 2.3, (iii), by replacing the
constituent anabelioids of G′ by the image anabelioids of the constituent anabelioids
of G [cf. [Mzk4], Definition 1.1.7, (i)], one may always take the approximator of
Definition 2.3, (iii), to be π1-epimorphic.

Definition 2.4. Let G be a semi-graph of anabelioids of injective type, with
underlying semi-graph G.

(i) Let v be a vertex of G. If, for every integer M ≥ 1, there exists a π1-
epimorphic approximator

G → G′

for G such that there exists a subgroup NM ⊆ π̂1(G′
v) of order ≥ M which has

trivial intersection with all of the conjugates, in π̂1(G′
v), of all of the π̂1(G′

e) [where
e ranges over the edges abutting to v], then we shall say that v is elevated. If all of
the vertices of G are elevated, then we shall say that G is totally elevated.

(ii) If, for every vertex v of G, the anabelioid Gv is slim, then we shall say that
G is verticially slim.

(iii) Let e be a closed edge of G. If there exists a finite étale covering G′ → G
of G such that the underlying graph G′ of G′ contains a pair of distinct coverticial
edges ea, eb, both of which map to e in G, then we shall say that e is sub-coverticial.
If, for every finite étale covering G′′ → G of G, it holds that every edge e′′ of the
underlying graph G′′ of G′′ that maps to e is sub-coverticial, then we shall say
that e is universally sub-coverticial. If every closed edge of G is sub-coverticial
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(respectively, universally sub-coverticial), then we shall say that G is totally sub-
coverticial (respectively, totally universally sub-coverticial).

(iv) Let e be an edge of G. We shall say that e is aloof (respectively, estranged)
if, for every vertex v to which some branch b of e abuts and every g ∈ Πv, the
intersection in Πv of Πb with any subgroup of the form g · Πb′ · g−1, where either
b′ 
= b is a branch of an edge that abuts to v or b′ = b and g /∈ Πb, has infinite index
in Πb (respectively, and is, in fact, trivial). If every edge of G is aloof (respectively,
estranged), then we shall say that G is totally aloof (totally estranged).

Remark 2.4.1. It is immediate that “(totally) estranged” implies “(totally)
aloof”. Moreover, one verifies easily that if G′ → G is a finite étale covering, and
v′ (respectively, e′; e′; e′) is a(n) vertex (respectively, edge; edge; edge) of G′ that
maps to a(n) elevated vertex v (respectively, universally sub-coverticial edge e;
aloof edge e; estranged edge e) of G, then v′ (respectively, e′; e′; e′) is itself elevated
(respectively, universally sub-coverticial; aloof; estranged).

Remark 2.4.2. Let φ : G → H be a morphism between semi-graphs of anabelioids
of injective type. Concretely speaking, this means that we are given, for each vertex
v (respectively, edge e) of G mapping to a vertex w (respectively, edge f) of H, a
1-morphism of anabelioids

φv : Gv → Hw (respectively, φe : Ge → Hf )

together with an isomorphism φb of the composite 1-morphism of anabelioids Ge →
Gv → Hw with the composite 1-morphism of anabelioids Ge → Hf → Hw whenever
a branch b of e abuts v. That is to say, strictly speaking, φ is a “1-morphism”; the
1-morphisms from G to H form a category, of which φ is an object; one can then
speak of isomorphisms between various objects of this category.

On the other hand, observe that if we restrict our attention to locally open mor-
phisms φ between totally aloof semi-graphs of anabelioids, then it follows formally
from the definitions [cf. also [Mzk4], Corollary 1.1.6] that:

The isomorphism class of φ is completely determined by the isomorphism
class of the φv.

If, moreover, we restrict our attention to locally open morphisms φ between totally
aloof, verticially slim semi-graphs of anabelioids, then:

The 1-morphism φ has no nontrivial automorphisms.

That is to say, as long as we restrict our attention to locally open morphisms [e.g.,
locally finite étale] between totally aloof, verticially slim semi-graphs of anabelioids,
we may work with such morphisms as if they are simply “morphisms in a category”,
rather than 1-morphisms in a 2-category [cf. the situation for finite étale morphisms
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between slim anabelioids: [Mzk4], Proposition 1.2.5]. In the following, we shall often
take this point of view without further mention.

Proposition 2.5. (Injectivity) Let G be a connected, quasi-coherent graph
of anabelioids. Let H ⊆ G be a connected subgraph of the underlying graph G of
G. Then:

(i) The natural morphisms Πb → ΠG, Πv → ΠG, ΠH → ΠG are injective.
By abuse of notation, we will denote their images, which are well-defined up to
conjugation in ΠG, by Πb, Πv, ΠH, respectively.

(ii) Suppose that G is of bounded order. Then there exists a normal open
subgroup H ⊆ ΠG, such that all of the natural morphisms Πb → ΠG/H, Πv →
ΠG/H are injective.

Proof. First, we consider assertion (i). Since the natural morphism Πb → Πv is
injective, and the morphism Πv → ΠG may be considered as a special case of the
morphism ΠH → ΠG [i.e., the case where H consists of a single vertex and no edges],
it suffices to show that any finite étale Galois covering of GH may be split by a finite
étale covering pulled back from G. Note that this is immediate in the locally trivial
case. Indeed, in this case, it suffices to extend the given finite étale covering from
GH to the remainder of G by gluing [which is always possible, by the local triviality
assumption!].

Thus, by our assumption of quasi-coherence, it suffices to construct, under the
further assumption that G is of bounded order, a finite étale covering of G each of
whose constituent anabelioids is trivial. We construct such a covering by gluing:
Let M ≥ 1 be an integer such all of the orders [π̂1(Gv) : 1] divide M . Over the
vertex v, we take the covering to be the union of M/[π̂1(Gv) : 1] copies of some
“universal covering” of Gv [i.e., the finite étale covering determined by the trivial
subgroup of π̂1(Gv)]. If e is an edge that abuts to the vertex v, then the restriction
of this covering to e is a union of M/[π̂1(Ge) : 1] copies of some universal covering
of Ge — i.e., a covering of Ge whose isomorphism class is independent of v! Thus,
by choosing appropriate gluing isomorphisms, we obtain a covering of G having the
desired properties.

As for assertion (ii), the Galois closure of a covering such as that constructed
in the preceding paragraph determines a normal open subgroup H ⊆ ΠG having
the properties asserted in assertion (ii). ©

Remark 2.5.1. Note that the quasi-coherence hypothesis in the injectivity asser-
tion of Proposition 2.5, (i), is by no means superfluous: For instance, let G def= Z/lZ
[where l is a prime number]; write GN for the profinite group given by taking the
direct product of a collection of copies of G indexed by the set of natural numbers
N. Write α : GN ↪→ GN for the continuous injection induced by the injection N ↪→ N

given by N � n �→ n + 1. Then let us observe that there does not exist a proper
open subgroup H ⊆ GN such that H = α−1(H). In particular, if one takes G to
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be the graph with precisely one vertex and one edge [both of whose branches abut
to the unique vertex], and G to be the graph of anabelioids with underlying graph
G such that the unique vertex and unique edge are equipped with the anabelioid
B(GN) and the morphisms B(GN) → B(GN) corresponding to the two branches of
the unique edge are given by the identity and B(α), then one concludes from the
above observation that the profinite fundamental group associated to this graph of
anabelioids G is trivial.

Proposition 2.6. (Commensurability) Let G be a connected, quasi-
coherent graph of anabelioids. Let H,K ⊆ G be connected subgraphs of the
underlying graph G of G. Suppose that there exists a component c of H that does
not belong to K and which is either an elevated vertex or a sub-coverticial
edge [i.e., relative to G]. Then the intersection of ΠH with any conjugate of ΠK

has infinite index in ΠH. In particular, no conjugate of ΠH is commensurable to
a conjugate of ΠK.

Proof. First, we consider the case where c = v is a vertex. We may assume
without loss of generality that ΠK

⋂
ΠH has finite index in ΠH. Then by taking

“M” in Definition 2.4, (i), to be

[ΠH : ΠK

⋂
ΠH] + 1

and applying the fact that G is elevated at v, we obtain the existence of a π1-
epimorphic approximator

G → G′

such that, if we denote the various fundamental groups associated to G′ by means
of a “dash”, then there is a subgroup NM ⊆ Π′

v of order ≥ M that has trivial
intersection with each of the conjugates of the Π′

b, for branches b that abut to v.
Since G′ is of bounded order, it follows from Proposition 2.5, (ii), that there exists
a normal open subgroup K ⊆ Π′

K
such that Π′

w injects into Π′
K
/K, for all vertices

w of K; moreover, it follows that there exists an integer M ′ that is divisible both
by [Π′

K
: K] and by twice the orders of all of the Π′

w, as w ranges over the vertices
of G.

Now we construct a [not necessarily connected!] finite étale covering

G′′ → G′

as follows: Over K, we take this covering to be the union of M ′/[Π′
K

: K] copies
of the covering defined by the normal open subgroup K ⊆ Π′

K
. Over vertices

w 
= v not contained in K, we take this covering to be a union of M ′/[Π′
w : 1]

copies of a “universal covering” of G′
w. Over v, we take this covering to be a union

of M ′/2[Π′
v : NM ] copies of the covering defined by the Π′

v-set Π′
v/NM and of

M ′/2[Π′
v : 1] copies of a “universal covering” of G′

v. Note that the restriction of
any of these coverings over w or v to an abutting edge e is isomorphic to a union
of “universal coverings” of G′

e. Thus, by choosing appropriate gluing isomorphisms,
we obtain a covering G′′ → G′.
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On the other hand, the existence of this covering leads to a contradiction,
as follows: This covering determines a finite ΠG-set S; write H ′′ def= Ker(ΠG →
Aut(S)); denote the images in ΠG/H

′′ of the various fundamental groups under
consideration by means of a “double dash”. Thus, we have equalities Π′′

K
= ΠK/K,

Π′′
v = Π′

v [because of the existence of “universal coverings” in the restriction of G′′

to v] and inequalities as follows:

[Π′′
H : Π′′

K

⋂
Π′′

H] ≤ [ΠH : ΠK

⋂
ΠH] < M

Moreover, since Π′′
K

acts freely on S, it follows that Π′′
K

⋂
Π′′

H
also acts freely on S,

and hence that the isotropy subgroup I ⊆ Π′′
H

associated to an element of S has

order ≤ [Π′′
H

: Π′′
K

⋂
Π′′

H
] < M . In particular, Iv

def= I
⋂

Π′′
v has order < M . On

the other hand, by the construction of G′′, it follows that for some such isotropy
group Iv ⊆ Π′′

v = Π′
v, we have NM ⊆ Iv, where we recall that NM has order ≥M ,

a contradiction.

Next, we consider the case where c = e is an edge. Since e is sub-coverticial,
it suffices [by replacing G by a finite étale covering of G] to show that ΠK

⋂
ΠH

has infinite index in ΠH under the assumption that H contains a pair of distinct
coverticial edges ea, eb, neither of which is contained in K. Thus, let us suppose
that ΠK

⋂
ΠH has finite index in ΠH; set M def= [ΠH : ΠK

⋂
ΠH] + 1.

Now observe that by using the loop L of H constituted by ea, eb, we may
construct a finite graph-covering of degree M

G′ → G

which is trivial over K, but connected over L. Then considering the actions of ΠH,
ΠK on the corresponding finite ΠG-set yields a contradiction. This completes the
proof. ©

Remark 2.6.1. Note that the hypothesis in Proposition 2.6 concerning the
existence of an elevated vertex or a sub-coverticial edge is by no means superfluous:
Indeed, let G be a profinite group, H ⊆ G an open subgroup. Suppose that G is
the graph with precisely three vertices, labeled 1, 2, 3, and precisely two edges, one
of which joins the vertices 1, 2, the other of which joins the vertices 2, 3. Suppose
that the graph of anabelioids structure of G is given by equipping the vertex 1
(respectively, 2; 3) with the anabelioid B(G) (respectively, B(H); B(H)), the two
edges with the anabelioid B(H); we take the morphisms B(H) → B(H), B(H) →
B(G) corresponding to the various branches of edges to be the morphisms induced
by the identity and inclusion homomorphisms. Then one verifies immediately that
the profinite fundamental group associated to this graph of anabelioids is naturally
isomorphic to G, but that if one takes H to be the subgraph determined by the [non-
elevated!] vertex 1 and K to be the subgraph determined by the vertices 2, 3 and
the [non-sub-coverticial!] edge that joins them, then the conclusion of Proposition
2.6 is false [even if one interchanges H, K].
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Corollary 2.7. (Slimness and Commensurators) Let G be a connected,
quasi-coherent graph of anabelioids. Let H,K ⊆ G be connected subgraphs of
the underlying graph G of G. Suppose that every vertex of H, K is elevated [i.e.,
relative to G]. Then:

(i) We have CΠG
(ΠH) = ΠH. In particular, if v is an elevated vertex of G,

then CΠG
(Πv) = Πv.

(ii) Suppose that H contains a vertex v such that Gv is slim. Then the natural
morphism B(GH) → B(G) is relatively slim [cf. [Mzk4], Definition 1.2.9]. In
particular, B(G) is slim.

(iii) Suppose that every edge of H, K is sub-coverticial [i.e., relative to G]
and that ΠH is commensurable to a conjugate of ΠK in ΠG. Then H = K.

Proof. First, we consider assertion (i). Suppose that g ∈ CΠG
(ΠH), but g /∈ ΠH.

Then there exists a connected finite Galois étale covering

G′ → G

— whose restriction to H def= GH, we denote by H′ → H — satisfying the property
that there exists a connected component H′′ of H′ such that g · H′′ 
= H′′ in G′.
Since [as one verifies immediately] H′ injects into G′ as a subgraph, it thus follows
that g · H′′ ⋂ H′′ = ∅ [in G′]. Thus, assertion (i) follows from Proposition 2.6.

Next, we consider assertion (ii). By assertion (i), we have, for any open sub-
group H ⊆ ΠH:

ZΠG
(H) ⊆ ZΠG

(H
⋂

Πv) ⊆ CΠG
(Πv) = Πv

Thus, we conclude [since Gv is slim] that ZΠG
(H) ⊆ ZΠv (H

⋂
Πv) = {1}.

Finally, assertion (iii) is a formal consequence of Proposition 2.6. ©

Remark 2.7.1. There is a certain overlap between the content of Corollary 2.7
and the results obtained in [HR]. The techniques of [HR], however, are more group-
theoretic in nature and somewhat different in spirit from those employed in the
present exposition.

Remark 2.7.2. Note that Corollary 2.7, (i), implies in particular that [in the
notation of loc. cit.] if J ⊆ ΠG is any [not necessarily closed!] subgroup such that
Πv ⊆ J , then we have

CJ(Πv) ⊆ CΠG
(Πv) = Πv

— i.e., Πv is commensurably terminal in J .

Next, we consider some concrete examples:
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Example 2.8. Trivial Edge Anabelioids. One verifies immediately that every
semi-graph of anabelioids G such that Ge is trivial for all edges e is quasi-coherent.
In this case, a vertex v of G is elevated if and only if Πv is infinite. Similarly,
a closed edge abutting to vertices v, w is sub-coverticial (respectively, universally
sub-coverticial) if and only if both Πv and Πw are nontrivial (respectively, infinite).

Definition 2.9. Let Σ be a set of prime numbers.

(i) We shall refer to as a Σ-integer any positive integer each of whose prime
factors belongs to Σ.

(ii) Let A be a connected anabelioid. Then we shall refer to as the pro-Σ
completion of A the connected anabelioid constituted by the full subcategory of
A determined by the objects dominated by a Galois covering of the final object
of A whose degree is a Σ-integer. Similarly, given a semi-graph of anabelioids, we
shall refer to as the pro-Σ completion of the given semi-graph of anabelioids the
semi-graph of anabelioids obtained by replacing each constituent anabelioid by its
pro-Σ completion.

Example 2.10. Stable Curves. Let Σ be a nonempty set of prime numbers.
Suppose that G is a semi-graph of anabelioids with the property that each Πv is the
maximal pro-Σ quotient of the fundamental group of a hyperbolic Riemann surface
of finite type, and that each Πb → Πv is the inclusion morphism of the inertia group
of one of the cusps. Now observe that a hyperbolic Riemann surface of finite type
admits Galois coverings of degree a Σ-integer which are ramified with ramification
index equal to an arbitrary given Σ-integer at a given cusp, but which are unram-
ified at all other cusps. In light of this observation [together with various other
properties that follow immediately from the well-known structure of fundamental
groups of hyperbolic Riemann surfaces of finite type], one verifies immediately that
G is coherent, totally elevated, totally universally sub-coverticial, totally estranged
[cf. the proof of [Mzk3], Lemma 1.3.7], and verticially slim [cf. the proof of [Mzk3],
Lemma 1.3.1]. In particular, the pro-Σ completion of the semi-graph of anabelioids
determined by the semi-graph of profinite groups with compact structure associated
to a pointed stable curve over an algebraically closed field of characteristic 0 [cf.
[Mzk3], Appendix] satisfies these properties. Similarly, if Σ contains at least one
prime 
= p, then a hyperbolic curve over a separably closed field of characteristic p
admits Galois coverings of degree a Σ-integer which are ramified with ramification
index equal to an arbitrary given Σ-integer prime to p at a given cusp, but which
are unramified at all other cusps; in light of this observation [together with various
other well-known properties of fundamental groups of hyperbolic curves over sepa-
rably closed field of characteristic p], one verifies easily that the pro-Σ completion
of the semi-graph of anabelioids determined by the semi-graph of profinite groups
with compact structure associated to a stable curve over a separably closed field of
characteristic p > 0 is coherent, totally elevated, totally universally sub-coverticial,
totally estranged [cf. the proof of [Mzk3], Lemma 1.3.12], and verticially slim [cf.
the proof of [Mzk3], Lemma 1.3.10].



32 SHINICHI MOCHIZUKI

Remark 2.10.1. In the case of Example 2.10, it is not difficult to show, using
exactly the same techniques as those used in the proofs of Proposition 2.6, Corollary
2.7, that CΠG

(Πb) = Πb. Since, however, we shall not need this result in the
following, and, moreover, a precise description of the condition on edges in the case
of a more general G necessary to carry out such an argument [i.e., the analogue
for edges of the notion of an “elevated vertex”] would be rather technical to write
out in detail, we leave the task of working out the routine details to the interested
reader.

The case of Example 2.10 [cf. also Example 3.10 below] motivates the following
extension of the notion of a “morphism of semi-graphs of anabelioids”: First, we
observe that any semi-graph G may be regarded as a category

Cat(G)

as follows: The objects of this category are the components [i.e., vertices and edges]
of G. The morphisms of this category are the identity morphisms of the components
and the branches of edges [i.e., if b is a branch of an edge e that abuts to a vertex
v, then we regard b as a morphism e → v] of G. Thus, if G is the underlying
semi-graph of a semi-graph of anabelioids G, then for every object c of Cat(G), we
have an anabelioid Gc, and for every morphism b : e → v of Cat(G), we have a
morphism of anabelioids b∗ : Ge → Gv.

Definition 2.11. Let G, H be semi-graphs of anabelioids. Then a generalized
morphism of semi-graphs of anabelioids

Φ : G → H
is defined to be a collection of data, as follows:

(a) a functor Cat(Φ) : Cat(G) → Cat(H);

(b) for every object c of Cat(G) that is mapped by Cat(Φ) to an object d of
Cat(H), a morphism of anabelioids Φc : Gc → Hd;

(c) for every arrow φ : c → c′ of Cat(G) that is mapped by Cat(Φ) to an
arrow ψ : d→ d′ of Cat(H), an isomorphism Φφ : ψ∗ ◦Φc

∼→ Φc′ ◦φ∗, such
that Φφ is the identity whenever φ is an identity morphism.

Remark 2.11.1. It is immediate from the definitions that every [non-generalized]
morphism of semi-graphs of anabelioids determines a generalized morphism of semi-
graphs of anabelioids. Also, just as in the non-generalized case, it is immediate
from the definitions that every generalized morphism of semi-graphs of connected
anabelioids

Φ : G → H
determines, in a natural fashion, a morphism B(G) → B(H) between the associated
anabelioids.
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Section 3: The Tempered Fundamental Group

In this §, we define and study the basic properties of the tempered fundamental
group of a semi-graph of anabelioids. The notion of the tempered fundamental
group is introduced in [André], §4. In the present manuscript, however, we wish to
study this notion from a more categorical point of view.

Let Π be a topological group. Then let us write

Btemp(Π)

for the category whose objects are countable [i.e., of cardinality ≤ the cardinality of
the set of natural numbers], discrete sets equipped with a continuous Π-action and
whose morphisms are morphisms of Π-sets.

Definition 3.1.

(i) If Π may be written as an inverse limit of an inverse system of surjections
of countable discrete topological groups, then we shall say that Π is tempered.

(ii) Any category equivalent to a category of the form Btemp(Π) for some tem-
pered topological group Π will be referred to as a connected temperoid. Any cate-
gory equivalent to a product [in the sense of a product of categories] of a countable
[hence possibly empty!] collection of connected temperoids will be referred to as a
temperoid.

(iii) Let T1, T2 be temperoids. Then a morphism φ : T1 → T2 is defined to
be a functor φ∗ : T2 → T1 that preserves finite limits and countable colimits. A
morphism φ will be called rigid if the functor φ∗ is rigid [cf. §0].

(iv) A connected object T of a temperoid T will be called Galois if, for any
two arrows ψ1, ψ2 : S → T of T , where S is connected, there exists a [unique]
automorphism α ∈ AutT (T ) of T such that ψ1 = α ◦ ψ2.

Remark 3.1.1. Observe that every profinite group is tempered. Moreover, just
as in the case of profinite groups, if a tempered group may be written as an inverse
limit of an inverse system indexed by a countable set of surjections of countable
discrete topological groups, then the group is countably generated [i.e., generated
as a topological group by a countable set of generators].

Remark 3.1.2. Suppose that Π is tempered. Then every open subgroup of Π is
closed and of countable index in Π. Moreover, the topology of Π admits a basis of
open normal subgroups. If H ⊆ Π is an arbitrary subgroup, then the Π-set Π/H
forms an object of Btemp(Π) if and only if H is open. If H1,H2 ⊆ Π are open,
then there is a natural bijection between the morphisms Π/H1 → Π/H2 and the
cosets h · H2 satisfying h−1 · H1 · h ⊆ H2. In particular, if T1, T2 are objects of
a temperoid T , and T1 is connected, then the set HomT (T1, T2) is countable. If
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Π′ is also tempered, then any continuous homomorphism Π → Π′ determines [by
composing the action of Π′ on a Π′-set with this homomorphism so as to obtain a
Π-set] a morphism of connected temperoids Btemp(Π) → Btemp(Π′).

Remark 3.1.3. Suppose that Π is tempered. Then an object of Btemp(Π) is Galois
if and only if it is isomorphic to the object determined by a Π-set of the form Π/N ,
where N ⊆ Π is an open normal subgroup. Alternatively, a connected object T
of T def= Btemp(Π) is Galois if and only if the product T × T is isomorphic to the
coproduct of copies of T indexed by the elements of the [countable!] set AutT (T ),
where the restriction to the copy labeled by σ ∈ AutT (T ) of the projection to the
first (respectively, second) factor of T ×T is given by the identity (respectively, σ).

Remark 3.1.4. Note that if X is an anabelioid (respectively, connected anabe-
lioid), then

X� def= (X 0)�

[cf. §0] is a temperoid (respectively, connected temperoid). We shall refer to X�

as the temperification of X . Just as in the case of anabelioids, the decomposition
of a temperoid into a countable coproduct of connected temperoids — each of
which we shall refer to as a connected component of the original temperoid — may
be recovered completely category-theoretically from the categorical structure of the
original temperoid [i.e., by considering decompositions of the terminal object — cf.
[Mzk4], Definitions 1.1.8, 1.1.9]. Also, just as in the case of anabelioids, to give
a morphism between two temperoids is equivalent to giving, for each connected
component of the domain temperoid, a morphism [of connected temperoids] —
which we shall refer to as a component morphism of the morphism — from that
connected component to some connected component of the codomain temperoid.
Finally, we remark that, just as in the case of anabelioids, it is crucial in the
geometry of temperoids to allow for multiple connected components which arise, for
instance, when one pulls back an étale [cf. Definition 3.4, (i) below] morphism of
connected temperoids via an arbitrary morphism of connected temperoids.

Remark 3.1.5. It is immediate from the definitions that every temperoid is an
almost totally epimorphic category of countably connected type [cf. §0].

Remark 3.1.6. Observe that although every endomorphism of a connected object
of an anabelioid is an automorphism, temperoids do not, in general, satisfy this
property. Indeed, if Π is a [discrete] free group on generators e1, e2, and H ⊆ Π is
the subgroup generated by elements of the form en2 ·e1 ·e−n2 , where n ranges over the
positive integers, then conjugation by e2 determines an endomorphism H → H [i.e.,
an endomorphism of the object determined by the Π-set Π/H of Btemp(Π)] which is
not an automorphism. Nevertheless, it is immediate from the definitions that every
endomorphism of a Galois connected object of a temperoid is an automorphism.

Remark 3.1.7. In some situations, instead of considering temperoids or anabe-
lioids, it is useful to consider slightly more general versions of these notions, which
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we shall refer to as “quasi-temperoids”, “quasi-anabelioids”, respectively. For more
on these “routine” generalizations, we refer to the Appendix.

Remark 3.1.8. For a more general treatment of “categories that behave like
anabelioids and temperoids”, we refer to [Dub].

Proposition 3.2. (The “Grothendieck Conjecture” for Connected Tem-

peroids) For i = 1, 2, let Πi be a tempered [topological] group; write Ti def=
Btemp(Πi). Then the category of morphisms

T1 → T2

is equivalent to the category whose objects are continuous group homomorphisms
φ : Π1 → Π2 and whose morphisms φ → ψ are elements g ∈ Π2 such that
γg ◦ φ = ψ, where we write γg for the automorphism of Π2 given by conjugating by
g. In particular, there is a natural bijective correspondence between the set
of isomorphism classes of morphisms T1 → T2 and the set of [continuous] outer
homomorphisms Π1 → Π2.

Proof. Observe that, by thinking of a Galois object T ∈ Ob(T2) as an “AutT2(T )-
torsor object” [cf. Remark 3.1.3], it follows that if φ : T1 → T2 is a morphism of
temperoids, then the object φ∗(T ) of T1 is Galois. In light of this observation, the
proof of Proposition 3.2 is formally entirely similar to that of [Mzk4], Proposition
1.1.4 [i.e. the “Grothendieck Conjecture” for connected anabelioids]. ©

Remark 3.2.1. In particular, Proposition 3.2 implies that, if X is a connected
temperoid, then it makes sense to write πtemp

1 (X ). We shall refer to this tempered
group πtemp

1 (X ) [which is well-defined, up to inner automorphism] as the tempered
fundamental group of X .

Corollary 3.3. (Rigid Morphisms of Connected Temperoids) We main-
tain the notation of Proposition 3.2. Let φ : Π1 → Π2 be a continuous homo-
morphism that gives rise to a morphism of temperoids Btemp(φ) : T1 → T2. Then
Btemp(φ) is rigid if and only if the centralizer ZΠ2 (Im(φ)) is trivial.

Proof. This is a formal consequence of Proposition 3.2 [cf. [Mzk4], Corollary
1.1.6]. ©

Next, let us observe that, if T ∈ Ob(T ) is an object of a connected temperoid
T , then the category

TT
forms a temperoid [which is connected if and only if T is connected]. Moreover,
forming the product with T yields a functor T → TT which determines a morphism
of temperoids as follows:

TT → T
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Thus, in the spirit of [Mzk4], §1.2, we make the following definition:

Definition 3.4.

(i) An étale morphism of connected temperoids is a morphism that is abstractly
equivalent to a morphism of the form TT → T considered in the above discussion.
An étale morphism of temperoids is a morphism each of whose component mor-
phisms is étale.

(ii) A continuous homomorphism of tempered groups Π1 → Π2 will be called
relatively temp-slim if, for every open subgroupH ⊆ Π1, the centralizer ZΠ2 (Im(H))
is trivial. A tempered group will be called temp-slim if its identity morphism is
relatively temp-slim. A temperoid will be called temp-slim if and only if each of its
connected components is equivalent to the “Btemp(−)” of some temp-slim tempered
group.

Remark 3.4.1. In light of Corollary 3.3 above [cf. also [Mzk4], Corollary 1.1.6],
one verifies immediately that a temperoid is slim as a category [cf. §0] if and only if
it is temp-slim as a temperoid; similarly, an anabelioid is slim as an anabelioid [cf.
[Mzk4], Definition 1.2.4, (ii)] if and only if it is slim as a category [cf. §0]; moreover,
an anabelioid is slim as an anabelioid if and only if its temperification [cf. Remark
3.1.4] is temp-slim as a temperoid.

Remark 3.4.2. By Corollary 3.3, one may work with relatively temp-slim mor-
phisms of temperoids as if they are “morphisms in a category” [not “1-morphisms
in a 2-category”]. In particular, if one works under this convention, then the cat-
egory of étale objects over a given temp-slim temperoid T forms a category which
is equivalent to T itself [cf. [Mzk4], Proposition 1.2.5]. Moreover, just as in the
case of anabelioids [cf. [Mzk4], §1.2], one may work with “pro-temperoids” and
hence consider universal coverings [which are pro-temperoids] of a given temp-slim
temperoid.

Now we return to semi-graphs of anabelioids. Let G be a connected, countable
[i.e., the underlying semi-graph is countable] semi-graph of anabelioids. If G has at
least one vertex, then let us denote by

Bcov(G)

the category of objects given by data

{Sv, φe}

where v (respectively, e) ranges over the vertices (respectively, edges) of G; for each
vertex v, Sv ∈ Ob(G�

v ); for each edge e, with branches b1, b2 abutting to vertices
v1, v2, respectively, φe : {(b1)∗}∗Sv1

∼→ {(b2)∗}∗Sv2 is an isomorphism in G�
e , and

morphisms given by morphisms [in the evident sense] between such data. If G has
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no vertices — and hence precisely one edge e, which is necessarily isolated — then
we shall write Bcov(G) def= G�

e .

The definition of Bcov(G) extends immediately to arbitrary semi-graphs of an-
abelioids, each connected component of which is countable. Moreover, for such G,
we have a natural full embedding:

B(G) ↪→ Bcov(G)

An object of Bcov(G) that lies in the essential image of B(G) will be called finite.

Now observe that we may associate, in a natural way, to any object of Bcov(G)
a morphism of countable semi-graphs of anabelioids:

G′ → G

[cf. the discussion of §2 following Definition 2.1 in the case of B(G)].

Definition 3.5.

(i) We shall refer to a morphism of semi-graphs of anabelioids G′ → G that
may be constructed in this way as a covering of semi-graphs of anabelioids [so, in
the terminology of §2, coverings of semi-graphs of anabelioids that arise from finite
objects of Bcov(G) determine “finite étale coverings of semi-graphs of anabelioids”].

(ii) Suppose that G′ → G satisfies the condition that there exists a finite étale
covering G′′ → G with the property that, for any component [i.e., vertex or edge] c
of G, the restriction of G′′ → G to Gc splits the restriction of G′ → G to Gc. Then
we shall say that the covering G′ → G, as well as the object of Bcov(G) that gave
rise to this covering, is tempered. Also, we shall write

Btemp(G) ⊆ Bcov(G)

for the full subcategory determined by the tempered objects. Thus, we have natural
full embeddings:

B(G) ↪→ Btemp(G) ↪→ Bcov(G)

(iii) An arrow φ : H1 → H2 of Bcov(G) with connected domain and codomain
will be called Galois if, for any two arrows ψ1, ψ2 : K → H1 such that φ◦ψ1 = φ◦ψ2,
there exists a [unique] automorphism α ∈ AutH2(H1) of H1 over H2 such that
ψ1 = α ◦ ψ2.

Remark 3.5.1. It is immediate from the definitions that passing to the underlying
morphism of semi-graphs yields an equivalence between the datum of a locally trivial
covering of the semi-graph of anabelioids G and the datum of a graph-covering with
countable fibers of the semi-graph G.
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Remark 3.5.2. It follows from Remark 2.4.2 that, if G is totally aloof and
verticially slim, then the construction given above of a covering of semi-graphs of
anabelioids associated to an object of Bcov(G) determines a natural full embedding of
Bcov(G) into the category of totally aloof, verticially slim semi-graphs of anabelioids
and locally finite étale morphisms over G.

Now let us assume that the semi-graph of anabelioids G is connected, countable,
quasi-coherent, totally elevated, totally aloof, and verticially slim. Let

{Gi → G}i∈I

be some cofinal [i.e., in B(G)] collection of connected finite étale Galois coverings,
indexed by a set I. Thus, π̂1(G) may be constructed as the inverse limit

lim←−
i

Gal(Gi/G)

of the resulting inverse system of finite groups Gal(Gi/G). Let us write

G∞,i → Gi

for the “combinatorial universal covering” of Gi [i.e., the covering of Gi deter-
mined by the universal graph-covering of the underlying semi-graph Gi; thus,
Gal(G∞,i/Gi) is a free discrete group]. One verifies immediately that G∞,i → G
is a Galois tempered covering. Then we set:

πtemp
1 (G) def= lim←−

i

Gal(G∞,i/G)

Note that πtemp
1 (G) is independent, up to inner automorphism, of the choice of the

cofinal system {Gi → G}i∈I .

Proposition 3.6. (The Tempered Fundamental Group of a Semi-graph
of Anabelioids) Let G, G′ be connected, countable, quasi-coherent, totally
elevated, totally aloof, verticially slim semi-graphs of anabelioids. Then:

(i) The topological group πtemp
1 (G) defined above is tempered.

(ii) There is a natural equivalence of categories:

Btemp(πtemp
1 (G)) ∼→ Btemp(G)

In particular, the category Btemp(G) is a connected temperoid. We shall refer
to πtemp

1 (G) as the tempered fundamental group of G.

(iii) The full embedding B(G) ↪→ Btemp(G) induces an injection πtemp
1 (G) ↪→

π̂1(G) of topological groups.
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(iv) Any morphism of semi-graphs of anabelioids G′ → G induces a morphism
of temperoids

Btemp(G′) → Btemp(G)

[by pulling back tempered coverings of G to tempered coverings of G′]. Moreover,
if the original morphism of semi-graphs of anabelioids is locally open, then this
morphism of temperoids is relatively temp-slim. In particular, the temperoid
Btemp(G) is temp-slim.

(v) Suppose that G is coherent, and that we are given a tempered covering
G′ → G. Then the resulting morphism of temperoids

Btemp(G′) → Btemp(G)

is étale.

Proof. Assertion (i) follows from the definitions and the fact that G is countable.
Next, we consider assertion (ii). First, we observe that, by the definition of a tem-
pered covering, it follows that every connected tempered covering H → G appears
as a subcovering of some G∞,i → G; in particular, we may choose a factorization
G∞,i → H → G. Thus, in light of the definition of G∞,i as the “combinatorial
universal covering” of Gi [together with the fact that Gi → G is Galois], it follows
immediately that the fiber product covering G∞,i ×G H [regarded as a covering of
G∞,i via the projection to the first factor] splits as a covering of G∞,i. Similarly,
[cf. also Remark 3.1.3] the covering G∞,i ×G G∞,i [regarded as a covering of G∞,i

via the projection to the first factor] splits as a covering of G∞,i. Moreover, the
action of Gal(G∞,i/G) on the first factor of G∞,i ×G G∞,i determines an action of
Gal(G∞,i/G) on the set of components π0(G∞,i ×G G∞,i) which is transitive and
free of fixed points [cf. Remark 3.1.3]. On the other hand, since the domain and
codomain of the covering G∞,i → H are connected, one verifies immediately that
the resulting map on sets of connected components

ξ : π0(G∞,i ×G G∞,i) → π0(G∞,i ×G H)

is surjective and compatible with the natural actions of Gal(G∞,i/G) on the domain
and codomain [arising from the first factor of the fiber products]. In particular, the
fiber of the element of the codomain of ξ determined by the “graph” of the covering
morphism G∞,i → H is the H-orbit, for some subgroup H ⊆ Gal(G∞,i/G), of the
element of the domain of ξ determined by the “graph” of the identity morphism
G∞,i → G∞,i. Now forming the quotient of G∞,i by H yields an intermediate
covering G∞,i → GH → G such that the morphism GH → G admits a factorization
[by the definition of H!] GH → H → G. On the other hand, by forming the
fiber product with G∞,i over G and looking at the induced morphisms on sets of
connected components, we obtain surjections

π0(G∞,i ×G G∞,i) � π0(G∞,i ×G GH) � π0(G∞,i ×G H)

the composite of which is equal to ξ. Moreover, by the construction of GH , it follows
formally that the first of these two surjections factors through the quotient of the set
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π0(G∞,i×G G∞,i) by the action of H; we thus conclude [from the fact that ξ induces
a bijection of the quotient of the set π0(G∞,i ×G G∞,i) by the action of H onto the
set π0(G∞,i×G H)] that the surjection π0(G∞,i×G GH) � π0(G∞,i×G H) is, in fact,
a bijection. But from this, one concludes immediately that the covering morphism
GH → H is an isomorphism. Thus, in summary, we conclude that the covering
H → G may be constructed as the quotient of the covering G∞,i → G by the action
of Gal(G∞,i/H) [i.e., H]; and [by applying the surjectivity of ξ to the “graphs” of
various covering morphisms] that every morphism of coverings [of G] from G∞,i to
H may be obtained from the original morphism by composing with the action of
Gal(G∞,i/G). Conversely, one verifies immediately that the quotient of G∞,i → G
by the action of any subgroup of Gal(G∞,i/G) yields a subcovering of G∞,i → G.
This shows that there is a natural equivalence between Btemp(Gal(G∞,i/G)) and the
full subcategory of Btemp(G) determined by the subcoverings of G∞,i → G. Passing
to the limit over i then completes the proof of assertion (ii).

Assertion (iii) follows from the fact that discrete free groups [such as Gal(G∞,i/Gi)]
are always residually finite [cf., e.g., Corollary 1.7]. The first sentence of assertion
(iv) follows from the definitions; the remainder of assertion (iv) follows, in light
of the injection of assertion (iii), formally from Corollary 2.7, (ii). Finally, to ver-
ify assertion (v), it suffices to show that the composite of any tempered covering
H′ → G′ with the given tempered covering G′ → G forms a tempered covering
H′ → G; moreover, [since composites of “combinatorial” [i.e., locally trivial] cov-
erings manifestly form “combinatorial” coverings] we may assume without loss of
generality that the covering H′ → G′ is finite étale. But then it follows from the
the coherence of G [cf. Definition 2.3, (iii)] that there exists a finite étale covering
H → G whose pull-back to G′ splits the restrictions of H′ → G′ to each of the G′

c

[where c is a component of G′]. ©

Theorem 3.7. (Maximal Compact Subgroups of the Tempered Fun-
damental Group) Let G be a connected, countable, quasi-coherent, totally
elevated, totally estranged, verticially slim semi-graph of anabelioids. As-
sume that G has at least one vertex. Then:

(i) For each vertex v of G, there is a natural continuous, injective outer ho-
momorphism π̂1(Gv) ↪→ πtemp

1 (G). By abuse of notation, we shall write π̂1(Gv) for
the subgroup [well-defined up to conjugation] determined by the image of this ho-
momorphism. We shall refer to the [necessarily compact!] subgroups of πtemp

1 (G)
that arise in this way as the verticial subgroups.

(ii) Let us think of the verticial subgroups as being parametrized by a vertex
v of G and an element of the coset space πtemp

1 (G)/π̂1(Gv). Then if H1, H2 are
verticial subgroups of πtemp

1 (G) that arise from distinct parametrization data,
then H1

⋂
H2 has infinite index in H1. In particular, verticial subgroups that

arise from distinct parametrization data are distinct.

(iii) Every compact subgroup of πtemp
1 (G) is contained in at least one verticial

subgroup. If a nontrivial compact subgroup of πtemp
1 (G) is contained in more than

one verticial subgroup, then it is contained in precisely two verticial subgroups,
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determined by a compatible system of pairs of vertices of the G∞,i [as i ranges over
the elements of I] joined to one another by a single [closed] edge. In particular,
in this case, this compact subgroup is contained in the image of some π̂1(Ge), for
some edge e of G. We shall refer to such images of “π̂1(Ge)’s” as the edge-like
subgroups of πtemp

1 (G).

(iv) The maximal compact subgroups of πtemp
1 (G) are precisely the ver-

ticial subgroups. The nontrivial intersections of two distinct maximal
compact subgroups of πtemp

1 (G) are precisely the edge-like subgroups.

Proof. In light of the injection of Proposition 3.6, (iii), assertion (i) (respectively,
(ii)) follows from the definitions; Proposition 2.5, (i) (respectively, Proposition 2.6;
Corollary 2.7, (i) [cf. also Remark 2.7.2]).

Now suppose that H ⊆ πtemp
1 (G) is a nontrivial compact subgroup. Then H

acts continuously on the semi-graph G∞,i, for each i ∈ I. Thus, this action factors
through a finite quotient. In particular, by Lemma 1.8, (ii), (a), H fixes at least one
edge or vertex of the semi-graph G∞,i. Since the action of H is over G, it follows
that if H fixes an edge, then it does not switch the branches of the edge. Since G,
hence also G∞,i, is connected and has at least one vertex, it thus follows that every
edge of G∞,i abuts to at least one vertex. In particular, we conclude that if H fixes
an edge of G∞,i, then it fixes a vertex, i.e., that H always fixes at least one vertex
of G∞,i.

Now suppose that for some cofinal subset J ⊆ I, H fixes ≥ 3 vertices of G∞,j,
for every j ∈ J . Then by Lemma 1.8, (ii), (c), we conclude that, for every j ∈ J ,
H acts trivially on some subjoint of G∞,j. In particular, H acts trivially on some
subjoint of Gj . Since the semi-graphs Gj are all finite, we thus conclude that we
may choose a compatible system of such subjoints [i.e., on which H acts trivially] of
the Gj . But this implies [cf. Remark 2.2.1] that H is contained in some conjugate
in the profinite fundamental group π̂1(G) of some π̂1(Gv), and, moreover, that it
is in fact contained, for two distinct branches b, b′ abutting to v of edges e, e′,
respectively [where e is not necessarily distinct from e′], in the intersection of the
images of π̂1(Ge), π̂1(Ge′), via b, b′. But since G is assumed to be totally estranged,
we thus conclude that H is trivial, in contradiction to our hypotheses.

Thus, in summary, we have shown that for some cofinal subset J ⊆ I, H fixes
at least one, but no more than two vertices of G∞,j, for every j ∈ J . Moreover,
by Lemma 1.8, (ii), (b), it follows that if H fixes two vertices of G∞,j , then these
two vertices are joined to one another by a single [closed] edge. In particular, by
possibly replacing J by some smaller cofinal subset, we may assume that there
exists a compatible system of vertices of G∞,j, for j ∈ J , each of which is fixed by
H. On the other hand, we may also conclude that there exist at most two such
compatible systems. This completes the proof of assertion (iii). Finally, assertion
(iv) follows formally from assertions (ii), (iii). ©

Remark 3.7.1. The notion that

maximal compact subgroups correspond to points



42 SHINICHI MOCHIZUKI

is a recurrent theme in the geometry of group actions. Classical well-known ex-
amples of this phenomenon include the theory of symmetric spaces obtained as
quotients of a real reductive group by a maximal compact subgroup or, in the p-
adic case, of Qp-valued points of a reductive group by Zp-valued points. Another
example of this sort of situation is the “discrete real section conjecture” of [Mzk5],
§3.2.

Definition 3.8. We shall refer to as quasi-geometric any continuous homomor-
phism of tempered groups

Π1 → Π2

that satisfies the following condition: Any maximal compact subgroup K1 ⊆ Π1

(respectively, nontrivial intersection K1

⋂
H1 of two distinct maximal compact sub-

groups K1,H1 ⊆ Π1) maps surjectively to an open subgroup of some maximal
compact subgroup K2 ⊆ Π2 (respectively, of some nontrivial intersection K2

⋂
H2

of two distinct maximal compact subgroups K2,H2 ⊆ Π2). A quasi-geometric
morphism of temperoids is a morphism of temperoids each of whose component
morphisms arises [cf. Proposition 3.2] from a quasi-geometric continuous homo-
morphism of tempered groups.

Remark 3.8.1. It is immediate that any isomorphism of temperoids is quasi-
geometric.

Corollary 3.9. (Reconstruction of the Underlying Semi-graph of An-
abelioids) Let G, H be connected, countable, quasi-coherent, totally ele-
vated, totally estranged, verticially slim graphs of anabelioids. Then applying
“Btemp(−)” determines a natural bijective correspondence between locally open
morphisms of semi-graphs of anabelioids

G → H

and quasi-geometric morphisms of temperoids Btemp(G) → Btemp(H).

Proof. First, we note that any locally open morphism of semi-graphs of an-
abelioids G → H determines a morphism of temperoids Btemp(G) → Btemp(H)
[cf. Proposition 3.6, (iv)] whose quasi-geometricity follows by “substituting” the
equivalences of Theorem 3.7, (iv), into Definition 3.8. Next, we observe that
by Proposition 3.2; Definition 3.8; Theorem 3.7, (ii), (iii), any quasi-geometric
φ : Btemp(G) → Btemp(H) determines a map from the vertices to G to the vertices
of H — i.e., by considering the unique [conjugacy class of] verticial subgroup(s)
of πtemp

1 (H) that contain(s) the image of a given verticial subgroup of πtemp
1 (G).

Similarly, by considering nontrivial intersections of maximal compact subgroups,
one obtains [in light of the fact that, since H is totally elevated and totally aloof,
all of the edge-like subgroups of πtemp

1 (H) are infinite] that any quasi-geometric
φ : Btemp(G) → Btemp(H) determines a map from the edges to G to the edges of H

which is compatible with the map obtained above on vertices. Thus, in summary,
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we conclude that a quasi-geometric φ : Btemp(G) → Btemp(H) determines a map on
the underlying graphs G → H that is functorial in φ.

Next, we observe that if φ : Btemp(G) → Btemp(H) is quasi-geometric, then any
morphism

φ′ : Btemp(G′) → Btemp(H′)

induced by φ between étale coverings of the domain and codomain of φ [i.e., G′ → G,
H′ → H are tempered coverings] is again quasi-geometric. Indeed, this follows
immediately from the characterization of nontrivial maximal compact subgroups
(respectively, nontrivial intersections of two distinct maximal compact subgroups)
as the verticial subgroups (respectively, edge-like subgroups) — cf. Theorem 3.7,
(iii), (iv). Thus, we obtain a morphism of graphs G′ → H′, which is functorial in
G′, H′. Finally, by varying G′, H′, we conclude that φ arises from a morphism of
graphs of anabelioids which [again by Theorem 3.7, (iii), (iv)] is manifestly unique
and locally open. This completes the proof of Corollary 3.9. ©

Remark 3.9.1. Suppose that G is as in Theorem 3.7. Then observe that, if G

is a semi-graph which is not a graph, then the techniques developed here are not
sufficient, in general, to reconstruct the open edges of G from, say, the isomorphism
class of the tempered group πtemp

1 (G) — cf. Remark 4.8.1.

Example 3.10. Pointed Stable Curves over p-adic Local Fields I. Let K
be a finite extension of Qp; K an algebraic closure of K; X log

K a smooth log curve

over K [cf. §0]. Let us write X log

K

def= X log
K ×K K;

πtemp
1 (X log

K )

for the tempered fundamental group of [André], §4. Thus, πtemp
1 (X log

K ) is a tempered
topological group [in the sense of Definition 3.1, (i)] and fits into a natural exact
sequence:

1 → πtemp
1 (X log

K
) → πtemp

1 (X log
K ) → GK → 1

[where GK
def= Gal(K/K); we write πtemp

1 (X log

K
) for the geometric tempered funda-

mental group of X log
K , i.e., the tempered fundamental group of X log

K
×K (K)∧; the

“∧” denotes the p-adic completion]. To simplify the notation, let us write:

Π def= πtemp
1 (X log

K ); Δ def= πtemp
1 (X log

K
)

Note that Δ is also tempered, so we obtain temperoids:

Btemp(Π); Btemp(Δ)

Now let us write
G (respectively, Gc)
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for the graph of anabelioids (respectively, semi-graph of anabelioids) determined by
the semi-graph of profinite groups [without compact structure!] (respectively, with
compact structure) associated to the geometric special fiber of the stable model of
X log

K
[cf. [Mzk3], Appendix] over the ring of integers OK of K. Note that it follows

from the definitions that we have a natural equivalence Btemp(G) ∼→ Btemp(Gc) and
a natural full embedding:

Btemp(G) ↪→ Btemp(Δ)

Now suppose that we are given an exhaustive sequence of open characteristic [hence
normal] subgroups of finite index

. . . ⊆ Ni ⊆ . . . ⊆ Δ

[where i ranges over the positive integers] of Δ; write Δi
def= Δ/Ni. Thus, Ni

determines a finite log étale covering of X log

K
, whose geometric special fiber gives

rise to semi-graphs of anabelioids

Gi; Gc
i

on which Δi acts faithfully. Recall from Example 2.10 that Gi, Gc
i are coherent,

totally elevated, totally universally sub-coverticial, totally estranged, and verticially
slim. In particular, Gi satisfies the hypotheses of Theorem 3.7, Corollary 3.9.

Next, let us observe that we obtain a natural compatible system of generalized
[cf. Definition 2.11] morphisms of graphs of anabelioids

Gi → Gj
[where i ≥ j], which are compatible with the actions of Δi, Δj, as follows: The
functor

Cat(Gi) → Cat(Gj)

is obtained by mapping a vertex v (respectively, vertex v; edge e; edge e) of Gi to
a(n) vertex v′ (respectively, edge e′; edge v′; edge e′) of Gj whenever the map on
geometric special fibers between the coverings determined by Δi, Δj maps the irre-
ducible component corresponding to v into the irreducible component corresponding
to v′ in such a way that the image of the irreducible component corresponding to v
is not equal to a node (respectively, the irreducible component corresponding to v
into the node corresponding to e′; the node corresponding to e to a non-nodal point
lying in the irreducible component corresponding to v′; the node corresponding to e
to the node corresponding to e′). The remainder of the data necessary to define the
generalized morphism of graphs of anabelioids Gi → Gj is determined naturally by
considering the map on geometric special fibers between the coverings determined
by Δi, Δj . For a more group-theoretic description of these generalized morphisms
Gi → Gj, we refer to the discussion of Example 5.6 below.

Finally, we observe that these generalized morphisms of graphs of anabelioids
induce — by applying “Btemp(−)” [cf. Remark 2.11.1] — natural morphisms of
temperoids

. . .→ Btemp(Gi) → . . .→ Btemp(Gj) → . . .→ Btemp(G)
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compatible with the actions of the Δi, hence also corresponding surjections of
tempered groups [where we note that each of the “outer semi-direct product groups”
[cf. §0] admits a natural topology with respect to which the resulting topological
group is tempered]:

Δ � . . . � Δ[i] def= πtemp
1 (Gi)

out
� Δi � . . . � Δ[j] def= πtemp

1 (Gj)
out
� Δj

� . . . � πtemp
1 (G)

Note that each Δ[i] is temp-slim. [Indeed, this follows from the fact that Δi acts
faithfully on Gi, hence also faithfully on Btemp(Gi) [cf., e.g., the injectivity portion of
the bijection of Corollary 3.9]; the temp-slimness portion of Proposition 3.6, (iv).]
Since Δ is the inverse limit of the Δ[i], and GK is slim [cf. e.g., [Mzk3], Theorem
1.1.1], we thus conclude that both Δ and Π are temp-slim.

Remark 3.10.1. We maintain the notation of Example 3.10. Write Btemp(X log
K )

for the category of tempered coverings of X log
K [so Btemp(X log

K ) is a temperoid whose
tempered fundamental group is πtemp

1 (X log
K )]. Let Σ be a set of prime numbers.

Denote by
Btemp(X log

K )Σ ⊆ Btemp(X log
K )

the full subcategory determined by the tempered coverings dominated by coverings
which arise as a combinatorial covering [i.e., a covering arising from a graph-covering
of the dual graph of the geometric special fiber] of a finite étale Galois covering of
X log
K whose degree is a Σ-integer. One verifies immediately that Btemp(X log

K )Σ is
a temperoid. We shall refer to the tempered fundamental group of this temperoid
as the pro-Σ tempered fundamental group of X log

K . Then, as long as Σ contains at
least one prime 
= p, the entire discussion of Example 3.10 may be carried out for
the pro-Σ tempered fundamental group of X log

K . [We leave the routine details to the
interested reader.] Also, we observe that the analogue of “G” (respectively, “Gc”)
in the pro-Σ case is precisely the pro-Σ completion [in the sense of Definition 2.9,
(ii)] of the semi-graph of anabelioids G (respectively, Gc).

In the case of tempered fundamental groups of pointed stable curves, i.e.,
Example 3.10, we observe [cf. Remark 3.9.1] that, in the notation of Example
3.10, not only G, but also the semi-graph of anabelioids Gc may be reconstructed
group-theoretically from the tempered fundamental group:

Corollary 3.11. (Reconstruction of Semi-graphs of Anabelioids Asso-
ciated to Pointed Stable Curves) For � = α, β, let K� be a finite extension
of Qp�; K� an algebraic closure of K�; (X log

� )K� a smooth log curve over K�
[cf. §0]. Let us write (X log

� )K�
def= (X log

� )K� ×K� K�; Δ[�] def= πtemp
1 ((Xlog

� )K�
);

G[�] (respectively, Gc[�])
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for the graph of anabelioids (respectively, semi-graph of anabelioids) deter-
mined by the semi-graph of profinite groups [without compact structure!] (respec-
tively, with compact structure) associated to the geometric special fiber of the stable
model of (X log

� )K�
[cf. [Mzk3], Appendix] over the ring of integers OK�

of K� [cf.
Example 3.10]. Then any isomorphism of topological groups

γ : Δ[α] ∼→ Δ[β]

determines a compatible isomorphism of semi-graphs of anabelioids

Gc[α] ∼→ Gc[β]

in a fashion that is functorial with respect to γ. Moreover, if such a γ exists, then
pα = pβ.

Proof. Let Σ be a set of prime numbers such that pα, pβ 
∈ Σ. Write Δ̂[�] for the
profinite completion of Δ[�]; Δ[�]Σ for the pro-Σ tempered fundamental group of
Remark 3.10.1; Δ̂[�]Σ for the maximal pro-Σ quotient of Δ̂[�]; Gc[�]Σ, G[�]Σ for
the respective pro-Σ completions [in the sense of Definition 2.9, (ii)] of Gc[�], G[�].
Moreover, since Galois coverings of degree a Σ-integer are necessarily admissible
[cf., e.g., [Mzk1], §3], it follows that Δ[�]Σ may be identified with the tempered
fundamental group πtemp

1 (Gc[�]Σ) ∼= πtemp
1 (G[�]Σ).

Next, let us observe that the kernel

IΣ[�] def= Ker(Δ[�] � Δ[�]Σ)

may be recovered as the kernel JΣ[�] of the natural morphism Δ[�] → Δ̂[�]Σ.
Indeed, since it follows from the definitions that the morphism Δ[�] → Δ̂[�]Σ

factors through Δ[�]Σ, we obtain that IΣ[�] ⊆ JΣ[�]. On the other hand, the fact
that JΣ[�] ⊆ IΣ[�] follows from the fact that free discrete groups inject into their
pro-Σ completions [cf. Remark 1.7.1]. This completes the proof of the equality
IΣ[�] = JΣ[�].

In particular, we conclude that the quotients

Δ[�] � Δ[�]Σ ∼= πtemp
1 (G[�]Σ)

are compatible with γ. Thus, by Corollary 3.9, we conclude that γ induces a natural,
functorial isomorphism of graphs of anabelioids

G[α]Σ ∼→ G[β]Σ

hence, in particular, an isomorphism of graphs G[α] ∼→ G[β].

Next, let us observe, that:
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(i) The technique used to obtain an isomorphism of graphs of anabelioids in
the preceding paragraph may also be applied to open subgroups of finite
index Δ′[α] ⊆ Δ[α], Δ′[β] ⊆ Δ[β] that correspond via γ.

Moreover, let us recall that:

(ii) The decomposition groups of cusps in Δ[�]Σ are commensurably terminal
[cf. [Mzk3], Lemma 1.3.7].

(iii) Every nontrivial image via the natural morphism

Δ′[�]Σ → Δ[�]Σ

associated to some open subgroup of finite index Δ′[�] ⊆ Δ[�] of the de-
composition group of a node in Δ′[�]Σ [i.e., in the terminology of Theorem
3.7, an “edge-like subgroup”] is either an open subgroup of an edge-like
subgroup of Δ[�]Σ or an open subgroup of a decomposition group of a
cusp in Δ[�]Σ [but not both, since G[�]Σ is totally aloof — cf. Example
2.10, Remark 2.4.1].

(iv) Every decomposition group of a cusp in Δ[�]Σ admits an open subgroup
that arises as the image via some morphism Δ′[�]Σ → Δ[�]Σ as in (ii) of
an edge-like subgroup of Δ′[�]Σ.

Indeed, (ii) follows from [Mzk3], Lemma 1.3.7; (iii) is immediate from the defini-
tions. On the other hand, (iv) may be verified as follows: Suppose that

Δ′[�] ⊆ Δ[�]

is an open normal subgroup of finite index that corresponds to a covering of
(Xlog

� )K�
whose ramification indices at the cusps are prime to p�, but which is

ramified over the irreducible component C� of the special fiber of the stable model
of (X log

� )K�
that contains [the restriction to the special fiber of] the cusp of inter-

est, which we shall denote by x�. [Note that such a Δ′[�] always exists: Indeed,
by passing to a Galois covering of degree a Σ-integer, one may assume that the
normalization of C� is of genus ≥ 2; then one verifies immediately that the cov-
ering arising from “multiplication by p� on the Jacobian” satisfies the conditions
just stated.] Then the ramification over C� implies that this covering has ≥ p�
distinct cusps lying over x� which, nevertheless, map to the same point of the nor-
malization of C� in the [necessarily inseparable — by our ramification assumption!]
field extension of its function field determined by the covering. Thus, we conclude
that [the restrictions to the special fiber of] these distinct cusps must lie on an
irreducible component of the special fiber [of the stable model] of the covering that
collapses to [the restriction to the special fiber of] x� [cf. also [Tama2], Theorem
0.2, for a more general result concerning the existence of coverings with collapsing
irreducible components]. Now, sorting through the definitions, we see that this
completes the proof of (iv).
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Thus, in summary, it follows formally from (i), (ii), (iii), (iv) that the natural,
functorial isomorphism of graphs of anabelioids

G[α]Σ ∼→ G[β]Σ

induced by γ extends uniquely to a natural, functorial isomorphism of semi-graphs
of anabelioids

Gc[α]Σ ∼→ Gc[β]Σ

[which may also be regarded as being induced by γ], hence, in particular, an iso-
morphism of semi-graphs Gc[α] ∼→ Gc[β].

Next, let us observe that, if Δ′[α] ⊆ Δ[α], Δ′[β] ⊆ Δ[β] are normal open
subgroups of finite index that correspond via γ, and we write G′[�], G′[�] for the
corresponding graphs/graphs of anabelioids [without compact structure], then the
decomposition group

Dv ⊆ Δ[�]/Δ′[�]

determined by a vertex v of G′[�] acts naturally on the anabelioid G′[�]Σv [i.e., the
pro-Σ completion of the anabelioid G′[�]v]. Thus, the inertia group

Iv ⊆ Dv

at v — i.e., the subgroup that acts trivially on this anabelioid — is necessarily of
order a power of p�. (Indeed, here we use the easily verified fact that any nontrivial
automorphism of an irreducible component of the special fiber [of the stable model
of the covering determined by Δ′[�]] induces a nontrivial outer automorphism of
the tame pro-Σ fundamental group [i.e., where “tame” means that one only allows
tame ramification at the nodes and cusps] of the open subscheme of this irreducible
component given by taking the complement [in this irreducible component] of the
nodes and cusps.) In particular, [since there exist Δ′[�] for which Iv is nontrivial
— cf., e.g., the proof of assertion (iv) given above] we obtain that pα = pβ . Thus,

in the following, we shall write p def= pα = pβ .

Next, let us observe that the natural quotient

Δ[�] � πtemp
1 (G[�]) ∼= πtemp

1 (Gc[�])

— i.e., the quotient determined by the “admissible quotient” of Δ̂[�], in the sense
of [Mzk3], §2 — may be characterized as follows: A normal open subgroup of finite
index Δ′[�] ⊆ Δ[�] arises from this quotient if and only if no irreducible component
of the special fiber of the stable model of the corresponding covering collapses in
the stable model of (Xlog

� )K�
, and, moreover, the decomposition groups at the

nodes and cusps (respectively, inertia groups at the irreducible components) of the
corresponding covering are prime to p (respectively, trivial). Indeed, this follows
immediately from well-known “purity of the branch locus” results and the well-
known “structure of local fundamental groups of stable curves” [cf., e.g., [Tama2],
Lemma 2.1]. Now let us write (G′)c[�], (G′)c[�] for the semi-graph/semigraph
of anabelioids [with compact structure!] associated to Δ′[�]. Then observe that
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this characterization is equivalent to the following “group-theoretic” condition [i.e.,
condition compatible with γ]:

The natural map Δ′[�]Σ → Δ[�]Σ is quasi-geometric; the stabilizer ⊆
Δ[�]/Δ′[�] of any edge of the semi-graph (G′)c[�] has order prime to p;
the stabilizer ⊆ Δ[�]/Δ′[�] of any vertex v of the semi-graph (G′)c[�]
acts faithfully on the anabelioid (G′)c[�]Σv [i.e., the pro-Σ completion of
the anabelioid (G′)c[�]v].

Thus, we conclude that γ induces an isomorphism

πtemp
1 (G[α]) ∼= πtemp

1 (G[β])

hence, by Corollary 3.9, we conclude that γ induces an isomorphism of graphs of
anabelioids

G[α] ∼→ G[β]

which — by applying the functorial isomorphisms “Gc[α] ∼→ Gc[β]” obtained above
to arbitrary normal open subgroups of finite index Δ′[�] ⊆ Δ[�] that arise from
the “admissible quotient” — induces a uniquely determined isomorphism of semi-
graphs of anabelioids

Gc[α] ∼→ Gc[β]

[which is, of course, functorial in γ], as desired. ©

Remark 3.11.1. Note that for any set of primes Σ of cardinality ≥ 3 [i.e., so
that Σ contains at least one prime 
= pα, pβ ], the argument given above also yields
a “pro-Σ version” of Corollary 3.11, i.e., where one replaces the isomorphism

γ : Δ[α] ∼→ Δ[β]

in the statement of Corollary 3.11 by an isomorphism

Δ[α]Σ ∼→ Δ[β]Σ

between the respective pro-Σ tempered fundamental groups [in the sense of Remark
3.10.1].

Remark 3.11.2. Once one recovers the “admissible quotients” Δ[�] � πtemp
1 (Gc[�]),

one may apply the results of [Tama1] to the various verticial subgroups of πtemp
1 (Gc[�])

to recover, in certain cases, the isomorphism class of the curve determined by the
complement of the nodes and cusps in the irreducible component of the special fiber
corresponding to this verticial subgroup.
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Section 4: Categories of Localizations

In this §, we consider categories of localizations of a semi-graph of anabelioids
satisfying certain conditions.

Let G be a totally aloof, verticially slim semi-graph of anabelioids [so that we
may apply Remark 2.4.2]; Γ a finite group of automorphisms of G [i.e., Γ acts
faithfully on G].

If H → G is a morphism of semi-graphs, then we shall write GH for the semi-
graph of anabelioids obtained by pulling back [in the evident sense] the semi-graph
of anabelioids structure of G via H → G. If v (respectively, e; b) is a(n) vertex
(respectively, edge; branch of an edge) of G, then we shall write

G[v] def= GG[v]; G[e] def= GG[e]; G[b] def= GG[b]

[i.e., relative to the natural morphisms G[v] → G, G[e] → G, G[b] → G of §1].

Definition 4.1.

(i) We shall say that Γ acts piecewise faithfully on G if every element γ ∈ Γ
satisfies the following condition: If there exists a vertex v of G such that γ fixes
v as well as all of the branches of closed edges of G that abut to v, then γ is the
identity.

(ii) Any locally trivial morphism of totally aloof, verticially slim semi-graphs
of anabelioids G′ → G whose underlying morphism of semi-graphs is an immer-
sion (respectively, excision; embedding) will also be referred to as an immersion
(respectively, excision; embedding), or, alternatively, as an immersive (respectively,
excisive; embedding) morphism.

(iii) Let H be a totally aloof, verticially slim semi-graph of anabelioids. Then
we shall refer to as a (G,Γ)-structure on H any Γ-orbit [relative to the action of Γ
on G] of locally finite étale morphisms of totally aloof, verticially slim semi-graphs
of anabelioids H → G. We shall refer to any of the morphisms in this orbit as
a structure morphism [relative to this particular (G,Γ)-structure on H]. We shall
say that a (G,Γ)-structure on H is iso-immersive (respectively, iso-excisive) if some
[or, equivalently, every] structure morphism H → G factors as the composite of an
immersion (respectively, excision) H → G′ with a finite étale morphism G′ → G such
that G′ is untangled [so the composites of the immersion H → G′ with the various
H[v] → H, H[e] → H, H[b] → H are all embeddings]. If H → H′ is a locally finite
étale morphism between totally aloof, verticially slim semi-graphs of anabelioids
that are equipped with (G,Γ)-structures, then we shall say that this morphism
is compatible with the (G,Γ)-structures if the composite of this morphism with a
structure morphism of H′ yields a structure morphism of H.

(iv) Let H be a totally aloof, verticially slim semi-graph of anabelioids. Then
we shall refer to as a local (G,Γ)-structure on H the datum of a (G,Γ)-structure
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for each H[c], where c varies among the components [i.e., vertices and edges] of the
underlying semi-graph H satisfying the property that if a branch b of an edge e of H

abuts to a vertex v of H, then the given (G,Γ)-structures on H[v], H[e] coincide on
H[b]. We shall say that a local (G,Γ)-structure is iso-immersive (respectively, iso-
excisive) if each of its constituent (G,Γ)-structures is iso-immersive (respectively,
iso-excisive). We shall say that a local (G,Γ)-structure is verticially iso-excisive if
each of its constituent (G,Γ)-structures at a vertex is iso-excisive. If H → H′ is a
locally finite étale morphism between totally aloof, verticially slim semi-graphs of
anabelioids that are equipped with local (G,Γ)-structures, then we shall say that
this morphism is compatible with the local (G,Γ)-structures if each of the induced
morphisms H[c] → H[c′] (where c is a component of H mapping to a component c′

of H′) is compatible with the given (G,Γ)-structures.

Remark 4.1.1. Let H be a totally aloof, verticially slim semi-graph of anabelioids,
equipped with a local (G,Γ)-structure. Then each component c of H determines
a well-defined Γ-orbit of components of G [by mapping c to G via a structure
morphism]. In particular, if c is an edge, then it makes sense to say that c lies over
an open (respectively, closed) edge of G. In this case, we shall say that c is G-
open (respectively, G-closed). One verifies immediately that any locally finite étale
morphism compatible with given local (G,Γ)-structures maps G-open (respectively,
G-closed) edges to G-open (respectively, G-closed) edges.

Remark 4.1.2. The reason for working with the action of Γ [which at times
may appear to be somewhat cumbersome — cf., e.g., Definition 4.1, (iii), (iv)] is
to “simulate” a stack-theoretic situation, of the sort which occurs naturally, for
instance, when one considers formal localizations of pointed stable “orbicurves”
[cf. the discussion in the Introduction]. In particular, this circumvents the need
to introduce [conceivably even more cumbersome] notions of “orbi-semi-graphs of
anabelioids”, etc.

Next, we assume further that Γ acts piecewise faithfully on G, and that G is
finite, connected, coherent, totally elevated, and totally universally sub-coverticial.
Then we may define a category of localizations of G

Loc(G,Γ)

associated to the pair (G,Γ) as follows: The (finite) closed objects are the connected
finite étale coverings G′ of G, which we regard as being equipped with the result-
ing G- [i.e., (G, {1})-)] structure. The infinite open objects are the semi-graphs of
anabelioids G′′ that appear as connected tempered coverings of G of infinite degree.
We regard infinite open objects as being equipped with the resulting G-structure.
An object that is either closed or infinite open will be called tempered. A finite open
object H is a finite, connected, quasi-coherent, totally elevated, totally universally
sub-coverticial, totally aloof, verticially slim semi-graph of anabelioids, equipped
with an iso-immersive, verticially iso-excisive local (G,Γ)-structure, such that H
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contains at least one non-isolated open edge which is, however, G-closed. The mor-
phisms between tempered objects (respectively, morphisms from a finite open object
to an arbitrary object) are the locally finite étale morphisms of semi-graphs of anabe-
lioids compatible with the G-structure (respectively, local (G,Γ)-structure). There
are no morphisms from a tempered to a finite open object. This completes the
definition of the category Loc(G,Γ).

Definition 4.2.

(i) The (possibly infinite) verticial length (respectively, edge-wise length) of an
object of Loc(G,Γ) is defined to be the cardinality of the set of vertices (respectively,
closed edges) of the underlying semi-graph. An open object of verticial length 1
(respectively, 2) and edge-wise length 0 (respectively, 1) will be referred to as a
nuclear object (respectively, link). A locally trivial morphism from a nuclear object
to a link (respectively, an arbitrary object) will be referred to as an NL-morphism
(respectively, a verticial morphism). The verticial degree of an arrow H → K in
Loc(G,Γ) at a vertex v of H mapping to a vertex w of K is defined to be the
[necessarily finite] degree of the finite étale morphism of anabelioids Hv → Kw
induced by the arrow.

(ii) A graph-localization morphism in Loc(G,Γ) is defined to be a locally triv-
ial morphism which satisfies the condition that it is an isomorphism whenever
its domain is closed. A strict graph-localization morphism is a graph-localization
morphism for which the induced arrow on underlying semi-graphs is injective on
vertices.

Remark 4.2.1. Note that a morphism in Loc(G,Γ) is locally trivial if and only if
it is excisive. [Indeed, sufficiency follows from the definition of the term “excisive”
[cf. Definition 4.1, (ii)]; as for necessity, the “local surjectivity” of branches follows
from the verticial iso-excisiveness of the local (G,Γ)-structures involved; the “local
injectivity” of branches follows, in light of the local triviality assumption, from the
total aloofness of the semi-graphs of anabelioids involved.]

Remark 4.2.2. One verifies immediately from the definitions that every em-
bedding in Loc(G,Γ) is a strict graph-localization morphism. The converse to this
statement, however, may easily be seen to be false in general.

Proposition 4.3. (Basic Properties of the Category of Localizations)

(i) The underlying semi-graph of anabelioids of an object of Loc(G,Γ) is con-
nected, coherent, totally elevated, totally universally sub-coverticial, to-
tally aloof, verticially slim, and of injective type; if, moreover, this object is
finite open, then it is of positive verticial length. The underlying morphism of
semi-graphs of a morphism of Loc(G,Γ) is locally finite étale.

(ii) If H is a finite open object of Loc(G,Γ), then any excision H′ → H of finite
connected graphs of positive verticial length determines an excision H′ def= HH′ → H
of Loc(G,Γ).
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(iii) Let φ : H → K be a morphism in Loc(G,Γ) from a finite open object H to
a tempered object K. Then φ is not an isomorphism of semi-graphs of anabelioids.

(iv) Let H be a finite open object of Loc(G,Γ) such that H is a tree. Then the
local (G,Γ)-structure on H arises from a unique (G,Γ)-structure on H [hence,
in particular, from a [not necessarily unique] G-structure].

(v) Every morphism in Loc(G,Γ) is an epimorphism. In particular, the cat-
egory Loc(G,Γ) is totally epimorphic.

(vi) Every endomorphism of a finite [open or closed] object of Loc(G,Γ) is
an automorphism. Moreover, the automorphism group of any finite object of
Loc(G,Γ) is finite.

Proof. Assertion (i) (respectively, (ii)) is immediate from the definitions [cf. also
Remark 2.4.1] (respectively, [cf. also the fact that the domain of any nonproper
excision admits an edge that maps to an edge of strictly greater verticial cardinal-
ity]). As for assertion (iii), we may assume without loss of generality that K is
finite. Then assertion (iii) follows from the fact that φ necessarily maps an open,
G-closed edge of H [which always exists, by the definition of an open object] to an
open, G-closed edge of K. But this contradicts the easily verified fact that every
G-closed edge of K is closed in K.

Next, we consider assertion (iv). The desired morphism H → G may be con-
structed by gluing together local structure morphisms to G; the fact that such
a gluing operation may be performed — despite the “Γ-ambiguities” involved —
follows from our assumption that H is a tree. Finally, the uniqueness of the (G,Γ)-
structure follows by reducing to the case of nuclear H by assertion (v) below [one
checks immediately that there are no vicious circles in the argument], in which case
the desired uniqueness is immediate from the definitions.

Next, we consider assertion (v). Let φ, ψ : H → K, ξ : H′ → H be morphisms
in Loc(G,Γ) such that φ ◦ ξ = ψ ◦ ξ. By localizing on H [and applying the fact that
any finite étale morphism of slim anabelioids is an epimorphism in the category of
finite étale morphisms of slim anabelioids], one verifies immediately that it suffices
to treat the case where ξ is an NL-morphism [so, in particular, H′ is nuclear; H is a
link]. Write eH for the unique closed edge of H; bH for the branch of eH that abuts
to the unique vertex v of H′. Since φ, ψ then coincide on the edges of H that abut
to v, we conclude that φ, ψ coincide on H[eH ]. In particular, we may also assume
that K is a link. Write eK for the unique closed edge of K.

Now I claim that it suffices to show that φ, ψ coincide on H[eH ]. Indeed, since
H is a link, H[eH ] may be obtained from H by simply omitting the open edges.
Thus, it suffices to check that φ, ψ map each open edge e′ of H to the same open
edge e′′ of K and induce the same morphism He′ → Ke′′ . On the other hand, since
φ, ψ coincide on H[eH ], both of these assertions follow from the fact that K is
totally aloof. This completes the proof of the claim.

To show that φ, ψ coincide on H[eH ], we reason as follows: First, we observe
that [by our definition of the category Loc(G,Γ); the piecewise faithfulness of Γ]
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H[bH ] ; H[eH ]; K[eK ] may be equipped with G-structures that are compatible with
ξ, φ, and ψ. Thus, these G-structures induce injective [by Proposition 2.5, (i)] outer
homomorphisms

π̂1(H′) = π̂1(H[bH ]) ↪→ π̂1(G);

π̂1(H) = π̂1(H[eH ]) ↪→ π̂1(G); π̂1(K) = π̂1(K[eK ]) ↪→ π̂1(G)

which are compatible with the outer homomorphisms

π̂1(ξ) : π̂1(H′) → π̂1(H); π̂1(φ), π̂1(ψ) : π̂1(H) → π̂1(K)

induced by ξ, φ, ψ. This compatibility implies that π̂1(φ), π̂1(ψ) differ by conju-
gation by some element g ∈ π̂1(G). By the coincidence of φ, ψ on H′, however, we
may assume that g centralizes [the image of] π̂1(H′). Thus, by Corollary 2.7, (i),
we conclude that g is the identity, and hence that π̂1(φ), π̂1(ψ) coincide. On the
other hand, by Corollary 2.7, (i), and the fact that K is totally aloof, this implies
that φ, ψ coincide on H[eH ], as desired.

Finally, we consider assertion (vi). Let φ be an endomorphism of a finite [open
or closed] object H. By finiteness, it is immediate that, for some integer M ≥ 1,
φM fixes some vertex v of H and induces the identity on the anabelioid Hv. Thus,
by assertion (v), we conclude that φM is the identity, so φ is an automorphism,
as desired. The finiteness of the automorphism group of H is immediate from the
finiteness of H itself. ©

Proposition 4.4. (Associated Anabelioids) Let H → K, L → K be mor-
phisms between finite [open or closed] objects in Loc(G,Γ). Then:

(i) There exists a finite étale covering K′ → K of K such that the induced
morphism H′ → K′ from any connected component H′ of the pull-back of this finite
étale covering to H is an embedding.

(ii) There exists a finite étale covering K′ → K of K such that K′ embeds
into a finite étale covering G′ → G of G.

(iii) The morphism H → K in Loc(G,Γ) induces a relatively slim π1-mono-
morphism of slim anabelioids

B(H) → B(K)

which completely determines the original morphism H → K [among all mor-
phisms in Loc(G,Γ) from H to K].

(iv) Suppose that H → K, L → K are finite étale. Then every morphism
H → L in Loc(G,Γ) lying over K is finite étale and induces a finite étale morphism
on associated anabelioids [cf. assertion (iii)]. Moreover, the full subcategory of such
finite étale objects over K determines a full embedding:

B(K)0 ↪→ Loc(G,Γ)K
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When K = G, we have Loc(G,Γ)K = Loc(G,Γ); the essential image of this embed-
ding is the full subcategory of closed objects.

Proof. First, we consider assertion (i). Since K is quasi-coherent, it follows from
Proposition 2.5, (i), that we may reduce immediately to the case where the given
morphism H → K is locally trivial. Thus, we are reduced to a problem in graph
theory — a problem solved in §1 — cf. Theorem 1.2 [i.e., “Zariski’s main theorem
for semi-graphs”].

Assertion (ii) may be shown as follows: Let K′′ → K be a combinatorial uni-
versal covering. Although K′′ [i.e., K′′ → K] will not, in general, determine an
object of Loc(G,Γ)K, it can, nevertheless, be thought of as as inductive limit of
Kα ∈ Ob(Loc(G,Γ)K) associated to connected finite sub-semi-graphs Kα of K′′. By
Proposition 4.3, (iv), these Kα admit compatible [i.e., as α varies] morphisms [in
Loc(G,Γ)K] to G. Moreover, the uniqueness, up to finitely many possibilities, [cf.
Proposition 4.3, (iv)] of such a compatible system implies that some finite index
subgroup of Gal(K′′/K) fixes such a compatible system. In particular, we conclude
that, for some finite subcovering K′′′ → K of K′′/K, we obtain a morphism [in
Loc(G,Γ)K] K′′′ → G. Thus, the existence of a K′ → K as asserted follows by
applying assertion (i) to the morphism K′′′ → G.

Next, we consider of assertion (iii). The fact that B(H), B(K) are slim follows
from Corollary 2.7, (ii). This slimness implies that the profinite fundamental groups
of B(H), B(K) have no nontrivial normal finite closed subgroups. Thus, by assertion
(i), to show that B(H) → B(K) is a π1-monomorphism, it suffices to show, under
the further assumption that H → K is an embedding, that any finite étale covering
H′ → H of H may be split by the pull-back of a finite étale covering K′ → K
of K; moreover, by the injectivity of Proposition 2.5, (i), we may even assume
further that H′ → H is locally trivial. But then the existence of a covering K′ → K
as desired follows from the [easily verified] assertion that “a finite graph-covering
of a connected sub-semi-graph of a given connected semi-graph may be extended
to a finite graph-covering of the given connected semi-graph” [cf. the proof of
Proposition 2.5, (i)]. This completes the proof of the fact that B(H) → B(K) is
a π1-monomorphism. Next, we show that B(H) → B(K) is relatively slim and
determines H → K. By Proposition 4.3, (v), we reduce immediately to the case
where H is nuclear. Then our conclusion follows from Corollary 2.7, (i), (ii), (iii).
This completes the proof of assertion (iii).

Finally, assertion (iv) is a formal consequence of assertion (iii); Proposition
4.3, (iii); and the definitions. ©

Proposition 4.5. (The Subcategory of Tempered Objects) Let H, K be
tempered objects of Loc(G,Γ). Then every morphism H → K in Loc(G,Γ) is a
tempered covering. In particular, we have a natural full embedding

Btemp(G)0 ↪→ Loc(G,Γ)

whose essential image is the full subcategory of tempered objects.
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Proof. Indeed, by Proposition 3.6, (iv), (v), we obtain a morphism of temperoids

Btemp(H) → Btemp(K)

that is compatible with the étale morphisms of temperoids Btemp(H) → Btemp(G),
Btemp(K) → Btemp(G) induced by the G-structures. It thus follows formally that
the morphism Btemp(H) → Btemp(K) is étale, hence corresponds to some tempered
covering H → K. But this tempered covering must coincide with the original
morphism H → K. Indeed, both morphisms induce the same arrow Btemp(H) →
Btemp(K). Thus, if v is a vertex of H, and K′ → K is an excision with finite open
domain such that the restrictions to H[v] of the two morphisms in question both
factor through K′, then we conclude that these two morphisms both induce the
same arrow B(Hv) → B(K′) [cf. Proposition 2.5, (i); Corollary 2.7, (i)], so we
conclude by Proposition 4.3, (v); Proposition 4.4, (iii). ©

Proposition 4.6. (Valuative Criterion for Finite Étale Morphisms)
Let φ : H → K be a morphism between finite objects in Loc(G,Γ). Then φ is a
finite étale morphism if and only if the following condition is satisfied: for every
NL-morphism H0 → H1 and every commutative diagram

H0 −→ H1⏐⏐�
⏐⏐�

H −→ K

in Loc(G,Γ), there exists a commutative diagram

H0 −→ H2⏐⏐�id

⏐⏐�
H0 −→ H1

— where the horizontal arrows are NL-morphisms — such that the composite com-
mutative diagram

H0 −→ H2⏐⏐�
⏐⏐�

H −→ K
admits a morphism H2 → H in Loc(G,Γ) that makes the resulting triangles in this
diagram commute.

Proof. First, we consider necessity. By pulling back the finite étale morphism
H → K to H1, we reduce immediately to the case where H1 = K. But then the fact
that the condition in question is satisfied follows immediately from the definition
of a finite étale morphism.
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Next, we consider sufficiency. By base-changing H → K by some finite étale
morphism as in Proposition 4.4, (i), we reduce immediately to the case where
H → K is an embedding. But then the condition in question implies that H → K

is surjective, which implies that H → K is an isomorphism [hence, in particular,
finite étale], as desired. ©

Proposition 4.7. (Domination of Links) For i = 1, 2, let H0 → Hi be
an NL-morphism. Suppose that the unique closed edge of Hi is the image of the
same [i.e., for i = 1, 2] edge of H0. Then there exists an NL-morphism H0 → H3

which fits into commutative diagrams

H0 −→ H3⏐⏐�id

⏐⏐�
H0 −→ Hi

for i = 1, 2.

Proof. First, we observe that we may choose G-structures on H1, H2 that coincide
when restricted to H0 [cf. Proposition 4.3, (iv)]. In the following, “i” will always
range over the elements of the set {1, 2}. Now by the definition of Loc(G,Γ), there
exists a finite Galois étale covering

G′ → G

together with finite étale subcoverings G′ → Gi → G [for i = 1, 2] such that G′, Gi

are untangled; there exists an embedding Hi → Gi compatible with the G-structures.
Then [by conjugating Gi appropriately] we may assume that there exists a vertex
v′ (respectively, edge e′) of G′ whose image in Gi is equal to the image of the
unique vertex of H0 (respectively, the unique closed edge of Hi) via the composite
morphism H0 → Hi → Gi (respectively, Hi → Gi), and, moreover, that I

⋂
H1 =

I
⋂
H2, where we write

Hi ⊆ Gal(G′/G)

for the subgroup determined by the subcovering Gi → G and

I ⊆ Gal(G′/G)

for the isotropy subgroup associated to v′. Set H3
def= I

⋂
H1 = I

⋂
H2; write

G3 → G for the subcovering determined by H3. Then if we take H3 to be the link
contained in G3 which is determined by the images v3, e3 of v′, e′, respectively, then
the natural morphism G3 → Gi restricts to a morphism

H3 → Hi

with the desired properties. ©
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Remark 4.7.1. Note that by applying Proposition 4.7 in an iterative fashion,
one may construct an NL-morphism with domain H0 that dominates an arbitrary
given finite collection of NL-morphisms H0 → Hi, for i = 1, . . . , n [i.e., such that
the unique closed edge of each Hi is the image of the same edge of H0]. Moreover,
given any pair of such dominating NL-morphisms H0 → Ha, H0 → Hb, there exists
[again by Propsition 4.7] an NL-morphism H0 → Hc that dominates H0 → Ha,
H0 → Hb. Observe that in this situation, although a priori, we obtain two arrows
Hc → Hi [i.e., one passing through Ha, the other passing through Hb], these two
arrows necessarily coincide [by Proposition 4.3, (v)]. Thus, in summary, for each
edge e of H0, we obtain a natural system of dominating NL-morphisms with domain
H0, each of whose codomains is a link with closed edge given by the image [via the
NL-morphism under consideration] of e.

Theorem 4.8. (Category-Theoreticity of Categories of Localizations)
For i = 1, 2, let Gi be a finite, connected, coherent, totally elevated, totally
universally sub-coverticial, totally aloof, verticially slim graph of an-
abelioids, with underlying graph Gi; let Γi be a finite group that acts piecewise
faithfully on Gi. Suppose that Gi has at least one edge. Write

Loc(Gi,Γi)fin ⊆ Loc(Gi,Γi)

for the full subcategory determined by the finite objects. Then the categories
Loc(Gi,Γi)fin (respectively, Loc(Gi,Γi)) are slim; every equivalence of categories

Φ : Loc(G1,Γ1)fin ∼→ Loc(G2,Γ2)fin (respectively, Φ : Loc(G1,Γ1)
∼→ Loc(G2,Γ2))

arises, up to unique isomorphism, from a unique isomorphism of graphs of
anabelioids

G1
∼→ G2

together with a compatible isomorphism Γ1
∼→ Γ2.

Proof. First, we reconstruct the underlying semi-graph of anabelioids of an object
H of C def= Loc(Gi,Γi)fin (respectively, C def= Loc(Gi,Γi)) [where i = 1, 2] category-
theoretically as follows: The objects of verticial length 1 are precisely the indissectible
[cf. §0] objects. An object H of verticial length 1 is nuclear if and only if the domain
of every morphism with codomain H is of verticial length 1. If H is nuclear, then
the result of applying “⊥” to the category CH of objects and morphisms over H is
a Galois category isomorphic to the anabelioid B(H). The verticial morphisms are
precisely the morphisms with nuclear domain which are, moreover, minimal-adjoint
[cf. §0] to the morphisms with nuclear codomain. The vertices of the underlying
semi-graph of an object H are precisely the isomorphism classes, over H, of verticial
morphisms K → H. Thus, in particular, we conclude that Φ induces a bijection
between the sets of vertices of the underlying semi-graphs of corresponding objects,
together with compatible isomorphisms of the various constituent anabelioids at the
vertices; moreover, these bijections and isomorphisms are compatible with arrows
in C. In particular, Φ preserves locally trivial morphisms.
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An object H is a link if and only if H is of verticial length 2, and, moreover,
any locally trivial morphism K → H, where K is also of verticial length 2, is an
isomorphism. The closed edges of the underlying semi-graph of an object H are
precisely the isomorphism classes, over H, of locally trivial morphisms K → H,
where K is a link. An [open] edge of a nuclear object H is a system of compatible
closed edges of NL-morphisms H → K, as we vary the NL-morphism as described
in Remark 4.7.1. Thus, we conclude that Φ induces an isomorphism between the
underlying semi-graphs of corresponding objects; moreover, these isomorphisms are
compatible with arrows in C. Note that this implies, for instance, that Φ preserves
the embeddings.

In particular, Φ preserves the finite objects [i.e., objects of finite verticial
length], as well as the NL-morphisms. Moreover, by Proposition 4.6, Φ preserves
the finite étale morphisms between finite objects. Thus, by considering the isotropy
subgroups associated to the various vertices and edges in the Galois group of a fi-
nite étale Galois covering, one sees that Φ induces an isomorphism between the
underlying semi-graphs of anabelioids of corresponding finite objects in a fashion
that is compatible with arrows in C. Moreover, these induced isomorphisms may be
extended immediately to the case of infinite objects [i.e., when such objects exist in
C] by representing such objects as inductive limits of inductive systems consisting
of finite objects and embeddings.

Next, we observe that the closed objects H of C are precisely the finite objects
whose underlying semi-graph H is a graph; Gi is the unique closed object of C, up
to isomorphism, to which every other closed object maps.

Next, we observe that one may recover the various local (G,Γ)-structures on
open objects as follows: First, we note that we may reconstruct the automorphisms
Gi → Gi in Γi by localizing on Gi. That is to say, if φ : H → Gi is a morphism with
finite open domain [where we note that such a φ always exists, for instance, if H is
a tree — cf. Proposition 4.3, (iv)], then by Proposition 4.3, (v), the Γi-span of φ is
precisely the set of all morphisms H → Gi in C. Moreover, since Γi acts piecewise
faithfully, it follows that the cardinality of this set is always equal to the order of Γi.
Thus, by taking H to be various localizations of Gi and then gluing, we recover first
the set of morphisms of semi-graphs of anabelioids Gi → Gi arising from elements
of Γi and then the group structure [by composing morphisms of semi-graphs of
anabelioids].

Thus, in summary, we have shown that Φ induces an isomorphism of semi-
graphs of anabelioids

G1
∼→ G2

together with a compatible isomorphism Γ1
∼→ Γ2. Moreover, we have shown that

Φ induces an isomorphism between the underlying semi-graph of anabelioids of
corresponding objects in a fashion that is compatible with arrows in C, as well as
with the given local (G,Γ)-structures. Thus, it is an easily verified tautology that
the equivalence Φ is isomorphic to the equivalence induced by the isomorphisms
G1

∼→ G2, Γ1
∼→ Γ2.

Finally, it remains to verify that C is slim. Let A ∈ Ob(C); suppose that ψ is an
automorphism of the natural functor CA → C. Concretely speaking, this means that
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for every object β : B → A of CA, we are given an automorphism ψβ ∈ AutC(B)
in such a way that the assignment β �→ ψβ is compatible with the image in C of
arrows of CA. Since A is arbitrary, it suffices [by considering, for given β : B → A,
the automorphism of the resulting composite functor CB → CA → C induced by ψ]
to show that ψA [i.e., the automorphism assigned to the identity A → A] is the
identity. By considering β with nuclear domain, we conclude immediately that ψβ
fixes the set of vertices of A. Thus, since Gi is totally aloof, we reduce to the case
where A is nuclear.

Now sinceA is nuclear, to show that ψ is trivial, it suffices to show the following:
If v be a vertex of Gi; Γv ⊆ Γi is the corresponding isotropy subgroup; and Hv is
the extension of Γv by π̂1((Gi)v) arising from the action of Γv on (Gi)v, then the
profinite group Hv is slim. But this is an immediate formal consequence of the fact
that Gi is verticially slim and totally aloof, together with our assumption that the
action of Γi on Gi is piecewise faithful. ©

Remark 4.8.1. Returning to the notation used in the discussion preceding
Theorem 4.8, suppose that the semi-graph G has at least one vertex. Write H ⊆ G

for the maximal subgraph [cf. §1] of G. Then observe that [whenever Loc(G,Γ) is
defined] if we set H def= GH, then Γ acts naturally and piecewise faithfully on H;
Loc(H,Γ) is defined; and we have natural equivalences

Loc(G,Γ)fin ∼→ Loc(H,Γ)fin ; Loc(G,Γ) ∼→ Loc(H,Γ)

[defined by simply omitting all G-open edges]. Thus, there is no essential loss of
generality in restricting Theorem 4.8 to the case where G is a graph.

Remark 4.8.2. One verifies easily that [whenever Loc(G,Γ) is defined] the
following five conditions are equivalent:

(i) G has no closed edges.

(ii) G is a tree [cf. §1] with at most one vertex.

(iii) Loc(G,Γ)⊥ is a Galois category.

(iv) Every monomorphism of Loc(G,Γ) is an isomorphism.

(v) Every object of Loc(G,Γ) is closed.

Moreover, if any of these conditions is satisfied, then there is a natural equivalence

Loc(G,Γ)⊥ ∼→ B(G)

— so, in particular, Loc(G,Γ)⊥ does not depend on the action of Γ [which is, at
any rate, trivial, if G admits at least one vertex]. Thus, since equivalences between
connected anabelioids are “well-understood”, there is no essential loss of generality
in excluding from Theorem 4.8 the case in which these conditions are satisfied.
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Remark 4.8.3. In the resp’d case of Theorem 4.8 [i.e., where one includes the
infinite objects], if one assumes further that Gi is totally estranged, then the proof of
Theorem 4.8 may be simplified somewhat, by applying Proposition 4.5, Corollary
3.9.

Remark 4.8.4. In the notation of the proof of Theorem 4.8, if an object A of C
is nuclear, then the category C⊥

A is easily verified to be a connected anabelioid; the
category C[A]⊥ [cf. §0] is easily verified to be a “connected quasi-anabelioid” [cf.
Remark A.4.2 of the Appendix].
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Section 5: Arithmetic Semi-graphs of Anabelioids

In this §, we consider semi-graphs of anabelioids equipped with a continuous
action of a profinite group, which we think of as an “arithmetic structure” on
the semi-graph of anabelioids. We then proceed to study a certain “arithmetic
analogue” of the theory of maximal compact subgroups of §3.

Definition 5.1.

(i) Let G be a connected, coherent, totally aloof, verticially slim semi-graph of
anabelioids. Let A be a slim connected anabelioid, equipped with a basepoint, so
we may speak of π̂1(A). We shall refer to as an action of π̂1(A) on G the datum of
a homomorphism

ρG : π̂1(A) → Aut(G)

[where Aut(G) denotes the group of automorphisms of G as a totally aloof, verticially
slim semi-graph of anabelioids]. Note that any such pair (G, ρG) admits an “inner
action” by π̂1(A) — i.e., by letting π̂1(A) act on π̂1(A) by conjugation and on G
via ρG. We shall say that an action of π̂1(A) on G is continuous if, for some open
subgroup H ⊆ π̂1(A), the following conditions are satisfied:

(a) π̂1(A) is topologically finitely generated.

(b) The semi-graph G is locally finite.

(c) The action of H on G is trivial; the resulting outer homomorphism
H → Out(π̂1(Gv)), where v ranges over the vertices of G, is continuous
[i.e., relative to the natural profinite group topology on Out(π̂1(Gv))].

(d) There is a finite set V of vertices of G such that for every vertex w of
G, there exists a v ∈ V and an isomorphism of semi-graphs of anabelioids
G[v] ∼→ G[w] that is compatible with the action of H on both sides.

(ii) A triple G = (G,A, ρG) as in (i), where ρG is a continuous action of π̂1(A)
on G, will be referred to as a connected arithmetic semi-graph of anabelioids (over
A). Suppose that G = (G,A, ρG) is a connected arithmetic semi-graph of anabe-
lioids. Then we shall refer to G (respectively, A; ρG) as the geometric component
(respectively, arithmetic component; arithmetic action) of G. The arithmetic action
of an arithmetic semi-graph of groups induces [what, by abuse of terminology, we
shall also refer to as] “arithmetic actions” on various objects [e.g., the underlying
semi-graph, etc.] associated to this arithmetic semi-graph of groups.

(iii) A [not necessarily connected] arithmetic semi-graph of anabelioids G is de-
fined to be a formal collection of connected arithmetic semi-graphs of anabelioids;
each object in this collection will be referred to as a connected component of G.
Note that the geometric components of each of the connected components of G to-
gether determine a natural geometric component [i.e., a (not necessarily connected)
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semi-graph of anabelioids] of G. We shall say that an arithmetic semi-graph of an-
abelioids is finite (respectively, elevated at a vertex; totally elevated; sub-coverticial
at a closed edge; universally sub-coverticial at a closed edge; totally sub-coverticial;
totally universally sub-coverticial; aloof at an edge; totally aloof; estranged at an
edge; totally estranged) if its geometric component is so.

(iv) Given two connected arithmetic semi-graphs of anabelioids G′
= (G′,A′, ρG′),

G = (G,A, ρG), a morphism of connected arithmetic semi-graphs of anabelioids

G′ → G

consists of a pair
π̂1(A′) → π̂1(A); G′ → G

[i.e., a continuous homomorphism of profinite groups and a morphism of semi-
graphs of anabelioids] which is compatible with ρG′ , ρG , and which we regard up
to composition with the inner action of π̂1(A) on (G, ρG). We shall refer to the
morphism G′ → G (respectively, the induced morphism of anabelioids A′ → A) as
the geometric (respectively, arithmetic) component of the morphism. [In particular,
if we restrict our attention to G′ → G whose geometric component is locally open,
then we may work with such morphisms as if they are “morphisms in a category”
— cf. Remark 2.4.2.] A morphism of [not necessarily connected] arithmetic semi-
graphs of anabelioids

G′ → G
is defined to be a collection of morphisms, one from each connected component of
G′

to some connected component of G. We shall say that G′ → G is finite étale
(respectively, tempered; locally trivial; locally open; locally finite étale; immersive;
excisive; an embedding; BC-finite étale) if each of its geometric components is finite
étale (respectively, a tempered covering [a term which we recall only makes sense
when G is countable]; locally trivial; locally open; locally finite étale; immersive; ex-
cisive; an embedding; an isomorphism); each of its arithmetic components is finite
étale (respectively, finite étale; an isomorphism; a composite of a π1-epimorphism
with a finite étale morphism; finite étale; an isomorphism; an isomorphism; an iso-
morphism; finite étale); and its induced map on connected components has finite
[but possibly empty] fibers (respectively, has countable fibers; is arbitrary; is ar-
bitrary; is arbitrary; is arbitrary; is arbitrary; is injective; has finite [but possibly
empty] fibers). [Here, the abbreviation “BC” is to be understood to stand for the
phrase “base of constants”.]

Proposition 5.2. (Arithmetic Tempered Coverings) Let G = (G,A, ρG) be
a connected arithmetic semi-graph of anabelioids. Then:

(i) Every tempered covering of G appears as the geometric component of a
tempered covering of G.

(ii) Suppose that H → G, K → G are tempered coverings with isomorphic
geometric components. Then there exist BC-finite étale coverings H′ → H, K′ → K
such that H′

, K′
are isomorphic as tempered coverings over G.
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(iii) Let us denote by
Btemp(G)

the category whose objects are tempered morphisms G′ → G and whose mor-
phisms are tempered morphisms over G. Then Btemp(G) is a connected tem-
peroid. Similarly, the full subcategory

B(G) ⊆ Btemp(G)

determined by the finite étale coverings forms a connected anabelioid. If G is
totally elevated, then Btemp(G) temp-slim, and B(G) is slim.

(iv) Write:

Πtemp

G
def= πtemp

1 (G) def= πtemp
1 (Btemp(G)); Πtemp

G
def= πtemp

1 (Btemp(G)) = πtemp
1 (G)

ΠG
def= π̂1(G) def= π̂1(B(G)); ΠG

def= π̂1(B(G)) = π̂1(G)

Then there are natural morphisms

Btemp(G) → Btemp(G) → A�; B(G) → B(G) → A

which induce natural exact sequences:

1 → Πtemp
G → Πtemp

G → ΠA → 1

1 → ΠG → ΠG → ΠA → 1

We shall refer to ΠG (respectively, Πtemp
G ; ΠG ; Πtemp

G ; ΠA
def= π̂1(A)) as the geo-

metric (respectively, geometric tempered; arithmetic; arithmetic tempered;
BC-) fundamental group of G.

Proof. Assertions (i), (ii) follow from the various finiteness assumptions in our
definition of a “continuous action” [cf. Definition 5.1, (i); the fact that G is coherent].
[Note, in particular, that one must make use of the assumption of Definition 5.1,
(i), (d), in order to verify assertions (i), (ii) for arbitrary infinite G.] Except for
the final sentence of assertion (iii), assertions (iii), (iv) follow immediately from the
definitions and assertions (i), (ii); the final sentence of assertion (iii) follows from
Corollary 2.7, (ii). ©

Remark 5.2.1. At this point, one could proceed to develop a theory of “cate-
gories of arithmetic localizations” of arithmetic semi-graphs of anabelioids, in the
style of §4. Although this is quite possible [we leave the details to the enthusiastic
reader!], it is rather cumbersome, so instead we restrict ourselves [cf. Remark 4.8.3]
to considering the categorical representation of arithmetic semi-graphs of anabe-
lioids afforded by the “arithmetically maximal compact subgroups” [cf. Definition
5.3 below] of the tempered fundamental groups of Proposition 5.2, in the style of
Corollary 3.9.
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Let G be a connected, countable, totally elevated, totally estranged arithmetic
semi-graph of anabelioids, with underlying semi-graph G. In the notation of Propo-
sition 5.2, we would like to consider compact subgroups of the arithmetic tempered
fundamental group Πtemp

G . Note that for every vertex v of G, we obtain an associ-
ated decomposition group

Πtemp

G,v ⊆ Πtemp

G

[well-defined up to conjugation in Πtemp

G ], which [by Corollary 2.7, (i), (iii); the

injection of Proposition 3.6, (iii)] may be thought of as the commensurator in Πtemp

G

of Πtemp
G,v

def= Πtemp

G,v
⋂

Πtemp
G . Similarly, if b is a branch of an edge e of G that abuts

to v, then we obtain a decomposition group

Πtemp

G,b ⊆ Πtemp

G,v ⊆ Πtemp

G

[well-defined up to conjugation in Πtemp

G ], which [since G is totally estranged, hence,

in particular totally aloof] may be thought of as the commensurator in Πtemp

G,v of

Πtemp
G,b

def= Πtemp

G,b
⋂

Πtemp
G .

Definition 5.3.

(i) A closed subgroup of Πtemp

G will be called arithmetically ample if it surjects

onto an open subgroup of ΠA. A compact subgroup of Πtemp

G will be called arith-
metically maximal if it is maximal among arithmetically ample compact subgroups
of Πtemp

G .

(ii) Let e be an edge of G. We shall say that e is arithmetically estranged if,
for every vertex v to which some branch b of e abuts and every g ∈ Πtemp

G,v , the

intersection in Πtemp

G,v of Πtemp

G,b with any subgroup of the form g ·Πtemp

G,b′ · g−1, where

either b′ 
= b is a branch of an edge that abuts to v or b′ = b and g /∈ Πtemp

G,b , fails
to be arithmetically ample. If every edge of G is arithmetically estranged, then we
shall say that G is totally arithmetically estranged.

(iii) We shall refer to subgroups of Πtemp

G of the form “Πtemp

G,v ” (respectively,

“Πtemp

G,b ”) as verticial (respectively, edge-like).

Remark 5.3.1. Note that all verticial and edge-like subgroups of Πtemp

G are

compact and arithmetically ample. Also, the intersection with Πtemp
G of a(n) verticial

(respectively, edge-like) subgroup of Πtemp

G is a(n) verticial (respectively, edge-like)

subgroup of Πtemp
G in the sense of Theorem 3.7.

The main result of the present §5 is the following “arithmetic analogue” of
Theorem 3.7, Corollary 3.9:
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Theorem 5.4. (Arithmetically Maximal Compact Subgroups) Let G, H
be connected, countable, totally elevated, totally arithmetically estranged
arithmetic graphs of anabelioids, with the same arithmetic component A. Sup-
pose, moreover, that the arithmetic actions on the underlying graphs G, H do not
switch the branches of any edge. Then:

(i) Every arithmetically ample compact subgroup of πtemp
1 (G) is contained in

at least one verticial subgroup. If an arithmetically ample compact subgroup of
πtemp

1 (G) is contained in more than one verticial subgroup, then it is contained
in precisely two verticial subgroups, whose intersection forms an edge-like sub-
group.

(ii) The arithmetically maximal compact subgroups of πtemp
1 (G) are pre-

cisely the verticial subgroups. The arithmetically ample intersections of
two distinct arithmetically maximal compact subgroups of πtemp

1 (G) are precisely
the edge-like subgroups.

(iii) Applying “Btemp(−)” determines a natural bijective correspondence be-
tween locally open morphisms of arithmetic semi-graphs of anabelioids

G → H

over A and “arithmetically quasi-geometric” morphisms of temperoids
Btemp(G) → Btemp(H) over A�, i.e., morphisms that arise from a continuous mor-
phism Πtemp

G → Πtemp

H that maps any arithmetically maximal compact subgroup

K1 ⊆ Πtemp

G (respectively, arithmetically ample intersection K1

⋂
H1 of two distinct

arithmetically maximal compact subgroups K1,H1 ⊆ Πtemp

G ) to an open subgroup of

some arithmetically maximal compact subgroup K2 ⊆ Πtemp

H (respectively, of some
arithmetically ample intersection K2

⋂
H2 of two distinct arithmetically maximal

compact subgroups K2,H2 ⊆ Πtemp

H ).

Proof. Modulo the evident “arithmetic translation” — e.g., “nontrivial” is to be
replaced by “arithmetically ample” and “estranged” by “arithmetically estranged”
— the proofs are entirely parallel to those of Theorem 3.7, Corollary 3.9. ©

Before proceeding, we review the following well-known result:

Lemma 5.5. (Decomposition Groups of Proper Hyperbolic Curves
over Finite Fields) Let X be a proper hyperbolic curve over a finite field
k. Write ΠX for the étale fundamental group of X; ΠX � Gk for the natural
augmentation to the absolute Galois group of k. Then a k-valued point x ∈ X(k)
is determined by the outer homomorphism σx : Gk → ΠX that it induces.

Proof. Write J for the Jacobian of X; assume for simplicity that there exists
a point x0 ∈ X(k). Then x0 determines a closed embedding X ↪→ J whose in-
duced morphism on étale fundamental groups ΠX � ΠJ may be identified with
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the quotient of ΠX by the commutator subgroup of the kernel of the surjection
ΠX � Gk. Thus, it suffices to show that a point a ∈ J(k) is determined by the
outer homomorphism σa : Gk → ΠJ that it induces.

Write σ0 : Gk → ΠJ for the outer homomorphism induced by the identity
element of J(k). Then the difference between σa and σ0 may be thought of as
an element of ηa ∈ H1(k, T ), where we define T to be the kernel of the natu-
ral surjection ΠJ � Gk. Note, moreover, that we have a natural isomorphism
T

∼→ Hom(Q/Z, J(k)), where k is the algebraic closure of k determined by the
basepoint of k implicit in the discussion. On the other hand, by well-known general
nonsense [cf., e.g., [Naka], Claim (2.2); [NTs], Lemma (4.14); [Mzk2], the Remark
preceding Definition 6.2], there is a natural isomorphism H1(k, T ) ∼→ J(k), which
maps ηa to a. In particular, ηa, hence also σa, is sufficient to determine a itself. ©

Example 5.6. Pointed Stable Curves over p-adic Local Fields II. We work
in the notation of Example 3.10. Also, Suppose that we are given an exhaustive
sequence of open characteristic [hence normal] subgroups of finite index

. . . ⊆Mi ⊆ . . . ⊆ Π

[where i ranges over the positive integers] of Π such that Ni = Mi

⋂
Δ; write

Πi
def= Π/Mi. Thus, Mi determines a finite log étale covering of X log

K ; we assume
that Mi has been chosen so that this covering has stable reduction over the ring of
integers of the finite extension of K that it determines. Then the outer action of
Mi on Ni determines an arithmetic action on the semi-graphs of anabelioids Gi, Gc

i

of Example 3.10; that is to say, we obtain arithmetic semi-graphs of anabelioids

Gi; Gc

i

with underlying semi-graphs of anabelioids Gi, Gc
i , respectively, equipped with nat-

ural actions by Πi. Moreover, Gi, Gc

i are connected, finite, totally elevated, and
totally universally sub-coverticial [cf. Example 3.10]. Also, it follows immediately
from Lemma 5.5 that Gi, G

c

i are totally arithmetically estranged. In particular, [at
least for i sufficiently large] Gi satisfies the hypotheses of Theorem 5.4.

Now I claim that the generalized morphisms of arithmetic graphs of anabelioids

Gi → Gj

[where i ≥ j] — i.e., the generalized morphisms of graphs of anabelioids of Example
3.10 considered together with the natural compatible arithmetic actions on the
domain and codomain — may be recovered group-theoretically from the associated
morphisms of tempered fundamental groups

Πtemp

Gi
→ Πtemp

Gj

as follows: First, we consider the functor Cat(Gi) → Cat(Gj). Now observe that if v
(respectively, e) is a(n) vertex (respectively, edge) of Gi such that the image in Πtemp

Gj
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of the verticial (respectively, edge-like) subgroup determined by v (respectively, e)
is contained in a [necessarily unique] edge-like subgroup H of Πtemp

Gj
, then this

functor maps v (respectively, e) to the edge of Gj determined by H. On the other
hand, if v (respectively, e) is a(n) vertex (respectively, edge) of Gi such that the
image in Πtemp

Gj
of the verticial (respectively, edge-like) subgroup determined by v

(respectively, e) is not contained in an edge-like subgroup of Πtemp

Gj
, but is contained

in a verticial subgroup H of Πtemp

Gj
, then this functor maps v (respectively, e) to

the vertex of Gj determined by H [cf. Lemma 5.5 in the case where this image
fails to be an open subgroup of H]. That these characterizations make sense and,
moreover, do indeed yield the map on objects determined by the functor in question
follows from Theorem 5.4, (i), (ii); Lemma 5.5. The remainder of the data necessary
to define the generalized morphism of arithmetic graphs of anabelioids Gi → Gj is
determined naturally by considering the maps between the various verticial and
edge-like subgroups of Πtemp

Gi
, Πtemp

Gj
. This completes the proof of the claim.

Moreover, by a similar argument, together with the technique of Corollary
3.11, one may reconstruct the generalized morphisms of arithmetic semi-graphs of
anabelioids

Gc

i → Gc

j

[where i ≥ j] group-theoretically from the corresponding morphisms of tempered
groups Mi →Mj .

Remark 5.6.1. There is an immediate profinite generalization of the group-
theoretic reconstruction in Example 5.6 of the generalized morphism of arithmetic
graphs of anabelioids

Gc

i → Gc

j

[where i ≥ j] from the corresponding morphism of profinite groups:

M∧
i →M∧

j

[where the “∧” denotes profinite completion]. Indeed, this follows by applying [in
place of Theorem 5.4, the technique of Corollary 3.11] the fact that the “dual semi-
graph with compact structure of the geometric special fiber” may be recovered even
in the profinite case, from the Galois action on the geometric profinite fundamental
group [cf. [Mzk3], Lemma 2.3].
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Section 6: Tempered Anabelian Geometry

In this §, we observe that the theory of Galois sections in absolute anabelian
geometry [cf. [Mzk8]] admits a fairly straightforward generalization to the case of
tempered fundamental groups.

Let K be a finite extension of Qp; K an algebraic closure of K; XK a hyperbolic

curve over K. Let us write XK

def= XK ×K K;

πtemp
1 (XK)

for the tempered fundamental group of [André], §4 [cf. also the group “πtemp
1 (X log

K )”
of Examples 3.10, 5.6]. Thus, πtemp

1 (XK) is a tempered topological group [in the sense
of Definition 3.1, (i)] and fits into a natural exact sequence:

1 → πtemp
1 (XK) → πtemp

1 (XK) → GK → 1

[where GK
def= Gal(K/K); we write πtemp

1 (XK) for the geometric tempered funda-

mental group of XK , i.e., the tempered fundamental group of XK ×K K̂; the “∧”
denotes the p-adic completion]. To simplify the notation, let us write:

Πtemp
XK

def= πtemp
1 (XK); Δtemp

X
def= πtemp

1 (XK)

In the following discussion, we shall denote the profinite completion of a group by
means of a “∧”. Also, we shall write ΠXK

def= Π̂temp
XK

; ΔX
def= Δ̂temp

X . It follows from
the well-known residual finiteness of discrete free groups [cf., e.g., Corollary 1.7]
that we have natural injections Πtemp

XK
↪→ ΠXK , Δtemp

X ↪→ ΔX [cf. the discussion of
[André], §4.5].

Lemma 6.1. (Profinite Normalizers)

(i) Let F be a finitely generated [discrete] free group of rank > 1. Then
N

�F (F ) = F .

(ii) We have: NΔX (Δtemp
X ) = Δtemp

X .

(iii) We have: NΠXK
(Πtemp

XK
) = Πtemp

XK
.

Proof. Assertion (i) (respectively, (ii)) is the content of [André], Lemma 3.2.1
(respectively, [André], Corollary 6.2.2). Assertion (iii) follows immediately from
assertion (ii). ©

Definition 6.2. Let F , F1, F2 be tempered groups [cf. Definition 3.1, (i)]. Then:

(i) We shall refer to a [not necessarily closed] subgroupH ⊆ F as being of DFG-
type [i.e., “dense, finitely generated type”] if it is dense in some open subgroup of
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the profinite completion F̂ , and, moreover, for any open normal subgroup J ⊆ F ,
the image of H in F/J is finitely generated.

(ii) We shall refer to a [not necessarily closed] subgroup H ⊆ F as being of
DOF-type [i.e., “dense in an open subgroup of finite index type”] if it is dense in
some open subgroup of F of finite index.

(iii) A continuous homomorphism F1 → F2 will be said to be of DFG-type (re-
spectively, of DOF-type) if its image is a subgroup of F2 of DFG-type (respectively,
of DOF-type).

Lemma 6.3. (Dense Subgroups)

(i) Let F be a finitely generated [discrete] free group of rank > 1. Suppose
that H ⊆ F is a finitely generated subgroup which is dense in F̂ . Then H = F .

(ii) Let F be either Πtemp
XK

or Δtemp
X ; write F̂ for the profinite completion of F .

Then a subgroup H ⊆ F is of DFG-type if and only if it is of DOF-type.

(iii) Let F , F̂ be as in (ii). Suppose that F1, F2 ⊆ F are subgroups of DOF-
type which are dense in F̂ . Then, for any f ∈ F̂ such that f · F1 · f−1 = F2, it
follows that f ∈ F .

Proof. Assertion (i) follows immediately from the “structure theory of finitely
generated subgroups of free groups of finite rank” [cf., e.g., Corollary 1.6, (ii)]. As
for assertion (ii), let us first observe that by replacing F by an open subgroup of F
of finite index containing H, we may assume that H is dense in F̂ . Now sufficiency
is immediate. To prove necessity, we note that it follows from assertion (i), together
with the assumption that H is dense in F̂ , that the image of H in each F/J is equal
to F/J , i.e., that H is dense in F , as desired. Finally, assertion (iii) follows from
Lemma 6.1, (i) [cf. the proofs of Lemma 6.1, (ii), (iii)]. ©

Now suppose that L ⊆ K is also a finite extension of Qp; YL is a hyperbolic
curve over L. We shall use similar notation for the various fundamental groups
[i.e., tempered, profinite étale, etc.] associated to YL to the notation used thus far
for XK . Now we have the following result [cf. [Mzk8], Theorem 1.2]:

Theorem 6.4. (Tempered Anabelian Theorem for Hyperbolic Curves
over Local Fields) The tempered fundamental group functor determines a bijec-
tion between the set of dominant morphisms of schemes

XK → YL

and the set of outer homomorphisms of DOF-type φ : Πtemp
XK

→ Πtemp
YL

that fit
into a commutative diagram

Πtemp
XK

φ−→ Πtemp
YL⏐⏐�
⏐⏐�

GK −→ GL
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for which the induced morphism GK → GL is an open immersion [i.e., an iso-
morphism onto an open subgroup of GL] which arises from an embedding of fields
L ↪→ K.

Proof. One verifies immediately from the definition of the “tempered fundamental
group” that any Πtemp

XK
→ Πtemp

YL
that arises geometrically is of DFG-type, hence,

by Lemma 6.3, (ii), of DOF-type. On the other hand, given a homomorphism φ :
Πtemp
XK

→ Πtemp
YL

of DOF-type, profinite completion yields an open homomorphism
φ̂ : ΠXK → ΠYL , so by [Mzk8], Theorem 1.2 [i.e., in essence, [Mzk2], Theorem A],
we obtain that φ̂ arises, up to inner automorphism, from a dominant morphism
of schemes XK → YL. In particular, this dominant morphism of schemes induces
a homomorphism ψ : Πtemp

XK
→ Πtemp

YL
of DOF-type, whose profinite completion

ψ̂ : ΠXK → ΠYL differs from φ̂ by composition with an inner automorphism of
ΠYL . On the other hand, by Lemma 6.3, (iii), we thus conclude that φ differs from
ψ by composition with an inner automorphism of Πtemp

YL
, as desired. ©

Next, let us write XK ↪→ XK for the compactification [cf. §0] of XK . Let

x ∈ XK

be a closed point. Thus, x determines, up to conjugation by an element of Πtemp
XK

,
a decomposition group:

Dx ⊆ Πtemp
XK

We shall refer to a closed subgroup of Πtemp
XK

which arises in this way as a decom-
position group of Πtemp

XK
. If x is a cusp, then we shall refer to the decomposition

group Dx as cuspidal. Note that Dx always surjects onto an open subgroup of GK .
Moreover, the subgroup

Ix
def= Dx

⋂
Δtemp
X

is isomorphic to Ẑ(1) [i.e., the profinite completion of Z, Tate twisted once] (respec-
tively, {1}) if x is (respectively, is not) a cusp. We shall refer to a closed subgroup of
Πtemp
XK

which is equal to “Ix” for some cusp x as a cuspidal geometric decomposition
group.

Theorem 6.5. (Tempered Decomposition Groups)

(i) (Determination of the Point) The closed point x is completely de-
termined by the conjugacy class of the closed subgroup Dx ⊆ Πtemp

XK
. If x is a

cusp, then x is completely determined by the conjugacy class of the closed subgroup
Ix ⊆ Πtemp

XK
.

(ii) (Commensurable Terminality) The subgroup Dx is commensurably ter-
minal in Πtemp

XK
. If x is a cusp, then Dx = CΠtemp

XK

(H) for any open subgroup
H ⊆ Ix.
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(iii) (Absoluteness of Cuspidal Decomposition Groups) Every isomor-
phism of tempered groups

α : Πtemp
XK

∼→ Πtemp
YL

preserves cuspidal decomposition groups and cuspidal geometric decomposition groups.

(iv) (Cuspidal and Noncuspidal Decomposition Groups) No noncusp-
idal decomposition group of Πtemp

XK
is contained in a cuspidal decomposition group

of Πtemp
XK

.

Proof. Assertions (i), (ii), (iv) follow formally from [Mzk8], Theorem 1.3, (i), (ii),
(iv), respectively. Assertion (iii) follows from Corollary 3.11. ©

To a large extent, the absolute anabelian geometry of tempered fundamental
groups is essentially equivalent to the absolute anabelian geometry of profinite fun-
damental groups. Indeed, we have the following result:

Theorem 6.6. (Tempered and Profinite Outer Isomorphisms) Every
outer isomorphism

ΠXK

∼→ ΠYL

of profinite groups arises from a unique outer isomorphism

Πtemp
XK

∼→ Πtemp
YL

of tempered groups.

Proof. Indeed, it is immediate that every outer isomorphism Πtemp
XK

∼→ Πtemp
YL

determines an outer isomorphism ΠXK

∼→ ΠYL . Now let

α̂ : ΠXK

∼→ ΠYL

be an arbitrary outer isomorphism. Let HX ⊆ ΠXK , HY ⊆ ΠYL be open normal
subgroups [of finite index] that correspond via α̂. Then by [Mzk3], Lemma 2.3, α̂
determines a natural isomorphism

α̂H : Gc
HX

∼→ Gc
HY

between the “semi-graphs of anabelioids with compact structure” Gc
HX

, Gc
HY

[cf.
Example 2.10; [Mzk3], Appendix] associated to the geometric special fibers of the
coverings corresponding to HX , HY . Moreover, α̂H is compatible with the natu-
ral actions of H ′

X
def= ΠXK /(HX

⋂
ΔX), H ′

Y
def= ΠYL/(HY

⋂
ΔY ), relative to the

isomorphism α̂H ′ : H ′
X

∼→ H ′
Y induced by α̂.

In particular, we conclude that the closed subgroups JX ⊆ HX
⋂

Δtemp
X ⊆

Δtemp
X , JY ⊆ HY

⋂
Δtemp
Y ⊆ Δtemp

Y determined by considering the pro-tempered
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coverings of XK , YK arising from the various tempered coverings [cf. §3] of Gc
HX

,
Gc
HY

satisfy α̂(J∧
X) = J∧

Y [where the “∧” denotes profinite completion, or, equiva-
lently, closure in ΠXK , ΠYL ]. Also, we note that the natural outer actions of H ′

X ,
H ′
Y on πtemp

1 (Gc
HX

), πtemp
1 (Gc

HY
), respectively, determine natural isomorphisms

Πtemp
XK

/JX
∼→ πtemp

1 (Gc
HX

)
out
� H ′

X

Πtemp
YL

/JY
∼→ πtemp

1 (Gc
HY

)
out
� H ′

Y

which we shall use in the following discussion to identify the quotients on the left
with the “outer semi-direct products” [cf. §0] on the right.

Now let us write

βH : πtemp
1 (Gc

HX
)

out
� H ′

X
∼→ πtemp

1 (Gc
HY

)
out
� H ′

Y

for the isomorphism induced by α̂H , α̂H ′. The functoriality of the construction of
α̂H in [Mzk3], Lemma 2.3, implies that the profinite completion β̂H differs from
the isomorphism ΠXK/J

∧
X

∼→ ΠYL/J
∧
Y induced by α̂ by composition with an inner

automorphism. Also, we observe that, as one varies HX , HY , consideration of the
resulting “generalized morphisms of arithmetic graphs of anabelioids” [cf. Example
5.6, Remark 5.6.1] shows that the resulting βH ’s are compatible [up to inner auto-
morphism]. Thus, by passing to the corresponding inverse limit, we conclude that
the various βH determine an isomorphism of tempered fundamental groups

β : Πtemp
XK

∼→ Πtemp
YL

whose profinite completion β̂ differs from α̂ by an inner automorphism, as desired.
That such a β is unique, up to inner automorphism, follows from Lemma 6.1, (iii).
©

Remark 6.6.1. One verifies easily that the technique used in the proof of Theorem
6.6 may also be applied to give another proof of Theorem 6.5, (iii) [i.e., without
resorting to the theory of §3].

Now that we have the tempered versions — i.e., Theorems 6.4, 6.5 — of [Mzk8],
Theorems 1.2, 1.3, the theory of [Mzk8], §2, concerning the category of dominant
localizations DLocK(XK) [cf. loc. cit.] generalizes in a fairly straightforward
fashion to the tempered case:

First, we define the category

DLocGK (Πtemp
XK

)

as follows: An object of this category is a surjection of tempered groups

H � J
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where H ⊆ Πtemp
XK

is an open subgroup of finite index; J is the quotient of H
by the closed normal subgroup generated by some collection of cuspidal geometric
decomposition groups; and we assume that J is “hyperbolic”, in the sense that the
image of Δtemp

X

⋂
H in J is nonabelian. Given two objects Hi � Ji, where i = 1, 2,

of this category, a morphism in this category is defined to be a diagram of the form

H1 H2⏐⏐�
⏐⏐�

J1 −→ J2

where the vertical morphisms are the given morphisms, and the horizontal mor-
phism is an outer homomorphism of DOF-type that is compatible with the various
natural [open] outer homomorphisms from the Hi, Ji to GK .

Next, let
Dx ⊆ Πtemp

XK

be a decomposition group associated to some closed point x ∈ XK .

Definition 6.7. We shall say that x or Dx is of tempered DLoc-type if Dx admits
an open subgroup that arises as the image via a morphism Z → XK of DLocK(XK)
of some cuspidal decomposition group of Πtemp

Z .

Theorem 6.8. (Tempered Group-theoreticity of the Category of Dom-
inant Localizations) Let K, L be finite extensions of Qp; XK (respectively, YL)
a hyperbolic curve over K (respectively, L). Then:

(i) The tempered fundamental group functor determines equivalences of cat-
egories

DLocK(XK) ∼→ DLocGK (Πtemp
XK

); DLocL(YL) ∼→ DLocGL(Πtemp
YL

)

(ii) Every isomorphism of tempered groups

α : Πtemp
XK

∼→ Πtemp
YL

induces an equivalence of categories

DLocGK (Πtemp
XK

) ∼→ DLocGL(Πtemp
YL

)

hence also [by applying the equivalences of (i)] an equivalence of categories

DLocK(XK) ∼→ DLocL(YL)

in a fashion that is functorial, up to unique isomorphisms of equivalences of cat-
egories, with respect to α. Moreover, α preserves the decomposition groups of
tempered DLoc-type.
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(iii) In the situation of (ii) above, suppose further that XK, YL are once-
punctured elliptic curves. Then α preserves the decomposition groups of the
“torsion closed points” — i.e., the closed points that arise from torsion points
of the underlying elliptic curve. Moreover, the resulting bijection between torsion
closed points of XK , YL is compatible with the isomorphism on abelianizations of
geometric fundamental groups Δab

X
∼→ Δab

Y — i.e., “Tate modules” — induced by
α.

(iv) In the situation of (ii) above, suppose further that XK , YL are isogenous
[cf. §0] to hyperbolic curves of genus zero. Then the isomorphism α preserves the
decomposition groups of the algebraic closed points. In particular, XK is defined
over a number field if and only if YL is.

Proof. In light of Theorems 6.4, 6.5, the present Theorem 6.8 follows by exactly
the same arguments as those applied in [Mzk8] to prove [Mzk8], Theorem 2.3;
Corollaries 2.5, 2.6, 2.8. ©

Remark 6.8.1. Just as in the case of [Mzk8], Corollaries 2.6, 2.8, the proofs of
Theorem 6.8, (iii), (iv), only require the isomorphism version of Theorem 6.4 [cf.
[Mzk8], Remark 2.8.1].

Corollary 6.9. (Tempered Absoluteness of Decomposition Groups for
Genus Zero) In the situation of Theorem 6.8, (iv), suppose further both XK and
YL are defined over a number field. Then the isomorphism α preserves the
decomposition groups of all the closed points.

Proof. Corollary 6.9 follows from Theorem 6.8, (iv), by applying a similar argu-
ment to the argument used in the proof of [Mzk8], Corollary 3.2. In the present
tempered case, one must therefore verify the tempered analogue of [Mzk8], Lemma
3.1. We do this as follows: First, we choose a sequence of characteristic open
subgroups [cf., e.g., [André], Lemma 6.1.2, (i)]

. . . ⊆ Δtemp
X [j + 1] ⊆ Δtemp

X [j] ⊆ . . . ⊆ Δtemp
X

[where j ranges over the positive integers] of Δtemp
X such that the Δtemp

X [j] form a
base of the topology of Δtemp

X . Next, let us observe that if H ⊆ Δtemp
X is a character-

istic open subgroup of finite index, then the open subgroup of H determined by the
combinatorial universal covering of the dual graph of the geometric special fiber of
the covering corresponding to H is still characteristic [cf. [André], Lemma 6.1.1, or,
indeed, Corollary 3.11 of the present paper]. Thus, we may assume, without loss
of generality, that [for all positive integers j] the dual graph Gj of the [geometric]
special fiber of each of the tempered covering of XK corresponding to Δtemp

X [j] is
a tree. In particular, given any section

σ : GK → Πtemp
XK
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we obtain open subgroups

Πtemp
XK [j,σ]

def= Im(σ) · Δtemp
X [j] ⊆ Πtemp

XK

[where Im(σ) denotes the image of σ in Πtemp
XK

] corresponding to a tower of tempered
coverings of XK :

. . .→ XK [j + 1, σ] → XK [j, σ] → . . .→ XK

Also, we observe that the natural action of Πtemp
XK

on the tree Gj factors through
Δtemp
X[j] .

Now suppose that Im(σ) is not contained in any cuspidal decomposition group
of Πtemp

XK
. Then the following conditions on σ are equivalent:

(i) σ arises from a point x ∈ XK(K) [i.e., “Im(σ) = Dx”].

(ii) For every integer j ≥ 1, XK [j, σ](K) 
= ∅.

(iii) For every integer j ≥ 1, XK [j, σ](K)alg 
= ∅ [where the superscript “alg”
denotes the subset of algebraic K-rational points, i.e., K-rational points that map
to algebraic points of XK(K)].

(iv) For every integer j ≥ 1, Πtemp
XK [j,σ] contains a decomposition group [i.e.,

relative to Πtemp
XK

] of an algebraic closed point of XK that surjects onto GK .

Indeed, the implications (i) =⇒ (ii); (iii) =⇒ (ii), (iv); and (iv) =⇒ (iii) follow
formally as in the proof of [Mzk8], Lemma 3.1. Moreover, the implication (ii) =⇒
(iii) — i.e., “approximation via Krasner’s lemma” [cf. the proof of [Mzk8], Lemma
3.1] — follows as in loc. cit., since given any point xj ∈ XK [j, σ](K) with image
x ∈ XK(K), the completion at [the OK-valued point determined by] xj of the
normalization in XK [j, σ] of some proper model of XK over OK is finite over the
completion of this proper model at [the OK-valued point determined by] x.

Finally, we consider the implication (ii) =⇒ (i). In the case of loc. cit., this
implication followed formally from the fact that the topological space

∏
j≥1

XK [j, σ](K)

was [in the case of loc. cit.] manifestly compact. In the present tempered case,
although this compactness is not immediate, we may nevertheless conclude, at
least for some cofinal set of j, the compactness of XK [j, σ](K) by observing that
the points of XK [j, σ](K) always determine components [i.e., vertices or edges] of
Gj that are fixed by the natural action of the image Im(Πtemp

XK [j,σ]) ⊆ Πtemp
XK

/Δtemp
X[j] ,

i.e., by the natural action of GK on Gj via σ. On the other hand, it follows from
our assumption that the Gj are trees [cf. Theorem 3.7, Theorem 5.4, and their
proofs; Lemma 1.8, (ii)] that, at least for some cofinal set of j, this set of fixed
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components of Gj is finite, thus implying the desired compactness of XK [j, σ](K).
©

Remark 6.9.1. As observed in Remark 3.7.1, the argument used in the final
portion of the proof of Corollary 6.9 is reminiscent of the argument used in the
“discrete real section conjecture” of [Mzk5], §3.2. This is interesting since Corollary
6.9 itself may be regarded as a weak form of the “section conjecture” for Πtemp

XK
�

GK [i.e., roughly speaking, the assertion that all sections of this surjection arise
geometrically]. This state of affairs suggests that:

Perhaps it is more natural to consider the section conjecture for the tem-
pered fundamental group Πtemp

XK
than for its profinite completion ΠXK .

Indeed, if one considers the section conjecture for the tempered fundamental group
Πtemp
XK

, it seems natural to expect that the theory of arithmetically maximal compact
subgroups discussed in §5 could provide useful insights that are not available in the
profinite case.

Next, let
Dx ⊆ Πtemp

XK

be a decomposition group associated to some closed point x ∈ XK(K). Then one
has tempered analogues of the various notions of “absoluteness” given in [Mzk8],
Definition 4.1, (iv); [Mzk8], Definition 4.8 — which we denote by means of a prefix
“temp-”. Observe that Dx also forms a “profinite Dx ⊆ ΠXK ” in the sense of
[Mzk8]. Moreover, since finitely generated free groups are well-known to be “good”
[i.e., the natural map from the cohomology of the profinite completion of this group
with coefficients in a finite [i.e., as a set] module to the cohomology of the original
group in the same module is an isomorphism], it is immediate that Πtemp

XK
is also

good. We thus conclude [cf. Theorem 6.6] the following:

Corollary 6.10. (Tempered Absoluteness)

(i) The point x is a discretely absolute cusp (respectively, an integrally
absolute cusp) if and only if it is a discretely temp-absolute cusp (respec-
tively, an integrally temp-absolute cusp).

(ii) The hyperbolic curve XK is unitwise absolute if and only if it is unit-
wise temp-absolute.

Corollary 6.11. (Unitwise and Integral Temp-absoluteness for Genus
Zero) Let XK be a hyperbolic curve over K, with stable reduction over OK,
which is isogenous to a hyperbolic curve of genus zero. Then XK is unitwise
temp-absolute, and every cusp of XK is integrally temp-absolute.
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Proof. Indeed, this follows by formally “substituting” the equivalences of Corollary
6.10, (i), (ii), into [Mzk8], Corollary 4.11. ©

Finally, we also observe that it is immediate that the tempered analogue of
[Mzk8], Theorem 4.3, holds:

Theorem 6.12. (Rigidity of Cuspidal Geometric Decomposition Groups)
In the notation of Theorem 6.8, (ii), suppose that α induces isomorphisms

Ix
∼→ Iy; μ

�Z
(K) ∼→ μ

�Z
(L)

where x ∈ XK(K) (respectively, y ∈ Y L(L)) is a cusp; μ
�Z
(−) is as in [Mzk8],

Theorem 4.3. Then these isomorphisms are compatible with the natural iso-
morphisms μ

�Z
(K) ∼→ Ix; μ

�Z
(L) ∼→ Iy.

Remark 6.12.1. Note that unlike Corollaries 6.10, 6.11; Theorem 6.12, results
such as Theorem 6.8, (iii), (iv); Corollary 6.9 do not follow formally from their
profinite analogues, since, in the latter case, it is by no means clear that any ΠXK -
conjugate of the decomposition group of a closed point that happens to be contained
in Πtemp

XK
⊆ ΠXK is necessarily a Πtemp

XK
-conjugate of the decomposition group of a

closed point.



SEMI-GRAPHS OF ANABELIOIDS 79

Appendix: Quasi-temperoids

In this Appendix, we discuss a certain minor generalization of the notion of a
temperoid introduced in §3.

Let T be a temperoid. If A is an object of T , write π0(A) for the set of
connected components of A and

T [A] ⊆ T

for the full subcategory determined by the objects of T that admit a morphism to
A [cf §0]. This Appendix is devoted to the resolution [cf. Theorem A.4 below] of
the following question:

Given the abstract category T [A], is it possible to reconstruct the category
T category-theoretically from T [A]?

This sort of issue occurs naturally, for instance, in the study of cores of anabelioids,
and, indeed, is addressed implicitly in [Mzk4], Proposition 2.1.1, (iii). Since, how-
ever, this sort of technical issue is a bit more technically complicated in the case
of temperoids than in the case of anabelioids, and, moreover, even in the case of
anabelioids, this sort of issue is not addressed explicitly or in detail in [Mzk4], it
seemed appropriate to the author to give the details in the present Appendix of
how this sort of issue may be resolved.

Definition A.1.

(i) Any category equivalent to a category of the form

T [A]

— where A is a connected object, and T is a connected temperoid — will be referred
to as a connected quasi-temperoid.

(ii) A category equivalent to a product [in the sense of a product of categories]
of a countable [hence possibly empty!] collection of connected quasi-temperoids
will be referred to as a quasi-temperoid. An object A of a quasi-temperoid Q will
be called nondegenerate if, for every connected object B of Q, there exist arrows
C → B, C → A, for some connected object C of Q.

(iii) Let Q1, Q2 be quasi-temperoids. Then a quasi-morphism φ : Q1 → Q2

is defined to be a functor φ∗ : Q2 → Q1 that preserves finite limits and countable
colimits. A quasi-morphism φ will be called rigid (respectively, a morphism) if the
functor φ∗ is rigid [cf. §0] (respectively, preserves nondegenerate objects).

Remark A.1.1. One verifies immediately that a quasi-temperoid is an almost
totally epimorphic category of countably connected type [cf. §0].
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Remark A.1.2. Unlike the situation with temperoids, a quasi-temperoid does
not, in general, admit a terminal object. Thus, it is not in general the case that a
quasi-morphism of quasi-temperoids is necessarily a morphism. Indeed, if Q is a
connected quasi-temperoid that does not admit a terminal object, then one verifies
immediately that the functor Q → Q that maps all objects of Q to some empty
object of Q preserves finite limits and countable colimits, but fails to preserve
nondegenerate objects.

Proposition A.2. (Connected Components of Quasi-temperoids) Let E,
E′ be countable sets; for each e ∈ E (respectively, e′ ∈ E′), let Qe (respectively,
Q′
e′) be a connected quasi-temperoid; set:

Q def=
∏
e∈E

Qe; Q′ def=
∏
e′∈E′

Q′
e′

Also, let φ : Q → Q′ be a quasi-morphism of quasi-temperoids. Then:

(i) For each e ∈ E, the natural projection functor

π∗
e : Q → Qe

determines a morphism of quasi-temperoids Qe → Q.

(ii) For each e ∈ E, write
ιe : Qe → Q

for the natural inclusion functor [i.e., the functor whose composite with π∗
f , where

f ∈ E, maps all objects of Qe to empty [i.e., initial] objects of Qf if f 
= e, and
is the identity if f = e]. If ε is a connected component of the full subcategory of
connected objects Q0 ⊆ Q [cf. §0], then write

Qε ⊆ Q

for the full subcategory determined by the objects A of Q such that all of the con-
nected components of A belong to ε. Then the essential image of ιe is equal to Qε

for a unique ε, and, moreover, the resulting correspondence

e �→ ε

determines a bijection between E and the set of connected components of Q0.

(iii) The nondegenerate objects of Q are precisely the objects each of whose
component objects ∈ Ob(Qe) is nonempty.

(iv) If φ is a morphism of quasi-temperoids, and both E and E′ are of
cardinality one, then the functor φ∗ is faithful.

(v) If φ is a morphism of quasi-temperoids, then φ induces a map ψ :
E → E′, and, for each e ∈ E, a morphism of quasi-temperoids φe : Qe → Q′

ψ(e)
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such that φ coincides with the morphism of quasi-temperoids formed by “taking the
product” [in the evident sense] of the φe.

Proof. Assertion (i) (respectively, (iii)) follows immediately from the definitions
(respectively, and assertion (ii)). To prove assertion (ii), we argue as follows: By
unraveling the definitions, one verifies immediately that every connected object of
Q lies in the essential image of a unique ιe, and that two connected objects of Q lie
in the essential image of the same ιe if and only if they belong to the same connected
component of Q0. Now assertion (ii) follows formally from these observations.

Next, we verify assertion (iv). First, in light of Remark A.1.1, it suffices to
check faithfulness on arrows A → B between connected objects A, B of Q′. But
since A, B are connected, it follows immediately that there exists a connected
object C of Q′ such that the products A × C , B × C split as coproducts of copies
of C . Since A, B, C are connected [hence nonempty], they are nondegenerate [cf.
assertion (iii)]. Moreover, again by Remark A.1.1, arrows A → B are represented
faithfully by the maps π0(A × C) → π0(B × C) they induce. But, since φ∗(A),
φ∗(B), φ∗(C) are nondegenerate, hence, in particular, nonempty, this implies that
φ∗ itself is faithful, as desired.

Finally, we verify assertion (v). Let us consider the various composite functors

κ[e′, e] def= π∗
e ◦ φ∗ ◦ ιe′ : Q′

e′ → Qe

where e ∈ E, e′ ∈ E′. Now observe that, if we fix e and allow e′ to vary, then since
the product of objects belonging to distinct Q′

ε′’s will always be an empty object
of Q′, it follows from the fact that πe, φ are quasi-morphisms of quasi-temperoids
[together with the easily verified observation that any product of nonempty objects
of a connected quasi-temperoid will always be nonempty] that there is at most one
e′ ∈ E′ such that the essential image of κ[e′, e] contains nonempty objects. On the
other hand, since π∗

e ◦ φ∗ preserves nondegenerate objects, it follows [cf. assertion
(iii)] that there exists at least one e′ ∈ E′ such that the essential image of κ[e′, e]
contains nonempty objects. Thus, in summary, for each e ∈ E, there exists a unique
e′ ∈ E′ such that the essential image of κ[e′, e] contains nonempty objects; set
ψ(e) def= e′. Then it follows immediately again from the fact that the functor π∗

e ◦φ∗

preserves nondegenerate objects that the functor κ[ψ(e), e] preserves nondegenerate
objects, hence determines a morphism of quasi-temperoids Qe → Q′

ψ(e). Moreover,
unraveling the definitions, we see that the remainder of assertion (v) follows formally
from what we have done thus far. ©

Remark A.2.1. Thus, Proposition A.2 serves, in effect, to reduce the theory of
arbitrary quasi-temperoids to the theory of connected quasi-temperoids.

Definition A.3. Let Q be a connected quasi-temperoid. Then:

(i) Any pair (A,ΓA), where A is an object of Q, and ΓA ⊆ AutQ(A) is a
subgroup, will be referred to as a QD- [or quotient data] pair [of Q]. If ΓA acts
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transitively on π0(A), then we shall say that this QD-pair is weakly connected; if
A is connected, then we shall say that this QD-pair is strongly connected. [Thus,
every strongly connected QD-pair is weakly connected.]

(ii) A morphism of QD-pairs of Q

(A,ΓA) → (B,ΓB)

is defined to be a morphism φ : A → B such that, for every γA ∈ ΓA, there
exists a γB ∈ ΓB such that γB ◦ φ = φ ◦ γA. If, moreover, φ induces a surjection
π0(A) � π0(B), then we shall say that this morphism is 0-proper. Thus, in the 0-
proper case, it follows from the fact that the category Q is almost totally epimorphic
that γB is unique, hence that the correspondence γA �→ γB determines an associated
group homomorphism ΓA → ΓB .

(iii) Let (A,ΓA) be a QD-pair. Then we shall say that an arrow φ : A→ B of
Q forms a quotient of this QD-pair — and write B ∼= A/ΓA — if the following two
properties are satisfied: (a) φ◦γA = φ, ∀ γA ∈ ΓA; (b) for every arrow ψA : A→ C
satisfying ψA ◦ γA = ψA, ∀ γA ∈ ΓA, there exists a unique arrow ψB : B → C such
that ψB ◦φ = ψA. [Thus, one verifies immediately that the quotient of a QD-pair is
unique, up to unique isomorphism, if it exists, and that the quotient of a QD-pair
is connected if and only if the QD-pair is weakly connected.]

(iv) A 0-proper morphism of QD-pairs of Q

(A,ΓA) → (B,ΓB)

will be called 1-proper if the associated homomorphism ΓA → ΓB is surjective, and,
moreover, the arrow A → B forms a quotient of the QD-pair (A,Ker(ΓA � ΓB)).
[Thus, under the 1-properness assumption, one verifies immediately that if B → C
forms a quotient of (B,ΓB), then the composite arrowA → B → C forms a quotient
of (A,ΓA).]

Remark A.3.1. One verifies immediately that the following conditions on a
morphism of QD-pairs (A,ΓA) → (B,ΓB) are equivalent:

(a) (A,ΓA) → (B,ΓB) is 0-proper.

(b) A→ B is an epimorphism in Q [cf. Remark A.1.1].

(c) B is the colimit in Q of the diagram formed by the two projections
A×B A→ A.

Moreover, the notion of a “quotient” given in Definition A.3, (iii), may also be
stated in terms of colimits. In particular, the condition that (A,ΓA) → (B,ΓB ) be
1-proper may be stated entirely in terms of colimits.

Theorem A.4. (Connected Quasi-temperoids) For i = 1, 2, let Ti be a
connected temperoid; let Ai be a connected object of Ti; write

λi : Qi
def= Ti[Ai] → Ti
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for the natural functor. Then any morphism of quasi-temperoids φ : Q1 → Q2

fits into a 1-commutative diagram

Q1
φ−→ Q2⏐⏐�λ1

⏐⏐�λ2

T1
ψ−→ T2

— where the morphism of [quasi-]temperoids ψ : T1 → T2 that makes this diagram
1-commute is unique, up to unique isomorphism.

Proof. Write
Di

for the category whose objects are QD-pairs of Qi and whose morphisms are mor-
phisms of QD-pairs. Note that it follows immediately from the definitions that if
(B,ΓB) is a QD-pair of Qi, then the QD-pair λi(B,ΓB) of Ti admits a quotient in
Ti. Thus, we obtain a natural functor

qi : Di → Ti

given by the assignment (B,ΓB) �→ B/ΓB. Note that this functor maps 1-proper
morphisms of Di to isomorphisms of Ti. Moreover, one verifies immediately that
this functor qi is essentially surjective; that qi((B,ΓB )) is connected if and only if
(B,ΓB) is weakly connected; and that every connected object of Ti is isomorphic to
the image via qi of a strongly connected QD-pair.

Thus, to reconstruct Ti from Di, it suffices to reconstruct the morphisms

B/ΓB → C/ΓC

in Ti between the images via qi of two objects (B,ΓB), (C,ΓC) of Di. To this end,
we define

Hom((B,ΓB ), (C,ΓC)) def= HomDi((B,ΓB ), (C,ΓC))/ΓC

[i.e., where ΓC acts by composition from the right], so that the functor qi induces
a natural map:

Hom((B,ΓB ), (C,ΓC)) → HomTi(B/ΓB , C/ΓC)

Since Ti is an almost totally epimorphic category countably connected type, it suffices
to describe the morphisms between connected objects of Ti.

Next, suppose that (B,ΓB), (C,ΓC) are strongly connected QD-pairs. Then
observe that the functor qi induces an injection:

Hom((B,ΓB), (C,ΓC)) ↪→ HomTi(B/ΓB , C/ΓC)
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Indeed, this follows immediately by considering the natural splitting [in Qi or Ti]
of C ×C/ΓC

C into a coproduct of copies of C indexed by ΓC [together with the
fact that (B,ΓB), (C,ΓC) are strongly connected QD-pairs]. Moreover, one verifies
immediately that every element of HomTi(B/ΓB , C/ΓC) arises from some morphism
of strongly connected QD-pairs

(B′,ΓB′) → (C,ΓC)

where (B′,ΓB′) → (B,ΓB) is a 1-proper morphism of strongly connected QD-pairs
[so we obtain a morphism B/ΓB → C/ΓC by composing the induced morphism
B′/ΓB′ → C/ΓC with the inverse of the induced isomorphism B′/ΓB′

∼→ B/ΓB ].
Now one verifies easily that any two 1-proper morphisms of strongly connected QD-
pairs (B′,ΓB′) → (B,ΓB), (B′′,ΓB′′) → (B,ΓB) fit into a commutative diagram of
1-proper morphisms of strongly connected QD-pairs of Di:

(B′′′,ΓB′′′) −→ (B′′,ΓB′′)⏐⏐�
⏐⏐�

(B′,ΓB′) −→ (B,ΓB)

Thus, we conclude that HomTi(B/ΓB , C/ΓC) may be reconstructed as the following
filtered inductive limit:

Hom((B,ΓB), (C,ΓC)) def= lim
−→

Hom((B′,ΓB′), (C,ΓC))

[i.e., over 1-proper morphisms of strongly connected QD-pairs (B′,ΓB′) → (B,ΓB)
and transition morphisms (B′′,ΓB′′) → (B′,ΓB′) over (B,ΓB)]. Moreover, one ver-
ifies immediately that this reconstruction is compatible with composition of arrows
[i.e., composition of arrows in Di induces composition of “Hom-arrows”].

Next, suppose that (B,ΓB), (C,ΓC) are weakly connected QD-pairs. Then ob-
serve that each connected component B′ of B determines a strongly connected QD-
pair (B′,ΓB′) [i.e., where we take ΓB′ ⊆ ΓB to be the subgroup of automorphisms
that fix the element [B′] ∈ π0(B) determined by B′] such that qi((B′,ΓB′)) ∼=
qi((B,ΓB)); a similar statement holds for (C,ΓC). Moreover, if B′, B′′ (respec-
tively, C ′, C ′′) are connected components of B (respectively, C), then one verifies
immediately that any choice of elements γB ∈ ΓB, γC ∈ ΓC such that γB(B′) = B′′,
γC(C ′) = C ′′ determines a bijection

Hom((B′,ΓB′), (C ′,ΓC′)) ∼→ Hom((B′′,ΓB′′), (C ′′,ΓC′′))

which is, in fact, independent of the choice of γB, γC . Thus, if we define

Hom((B,ΓB ), (C,ΓC)) ⊆
∏
B′,C′

Hom((B′,ΓB′), (C ′,ΓC′))

[where the product ranges over all choices of connected components B′, C ′ of B, C ,
respectively] to be the subset of collections of elements that correspond via these
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bijections, then the natural projections of this direct product determine bijections
as follows:

Hom((B,ΓB), (C,ΓC )) ∼→ Hom((B′,ΓB′), (C ′,ΓC′))
∼→ HomTi(qi((B

′,ΓB′)), qi((C ′,ΓC′)))
∼→ HomTi(qi((B,ΓB )), qi((C,ΓC)))

Moreover, it follows immediately from the definitions that we have a natural map:

Hom((B,ΓB), (C,ΓC)) → Hom((B,ΓB ), (C,ΓC))

Finally, as observed above, since Ti is an almost totally epimorphic category count-
ably connected type, the definition of “Hom”, as well as the resulting bijection of
“Hom” with “HomTi” and the natural map from “Hom” to “Hom” extend imme-
diately to pairs of objects of Di that are not necessarily weakly connected.

Thus, in summary, if we write
Pi

for the category whose objects are the objects of Di and whose morphisms are given
by the “Hom’s”, then we obtain natural functors

Qi → Di → Pi ∼→ Ti

— i.e., the first functor maps an object B of Qi to the QD-pair (B, {1}); the second
functor arises from the construction of Pi; the third functor is the equivalence
induced by the natural functor Di → Ti considered above.

Now observe that the functor φ∗ : Q2 → Q1 induces a 1-commutative diagram

Q2 −→ D2 −→ P2⏐⏐�φ∗
⏐⏐�

⏐⏐�
Q1 −→ D1 −→ P1

Indeed, the construction of the second vertical arrow is immediate from the defini-
tions. The construction of the third vertical arrow follows by observing that since
φ∗ preserves countable colimits, it follows that the functor D2 → D1 preserves 0-
and 1-proper morphisms [cf. Remark A.3.1]. Thus, by combining this diagram with
the equivalences Pi ∼→ Ti, we obtain a diagram as in the statement of Theorem A.4.

The fact that the resulting functor ψ∗ : T2 → T1 preserves countable colimits
(respectively, fibered products) follows by a routine argument from the fact that
φ∗ preserves countable colimits (respectively, countable colimits and finite limits).
Thus, to show that ψ is a morphism of temperoids [i.e., that ψ∗ preserves finite
limits], it suffices to show that ψ∗ preserves terminal objects. Now let B be a
connected object of Q2 such that B×B splits as a coproduct of copies of B [i.e., in
other words, B is a connected Galois object of T2 that admits a morphism in T2 to
A2]. Note that such a B always exists. Then if we let Aut(B) act on, say, the second
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factor of B×B, then the resulting QD-pair (B×B,Aut(B)) maps via φ∗ to a QD-
pair (φ∗(B) × φ∗(B), φ∗(Aut(B))) of Q1. Moreover, since the first projection B ×
B → B forms a quotient of the former QD-pair, it follows that the first projection
φ∗(B) × φ∗(B) → φ∗(B) forms a quotient of the latter QD-pair. It thus follows
immediately that φ∗(Aut(B)) acts transitively on π0(φ∗(B)). Next, observe that
B × B is a coproduct of copies of B. Thus, we conclude that φ∗(B) × φ∗(B) is
a coproduct of copies of φ∗(B). But this implies that the connected components
of φ∗(B), all of which are isomorphic to one another [by the transitivity observed
above], form Galois objects of T1. Thus, the preceding observation concerning the
quotient of the QD-pair in Q1 implies that the stabilizer in φ∗(Aut(B)) of any
connected component φ∗(B) is necessarily equal to the entire automorphism group
of this connected component. Moreover, since φ∗ preserves nondegenerate objects, it
follows that φ∗(B) is nonempty [i.e., φ∗(B) has at least one connected component].
Thus, in summary, φ∗ maps the QD-pair (B,Aut(B)) [any quotient of which forms
a terminal object in T2] to a QD-pair (φ∗(B), φ∗(Aut(B))) any quotient of which
forms a terminal object in T1. That is to say, we have shown that ψ∗ preserves
terminal objects, as desired.

Finally, the asserted uniqueness of ψ [up to unique isomorphism] follows im-
mediately from the fact that arbitrary objects of Ti may be obtained as quotients
of QD-pairs of Qi. ©

Remark A.4.1. Thus, Theorem A.4 serves, in effect, to reduce the theory of
arbitrary connected quasi-temperoids to the theory of connected temperoids.

Remark A.4.2. One verifies immediately that, by replacing the term “temper-
oid” by the term “anabelioid” [and the terms “countable/countably” by the terms
“finite/finitely”], one obtains an entirely analogous [but, in fact, slightly easier]
theory of “quasi-anabelioids” to the theory of quasi-temperoids developed above.
We leave the routine details to the reader.
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abstract equivalence, §0, Categories
abut, §1
action, 5.1, i
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combinatorial universal covering, after 3.5.2
commensurably terminal, §0, Topological Groups
commensurator, §0, Topological Groups
compactification (of a curve), §0, Curves
compactification of a semi-graph, §1
component of a semi-graph, §1
connected (component of a) category, §0, Categories
connected semi-graph of anabelioids, after 2.1
constituent anabelioids, 2.1
continuous action, 5.1, i
countable semi-graph, §1
countable semi-graph of anabelioids, after 3.4.2
countably connected type, §0, Categories
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covering of a semi-graph of anabelioids, 3.5, i
coverticial edges, §1
cuspidal (geometric) decomposition group, after 6.4

DFG-type, 6.2, i, iii
divisor at infinity, §0, Curves
divisor of cusps, §0, Curves
divisor of marked points, §0, Curves
DOF-type, 6.2, ii, iii

edge, §1
edge-like subgroup, 3.7, iii
edge-like subgroup (arithmetic case), 5.3, iii
edge-wise length, 4.2, i
elevated (totally), 2.4, i
embedding (of semi-graphs), §1
embedding (of semi-graphs of anabelioids), 4.1, ii
estranged (totally), 2.4, iv
étale morphism of temperoids, 3.4, i
excision (of semi-graphs), §1
excision (of semi-graphs of anabelioids), 4.1, ii

family of (hyperbolic) curves, §0, Curves
finite étale covering of semi-graph of anabelioids, 2.2, i
finitely connected type, §0, Categories
finite open object, after 4.1.2
finite semi-graph, §1
Galois covering of a semi-graph of anabelioids, 3.5, iii
Galois object (of a temperoid), 3.1, iv
G-closed, 4.1.1
generalized morphism of semi-graphs of anabelioids, 2.11
geometric component, 5.1, ii
(G,Γ)-structure, 4.1, iii
G-open, 4.1.1
graph, §1
graph-covering (finite, Galois), §1
graph-localization morphism (strict), 4.2, ii

immersion (of semi-graphs), §1
immersion (of semi-graphs of anabelioids), 4.1, ii
immobile, §0, Categories
indissectible , §0, Categories
infinite open object, after 4.1.2
injective type, 2.1
inner action, 5.1, i
iso-excisive, 4.1, iii, iv
iso-immersive, 4.1, iii, iv
isolated edge, §1
isomorphism between functors, §0, Categories
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joint, §1
link, 4.2, i
local (G,Γ)-structure, 4.1, iv
locally finite étale morphism of semi-graphs of anabelioids, 2.2, ii
locally finite semi-graph, §1
locally open morphism of semi-graphs of anabelioids, 2.2, ii
locally trivial morphism of semi-graphs of anabelioids, 2.2, ii
log curve (stable, smooth), §0, Curves

maximal subgraph, §1
minimal-adjoint, §0, Categories
mobile, §0, Categories
moduli stack, §0, Curves
morphism of arithmetic semi-graphs of anabelioids (properties of), 5.1, iv
morphism of QD-pairs, A.3, ii
morphism of quasi-temperoids, A.1, iii
morphism of (semi-)graphs of anabelioids, 2.1
morphism of semi-graphs, §1
morphism of temperoids, 3.1, iii

NL-morphism, 4.2, i
nondegenerate object, A.1, ii
normalizer, §0, Topological Groups
nuclear object, 4.2, i

open edge, §1
open object, after 4.1.2

π1-epimorphic approximator, 2.3, ii
π1-monomorphism, 2.1
piecewise faithfully, 4.1, i
proper morphism of semi-graphs, §1
properties of an arithmetic semi-graph of anabelioids, 5.1, iii
pro-Σ-completion, 2.9, ii
pro-temperoids, 3.4.2

QD-pair, A.3, i
quasi-anabelioid, A.4.2
quasi-coherent, 2.3, iii
quasi-connected, §0, Categories
quasi-geometric, 3.8
quasi-morphism of quasi-temperoids, A.1, iii
quasi-temperoid (connected), A.1, i, ii
quotient of a QD-pair, A.3, iii

rigid, §0, Categories

semi-graph, §1
(semi-)graph of anabelioids, 2.1
Σ-integer, 2.9, i



90 SHINICHI MOCHIZUKI

slim, §0, Categories
strongly connected, A.3, i
structure morphism, 4.1, iii
sub-coverticial (totally, universally), 2.4, iii
subjoint, §1
sub-semi-graph, §1
temp-, after 6.9.1
tempered covering of a semi-graph of anabelioids, 3.5, ii
tempered DLoc-type, 6.7
tempered fundamental group of a temperoid, 3.2.1
tempered object, after 4.1.2
tempered topological group, 3.1, i
temperification, 3.1.4
temperoid, 3.1, ii
temp-slim (relatively), 3.4, ii
topological space associated to a semi-graph, §1
totally epimorphic, §0, Categories
tree, §1
universal graph-covering, §1
universal pro-finite étale covering, 2.2.1
untangled semi-graph, §1
vertex, §1
verticial cardinality, §1
verticial degree, 4.2, i
verticial length, 4.2, i
verticially iso-excisive, 4.1, iv
verticially slim, 2.4, ii
verticial morphism, 4.2, i
verticial portion, §1
verticial restriction, §1
verticial subgroup, 3.7, i
verticial subgroup (arithmetic case), 5.3, iii

weakly connected, A.3, i
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