COMMENTS ON “THE GEOMETRY OF FROBENIOIDS II”

Shinichi Mochizuki

December 2012

(1.) In the second line of the final display of Example 1.1, (ii), the notation “ord(K^\times) ⊆ $\Phi(K)$” should read “ord(K^\times) ⊆ $\Phi(K)^{\text{gp}}$”.

(2.) In the proof of Theorem 2.4, (ii), the notation “$B(G_i, G_i^\circ)$” should read “$B^\text{emp}(G_i, G_i^\circ)$”.

(3.) In the display following the phrase “the assignment” in Example 3.3, (i), the notation “ord(K) ≅ $\mathbb{R}_{>0} \cong \mathbb{R}_{\geq 0}$” should read “ord($O_K^\times$) ≅ $\mathbb{R}_{\geq 0}$”.

Also, in the explanation following this display, the phrase “[where the isomorphism $\mathbb{R}_{>0} \sim \mathbb{R}_{\geq 0}$ is given by the natural logarithm], then” should read

“[where O_K^\times denotes the multiplicative submonoid of elements of norm ≤ 1, and the isomorphism ord(O_K^\times) ≅ $\mathbb{R}_{\geq 0}$ is given by minus the natural logarithm], then”.

(4.) The observation “Observe that all real objects of \mathcal{N}_0 are isomorphic.” at the beginning of Example 3.3, (iv), is correct as stated, but may be replaced by the stronger observation

“Observe that all real objects of \mathcal{N}_0 are isomorphic, and all morphisms between such objects are isomorphisms.”.

(5.) The following sentence should be added to the end of Definition 3.3, (iv):

Finally, we shall refer to as the angular region of an object of \mathcal{C}, \mathcal{A}, \mathcal{N}, or \mathcal{R} the angular region of the object obtained by projecting the given object to \mathcal{C}_0.

(6.) In the proof of Proposition 3.5, (iii), the notation “$_C\mathcal{F}$” should read “$_C\mathcal{G}[\mathcal{C}]$”.
(7.) In the first displayed diagram of the proof of Theorem 5.5, the notation “Ψ" should read “(Ψ_{birat}^M)".

(8.) In Example 5.6, (iii), (b), the phrase “for some group-like functor $\mathcal{D}_v \to \mathcal{M}_{\text{Mon}}$” should read “for some group-like functor $\Phi_{\text{cnst}}^v : \mathcal{D}_v \to \mathcal{M}_{\text{Mon}}$".